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Abstract: The linear stability of a convective flow in a vertical fluid layer caused by nonlinear heat
sources in the presence of cross-flow through the walls of the channel is investigated in this paper.
This study is relevant to the analysis of factors that affect the effectiveness of biomass thermal
conversion. The nonlinear problem for the base flow temperature is investigated in detail using the
Krasnosel’skiı̆–Guo cone expansion/contraction theorem. It is shown that a different number of
solutions can exist depending on the values of the parameters. Estimates for the norm of the solutions
are obtained. The linear stability problem is solved numerically by a collocation method based on
Chebyshev polynomials. It is shown that the increase in the cross-flow intensity stabilizes the flow,
but there is also a small region of the radial Reynolds numbers where the flow is destabilized.

Keywords: linear stability; Krasnosel’skiı̆–Guo theorem; bifurcation analysis; collocation method
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1. Introduction

The development of renewable energy sources is crucial for the sustainability of our
society. Biomass thermal conversion is considered to be one of the promising alternatives
for heat generation. Thermal conversion is a process where biomass is burned in a chamber
producing heat. Different methods of biomass thermal conversion are discussed in a recent
survey [1]. Experimental studies [2,3] indicate that several factors may affect the efficiency
of the conversion process—the co-firing of propane or microwave pre-treatment of biomass.

Combustion can also occur in porous media. A recent survey [4] discusses challenges
and developments in porous media combustion technology. Biomass conversion using
porous materials is analyzed in the review paper [5]. Another widely used application of
flows through porous walls of a channel is dynamic filtration—one of the most popular
methods for purifying fluids. In this method, a fluid with contaminants passes through a
porous wall so that the pure fluid flows out of the wall while contaminants are left in the
channel [6–8].

The analysis of processes that occur during biomass thermal conversion represents a
complex multiphysics problem where different factors that affect the conversion process
should be taken into account (convection, chemical reactions, external electric and magnetic
field, to mention just a few). The following three approaches are often used to analyze
complex phenomena in science and engineering: (a) experimental studies, (b) numerical
modeling and (c) stability analysis. In the present paper mwe use stability analysis in an
attempt to understand the role of each factor (included in the model) in the stability of a
base flow caused by internal heat generation. Heat is released in the fluid as a result of
a chemical reaction. In addition, the walls of the channel where the flow takes place are
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assumed to be permeable. An investigation of the stability of a fluid flow can be used to
address the following issues: (1) finding the values of the parameters of the problem for
which the flow is linearly stable, and (2) determining the factors that either delay or enhance
instability. In some applications, instability is undesirable (for example, a high degree of
turbulence in air may cause problems for airplane safety). There are also applications where
instability is desirable. As is shown in [9], the intense heat transfer and mixing provide good
conditions for combustion that, in turn, lead to more efficient energy conversion. Thus,
instability should be stimulated to achieve more favorable conditions for biomass thermal
conversion. Methods of hydrodynamic stability for both isothermal and non-isothermal
flows are considered in several monographs (see, for example, [10,11]).

Flows with internal heat generation represent considerable interest due to numerous
applications: neutron irradiation in thermonuclear reactors [12], convection in the Earth’s
mantle [13], and biomass thermal conversion [1]. The linear stability of a convective flow
in a vertical fluid layer caused by uniform heat generation is investigated in several papers
(see [14–16]). The effect of the Prandl number of the instability boundary is explored in [14]
and later in [17], where it is shown that the increase in the Prandtl number leads to the
appearance of a buoyant mode. This mode is associated with a rapid decrease in the critical
Grashof number. In addition, the most unstable perturbation is represented by a thermal
running wave that propagates downstream with a sufficiently large phase velocity. Linear
stability analysis of a convective flow due to heat sources of constant density in a tall
vertical annulus is conducted in [18]. Calculations show that axisymmetric perturbations
are the most unstable for relatively small gaps while the spiral mode is the most unstable
one for wide gaps. A similar analysis is also conducted in [19], where the results of linear
stability calculations for a convective flow in a pipe are compared with experimental data.
Both the theory and experiment predict the same form of the most unstable mode (spiral
perturbation). The stability of a combined base flow caused by uniform heat generation,
external pressure gradient and different temperatures of the walls is investigated in [20].
Marginal stability curves become more complicated with multiple minima.

The effect of nonlinear heat sources on the stability boundary for a convective flow
in a vertical fluid layer is analyzed in [21], where the existence of several solutions of the
nonlinear boundary value problem for the base flow temperature is shown numerically.
The linear stability of a flow due to nonlinear heat sources in a tall vertical annulus is
investigated in [22] for both asymmetric and axisymmetric perturbations. It is shown in
[22] that, for wide gaps, asymmetric (spiral) perturbations are the most unstable ones. The
combined effect of nonlinear heat sources and different wall temperatures on the linear
stability characteristics is analyzed in [23]. Calculations show that two modes of instability
can be present, shear or buoyant instability, depending on the value of the Prandtl number.

The mathematical model used in the paper consists of a coupled system of Navier–
Stokes equations and a heat equation where the density of internal heat sources is a
nonlinear function of temperature (heat is released as a result of a chemical reaction that
takes place in a combustion chamber). Thus, even the equations for the base flow become
nonlinear (in contrast with classical problems in hydrodynamic stability theory, where
a base flow is usually obtained analytically from the equations of motion). As a result,
questions on the existence and uniqueness of the solution of the corresponding nonlinear
boundary value problem for a system of ordinary differential equations (describing the
base flow) should be answered. This is important for the case where a nonlinear problem
has several solutions so that the “correct solution” should be selected for linear stability
analysis.

The main contributions of the present study are summarized as follows.

• The analysis of the nonlinear boundary value problem for the temperature distribution
is performed using rigorous mathematical tools such as Krasnosel’skiı̆–Guo cone
expansion/contraction theorem. It is shown in the paper that, depending on the value
of the Frank–Kamenetskii parameter (characterizing the thermal effect of the reaction),
the number of solutions is 0, 1 or 2.
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• In addition, it is proved that in the region of interest for linear stability analysis, there
are two solutions of the nonlinear boundary value problem such that the maximum
norm of one solution is smaller than 1 while the maximum norm of the second solution
is larger than 1. This gives a simple criterion for the base flow selection—a physically
realizable solution is with the smallest maximum norm—and this solution should be
chosen for stability analysis.

• Bifurcation analysis is performed to numerically investigate the effect of the parame-
ters of the problem on bifurcation diagrams.

