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Abstract: This study considers a time-consistent multi-period rolling portfolio optimization issue
in the context of a fuzzy situation. Rolling optimization with a risk aversion component attempts
to separate the time periods and psychological effects of one’s investment in a mathematical model.
Furthermore, a resilient portfolio selection may be attained by taking into account fuzzy scenarios.
Credibilistic entropy of fuzzy returns is used to measure portfolio risk because entropy, as a measure
of risk, is not dependent on any certain sort of symmetric membership function of stock returns and
may be estimated using nonmetric data. Mathematical modeling is performed to compare the Rolling
Model (RM) and the Unified Model (UM). Two empirical studies from the Tehran stock market
(10 stocks from April 2017 to April 2019) and the global stock market (20 stocks from April 2021 to
April 2023) are utilized to illustrate the applicability of the suggested strategy. The findings reveal
that RM can limit the risk of the portfolio at each time, but the portfolio’s return is smaller than that
of UM. Furthermore, the suggested models outperform the standard deterministic model.

Keywords: portfolio optimization; fuzzy entropy; rolling optimization; credibility theory; scenario
tree; multi-period portfolio model
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1. Introduction

Investing in financial markets aims to achieve both the goals of maximizing expected
return and minimizing the risk of return. Investment portfolio construction is one of the
traditional approaches for achieving these objectives [1–5]. Markowitz [6] proposed a mean-
variance model for portfolio selection, which serves as the foundation for contemporary
portfolio theory. The basic goals of Markowitz’s mean-variance model are to maximize
anticipated return and reduce expected risk. In the actual world, portfolio strategies are
frequently multi-period, allowing investors to reassess their investment strategy, despite
the fact that various extensions have been developed based on the notion of Markowitz’s
mean-variance model in a single period horizon [7].

Despite the fact that [8,9] explored the multi-period stochastic programming model
for portfolio selection problem, they provided more credibility to this topic by focusing on
the subject of scenario tree usage and investment in their investigations. Mulvey et al. [10]
presented a non-linear model that uses asset/liability management to control risk over long
time periods. Dupaová [11] proposed chosen techniques for analyzing results obtained by
solving stochastic programs, focusing on the moment problem and parametric optimization
outcomes. Mulvey and Shetty [12] proposed a framework for modeling basic financial
planning issues that was based on multi-stage optimization under scenarios as a technique
for dealing with uncertainty and used interior-point methods to solve it. Hibiki [13]
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presented and evaluated a hybrid model based on multi-period stochastic optimization to
the scenario tree model.

Edirisinghe and Patterson [14] examined a stochastic multi-stage programming model
and advocated for the use of block separable recourse structures as well as ways for
constructing such structures inside a layered L-shaped decomposition. Gülpinar and
Rustem [15] developed a multi-period mean-variance optimization approach for the worst-
case design of the stochastic features of the scenario tree. To deal with market uncertainty,
Pinar [16] developed multi-stage portfolio selection models with a linear composed ob-
jective and a simulated market model. Şakar and Köksalan [17] examined a stochastic
programming solution for a multi-criterion, multi-period portfolio optimization problem.
They employed a single index model to predict stock returns from a market-representative
index and a random walk model to build scenarios based on the probable values of the
index return. Najafi and Mushakhian [18] proposed a multi-stage stochastic mean semi-
variance Conditional Value at Risk (CVaR) model using scenario trees as a technique for
dealing with uncertainty. To tackle this, they devised a hybrid metaheuristic based on the
Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) methods.

The scenario tree approach was used by Chen et al. [19] to transform the multi-period
portfolio selection problem with terminal distortion risk measure into a deterministic
convex programming problem. To cope with market uncertainty, Liu and Chen [20]
established two multi-period robust risk measures inside a regime switching framework
and used a scenario tree. Nesaz et al. [21] created a multi-period optimization issue with
their contribution of a unique Lower Partial Moment (LPM) model computation and solved
it with the meta-heuristic method Non-dominated Sorting Genetic method II (NSGA II).
They also employed quantitative performance metrics to demonstrate the efficacy of the
suggested strategy.

There are several research studies on multi-period portfolio selection issues in the
literature, the majority of which propose a single target regardless of other investment
goals. However, while the scenario tree is well known in finance as one of the most
important tools for managing uncertainty, it cannot capture numerous non-probabilistic
aspects in actual financial markets, such as social, economic, political, and psychological
factors. Credibility theory can be used to define the uncertainty environment in the financial
market. Mohebbi and Najafi [22] developed a bi-objective mean-VaR portfolio selection
model that incorporates fuzzy credibility theory and a scenario tree. Their suggested
model was non-linear, and their recommended solution algorithm was influenced by it.
Furthermore, their model was not created using nodes.

Peykani et al. [23] proposed a novel Fuzzy Multi-Period Multi-Objective Portfolio
Optimization (FMPMOPO) model that may be used in the face of ambiguous data and
practical constraints such as budget, cardinality, and bound limits. It should be noted that
the proposed FMPMOPO model considers three objectives, including terminal wealth,
risk, and liquidity, as well as real-world constraints. The alpha-cut method is also used to
deal with fuzzy data. Lam et al. [24] developed a mean-absolute deviation-entropy model
for portfolio optimization which includes entropy maximization as a multi-objective opti-
mization technique. Furthermore, the proposed model makes use of a goal-programming
method to account for the optimal value of each objective function. The key aims of the pro-
posed model are to optimize portfolio entropy, decrease absolute deviation, and maximize
mean return. Peykani et al. [25] proposed a novel uncertain portfolio optimization method
that may be applied when there are fuzzy data and linguistic elements present. It should
be noted that the recommended Fuzzy Portfolio Optimization (FPO) model takes into
consideration investment constraints, mean (return), absolute deviation (non-systematic
risk measure), and beta (systematic risk measure). To deal with the uncertainty of financial
data, the Possibilistic Programming (PP) and Chance-Constrained Programming (CCP)
methodologies are used.

