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Abstract: Accurate estimation of the elastic modulus (E) of rock is critical for the design of geotechnical
projects such as mining, slopes, and tunnels. However, the determination of rock mechanical
parameters usually involves high budget and time requirements. To address this problem, numerous
researchers have developed machine learning models to estimate the E of rock. In this study, two
novel hybrid ensemble learning models were developed to estimate the E of rock by optimizing
the extreme gradient boosting (XGBoost) and random forest (RF) algorithms through the dwarf
mongoose optimization (DMO) approach. Firstly, 90 rock samples with porosity, dry density, P-wave
velocity, slake durability, and water absorption as input indicators were collected. Subsequently, the
hyperparameters of XGBoost and RF were tuned by DMO. Based on the optimal hyperparameters
configuration, two novel hybrid ensemble learning models were constructed using the training set
(80% of the data). Finally, the performance of the developed models was evaluated by the coefficient
of determination (R2 score), root mean squared error (RMSE), mean absolute error (MAE), and
variance accounted for (VAF) on the test set (20% of the data). The results show that the DMO-RF
model achieved the best comprehensive performance with an R2 score of 0.967, RMSE of 0.541, MAE
of 0.447, and VAF of 0.969 on the test set. The dry density and slake durability were more influential
indicators than others. Moreover, the convergence curves suggested that the DMO-RF model can
reduce the generalization error and avoid overfitting. The developed models can be regarded as
viable and useful tools in estimating the E of rock.

Keywords: elastic modulus of rock; machine learning; extreme gradient boosting; random forest;
dwarf mongoose optimization

MSC: 86-10

1. Introduction

Elastic modulus (E) is one of the key parameters characterizing the properties of
rock, and the accurate estimation of the E of rock is essential for the safe construction of
geotechnical engineering [1–5]. The E of rock can be determined by situ and laboratory
tests, and the test process should comply with a series of operating specifications. However,
it is sometimes difficult to extract high-quality core specimens from fragile, weak, and
stratified rock masses. Additionally, the actual testing process is often limited by time and
cost constraints [6–8]. Therefore, it is essential to develop economical, non-destructive, and
indirect methods to estimate the E of rock.

In the early stage of the development of rock mechanics, several scholars attempted to
estimate the E of rock by some easily accessible rock indexes, such as the point-load index,
slake durability index, Schmidt hammer rebound number, and P-wave velocity [9–12]. As
a result, several empirical formulas between E and the above indexes were established.
For example, Sachpazis [13] calculated a correlation coefficient of 0.78 between E and the
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Schmidt hammer rebound number in carbonate rocks. Lashkaripour [14] analyzed the
correlation between the porosity and E of mudrocks. Yasar and Erdogan [15] determined the
statistical relations between the hardness and E of rocks. Moradian and Behnia [16] derived
fit equations for E and the P-wave velocity of sedimentary rocks by using an ultrasonic
test. Armaghani et al. [17] proposed several simple and multiple regression equations to
calculate the E of granite rocks. Shan and Di [18] developed formulas to calculate the E of
multiple-jointed basalt rocks by laboratory tests. Karakus et al. [19] adopted a multiple
regression model to analyze the elastic properties of intact rock. However, the estimation
results of these empirical formulas are only applicable to specific rock data and do not
reach the generalization purpose.

On the other hand, in recent years, machine learning (ML) approaches have garnered
considerable interest in geotechnical engineering because of their powerful nonlinear data
processing capabilities [20–22]. With the accumulation of data, some researchers have
attempted to develop ML models to estimate the E of rock. For instance, Armaghani
et al. [17] proposed an adaptive neuro-fuzzy inference system (ANFIS) for predicting
unconfined compressive strength (UCS) and E of granite rocks. Cao et al. [23] hybridized
an extreme gradient boosting machine (XGBoost) with the firefly algorithm to estimate
the E and UCS of granite rock. Meng and Wu [24] combined the experimental, numerical,
and random forest (RF) methods to predict the UCS and the E of frozen fractured rock.
Abdi et al. [25] investigated the feasibility of tree-based techniques, including RF, Adaboost,
XGBoost, and Catboost models, in predicting the E of weak rock. Acar and Kaya [26]
adopted the least square support vector machine (LS-SVM) model to predict the E of weak
rock. Several scholars [27–29] adopted different artificial neural network models (ANN) to
predict the E of different types of rocks, respectively. More related works on the estimation
of E using ML methods and details are tabulated in Table 1.

Table 1. Related works on E estimation using ML approaches.