• A linear stability problem is formulated and solved numerically for different values of
the parameters characterizing the problem: the Frank–Kamenetskii parameter λ and
the Reynolds number Re (based on the velocity of the flow through permeable walls).
Critical values of the Grasshof number are found for different values of λ and Re.

• Recommendations for the choice of parameters that result in more intensive mixing
are provided.

2. Mathematical Formulation of the Problem

Consider a flow of a viscous chemically reacting incompressible fluid in a vertical
channel formed by two infinite parallel planes ξ̃ = ±h (see Figure 1). A Cartesian coordinate
system (ξ̃, η̃, ζ̃) with the origin at the axis of the channel is selected, and the ζ̃-axis is directed
upwards. The following convention is used throughout the paper: all variables with tildes
are dimensional while the variables without tildes are dimensionless. The walls are kept at
equal constant temperature θ0. It is assumed that there is a flow with constant velocity ±Ui
through permeable walls of the channel in the direction perpendicular to the planes, where
i is the unit vector in the ξ̃-direction. Positive and negative signs correspond to flows in the
positive or negative ξ̃-directions, respectively. The base flow velocity distribution W̃0(ξ̃)
due to internal heat sources is also shown in Figure 1.

Figure 1. Sketch of the domain of the flow.

It is assumed that the thermal effect of the reaction is large enough so that one can
neglect the dependence of the heat generation on the concentration of the reagent. In this
case, convective flow in the vertical direction is generated by internal heat generation,
where the density of the internal heat sources Q is described by Arrhenius’ law:

Q = Q0 e−E/(RT̃), (1)

where Q0 is the parameter characterizing the thermal effect of the reaction, E is the ac-
tivation energy, R is the universal gas constant and T̃ is the absolute temperature. The
use of Arrhenius’ Equation (1) for the analysis of pyrolysis conversion (the procedure that
converts biomass into liquid fuels called bio-oils) is considered in [24,25]. The movement
of the fluid in the channel is described by the dimensionless system of the Navier–Stokes
equations under the Boussinesq approximation:
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∂v
∂τ

+ Gr(v · ∇)v = −∇p + ∆v + Θk, (2)

∂Θ
∂τ

+ Grv · ∇Θ =
∆Θ
Pr

+ λ
eΘ

Pr
, (3)

∇ · v = 0. (4)

Here, v, Θ and p are the dimensionless velocity vector, temperature and pressure, τ
is time and k = (0, 0, 1). The Boussinesq approximation is considered in detail in many
papers and books (see, for example, [26–30]). The main assumptions of the Boussinesq
approximation can be formulated as follows: (a) the non-uniformity of fluid density caused
by changes in pressure is small and is neglected, and (b) the non-uniformity of density
caused by non-uniform temperature distribution is assumed to be small so that the density
is given by

ρ̃ = ρ(1− βT̃), (5)

where ρ is a constant and β is the coefficient of the thermal expansion. Moreover, the change
in density with respect to the temperature is taken into account only in the buoyancy term
(the last term in (2)) while, in the other terms in (2) and (3), the density is assumed to be
constant. Note that there are situations where the Boussinesq approximation may lead to
incorrect results (for example, in astrophysical MHD simulations). The limitations of the use
of the Boussinesq approximation have recently been described in detail (see [31–33]). The
detailed derivation of the dimensionless form of Equations (2)–(4) and the analysis of the
Boussinesq approximation are found elsewhere (see, for example, [29]), and are not shown
here for brevity. Note that we have used the Frank–Kamenetskii transformation [34]. The
idea is very simple—expand the exponent in (1) in a Taylor series and keep only the linear
term of the expansion. The accuracy of the transformation is analyzed in [34–36], where
it is shown that the error in using it for a typical set of parameters is about 5%. The main
advantage of using the transformation is related to the fact that the last term on the right-
hand side of (3) is much easier to work with mathematically than the exponent in (1). System
(2)–(4) is made dimensionless by choosing the following values as the measures of length,
h, time, h2/ν, temperature, Rθ2

0/E, velocity, gβh2Rθ2
0/(νE) and pressure, ρgβhRθ2

0/E,
respectively. Here, ν is the kinematic viscosity of the fluid, and g is the acceleration due
to gravity. The problem contains four dimensionless parameters: the Grashof number
Gr = gβRθ2

0h3/(ν2E), the Prandtl number Pr = ν/χ, the Frank–Kamenetskii parameter
λ = Q0Eh2/(κRθ2

0) exp (−E/(Rθ0)) and the Reynolds number Re = Uh/ν. Here, χ and κ
are the thermal diffusivity and thermal conductivity of the fluid, respectively.

There exists a steady flow of the following form:

v0 = (U, 0, W0(ξ)), Θ = Θ0(ξ), p = p0(ζ). (6)

Substituting (6) into (2)–(4), we obtain the system of ordinary differential equations describ-
ing the base flow:

−dp0

dζ
+ W

′′
0 − ReW

′
0 + Θ0 = 0, (7)

Θ
′′
0 − RePrΘ

′
0 + λ eΘ0 = 0. (8)

The boundary conditions are

W0(±1) = 0, Θ0(±1) = 0. (9)

It is assumed that the channel is closed by top and bottom lids (located at ±∞) so that the
following condition is satisfied: ∫ 1

−1
W0(ξ) dξ = 0. (10)
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In practice, the base flow considered in the paper takes place in the middle portion
of a sufficiently high vertical channel with a large aspect ratio. One can observe that
(a) nonlinearity appears only in Equation (8) and (b) the boundary value problem for Θ0 can
be solved separately. If Θ0 would be known, then one can determine W0 from (7) and (9).
In addition, constant dp0/dζ is determined from (10). In a classical hydrodynamic stability
theory, the base flow is usually determined as an exact solution of the equations of motion.
Different approaches are used in the literature to construct exact solutions (see, for example,
Refs. [37,38] for the case of isothermal flows and [39] for convective flows). Since a closed
form solution to (8) and (9) is not available, problem (7)–(10) has to be solved numerically.
Thus, the properties of the boundary value problem (7)–(10) such as the existence and
multiplicity of solutions are determined by the boundary value problem for the function Θ0.
Different mathematical tools are used in the literature to prove the existence of solutions (see,
for example, Ref. [40] for incompressible Navier–Stokes equations). Rigorous mathematical
analysis of these properties is the subject of investigation in the next subsection.