Novais et al. [26] calculated risk using entropy and mutual information rather than
variance and covariance, and they compared the performance of the original Markowitz
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model both inside and outside of the sample to that of the recommended model, as well as
other cutting-edge shrinkage approaches. Nasini et al. [27] proposed a novel optimization
framework for multi-market portfolio management in which a centralized headquarter
delegated market-wise portfolio selection to specialised affiliates. Because the headquarter
is risk-averse, it calculates the maximum expected loss (in the form of conditional value at
risk) for the affiliates endogenously. As a result, the affiliates develop portfolios and retain
a portion of the expected investment returns as management fees.

Nouri et al. [28] suggested a multi-stage stochastic portfolio selection technique. To
cope with market uncertainty, a three-pronged aim and a portfolio selection model based
on a scenario tree called Wealth Mean Absolute Semi-Deviation Liquidity (WMAL) were
designed. Because of their duration, continuity of the horizon, and unpredictability, the
scenario tree is an ideal tool for modeling multi-period portfolio problems. It is critical to
evaluate wealth, risk, the asset investment cap, transaction costs, and liquidity when con-
sidering the situation at hand. In this study, rebalancing and mean absolute semi-deviation
are utilized as indices of portfolio risk. For long-term investment horizons, effective invest-
ment plans are constructed utilizing the Node-Based Modeling (NBM) approach. When
the goal programming approach is used, the investigated multi-objective model becomes a
single-objective model. Table 1 presents a comparative literature evaluation.

Table 1. Overview of uncertain multi-period portfolio optimization studies in the literature.

Year Research MC NO NBMTS NS CF BC MR TC LQ RAF RM Method(s)

1989 Mulvey & Vladimirou [8] NLP SO X X X X X VAR PDP
1997 Mulvey et al. [10] NLP SO X X X X VAR TBS
1999 Dupačová [11] NLP SO X X X X X MAD WCA
2004 Mulvey & Shetty [12] NLP SO X X X VAR IPM
2007 Edirisinghe & Patterson [14] NLP SO X X X X X X VAR NM
2007 Gülpınar & Rustem [15] NLP SO X X X X X VAR WCD/MMO
2007 Pinar [16] NLP SO X X X SV -
2013 Sakar & Köksalan [17] NLP MO X X X X X X CVaR SIM
2015 Najafi & Mushakhian [18] NLP SO X X X SV/CVaR HMA/TED
2016 Chen et al. [19] LP SO X X X X X LPM DCP
2018 Liu & Chen [20] NLP SO X X CVaR DP
2018 Mohebbi & Najafi [22] NLP MO X X X VaR DP
2020 Nasaz et al. [21] NLP MO X X X LPM NSGAII/TED
2021 Peykani et al. [23] NLP MO X X X X X X MAD GP
2021 Lam et al. [24] LP MO X X AD/EP GP
2021 Peykani et al. [25] NLP SO X X X AD/Beta PP/CCP
2022 Novais et al. [26] NLP SO X X X EP SQSLP/CVXOPT
2022 Nasini et al. [27] MIP SO X X CVaR BCA
2023 Nouri et al. [28] LP MO X X X X X X X X SD GP

2023 This work LP MO X X X X X X X X X FEP GP/RO/CRM

MC: Modelling Class, LP: Linear Programming, NLP: Non-Linear Programming, MIP: Mixed-Integer Program-
ming, NO: Number of Objectives, SO: Single Objective, MO: Multi-Objective, NBM: Node Based Modelling,
TS: Threshold, NS: No Short Selling, CFC: Cash Flow Constraint, BC: Budget Constraint, MR: Minimum Return
Constraint, TC: Transaction Costs, LQ: Liquidity, RAF: Risk Aversion Factor, RM: Risk Measure, VAR; Vari-
ance, MAD: Mean Absolute Deviation, SV: Semi-Variance, CVaR: Conditional Value at Risk, VaR: Value at Risk,
LPM: Low Partial Moments, AD: Absolute Deviation, EP: Entropy, SD: Semi-Deviation, FEP: Fuzzy Entropy,
PDP: Proposed Decomposition Procedure, TBS: Tabu Search, WCA: Worst-Case Analysis, IPM: Interior-point
methods, NM: New Method, WCD: Worst-Case Design, MMO: Min–Max Optimization, SIM: Single Index
Model, HMA: Hybrid Metaheuristic Algorithm, TED: Taguchi Experimental Design, DCP: Deterministic Convex
Programming, DP: Dynamic Programming, NSGAII: Non-Dominated Sorting Genetic Algorithm II, GP: Goal
Programming, PP: Possibilistic Programming, CCP: Chance-Constraint Programming, RO: Rolling Optimization,
CRM: Credibility Measure, BCA: Branch-and-Cut Algorithm.

In this study, for the first time, the portfolio selection issue is formulated using nodes
in a scenario tree that are incorporated into fuzzy credibility theory. Two bi-objective mean-
entropy portfolio selection models with static risk factor aversion and transaction costs
are proposed for the two multi-period portfolio problem models. Both proposed models
are totally linear and are constructed using nodes. The periods are continuous in the first
model, known as the Unified Model (UM), but separated in the second model, known
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as the Rolling Model (RM). RM is defined as a sequence of rolling linear programming
problems that can be solved using simplex approaches.

This paper is organized as follows: The definitions of the credibilistic mean, the
credibilistic entropy of the fuzzy returns of assets, and other features are introduced in
Section 2. Section 3 discusses the mean-entropy multi-period portfolio unified model under
fuzzy situations within the context of credibility theory, where expected value and entropy
are used to calculate the return and risk of each period’s investment, respectively. The
mean-entropy multi-period portfolio rolling optimization models are then constructed. The
models are transformed into deterministic linear programming in this stage, which can be
readily solved using simplex methods. Section 4 includes two empirical studies based on
real data to demonstrate the efficacy of the modeling methodologies, and simulation tests
are used to assess the suggested models. Section 5 summarizes the findings and future
potential research areas.