Year References Models Inputs Number of Samples

2010 Majdi and Beiki [30] GA-ANN UCS, GSI, RQD, ρ, n, NJ 120
2010 Dehghan et al. [29] ANN Vp, Is(50), Rn, n 30
2011 Khandelwal and Singh [31] ANN UCS, BTS 120
2012 Ocak and Seker [32] ANN UCS, γ 195
2015 Armaghani et al. [17] ANFIS ρ, Vp, content of Qtz, Kpr, Plg, and Bi 45
2018 Bejarbaneh et al. [33] ANN Is(50), Vp, Rn 96
2018 Saedi et al. [34] ANFIS BPI, BTS, Vp, Is(50) 120
2018 Rezaei [35] MFIS H, ρ, n, DI 50
2019 Yang et al. [36] Bayesian IS(50), Rn, Vp, n, UCS 71
2020 Acar and Kaya [26] LS-SVM Vp, γ, Is(50), BTS 575
2022 Cao et al. [23] XGBoost-firefly ρ, Vp, content of Qtz, Kpr, Plg, Bi 45
2022 Pappalardo and Mineo [27] ANN n, γ, Vp, Edyn, UCS /
2023 Meng and Wu [24] RF PF, SF, IAF, TF, NF /
2023 Abdi et al. [25] RF n, ρ, Vp, Id2, Abs 90

Note: GSI is geological strength index; RQD is rock mass quality designation; GA is genetic algorithm; BTS is
Brazilian tensile strength; γ is unit weight; ρ is density; n is porosity; NJ is number of joints per meter; Vp is
P-wave velocity; IS(50) is point load index; Rn is the Schmidt hammer rebound number; Qtz is quartz; Kpr is
alkali feldspar; Plg is plagioclase; Bi is biotite; BPI is block punch index; H is depth of coring; DI is durability
index; Edyn is dynamic elastic modulus; Id2 is slake durability; Abs is water absorption; PF is persistence factor
of ice-filled fractures; SF is spacing between fractures; IAF is inclination angle of fractures; TF is thickness of
fractures; NF is number of fractures.

In comparison to other methods, ML approaches can yield dependable results by
establishing the nonlinear relationship between input and output variables [37,38]. It is a
promising method for estimating the E of rock. Recently, the XGBoost and RF algorithms
have shown great potential to improve prediction accuracy and have been successfully
applied in many fields, such as electricity consumption forecasting [39,40], infectious
disease prediction [41,42], mining maximum subsidence prediction [43,44], and heavy metal
contamination prediction [45,46]. XGBoost and RF are two efficient ensemble methods
that combine multiple homogeneous weak learners in certain ways to reduce overfitting.
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However, the ML algorithms require a proper hyperparameter setting to improve the
accuracy. As a novel heuristic optimization algorithm, the dwarf mongoose optimization
(DMO) algorithm has proven to have a strong global search capability and high search
efficiency in solving optimization problems [47]. Therefore, it may be an efficient approach
to optimize the hyperparameters of XGBoost and RF models. The available studies show
that the DMO algorithm has not been integrated with the XGBoost and RF models to
estimate the E of rock.

This study aims to investigate the feasibility of XGBoost and RF algorithms optimized
by the DMO approach to estimate the E of rock. First, a dataset comprising 90 specimens
with five indicators was compiled from available rock mechanics data. Next, the DMO-
XGBoost and DMO-RF models were developed. The proposed models can be used to
estimate the E of rock easily by avoiding the complexity of core specimen preparation in
the laboratory.

2. Methodology
2.1. XGBoost Algorithm

XGBoost is a boosting ensemble algorithm with a decision tree (DT) as the base learner
that improves the classical gradient boosting decision tree (GBDT) algorithm [48]. It is
designed using an efficient, flexible, and portable distributed gradient boosting framework.
Compared with GBDT, the calculation speed is faster while retaining excellent performance.
The flowchart of this algorithm is indicated in Figure 1. The core principle of XGBoost is to
build DTs one after another and train the subsequent DT with the residuals of the previous
ones. The values computed by all the constructed DTs are integrated to achieve a better
result. It has been regarded as an advanced evaluator with ultra-high performance in both
classification and regression [21]. The XGBoost algorithm is explained as follows:

ŷ(t)i =
t

∑
k=1

fk(xi) =ŷ(t−1)
i + ft(xi) (1)

where ŷ(t)i denotes the final model, ŷ(t−1)
i is the previous model, xi represents the features

corresponding to the sample i, ft(xi) is the newly generated DT model, and t is the total
number of DT models.
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The objective function of the ensemble algorithm is an alternative. In order to avoid
overfitting and improve iteration efficiency, XGBoost introduces model complexity to
measure the computational efficiency [49]. Accordingly, the objective function of XGBoost
can be given by:

Obj(t) =
t

∑
i=1

l
(

yi, ŷ(t)i

)
+

t

∑
i=1

Ω( fi) (2)

where yi is the actual value, l
(

yi, ŷ(t)i

)
is a convex loss function describing how well

the model fits with training data, and Ω( fi) is the penalty term for regularization to
avoid overfitting.