3. Nonlinear Boundary Value Problem

We rewrite Equation (8) and the boundary conditions for Θ0 in the form

x′′ + αx′ + λex = 0, x(−1) = 0, x(1) = 0. (11)

Here, λ is a positive number and α = −RePr is a real number. We are interested in
positive solutions of the two parameter boundary value problem (11). A solution x of (11)
is said to be positive if x(t) > 0 for every t ∈ (−1, 1). The next proposition can be easily
proved.

Proposition 1. The following statements are valid.

1. The zero function x ≡ 0 is not a solution of (11).
2. A function x solves (11) if and only if y(t) := x(−t) solves

y′′ + (−α)y′ + λey = 0, y(−1) = 0, y(1) = 0; (12)

besides, y′(−1) = −x′(1) and y′(1) = −x′(−1).
3. If x is a positive solution of (11), then x′(−1) > 0 and x′(1) < 0.

4. Some Preliminaries

In this section, we will assume that α is positive.

4.1. Linear Part of the Problem

Let Q :=
{
(t, s) ∈ R2 : |t| ≤ 1, |s| ≤ 1

}
. Denote by

◦
Q and ∂Q the interior and the

boundary of Q, respectively.
The linear homogeneous problem

x′′ + αx′ = 0, x(−1) = 0 = x(1) (13)

has only the trivial solution; thus (see [41], Theorem 2.4), there exists a unique Green’s
function, g(t, s), related to (13). By using a Green’s function Mathematica package, see [41],
we find

g(t, s) =


(eα(s+1) − 1)e−αt(eαt − eα)

α(e2α − 1)
, if −1 ≤ s ≤ t ≤ 1,

(eα(t+1) − 1)e−αt(eαs − eα)

α(e2α − 1)
, if −1 ≤ t < s ≤ 1.

(14)
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The function g has the properties listed in ([41], Definition 2.1); in particular, g is continuous
on Q. Let us introduce a function k : Q→ Q,

k(t, s) := −g(t, s), (t, s) ∈ Q,

and a function Φ : [−1, 1]→ [−1, 1],

Φ(s) := k(s, s) =

(
eα(1+s) − 1

)(
eα(1−s) − 1

)
α(e2α − 1)

, s ∈ [−1, 1]. (15)

Proposition 2. The functions k and Φ have the following properties.

1. k(t, s) > 0 for every (t, s) ∈
◦
Q and k(t, s) = 0 for every (t, s) ∈ ∂Q.

2. Φ(s) > 0 for every s ∈ (−1, 1) and Φ(±1) = 0.
3. k(t, s) ≤ Φ(s) for every t, s ∈ [−1, 1].
4. Let a and b be two real numbers such that −1 < a < b < 0. Let

c1 :=
eα(1−b) − 1

e2α − 1
, c2 :=

e2α − eα(1−a)

e2α − 1
, c := min{c1, c2}. (16)

Then, c ∈ (0, 1) and c Φ(s) ≤ k(t, s) for every t ∈ [a, b] and every s ∈ [−1, 1].

Proof. The assertions (1)–(4) are valid by straightforward calculations. Regarding (4), we
only note that (a) c1 Φ(s) ≤ k(t, s) for every t ∈ [a, b] and every s ∈ [−1, 1] such that
−1 ≤ s ≤ t ≤ 1; (b) c2 Φ(s) ≤ k(t, s) for every t ∈ [a, b] and every s ∈ [−1, 1] such that
−1 ≤ t < s ≤ 1.

The properties (3) and (4) in Proposition 2 are inspired by [42].

4.2. Integral Operator

Taking into account ([41], Theorem 2.4), we see that x is a solution of the boundary
value problem (11) if and only if x is a solution of the integral equation

x(t) = λ
∫ 1

−1
k(t, s)ex(s)ds, t ∈ [−1, 1]. (17)

We will consider the Banach space C[−1,1] with the norm ‖x‖ := max
−1≤t≤1

∣∣x(t)∣∣. Define an

integral operator T : C[−1,1] → C[−1,1],

Tx(t) := λ
∫ 1

−1
k(t, s)ex(s)ds, x ∈ C[−1,1], t ∈ [−1, 1]. (18)

In view of (17), the fixed points of T coincide with the solutions of (11).

Definition 1 ([43], pp. 1–2). Let E be a Banach space. A nonempty convex closed subset M of
E is called a cone if (a) λx ∈ M for every x ∈ M and every λ ≥ 0; (b) x ∈ M, −x ∈ M implies
x = θ, where θ is the zero element of E.

Let a and b be two real numbers such that −1 < a < b < 0. Let c be the constant
defined by (16). In accordance with ([43], p. 5), the sets

P :=
{

x ∈ C[−1,1] : x(t) ≥ 0, t ∈ [−1, 1]
}

,

K :=
{

x ∈ P : min
t∈[a,b]

x(t) ≥ c ‖x‖
}

are cones in the Banach space C[−1,1].



Mathematics 2023, 11, 3895 7 of 24

Definition 2 (([43], p. 40), ([44], p. 25)). Let E be a Banach space and let M be a nonempty subset
of E. An operator T : M→ E is called completely continuous if it is (a) continuous, (b) compact;
that is, the set T(S) is a relatively compact set for every bounded subset S of M.

Let E be a Banach space and let M be a nonempty subset of E. A continuous operator
T : M→ E is completely continuous if and only if for every bounded sequence (xk) with
xk ∈ M the sequence

(
T(xk)

)
has a convergent subsequence; see ([44], p. 25).

Proposition 3. The operator T defined by (18) has the following properties.

1. For every x ∈ C[−1,1], Tx(t) > 0 for all t ∈ (−1, 1) and Tx(±1) = 0.

2. T
(

C[−1,1]

)
⊂ K.

3. T(P) ⊂ P and the operator T : P→ P is completely continuous.
4. T(K) ⊂ K and the operator T : K → K is completely continuous.

Proof. (1) The assertion is valid in view of Proposition 2(1).
(2) Let x be an element of C[−1,1]. It follows from (1) that Tx ∈ P. On account of

Proposition 2(1),(3), we have

‖Tx‖ ≤ λ
∫ 1

−1
Φ(s)ex(s)ds. (19)

By Proposition 2(4),

Tx(t) ≥ c λ
∫ 1

−1
Φ(s)ex(s)ds, t ∈ [a, b],

and thus

min
t∈[a,b]

Tx(t) ≥ c λ
∫ 1

−1
Φ(s)ex(s)ds. (20)

Combining (19) and (20), we obtain min
t∈[a,b]

Tx(t) ≥ c ‖Tx‖. Thereby, Tx ∈ K

(3) Since P ⊂ C[−1,1], it follows from (2) that T(P) ⊂ P. Standard arguments show
that T : P → P is continuous. The compactness of T : P → P follows from the classical
Arzelà–Ascoli theorem; see ([44], Theorem 1.2).