2. Preliminaries
2.1. Credibility Measure

This section presents several concepts from credibility theory that will be useful in the
following sections. Though both necessity and possibility measures satisfy the properties of
normality, non-negativity, and monotonicity, neither fulfills the self-duality that establishes
a powerful connection between the measures of an event and the measures of the opposed
event (each determining the other) [29–35]. In both theory and practice, self-duality has
been acknowledged as intuitive and necessary for laying the theoretical underpinnings
of an efficient measurement theory [36]. A credibility measure is described by Liu and
Liu [37] as the average value of the possibility measure and the necessity measure, which
as a set function, attempt to meet the axioms of normalcy, monotonicity, self-duality, and
maximality. We assume ξ is a fuzzy variable with the membership function µ(x) and r is a
real number. The credibility of Cr{ξ ≥ r} is, therefore, defined as

Cr{ξ ≥ r} = 1
2
(Pos(ξ ≥ r) + Nec(ξ ≥ r)) =

1
2

(
Sup
x≥r

µ(x) + 1− Sup
x<r

µ(x)

)
(1)

where Cr{ξ ≥ r} + Cr{ξ < r} = 1, i.e., the credibility measure exhibits self-duality. A
fuzzy event will almost surely occur if its credibility value is more than one, and it will fail
if its credibility value is equal to zero.

Definition 1. Suppose that ξ is a fuzzy variable, then its expected value is defined as

E[ξ] =
∫ +∞

0
Cr{ξ ≥ r}dx−

∫ 0

−∞
Cr{ξ ≤ r}dx (2)

The credibility distribution φ : < → [0, 1] of a fuzzy variable ξ is defined by Liu & Liu [37] as

Φ(x) = Cr{θ ∈ Θ| ξ(θ) ≤ x} (3)

Furthermore, accordingtoDefinition1, Liu&Liu [37]proposedthatwehave E[λ1ξ +λ2] = λ1E[ξ] +λ2
for any real numbers such as λ1 and λ2. Also, for ξ and η to be two independent fuzzy variables with finite
anticipated values, and for any real integers like λ1 and λ2, we have E[λ1ξ + λ2η] = λ1E[ξ] + λ2E[η].

Triangular and trapezoidal fuzzy variables, two well-known and useful fuzzy variables, are
used to determine the believability of a fuzzy event.
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Example 1. Let ξ = (a, b, c) be a triangular fuzzy variable (a < b < c) with a member-ship
function provided by Equation (4) (see Figure 1), and let {ξ ≤ r} be a fuzzy event with a credibility
determined by Equation (5):

µ(r) =


r−a
b−a , i f a ≤ r ≤ b
c−r
c−b , i f b ≤ r ≤ c

0, otherwise.
(4)

{ξ ≤ r} =


0, i f r ≤ a,

r−a
2(b−a) , i f a ≤ r ≤ b,
c−2b+r
2(c−b) , i f b ≤ r ≤ c,

1, i f c ≤ r.

(5)

Mathematics 2023, 11, x FOR PEER REVIEW 5 of 24 
 

 

Furthermore, according to Definition 1, Liu & Liu [37] proposed that we have 
1 2 1 2[ ] [ ]E Eλ ξ λ λ ξ λ+ = +  for any real numbers such as 1λ  and 2λ . Also, for ξ  and η  to be two in-

dependent fuzzy variables with finite anticipated values, and for any real integers like 1λ  and 2λ , 

we have 1 2 1 2E E Eλξ λη λ ξ λ η     + = +           . 
Triangular and trapezoidal fuzzy variables, two well-known and useful fuzzy variables, are 

used to determine the believability of a fuzzy event. 

Example 1. Let ξ = ( , , )a b c  be a triangular fuzzy variable ( )a b c< <  with a member-ship func-

tion provided by Equation (4) (see Figure 1), and let { }rξ ≤  be a fuzzy event with a credibility 
determined by Equation (5): 

,

( ) ,
c

0, .

r a if a r b
b a
c rr if b r c

b
otherwise

μ

 − ≤ ≤ − −= ≤ ≤ −

 (4) 

{ }

0, ,

, ,
2( )

2 , ,
2(c )

1, .

if r a
r a if a r b
b ar

c b r if b r c
b

if c r

ξ

 ≤ − ≤ ≤ −≤ =  − + ≤ ≤ − ≤

 (5) 

The graphical demonstration of the credibility of fuzzy event { }rξ ≤  is depicted in Figure 2. 

 
Figure 1. Triangular membership function. 

r 

𝜇(𝑟) 

a b c 
0 

1 

Figure 1. Triangular membership function.

The graphical demonstration of the credibility of fuzzy event {ξ ≤ r} is depicted in Figure 2.
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Figure 2. Credibility of triangular fuzzy variable.

If at least one of the two integrals is finite in Equation (3), the predicted value of the
triangular fuzzy variable ξ = (a, b, c) is given by

E[ξ] = (a + 2b + c)/4 (6)
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Example 2. Let ξ = (a, b, c, d) be a trapezoidal fuzzy variable (a < b < c < d) with a membership
function provided by Equation (7) (see Figure 3), and let {ξ ≤ r} be a fuzzy event with a credibility
determined by Equation (8):

µ(r) =



r−a
b−a , i f a ≤ r ≤ b

1, i f b ≤ r ≤ c
c−r
c−b , i f c ≤ r ≤ d

0, i f otherwise.

(7)

{ξ ≤ r} =



0, i f r ≤ a,
r−a

2(b−a) , i f a ≤ r ≤ b,
1
2 i f b ≤ r ≤ c,

c−2b+r
2(c−b) , i f c ≤ r ≤ d,

1, i f otherwise.