(4) Since K ⊂ C[−1,1], it follows from (2) that T(K) ⊂ K. In view of K ⊂ P, the complete
continuity of T : K → K is a consequence of (3).

Corollary 1. Every solution of (11) is positive.

Proof. Suppose that x is a solution of (11); then, x = Tx. It follows from Proposition 3(1)
that x(t) > 0 for every t ∈ (−1, 1).

4.3. Krasnosel’skiı̆–Guo Cone Expansion/Contraction Theorem

We will use the Krasnosel’skiı̆–Guo cone expansion/contraction theorem; see ([43],
Theorem 2.3.4), ([42], Theorem 1.0.3).

Theorem 1 (Krasnosel’skiı̆–Guo). Let E be a Banach space and let K be a cone in E. Let
T : K → K be a completely continuous operator. Assume that there exist two positive constants r, R
with r < R such that one of the following conditions:

(H1) ‖Tx‖ ≤ ‖x‖ for every x ∈ K with ‖x‖ = r and ‖Tx‖ ≥ ‖x‖ for every x ∈ K with ‖x‖ = R,
(H2) ‖Tx‖ ≥ ‖x‖ for every x ∈ K with ‖x‖ = r and ‖Tx‖ ≤ ‖x‖ for every x ∈ K with ‖x‖ = R,

is satisfied. Then, T has a fixed point x in K such that r ≤ ‖x‖ ≤ R.

In arriving at the main result of our article, we need the following three preliminary
lemmas.
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Lemma 1. Let r be a positive number. Assume that

λ ≤ r

er
∫ 1
−1 Φ(s)ds

=: λ∗(r). (21)

Then, ‖Tx‖ ≤ ‖x‖ for every x ∈ P with ‖x‖ = r.

Proof. By Proposition 2(2), λ∗(r) in (21) is well-defined because
∫ 1
−1 Φ(s)ds > 0. Let x

be an element of P such that ‖x‖ = r. We see that x(s) ≤ r for every s ∈ [−1, 1] and
thus ex(s) ≤ er for every s ∈ [−1, 1]. For an arbitrary t ∈ [−1, 1], taking into account
Proposition 2(1),(3) and (21), we have

Tx(t) ≤ λer
∫ 1

−1
Φ(s)ds ≤ r = ‖x‖.

In view of Proposition 3(1), we obtain ‖Tx‖ ≤ ‖x‖.

Corollary 2. Let r be a positive number. If λ ≤ λ∗(r), then T(P ∩ Br) ⊂ P ∩ Br, where
Br :=

{
x ∈ C[−1,1] : ‖x‖ ≤ r

}
.

Proof. The proof follows from the one of Lemma 1.

On account of (15) and (21), we have

λ∗(r) =
α2r

2er
(
α coth α− 1

) , r > 0. (22)

Lemma 2. Let r be a positive number. Let a and b be two real numbers such that −1 < a < b < 0.
Assume that

λ ≥ r

cecr
∫ b

a Φ(s)ds
=: λ∗(r), (23)

where c is defined by (16). Then, ‖Tx‖ ≥ ‖x‖ for every x ∈ K with ‖x‖ = r.

Proof. By Proposition 2(2), λ∗(r) in (23) is well defined because
∫ b

a Φ(s)ds > 0. Let x be an
element of K such that ‖x‖ = r. Hence, x(s) ≥ min

s∈[a,b]
x(s) ≥ c‖x‖ = cr for every s ∈ [a, b]

and thus ex(s) ≥ ecr for every s ∈ [a, b]. For an arbitrary t ∈ [a, b], taking into account
Proposition 2(2),(4) and (23), we have

Tx(t) ≥ λc
∫ 1

−1
Φ(s)ex(s)ds ≥ λc

∫ b

a
Φ(s)ex(s)ds ≥ λcecr

∫ b

a
Φ(s)ds ≥ r = ‖x‖.

Therefore, max
t∈[−1,1]

Tx(t) ≥ ‖x‖. In view of Proposition 3(1), we obtain ‖Tx‖ ≥ ‖x‖.

Denote by R+ the set of positive numbers.

Lemma 3. Let a and b be two real numbers such that −1 < a < b < 0. Let c be the constant
defined by (16). The following assertions are fulfilled.

1. The function λ∗ : (0,+∞)→ R+ defined in (21) has the following properties.

(1a) lim
r→0+

λ∗(r) = 0, lim
r→+∞

λ∗(r) = 0.

(1b) The function λ∗ strictly increases in (0, 1] and strictly decreases in [1,+∞); the function
λ∗ has a unique global maximum point r = 1.

2. The function λ∗ : (0,+∞)→ R+ defined in (23) has the following properties.

(2a) lim
r→0+

λ∗(r) = 0, lim
r→+∞

λ∗(r) = 0.
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(2b) The function λ∗ strictly increases in (0, 1/c] and strictly decreases in [1/c,+∞); the
function λ∗ has a unique global maximum point r = 1/c.

3. λ∗(r) < λ∗(r) for every positive r.

Proof. The lemma can be proved by elementary calculus.

5. Existence and Multiplicity of Positive Solutions
5.1. Application of the Krasnosel’skiı̆–Guo Cone Expansion/Contraction Theorem

We will extend the function λ∗ to all nonzero real parameters α. For this purpose,
we replace α with |α| in the right-hand side of the equality in (22) and then define λ∗ :
(0,+∞)→ R+ as follows:

λ∗(r) :=
α2r

2er
(
|α| coth |α| − 1

) , r > 0, α ∈ R \ {0}. (24)

Let us prove the main result on the existence and multiplicity of positive solutions
to (11).

Theorem 2. Let α be a nonzero real number. If λ < λ∗(1), then the problem (11) has two positive
solutions x and x such that ‖x‖ < 1 < ‖x‖.

Proof. Let α be a positive number and let c be the constant defined by (16). Assume that
λ < λ∗(1).

(a) It follows from Lemma 3(1) that there exists a unique R1 in the interval (0, 1) such
that λ = λ∗(R1). On account of Lemma 1, ‖Tx‖ ≤ ‖x‖ for every x ∈ K with ‖x‖ = R1.
By Proposition 2(4) and Lemma 3(2),(3), we have 1 < 1/c and λ∗(1) < λ∗(1) < λ∗(1/c).
It follows from Lemma 3(2) that there exists a unique r1 in the interval (0, 1) such that
λ = λ∗(r1). On account of Lemma 2, ‖Tx‖ ≥ ‖x‖ for every x ∈ K with ‖x‖ = r1. In view
of Lemma 3, r1 < R1. Thereby, by Theorem 1(H2), the operator T has a fixed point x in K
such that r1 ≤ ‖x‖ ≤ R1.

(b) It follows from Lemma 3(1) that there exists a unique r2 in the interval (1,+∞)
such that λ = λ∗(r2). On account of Lemma 1, ‖Tx‖ ≤ ‖x‖ for every x ∈ K with ‖x‖ = r2.
Since λ∗(1) < λ∗(1/c), it follows from Lemma 3(2) that there exists a unique R2 in the
interval (1/c,+∞) such that λ = λ∗(R2). On account of Lemma 2, ‖Tx‖ ≥ ‖x‖ for every
x ∈ K with ‖x‖ = R2. In view of Lemma 3, r2 < R2. Thereby, by Theorem 1(H1), the
operator T has a fixed point x in K such that r2 ≤ ‖x‖ ≤ R2.

We note that R1 < 1 < r2. In view of Corollary 1, the fixed points of T coincide with
the positive solutions of (11) and thus it follows from (a) and (b) that (11) has two positive
solutions x and x such that ‖x‖ < 1 < ‖x‖.

Let α be a negative number. Assume that λ < λ∗(1). Since −α = |α| is positive, it
follows from the previous study that (12) has two positive solutions y and y such that
‖y‖ < 1 < ‖y‖. By Proposition 1(2), the problem (11) has two solutions x and x also, where
x(t) = y(−t) and x(t) = y(−t) for every t ∈ [−1, 1]. Then, x and x are positive solutions
of (11) and ‖x‖ < 1 < ‖x‖.

Remark 1. Some additional information on the particular case λ = 1 can be found in Appendix A.

Remark 2. The existence of two solutions of (11) is demonstrated numerically in [45].

5.2. Bifurcation Analysis
5.2.1. Parameter α Is Zero

If α = 0, then (11) reduces to the classical one-dimensional Liouville–Gelfand problem;
see, for example, [46]:

x′′ + λex = 0, x(−1) = 0, x(1) = 0. (25)
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For completeness of the presentation, we will briefly state results on the existence and
multiplicity of solutions to (25). Assume that x solves (25). Since x′′(t) = −λex(t) < 0 for
every t ∈ [−1, 1], we see that x is strictly concave in [−1, 1] and thus x is a positive solution
of (25). In view of Proposition 1(3), x′(−1) > 0 and x′(1) < 0. Moreover, x is an even
function in [−1, 1]—see [47]—and thus x′(1) = −x′(−1) and x′(0) = 0. We infer that the
solutions of (25) are in one-to-one correspondence with the ones of

x′′ + λex = 0, x′(0) = 0, x(1) = 0; (26)

the last problem is considered, for example, in ([48], p. 34).
One can show that the initial value problem

x′′ + λex = 0, x(−1) = 0, x′(−1) = β > 0 (27)

has a solution

x(t) = ln
(

β2 + 2λ

B

)
, t ∈ R, (28)

where

B =

[√
β2 + 2λ cosh

(
1
2
(t + 1)

√
β2 + 2λ

)
− β sinh

(
1
2
(t + 1)

√
β2 + 2λ

)]2
.

For x defined by (28), x(1) = 0 if and only if G(λ, β) := β−
√

β2 + 2λ tanh
(

1
2

√
β2 + 2λ

)
= 0;

see also ([48], p. 34). Let Λ0 :=
{
(λ, β) ∈ R2 : λ > 0, β > 0, G(λ, β) = 0

}
. Since x solves

the boundary value problem (25) if and only if there exists (λ, β) ∈ Λ0 such that x solves the
initial value problem (27), we see that the curve Λ0 determines all positive solutions of (25);
the curve Λ0 is said to be a bifurcation curve for (25). The curve Λ0 is a ⊃-shaped curve
on the (λ, β)-plane—see Figure 2a—and Λ0 has a turning point (λ, β) = (0.8785, 2.) from
right to left. Therefore—see ([48], p. 33) and [46]—we come to the following conclusion: the
problem (25) has exactly two positive solutions for λ ∈ (0, λ), exactly one positive solution
for λ = λ and has no positive solutions for λ > λ; see Figure 2.

HΛ0, Β1L

HΛ0, Β2L

HΛ, Β L

L0

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

12

Λ

Β

(a)

HΛ0, Β2L

HΛ0, Β1L

HΛ, Β L

-1.0 -0.5 0.5 1.0
t

-0.5

0.5

1.0

1.5

2.0

2.5

3.0
xHtL

(b)

Figure 2. Bifurcation curve Λ0 for (25) and three positive solutions of (25): (a) bifurcation curve Λ0

for (25). The straight line λ = λ0, where λ0 = 0.5, crosses the curve Λ0 at the points (λ0, β1) =

(0.5, 0.6241) and (λ0, β2) = (0.5, 4.1344); (b) three positive solutions of (25) corresponding to the
points (λ0, β1), (λ0, β2) and (λ, β) on the curve Λ0 depicted in (a).
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5.2.2. Parameter α Is Nonzero

For a nonzero α, we will numerically obtain a bifurcation curve that determines all
positive solutions of (11).

Let α be a positive number. Recall that every solution x of (11) is positive—see
Corollary 1—and thus x′(−1) > 0 by Proposition 1(3). We will apply the forward shooting
method. Suppose that x solves the initial value problem

x′′ + αx′ + λex = 0, x(−1) = 0, x′(−1) = β > 0; (29)

then, calculate the value t(λ, β) such that (a) t(λ, β) > −1, (b) x
(
t(λ, β)

)
= 0 and (c)

x(t) > 0 for −1 < t < t(λ, β). The curve Λα :=
{
(λ, β) ∈ R2 : λ > 0, β > 0, t(λ, β) = 1

}
determines all positive solutions of (11) since x solves the boundary value problem (11) if
and only if there exists (λ, β) ∈ Λα such that x solves the initial value problem (29); the
curve Λα is called a bifurcation curve for (11). Numerical calculations show that Λα is a
⊃-shaped curve on the (λ, β)-plane; for example, the curve Λα if α = 2.5 is depicted in
Figure 3, and Λα has a turning point (λ, β) = (1.3224, 5.8501) from right to left.