(8)Mathematics 2023, 11, x FOR PEER REVIEW 7 of 24 
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The graphical demonstration of the credibility of fuzzy event {ξ ≤ r} is depicted in Figure 4.
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If at least one of the two integrals is finite in Equation (3), the predicted value of the
trapezoidal fuzzy variable ξ = (a, b, c, d) is given by

E[ξ] = (a + b + c + d)/4 (9)

2.2. Fuzzy Entropy

Let us briefly review the notion of credibility theory because we will need it in the
following section. In real financial markets, often investors have no or little accurate in-



Mathematics 2023, 11, 3889 7 of 23

formation on the stock returns and the fuzzy portfolio return cannot decrease the lack of
information. Therefore, it is possible for an investor that his/her preferences are not met
by the fuzzy portfolio returns. In this case, the portfolio entropy will attain its maximum
value since the uncertainty of portfolio return and, consequently, the risk is minimized. In
fact, entropy is the distribution of validity, which is a measure of uncertainties related to
fuzzy variables. The entropy of credibility distribution can be partly regarded as an alterna-
tive measure for incompatibility [38]. Shannon [39] established entropy as an uncertainty
measure in 1948, and Philippatos and Wilson [40] used it to choose portfolios as a new
risk measure to replace variance in the Markowitz mean-variance model. According to
research, entropy is more dynamic and deeper than variance and will improve portfolio
optimization [41]. Recently, Li and Liu [42] proposed that when utilizing credibility distri-
bution as an alternative risk measure, fuzzy entropy is useful in tackling fuzzy portfolio
optimization issues. Huang [43] further demonstrates the efficiency of entropy in tackling
fuzzy portfolio optimization issues.

Definition 2. Assume ξ is a continuous fuzzy variable with a credibility function v on the credibility
space (Θ,P , Cr). The entropy is thus defined as follows [42]:

H[ξ] = −
∫ +∞

−∞
S(v(x))dx (10)

where S(t) is a continuous and differentiable function, as illustrated in Figure 5, and is defined as follows:

S(t) = −t ln t− (1− t) ln(1− t) (11)
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Theorem 1. Assume ξ be a continuous fuzzy variable. Then for any real numbers of a and b, we
have [42]:

H[aξ + b] = |a|H[ ξ]. (12)

Example 3. The expected value of triangular fuzzy variable ξ = (a, b, c) is determined by
Equations (10) and (11):

H[ξ] = (c− a)/2 (13)

And the expected value of trapezoidal fuzzy variable ξ = (a, b, c, d) is given by

H[ξ] = (b + d− a− c)/2 + (c− b) ln 2. (14)

2.3. Scenario Tree

Scenarios are commonly used to simulate random parameters in multi-period stochas-
tic programming models. A tree structure is used to build scenarios. The model is based on
an extension of the decision space that takes into account the scenario tree’s conditional
character. Each node makes conditional judgments based on the modeling restrictions (see
Figure 6). The number of choice factors and restrictions in the scenario tree may expand



Mathematics 2023, 11, 3889 8 of 23

exponentially to guarantee that the generated representative set of scenarios adequately
covers the set of possibilities [13]. A scenario tree model is what this model is termed.
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3. Model Formulation

In this section, UM is calculated without a risk aversion factor, assuming that the factor
is equal to one. Furthermore, RM is not used in UM. A time-consistent multi-period rolling
portfolio optimization problem is also developed.

3.1. The Unified Model: Before Rolling Model

A multi-period portfolio optimization issue with I hazardous assets in a financial
market is studied in this section, and the optimal portfolio at each node is chosen using
a psychological risk aversion factor. At the start of the first period, the investor simply
intends to divide his or her whole available wealth (including prior period returns) among
I risky assets. We use anticipated value as a return metric and entropy as a risk measure
within the context of credibility theory. Ws

t+1 is likewise a fuzzy variable, according to the
Extension Principle [43]. We assume the investor has W available at the start of the first
investing term. The following notations will be used from now on:

Index

i risky asset i = 1, 2, 3, . . . , I
t investment period t = 1, 2, 3, . . . , T
s scenario s = 1, 2, 3, . . . , st

Parameter

ϕ node in each scenario,

ξs
t,i

return of risky asset i at period t under scenario s, as a fuzzy variable

uϕ
t,i

upper bound of xϕ
t,i

lϕ
t,i

lower bound of xϕ
t,i

ct,i
unit transaction cost of risky asset i at period t

ps
t

the occurrence probability of scenario s at period t

St
the number of scenarios at period t that branch from each node

φt the number of nodes at the beginning of period t

Ws
t

available wealth at the beginning of period t

Bϕ
t

budget of investment in node ϕ at the beginning of period t

Cϕ
t

total transaction cost of portfolio in node ϕ at the beginning of period t

ω
ϕ
t

risk aversion factor at the tth investment for node ϕ at the beginning of period t
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Variable

xϕ
t,i invest of risky asset i at period t for node ϕ, as a decision variable

Xϕ
t portfolio at period t for node ϕ, i.e., Xϕ

t =
(

xϕ
t,1, xϕ

t,2, . . . xϕ
t,I

)
Patel and Subrahmanyam [44] showed that disregarding transaction costs during port-

folio trading frequently results in suboptimal portfolios. The transaction costs are specified
as a V-shape function of the difference between the tth and t− 1th period portfolios [45],
and the transaction cost of a hazardous asset at period t for a node is cϕ

t,i

∣∣∣xϕ
t,i − x ϕ́

t−1,i

∣∣∣ with
ϕεφt and ϕ́εφt−1. Therefore, the total transaction costs of the portfolio during period t for a

node are given as Cϕ
t =

I
∑

i=1
cϕ

t,i

∣∣∣xϕ
t,i − x ϕ́

t−1,i

∣∣∣. The model is built using node-based scenario

modeling with two objective functions. Objective 15 is the first objective function that
minimizes the predicted entropy of the portfolio in late-stage situations. As the second
function, Objective 16 computes the expected value of wealth at the end of the term. It is
assumed that xϕ

0,1 = 0 for iεI.

Min
ST

∑
s=1

I

∑
i=1

ps
T .H

[
ξs

T,i
]
.xϕ

T,i (15)

Max
ST

∑
s=1

ps
T .Ws

T (16)

S.t. ∑I
i=1 xϕ

1,i + ∑I
i=1 cϕ

1,ix
ϕ
1,i = W, ϕεφ1 (17)

∑I
i=1 xϕ

t,i + ∑I
i=1 cϕ

t,i

∣∣∣xϕ
t,i − x ϕ́

t−1,i

∣∣∣ = ∑I
i=1 xϕ

t,i

(
1 + E

[
ξs

t,i

])
, t = 2, . . . , T, ϕ́εφt−1, ϕεφt (18)

Ws
T = ∑I

i=1 xϕ
T,i
(
1 + E

[
ξs

T,i
])

sεST , ϕεφT (19)

lt,i ≤ xϕ
t,i ≤ ut,i, iεI, t ∈ T (20)

xϕ
t,i ≥ 0, iεI, t ∈ T (21)

The first period’s capital budget restriction is thus Constraint (17). The total of invest-
ment and transaction expenses equals the budget set in Constraint (18). For each node
positioned beyond the first period, the capital budget limitation is taken into account.
Constraint (19) is used to compute the final wealth at time T. Constraint (20) expresses
the upper and lower limits to restrict the lowest and maximum proportion of money that
may be invested in a single asset. Short selling of assets in any specific time period is also
prohibited, as stipulated by Constraint (21).

3.2. The Rolling Modeling for Portfolio Optimization

Markowitz’s mean-variance investing concept [46] states that an investor should strike
a balance between maximizing mean and limiting variance. It is possible to combine
these two opposing goals into a convex combination of Var(Wt)−ωE(Wt) by inserting a
predetermined risk aversion factor ω.

The proposed model is developed on the premise that the best portfolio for each
investment period is optimized in RM, which implies that the available wealth in each node
at the start of each period is already chosen by the preceding node’s optimal portfolio. As a
result, the investor adapts his or her risk aversion to the next investment node period and
distributes all the available capital among hazardous assets. By including time-consistent
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risk aversion in each node of investment periods in this RM, the investor can establish a
more realistic multi-period portfolio investment plan.

Securities returns are believed to be independent of various investment periods. The
calculated risk aversion factor is used to explain the investor’s shifting risk attitude toward
the next investment node period. The time consistent multi-period rolling portfolio opti-
mization model comprises φt single period portfolio selection procedures with varied risk
aversions at period t. Figure 7 depicts an overview of the Rolling Method.
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At the beginning of the first period, there is just one node, φt = 1, and the investor’s
risk aversion is considered to be ω1

1 . The capital budget is B1
1 at the first period. Therefore,

∑I
i=1 x1

1,i = B1
1 is the budget constraint. Since the number of nodes represents the number

of models in each period, there is no transaction cost in the first node. In the first period,
there is only one portfolio optimization model, X1

1 =
(

x1
1,1, x1

1,2, . . . , x1
1,I

)
, which can be

obtained by solving the following linear programming model M1
1:

Min

(
S1

∑
s=1

I

∑
i=1

ps
1.H
[
ξs

1,i
]
.x1

1,i

)
−ω1

1

(
S1

∑
s=1

ps
1.Ws

1

)
(22)

S.t. ∑I
i=1 x1

1,i = B1
1 (23)

Ws
1 = ∑I

i=1 x1
1,i
(
1 + E

[
ξs

1,i
])

, sεS1 (24)

l1,i ≤ x1
1,i ≤ u1,i,, iεI (25)

x1
1,i ≥ 0, iεI (26)

After solving the model M1 =
〈

M1
1
〉

and obtaining the portfolio X1
1 , the budget value

Bϕ
2 is calculated for each model in the second period. We know that φ2 = S1, so we have:

Bϕ
2 = ∑I

i=1 x1
1,i
(
1 + E

[
ξs

1,i
])

, (ϕ = s)εS1 (27)
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In the second investment period, the set of linear models M2 =
〈

M1
2, M2

2, . . . , Mφ2
2

〉
is

solved from the second to the last period and the transaction costs are also included. Model
Mϕ

2 for ϕεφ2 will be as follows:

Min

(
S2

∑
s=1

I

∑
i=1

ps
2.H
[
ξs

2,i
]
.xϕ

2,i

)
−ω

ϕ
2

(
S2

∑
s=1

ps
2.Ws

2

)
(28)

S.t. ∑I
i=1 xϕ

2,i + ∑I
i=1 cϕ

2,i

∣∣∣xϕ
2,i − x1

1,i

∣∣∣ = Bϕ
2 , ϕ́εφ1 (29)

Ws
2 = ∑I

i=1 xϕ
2,i
(
1 + E

[
ξs

2,i
])

, sεS2 (30)

l2,i ≤ xϕ
2,i ≤ u2,i, iεI (31)

xϕ
2,i ≥ 0, iεI (32)

After solving the model M2 =
〈

M1
2, M2

2, . . . , Mφ2
2

〉
and obtaining the portfolio Xϕ

2 ,

the budget value Bϕ
3 is calculated for each model in the second period. We know that

φ3 = S1 ∗ S2, so we have:

Bϕ
3 = ∑I

i=1 x ϕ́
1,i
(
1 + E

[
ξs

1,i
])

, ϕεφ3, ϕ́εφ2, sεS2 (33)

Likewise, until the last period, we solve the set of linear models MT =
〈

M1
T , M2

T , . . . , MφT
T

〉
.