HΛ0, Β1L

HΛ0, Β2L

HΛ, Β L

LΑ

0.0 0.5 1.0 1.5

0

5

10

15

20

25

30

35

Λ

Β

Figure 3. Bifurcation curve Λα for (11) if α = 2.5. The straight line λ = λ0, where λ0 = 0.7, crosses
the curve Λα at the points (λ0, β1) = (0.7, 1.4467) and (λ0, β2) = (0.7, 16.1354).

Let α be a negative number. In view of Proposition 1(2) and the previous study in this
section, the curve Λ|α| determines all positive solutions of (11) since x solves the boundary
value problem (11) if and only if there exists (λ, β) ∈ Λ|α| such that x solves the initial value
problem x′′ + αx′ + λex = 0, x(1) = 0, x′(1) = −β.

Let α be a nonzero number. Since Λ|α| is a ⊃-shaped curve on the (λ, β)-plane, we
arrive at the following conclusion: there exists a positive number λ such that the problem
(11) has exactly two positive solutions for λ ∈ (0, λ), exactly one positive solution for
λ = λ and no positive solutions for λ > λ; see Figures 3 and 4. Let us calculate λ∗(1) in
accordance with (24). For λ ∈

(
0, λ∗(1)

)
, the numerical solutions of (11) obtained using the

bifurcation curve for (11) confirm the conclusion of Theorem 2. For example, if α = ±2.5
and λ = λ0, where λ0 = 0.7, then λ < λ∗(1) = 0.7495 and the numerical solutions of
(11) corresponding to the points (λ0, β1) and (λ0, β2) on the bifurcation curve Λ|α| are
positive and have a norm in the space C[−1,1] less than and more than one, respectively; see
Figures 3 and 4.
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(a) α = 2.5.
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(b) α = −2.5.

Figure 4. Three positive solutions of (11) if α = ±2.5, corresponding to the points (λ0, β1), (λ0, β2)

and (λ, β) on the curve Λ|α| depicted in Figure 3.

5.3. Parameter Analysis

Theorem 3. If λ ≤ 3
2e = 0.5518, then, for every real number α, the problem (11) has two positive

solutions x and x such that ‖x‖ < 1 < ‖x‖.

Proof. Let α be a nonzero real number. In Theorem 2, the value λ∗(1) depends on α:

λ∗(1) =
α2

2e
(
|α| coth |α| − 1

) =: p(α), α ∈ R \ {0}. (30)

Since lim
α→0

p(α) = 3
2e , we can extend the function p on the entire real axis by setting

p(0) := 3
2e . We see that p is a continuous even function on R; the function p is strictly

decreasing on the interval (−∞, 0), and it is strictly increasing on the interval (0,+∞). We
conclude that p(0) < p(α) for every nonzero α. If λ ≤ 3

2e , then, in view of (30), we have
λ < λ∗(1) and thus the proof follows from Theorem 2.

Suppose that α = 0. On account of ([48], p. 33), solutions of the boundary value
problem (25) or (26) are exactly solutions of the initial value problem

x′′ + λex = 0, x(0) = q > 0, x′(0) = 0 (31)

if λ = h(q), where the function h : (0,+∞)→ R is defined by h(q) := 1
2 e−q

[
ln
(

1+
√

1−e−q

1−
√

1−e−q

)]2
.

If x solves (31) with λ = h(q), then x solves (25) and the norm ‖x‖ in C[−1,1] is equal to
q. The function h has the following properties: (a) the function h is continuous; (b) there
exists a unique global maximum point q = 1.1868 and h(q) = λ, where λ = 0.8785
(the same λ as in Section 5.2.1); (c) the function h is strictly increasing on the interval
(0, q) and strictly decreasing on the interval (q,+∞); (d) lim

q→0+
h(q) = 0, lim

q→+∞
h(q) = 0;

(e) h(1) = 0.8663 = h(q1), where q1 = 1.3952. Suppose that λ ≤ 3
2e ; then, it follows from

(a)–(e) that there exist exactly two positive numbers q and q such that q < 1 < q and
h(q) = λ = h(q). If x and x are solutions of (31) with q = q and q = q, respectively, then x
and x are positive solutions of (11) with ‖x‖ < 1 < ‖x‖.

6. Linear Stability Analysis

Rather detailed information on the solution of the nonlinear boundary value problem
is obtained in the previous sections. As a result, we know that for each Re there exists
an interval 0 < λ < λ∗(Re) such that two steady solutions exist. An example of the two
solutions of the base flow temperature distribution is shown in Figures 5 and 6 for F = 0.5
and three values of the Reynolds number Re, namely Re = 0, 2 and 4. Which of the two
profiles for each Re should be selected for stability analysis? It is shown in [49] that, for
problem (11) without convection, the distribution with higher values of the temperature is
linearly unstable with respect to small perturbations for all wave numbers k (and, therefore,
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is not physically realizable). Calculations for the case Re = 0 in [21] have shown that the
base flow regime with higher temperature is linearly unstable for all Grashof numbers in
a certain range of k values. Thus, such a regime is also not physically realizable. Based
on the arguments in papers [21,49], we restrict ourselves to the base flow temperature
distribution with the smaller norm. The base flow velocity distribution corresponding to
the solution shown in Figure 5 is plotted in Figure 7. All linear stability calculations should
be performed in the interval 0 < λ < λ∗(Re).

The numerical solution of problem (7)–(10) is obtained using Matlab routine bvp4c.The
base flow temperature distribution becomes more asymmetric as Re increases. Instability is
expected since the velocity profiles contain inflection points [10]. However, the velocity
gradients at the inflection points decrease as Re increases, indicating a possible stabilization
of the base flow for larger Re. This observation is supported by linear stability calculations
in the next section.

T
0

Base flow temperature

Re=0

Re=2

Re=4

Figure 5. Base flow temperature distribution for three values of Re = 0, 2, 4 and F = 0.5 (solution
with smaller norm).

T
0

Base flow temperature

Re=0

Re=2

Re=4

Figure 6. Base flow temperature distribution for three values of Re = 0, 2, 4 and F = 0.5 (solution
with larger norm).
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W
0

Base flow velocity

Re=0

Re=2

Re=4

Figure 7. Base flow velocity distribution for three values of Re = 0, 2, 4 and F = 0.5.

Consider a perturbed flow of the form v = v0 + v′, T = T0 + T′ and p = p0 + p′,
where v′, T′ and p′ are small unsteady perturbations. Previous studies for the case of
uniform heat generation have shown that plane perturbations are the most unstable for
the case of a vertical fluid layer while three-dimensional perturbations are responsible for
instability in an inclined fluid layer for a certain range of inclination angles (see [50]). Thus,
we assume v′ in the form: v′ = (u′, 0, w′). It is convenient to introduce the stream function
ψ′ by the relations

u′ =
∂ψ′

∂ζ
, w′ = −∂ψ′

∂ξ
.