Consider that Bϕ
T will be calculated for each model in the period T − 1. We know that

φT = ST−1 × . . .× S2 × S1. Model Mϕ
T for ϕεφT is as follows:

Min

(
ST

∑
s=1

I

∑
i=1

ps
T .H

[
ξs

T,i
]
.xϕ

T,i

)
−ω

ϕ
T

(
ST

∑
s=1

ps
T .Ws

T

)
(34)

S.t. ∑I
i=1 xϕ

T,i + ∑I
i=1 cϕ

T,i

∣∣∣xϕ
T,i − x ϕ́

T−1,i

∣∣∣ = Bϕ
T , ϕ́εφT−1 (35)

Ws
T = ∑I

i=1 xϕ
T,i
(
1 + E

[
ξs

T,i
])

, sεST (36)

lT,i ≤ xϕ
T,i ≤ uT,i, iεI (37)

xϕ
T,i ≥ 0, iεI (38)

4. Implementation and Evaluation

Two empirical investigations are used to test the proposed model for multi-period
portfolio selection and the effectiveness of the rolling approach for solving it. The first
empirical research explores a case study in the Tehran stock exchange (TSE) market, while
the second empirical study presents a case study in an international stock exchange. In the
following sections, these two cases are described.

4.1. First Empirical Case Study: Tehran Stock Market

The historical data of ten stocks were collected from April 2017 to April 2019, and each
week was designated as an investing period to manage the data. We assume an investor
wishes to invest in a three-period portfolio (i.e., T = 3) and needs ten particular equities
from the Tehran stock exchange. Also, the number of scenarios at each period is two, i.e.,
St = 2 for t ∈ T. The creation of scenarios in each period is exponential. Thus, there is one
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scenario at beginning of the first period, two scenarios at beginning of the second period,
four scenarios at the beginning of third period, and eight scenarios at the end of the third
period (i.e., 1, 2, 4, and 8). At the start of each period, the investor invests all available
capital in a few equities, assuming time-consistent risk aversion. Triangular fuzzy variables
characterize the returns of the ten stocks across each time.

The beginning wealth of the investor is W1
1 = 1, and the transaction cost at each

period is 0.0001. The maximum bound of the stock investment proportion for each period
is fixed at 0.3, while the lower bound is set at 0. The proposed model is solved in two ways:
At first, it is solved in the UM and then by RM, with both models considering the risk
aversion factor. The proposed model is then run in GAMS 24.1.2.

As stated earlier, the objective function is defined as Var(Wt)−ωE(Wt). The values
of variables xϕ

t,i obtained after solving UM are listed in Table 2. Then the return and entropy
are obtained for each period. Table 2 presents these results. The portfolio is formed at the
beginning of each period, but the return and entropy are calculated at the end of each period.

Table 2. Optimal portfolio from UM.

Asset
Period 1 Period 2 Period 3
Node 1 Node 1 Node 2 Node 1 Node 2 Node 3 Node 4

SK01 0 0 0 0 0 0 0
SK02 0 0 0 0.3 0.3 0.3 0.3
SK03 0.3 0.3 0 0 0 0 0
SK04 0 0 0.153 0.055 0.281 0 0
SK05 0 0 0 0.3 0 0.3 0.3
SK06 0 0 0.3 0.3 0 0 0
SK07 0.099 0.3 0.3 0 0 0 0
SK08 0.3 0 0.3 0 0 0.251 0.3
SK09 0.3 0.258 0 0 0.3 0.3 0
SK10 0 0.3 0 0.3 0.3 0 0.267

When RM is implemented in the problem for this multi-period portfolio selection
model, the model is transformed into seven single-period models for portfolio selection in
each period. Furthermore, seven risk aversion factors are required for this model. In this
empirical example, it is assumed that the investor is risk-averse and is looking for low-risk
investments. In RM, the risk aversion factors are assumed to be a fixed number in each
node (ω = 1). The optimal values of variables xϕ

t,i are presented in Table 3.

Table 3. Optimal portfolio from RM at initial of each period.

Asset
Period 1 Period 2 Period 3

Node 1 Node 1 Node 2 Node 1 Node 2 Node 3 Node 4

SK01 0 0 0 0 0 0 0.3
SK02 0 0 0 0.3 0.3 0.3 0
SK03 0 0.3 0 0 0 0 0
SK04 0.099 0 0.145 0.008 0.246 0 0
SK05 0.3 0 0 0.3 0 0.3 0.3
SK06 0 0 0.3 0.3 0 0 0
SK07 0 0.3 0.3 0 0 0 0
SK08 0.3 0 0.3 0 0 0.241 0.3
SK09 0 0.222 0 0 0.3 0.3 0
SK10 0.3 0.3 0 0.3 0.3 0 0.258

Then the wealth and entropy are obtained for each period (see Table 4). The opti-
mal portfolio is formed at the beginning of each period, but the wealth and entropy are
calculated at the end.
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Table 4. Wealth and entropy are obtained from the UM and RM at the end of each period.

Period Node
UM RM

Return Entropy Return Entropy

Period 1
1 5.40% 0.344 4.00% 0.182
2 15.90% 0.418 2.30% 0.207

Period 2

1 16.80% 0.406 16.00% 0.404
2 15.30% 0.237 14.30% 0.235
3 18.20% 0.155 14.80% 0.153
4 25.70% 0.339 22.10% 0.337

Period 3

1 22.20% 0.180 22.20% 0.100
2 18.90% 0.117 22.10% 0.077
3 27.90% 0.267 26.90% 0.264
4 18.70% 0.264 17.80% 0.263
5 23.00% 0.215 19.00% 0.204
6 17.10% 0.141 13.60% 0.136
7 25.30% 0.215 20.50% 0.208
8 23.40% 0.140 19.30% 0.128

In RM, the investor seeks low-risk investments, so he/she makes risk-averse decisions.
At each period, he/she is trying to reduce his/her risk by buying low-risk stocks, which
leads to a safer profit with low risk. Compared with UM, the risk (entropy) of the investment
by RM is decreased about 19%. Usually, the assets that make the most returns are riskier
than the stocks with the least returns. In RM, although we see a decrease in entropy, this
decrease in risk results in a decrease in profit. This is a 17% decrease in profit compared
with UM, as seen in Figures 8 and 9.
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Figure 8. Entropy of RM and UM at end of each period.
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Figure 9. Return of RM and UM at end of each period.

In addition to investing at a lower risk at each period and achieving a robust profit, the
investor can exit the investment at each period. This cut-off investment in RM is associated
with the least loss because it carries the least risk. Generally, in RM, the average network
profit is reduced by 17% and the entropy is reduced by 19%. That is, although profits have
declined, entropy also declines at a higher rate and the investment is robust.

4.2. Second Empirical Case Study: Global Stock Market

The historical data of 20 stocks from April 2021 to April 2023 were collected and, to
handle the data, every week was determined to be an investment period. We assume an
investor wants to invest in a 10-period portfolio (i.e., T = 10) and requires some stocks from
the international stock exchange market. Also, the number of scenarios at each period is
two, i.e., St = 2 for t ∈ T. The creation of scenarios in each period is exponential. Thus,
there is one scenario at beginning of first period, two scenarios at the beginning of the
second period, and four scenarios at the beginning of third period. This continues until
there are 512 scenarios at the beginning of the 10th period and 1024 scenarios at the end of
the same period. (i.e., 1, 2, 4, . . ., 512 and 1024). At the start of each period, the investor
invests all the available capital in some equities, assuming time-consistent risk aversion.
Trapezoidal fuzzy variables characterize the returns of the 10 stocks across each time.

The beginning wealth of the investor is W1
1 = 1, and the transaction cost at each period

is 0.0001. The maximum bound of the stock investment proportion for each period is fixed
at 0.3, while the lower bound is set at 0. The proposed model is solved in two ways: First, it
is solved in a UM and then by RM, with both models considering the risk aversion factor.
The proposed model is then run in GAMS 24.1.2.

As mentioned above, the creation of scenarios in each period is exponential. There are
many scenarios in the later periods. For instance, these are 512 scenarios at the beginning
of the 10th period. Thus, it is difficult to report the results in detail and it is only possible to
compare the two models (RM and UM) in the main indices, efficiency and entropy, as a
whole. Therefore, four main statistical indices are used to evaluate the UM and RM results
in this case study: average, standard deviation, maximum, and minimum. The indices are
calculated by the node’s data such as return and entropy.

Figures 10 and 11 show the average, standard deviation, maximum and minimum of
entropy in each period. Figure 10 shows that the average UM entropy is greater than the
average RM entropy in each period. In period one, the biggest difference between RM and
UM is observed (13.5%). The smallest difference between these two models is observed
in the period 10 (1.3%). In the other periods, the differences show a sinusoidal pattern. In
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general, the average entropy in RM is not greater in any period, but only relying on this
index cannot guarantee the dominance of RM over UM. The standard deviation is another
index that describes the distribution of a scenario’s entropy in each period. The trend in the
standard deviation is similar until the 7th period. Up to period 4, the standard deviation
of UM is less than that of RM. In the periods between 5 and 10, the standard deviation
of RM less than that of UM. After the 7th period, the standard deviation of UM moves
away from RM exponentially and reaches its peak at 19.4%. A large standard deviation
for the risk index increases its intensity. If we examine the average and standard deviation
indicators together, we find that RM appears to be superior to UM. The maximum and
minimum values of entropy in each period are also reported to illustrate the distribution of
the scenarios.
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Figure 10. Average and standard deviation of entropy of RM and UM.

Figures 12 and 13 show the average, standard deviation, maximum and minimum of
return in each period. Figure 12 shows that both the average and standard deviation of
return of UM are greater than those of RM in each period. The growth of UM in higher
periods compared with RM gradually increases and reaches its maximum value in the
10th period, which is 7.8%. In each period, the standard deviation of returns in the two
models is in the range between −0.58 and 0.83, which is very narrow. The maximum and
minimum values of return in each period are also reported to illustrate the distribution of
the scenarios.

Thus, UM functions more effectively than RM when considering the average of return.
Conversely, RM functions more effectively than UM in terms of the standard deviation of return.
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Figure 13. Maximum and minimum of entropy of RM and UM.

4.3. Evaluation

To perform an evaluation, it is necessary to construct a deterministic model to enable
a comparison with the proposed model. To achieve this, the uncertainty parameters in UM
are changed to crisp parameters and entropy as a measure risk is automatically deleted.
Therefore, the deterministic model (DM) is introduced as:

Max
ST

∑
s=1

pT .WT (39)

S.t. ∑I
i=1 x1,i + ∑I

i=1 c1,i.x1,i = W (40)

∑I
i=1 xt,i + ∑I

i=1 c1,i|xt,i − xt−1,i| = ∑I
i=1 xt,i (1 + ξt,i), t = 2, . . . , T (41)

WT = ∑I
i=1 xT,i (1 + ξT,i), sεST (42)

lt,i ≤ xt,i ≤ ut,i, iεI, t ∈ T (43)

xt,i ≥ 0, iεI, t ∈ T (44)

In order to evaluate UM, RM and DM by simulation tests, 100 realistic samples
referring to historical data are used. The simulation test results are shown in Figures 14–16.
The UM portfolio simulation test results show a 22.39% average return, with a standard
deviation of 22.02%. In comparison with UM, RM has a lower average return (13.92%)
and standard deviation (15.41%). The DM has a lower average of return compared with the
two proposed models i.e., 11.19%, with a standard deviation of 20.88%. These results show
that UM and RM have more return on average and that RM has the lowest standard deviation.
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Figure 14. Results of UM in simulation with historical data.
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Figure 15. Results of RM in simulation with historical data.
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Figure 16. Results of DM in simulation with historical data.