Using a standard linearization procedure (see, for example, [10]), we obtain the system
of linear partial differential equations for the unknowns ψ′, T′ and p′. We eliminate the
pressure perturbation and use the normal modes of the form

ψ′(ξ, ζ, τ) = ϕ(ξ) eikζ−µτ ,

T′(ξ, ζ, τ) = θ(ξ) eikζ−µτ , (32)

where k is the wave number and µ = µr + iµi is the complex decrement. As a result, the
following system of ordinary differential equations for the amplitudes ϕ(ξ) and θ(ξ) is
obtained:

ϕ(4) − 2k2 ϕ′′ + k4 ϕ + ikGr(ϕW
′′
0 −W0 ϕ

′′
+ k2W0 ϕ)

− Reϕ
′′′
+ k2Reϕ′ + θ′ = −µ(ϕ

′′ − k2 ϕ), (33)

1
Pr

(θ
′′ − k2θ) +

λ

Pr
eT0 θ + ikGr(ϕT′0 −W0θ)− Reθ′ = −µθ. (34)

The boundary conditions are

ϕ(±1) = 0, ϕ′(±1) = 0, θ(±1) = 0. (35)

Problem (33)–(35) is an eigenvalue problem. The base flow is said to be stable if all
µr > 0 and unstable if at least one µr < 0.
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The numerical solution of (33)–(35) is obtained using the collocation method, where
the functions ϕ(ξ) and θ(ξ) are approximated as follows:

ϕ(ξ) =
N

∑
m=0

am(1− ξ2)2Tm(ξ), (36)

θ(ξ) =
N

∑
m=0

bm(1− ξ2)2Tm(ξ), (37)

where Tm(ξ) = cos m arccos(ξ) is the Chebyshev polynomial of the first kind of order m.
Here, am and bm are unknown coefficients. The collocation points are

ξm = cos
mπ

N
, m = 0, 1, . . . , N. (38)

Different numerical methods are available for the solution of (33)–(35). The approxima-
tion of the solution is based on Chebyshev polynomials. It is known that if the coefficients
of the differential equation are functions from the space C∞; that is, if the coefficients are
functions such that the derivatives of all orders exist, then the series in terms of Chebyshev
polynomials has an exponential convergence: for large m, the series converges faster than
1/ms, where s is any natural number (see [51]). This is the reason why the approximations
in the form (36) and (37) are chosen. In addition, it is known that the use of the base
functions of the form (36) and (37) satisfying the boundary conditions considerably reduces
the condition number of the corresponding matrix after discretization (see [52]).

In order to analyze the numerical convergence of the method, we perform calculations
for one set of parameters, namely k = 1.6, Re = 7, F = 0.7 and different number of
collocation points N. The results are shown in Table 1. It is known (see, for example, [53])
that the accuracy of the calculation of the Chebyshev collocation derivative is limited. There
exists such a value of N∗ such that the accuracy decreases if N > N∗. It is seen from Table 1
that one decimal place after the decimal point is correctly calculated for all N considered in
Table 1, but a higher accuracy cannot be guaranteed. However, such an accuracy is more
than sufficient to represent the results graphically. Similar calculations are performed for
other sets of parameters. Calculations show that it is sufficient to use N = 60 for all cases
considered in the paper.

Table 1. The values of the Grashof number Gr for different numbers of collocation points N.

N Gr

30 11,157.351253
40 11,157.569064
50 11,157.811295
60 11,157.624778
70 11,157.625483
80 11,157.625661
90 11,157.649458

100 11,157.639824
110 11,157.650583
120 11,157.640381
130 11,157.632748

Further verification of the numerical procedure is performed by a comparison of our
results with the numerical results presented in [21] for Re = 0. The results in [21] are
shown only in graphical form so that an accurate comparison is technically not possible.
It is seen from Figure 2 in [21] that the critical value of the Grashof number for the case
Re = 0, λ = 0.75 is about 1000 (more precise estimate is not possible). Our calculations
give Grc = 1014.15.
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7. Numerical Results

Preliminary numerical results of the linear stability analysis are reported in [54] for
small values of Re. All calculations below are performed for the case Pr = 1 (a typical
value for gases). Three values of the Frank–Kamenetskii parameter λ are selected for
computations, namely λ = 0.3, 0.5 and 0.7. Marginal stability curves for different values of
the Reynolds number Re are shown in Figures 8–11. The base flow is linearly stable below
the marginal stability curve, linearly unstable above it and, on the marginal stability curve,
the growth rate of one normal mode is zero while the growth rates of all other modes are
negative (all other normal modes are exponentially decreasing with time). Three different
colors in Figures 8–11 represent calculated values for different λ values: red color—for
λ = 0.3; green color—for λ = 0.5; and blue color—for λ = 0.7. Calculations are presented
for a typical range of the k-values (0 < k < 2). The Grashof numbers on the marginal
stability curves in the region k > 2 usually increase rather rapidly. We also could not find
other extrema (at least for the range of the parameters considered in the study) on the
marginal stability curves in the region k > 2. The points on the graphs show the calculated
values while solid lines represent spline interpolation of the calculated values.
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Figure 8. Marginal stability curves for Re = 0 .
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Figure 9. Marginal stability curves for Re = 5.
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Figure 10. Marginal stability curves for Re = 7 .
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Figure 11. Marginal stability curves for Re = 10.

It is seen from the graphs that the marginal stability curves undergo continuous
transformation as the Reynolds number increases. For the case Re = 0, all marginal
stability curves have one minimum (see Figure 8). One or two additional minima in
the regions of smaller k appear for the case Re = 5 as can be seen from Figure 9. As
Re increases further (see Figure 10 for Re = 7), the second minimum still exists, but is
gradually moving to the region of larger k. Finally, for Re = 10 (see Figure 11), the second
minimum disappears.

Critical values of the Grashof number Grc versus Re are shown in Figure 12 for three
values of λ. It is seen from the graph that the critical values Grc can be divided into three
regions: (1) a region of stabilization (0 < Re < Re∗), where Re∗ is approximately equal
to 4.791, 4.630 and 4.688 for the values of λ = 0.3, 0.5 and 0.7, respectively; (2) a small
region (around Re = 5), where the increase in Re leads to destabilization of the flow; and
(3) 6 < Re < 10, where the flow is stabilized again. Note that stabilization is stronger for
smaller λ.

Critical wave numbers kc are plotted versus Re for three values of λ in Figures 13–15. It
is seen from the graphs that there is a finite jump in the critical wave numbers at Re = Re∗.
The corresponding marginal stability curve has two equal minima. Thus, at Re = Re∗,
there is a transition from one mode with larger k to the other mode with smaller k as Re
passes through the point Re = Re∗. A further increase in Re leads to critical perturbations
with larger wave numbers.
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Figure 12. Critical values of the Grashof number Grc versus Re for λ = 0.3 (red curve), λ = 0.5 (green
curve) and λ = 0.7 (blue curve).
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Figure 13. Critical wave numbers kc versus Re for λ = 0.7.
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Figure 14. Critical wave numbers kc versus Re for λ = 0.5.
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Figure 15. Critical wave numbers kc versus Re for λ = 0.3.

8. Discussion

The linear stability of a convective flow caused by nonlinear heat sources in a vertical
fluid layer is investigated in this paper. It is assumed that the walls of the channel are
maintained at constant equal temperatures. In addition, the channel walls are permeable
so that there is a flow of constant velocity through the walls of the channel. The problem
for the determination of the base flow becomes nonlinear, but the nonlinearity appears
only in the heat equation. Thus, the boundary value problem for the base flow temperature
can be solved separately. Rigorous mathematical tools such as Krasnosel’skiı̆–Guo cone
expansion/contraction theorem are used to analyze the number of solutions depending on
the values of the Frank–Kamenetskii parameter and the properties of the solutions. It is
shown that, in the region of interest for linear stability analysis, two solutions exist (one
with the maximum norm that is smaller than 1 and the other with the maximum norm that
is larger than 1). The selection of the “correct” solution for the linear stability analysis is a
difficult task. To the best of the authors’ knowledge, there is no theoretically supported
recommendation on the selection criteria in the literature. The analysis in [49] for the pure
conduction case (no convection) has shown that the solution with a larger norm is linearly
unstable with respect to small perturbations. It is shown numerically in [21] that, for the
case Re = 0 and one set of the parameters of the problem, the solution with a larger norm
is unstable for all Grashof numbers in a certain range of the wave numbers k. This means
that such a solution cannot be observed in experiments. Our approach that selects the
solution with the smallest norm is based on the results presented in [21,49]. Future work is
required in order to find a theoretical basis for the selection of one solution in cases where a
nonlinear boundary value problem has more than one solution.

Linear stability analysis of the base flow is performed numerically using the collocation
method based on Chebyshev polynomials. The results are presented in the form of marginal
stability curves separating the regions of linear stability and instability. Calculations show
that the marginal stability curves undergo a continuous deformation as the intensity of
the cross-flow (the Reynolds number) increases. Two minima appear on the marginal
stability curves for Re ≈ 5. A small region of destabilization is found around Re = 5. As
Re increases further, the second minimum of the marginal stability curve disappears and
strong stabilization of the flow occurs. It is found that an increase in the Frank–Kamenetskii
parameter λ destabilizes the flow (and possibly leads to more intensive mixing). It is shown
experimentally (see, for example, [55]) that an enhanced mixing of actual fuel flow with
air leads to a more efficient conversion process of biomass. Thus, instability is desirable
and studies that identify factors enhancing instability can help to create devices for more
efficient energy conversion.
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Linear stability theory gives the conditions of when and how the given base flow
becomes unstable. In order to analyze the development of instability above the threshold, a
nonlinear system of equations should be solved numerically. In case the Grashof number is
slightly larger than the critical value, amplitude evolution equations can be constructed
using the method of multiple scales. This approach is found to be rather useful in ap-
plications to Taylor–Couette flows (see, for example, [56]) or to convective flows under
non-Boussinesq conditions (see [57]). The authors are currently working on this topic.
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Appendix A

Return to the problem

x′′ + αx′ + λex = 0, x(−1) = 0, x(1) = 0, x(t) > 0, t ∈ (0, 1). (A1)

Theorem 2 provides estimation of the parameter λ given the parameter α in order for
the problem (A1) to have multiple (two) solutions. This estimation is

λ < λ∗(1) := p(α), (A2)

where p(α) is defined in (29). This result is obtained using tools from functional analysis
(Krasnosel’skiı̆–Guo theorem on cones). Theorem 2 is quite general. In some particular
cases, computations can provide a best possible estimation of the type (A2).

Let λ = 1, α > 0. Then, the estimate (A2) takes the form

λ = 1 < λ∗(1) := p(α) =
α2

2 e (α coth α− 1)
. (A3)

The graph of the function p(α) is depicted in Figure A1.
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x
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x
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Figure A1. The graph of the function p(α) in red.
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The equality (A3) holds for α > α0, where α0 ≈ 4.12 is a solution of the equation

1 =
α2

2 e (α coth α− 1)
.

Consider the initial value problems

x′′ + αx′ + λex = 0, x(−1) = 0, x′(−1) = β > 0. (A4)

The equation in (A4) can be written as an equivalent system x′ = y, y′ = −αy − λex.
Solutions of this system for various values of β can be computed and the respective
trajectories can be visualized (Wolfram Mathematica). The three phase portraits for λ = 1,
α = 0.7, 1.3, 2.0 are provided in Figures A2–A4.

Figure A2. α = 0.7, no solutions to the problem (A1).

These figures contain the segments of multiple trajectories, corresponding to solutions
of the problem (A4), β ≥ 0. It is assumed that the equation in (A4) is represented as an
equivalent two-dimensional system. The nullclines x′ = y = 0 and −αy− λex = 0 are
depicted in black and red, respectively. These segments are for t ∈ [−1, 1] and the end
points show where the trajectory is located for t = 1. Therefore, any trajectory that ends at
the vertical x′-axis below the horizontal x-axis provides a positive solution of the problem
(A1). In this particular case (λ = 1), a single solution to the problem (A1) emerges for
α = α1, where α1 ≈ 1.3; Figure A3. For larger values of α, there are exactly two solutions to
the problem.

Figure A3. α = 1.3, the arrow points to a unique solution of the problem (A1).
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Figure A4. α = 2.0, the arrows point to two solutions of the problem (A1).

Therefore, for λ = 1, α ∈ (α1, α0), two solutions of the problem (A1) already exist.
More on the behavior of the first zero function t1(β) of solutions to the Cauchy problem
(A4), (A1) can be found in [34], Proposition 2.4.
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