Table 5 displays the summarized results of the simulation. In this summary, the
average and standard deviation of the simulated returns in each step of the sensitivity
analysis are presented.
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Table 5. Average (AVG) and standard deviation (SD) of simulated return in each method.

Step
DM UM RM

AVG SD AVG SD AVG SD

0.2 1.8681 0.3869 1.9202 0.2680 1.9096 0.2274
0.4 1.9032 0.4308 1.9210 0.2657 1.9102 0.2251
0.6 1.8816 0.4202 1.9218 0.2637 1.9102 0.2251
0.8 1.8574 0.4466 1.9225 0.2620 1.9053 0.2278
1 1.8120 0.4708 1.9227 0.2602 1.9047 0.2276

Furthermore, in order to prove the robustness of the UM and RM solutions, simulation
tests are utilized for sensitivity analysis. In the implementation of sensitivity analysis, the
fuzzy numbers domain becomes larger and the proposed models are solved again and
again. To compare these numbers, it is necessary to compare the summarized information.

The sensitivity analysis results show that UM and RM are more robust than DM.
Table 6 shows the percentage change in average of return and standard deviation for UM
compared with DM by formulation (I) and RM compared with DM by formulation (II). UM
is also compared with RM by formulation (III) under sensitivity analysis after simulation
tests. Both UM and RM have an average of return greater than that of DM and both have a
lower standard deviation than DM. Comparing UM and RM, UM has a higher average of
return than RM, but as a negative point, UM has a higher standard deviation than RM.

Formulation (I) : ∆[λ]UM
DM =

[
λUM−λDM

λDM

]
∗ 100 ∀λ = AVG, SD.

Formulation (II) : ∆[λ]RM
DM =

[
λRM−λDM

λDM

]
∗ 100 ∀λ = AVG, SD.

Formulation (III) : ∆[λ]RM
UM =

[
λRM−λUM

λUM

]
∗ 100 ∀λ = AVG, SD.

Table 6. Percentage changes in average (AVG) and standard deviation (SD) of simulated returns by
each method.

Step
∆[λ]UM

DM ∆[λ]RM
DM ∆[λ]UM

RM

AVG SD AVG SD AVG SD

0.2 2.79% −30.72% 2.22% −41.21% 0.56% 17.85%
0.4 0.94% −38.33% 0.37% −47.75% 0.57% 18.02%
0.6 2.14% −37.25% 1.52% −46.43% 0.61% 17.14%
0.8 3.50% −41.34% 2.58% −48.99% 0.90% 15.01%
1 6.11% −44.72% 5.12% −51.65% 0.94% 14.33%

5. Conclusions and Research Prospects

This study presents a comprehensive multi-period portfolio optimization model that
addresses the challenges of risk aversion, fuzzy scenarios, and transaction costs. By incor-
porating time-consistent risk aversion in the rolling method, the RM allows investors to
dynamically adapt their risk attitudes at each investment period, resulting in more realistic
and adaptable investment strategies. The sensitivity analysis provides valuable insights
into the robustness of the model, showcasing its stability and reliability under different
scenarios. One of the notable strengths of the study is its use of triangular and trapezoidal
fuzzy variables to represent uncertain asset returns, offering flexibility in handling various
degrees of uncertainty. Applying UM and RM to the Tehran stock market (historical data of
10 stocks) and global stock market (historical data of 20 stocks) demonstrates the relevance
of RM and its potential for practical investment decision-making. The proposed model
has the ability to manage portfolio risk across all periods. Risk aversion factors and the
psychological aspects of the investor were considered, which improves the consistency of
investment risk and the investor’s utility. The RM results show that the average net profit
is reduced by 17% and its entropy is reduced by 19%. On the other hand, the entropy de-
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creases at a higher rate, although the profit has decreased, and the investment is stable. To
evaluate UM, RM and DM by simulation tests, 100 samples are generated. The simulation
tests results are shown in Figure 6. In the simulation, the UM portfolio has 22.39% average
return and a 22.02% standard deviation. In comparison with UM, RM has a lower average
return i.e., 13.92%, with 15.41% standard deviation. In addition, DM has the lowest average
of return of the two proposed models i.e., 11.19%, with a 20.88% standard deviation. The
results show that UM and RM have more return on average and that RM has the lowest
standard deviation. This study raises new problems and suggests new research avenues in
the field of multi-period portfolio selection. As a result, we propose to expand this study in
the following areas:

Dynamic Correlations between Stocks: The proposed model assumes that the returns
of securities are independent across different investment periods. However, this might not
always hold true in real-world financial markets, where correlations between assets may
change over time [47–49].

Dynamic Risk-Aversion Factor: By assuming fixed risk aversion factors in each node,
the model may overlook the dynamic and time-varying nature of investor risk preferences,
which can vary due to changing market conditions and economic factors. This oversim-
plification could lead to suboptimal portfolio allocations and may not fully capture the
complexities of real-world investment decisions. In this work, a static risk aversion factor
is considered. Using a risk aversion factor function can improve the efficiency of the model
results [50–55].

Liquidity: The liquidity of stocks in financial market could be used as an efficient
objective or an important constraint in modeling to select appropriate stocks [56–61].

Cardinality: In this work, in order to avoid complicated mathematics, the cardinality
constraint was not utilized, but it is suggested to use cardinality to extend the degree of the
investor’s control of the portfolio [62–67].

Portfolio Selection: Portfolio selection could be used as a stage before portfolio
optimization. The stage helps to select appropriate stocks for investing. Data envelopment
analysis is one of the common methods to attain this goal [68–75].

Other Hybrid Uncertainty: The proposed model combined fuzzy parameters and
the scenario tree concept, but other hybrid uncertainties such as combinations of interval
variables and scenario trees are suggested to extend this model [76–82].
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