Gradient statistics are applied to the loss function, which effectively eliminates con-
stant parameters. The simplified objective function is obtained as follows:

Obj(t) =
t

∑
i=1

[
gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ Ω( ft) (3)

where gi = ∂ŷ(t−1)
i l

(
yi, ŷ(t)i

)
and hi = ∂2ŷ(t−1)

i l
(

yi, ŷ(t)i

)
are the first and second order

gradient statistics of the loss function, respectively. The penalty term Ω( ft) is evaluated by:

Ω( ft) = γT +
1
2

α|w|+ 1
2

λ‖w‖2 (4)

where α and λ are regularization parameters, whose default values are 1 and 0, respec-
tively, T is the number of leaf nodes controlled by the parameter γ, and w denotes the
corresponding weight of the leaf nodes.

2.2. Random Forest Algorithm

RF is a bagging ensemble algorithm with DT as the base learner [50]. Its principle
diagram is shown in Figure 2. Different DTs are constructed to set up a forest by extracting
sample and feature subsets from the original data. It is a stochastic process that ensures
the independence of each DT, which improves the generalization capacity and avoids
overfitting [51]. Moreover, all constructed DTs tend to grow freely without pruning,
which makes the construction process of each DT fast and the computational efficiency
of RF improved. By integrating the results generated by all constructed DTs, the voting
(for classification problems) or averaging (for regression problems) approach is used to
determine the final results [21]. According to the type of output variable in this paper, the
RF algorithm is explained as follows:

−
y(x) =

1
T

T

∑
i=1

fi(x) (5)

where
−
y(x) represents the predicted value of the RF model, fi(x) is the predicted value of

each DT, and T represents the number of constructed DTs.

2.3. Dwarf Mongoose Optimization

The DMO algorithm is a swarm intelligence optimization algorithm that simulates
the seminomadic life of dwarf mongoose in nature. The dwarf mongooses are known for
foraging and scouting as a unit, and the DMO algorithm finds the optimal solution by
simulating their social behavior. The DMO algorithm divides the swarm into three groups:
the alpha group, the scout group, and the babysitter group [47,52,53].

Firstly, the alpha group leads the scout group to forage and scout for a new sleeping
mound, leaving the babysitters group to take care of the young dwarf mongooses in the
old sleeping mound. Secondly, when a food source is not found, the alpha and scout
groups will go back to the old sleeping mound to exchange members with the babysitter
group. Thirdly, the alpha group continues to go out foraging and scouting for new sleeping
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mounds. The family returns intermittently to exchange babysitters and repeats the cycle
until a food source is found.
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The process of DMO for hyperparameter tuning can be broken down into the following
steps [47]:

(1) Initialization: The DMO algorithm starts by initializing the population of solutions
as follows:

X =


x1,1 x1,2 . . . x1,d−1 x1,d
x2,1 x2,2 . . . x2,d−1 x2,d

...
... xi,j

...
...

xn,1 xn,2 . . . xn,d−1 xn,d

 (6)

where X is the set of current candidate populations, n denotes the population size, and d is
the dimension of the problem. These solutions represent different sets of hyperparameters
for the XGBoost and RF models.

(2) Objective function: The DMO algorithm requires an objective function that quanti-
fies the performance of each solution. In this study, the average root mean squared error
(RMSE) values of five-fold cross-validation (CV) were employed as the fitness function.
The foraging behavior of the dwarf mongoose is mimicked by dividing the population into
alpha, scout, and babysitter groups. The probability of each individual becoming alpha is
computed by:

α =
f iti

n
∑

i=1
f iti

(7)

where fiti denotes the fitness value of the i-th individual.
(3) Behavior of dwarf mongooses: In the optimization of the DMO process, these

dwarf mongooses work together to find food and a new sleeping mound. The movement
of dwarf mongooses is determined by the leader of its subgroup. Their movement is based
on the position of the alpha and the current position of the solution, which is calculated
as follows:

M =
n

∑
i=1

Xi × smi
Xi

(8)

where Xi is the position of the alpha group, and smi denotes the current position of the solution.
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(4) Cooperative search: DMO encourages a cooperative search among the solutions in
the population. This means that solutions collaborate and share information to improve the
overall performance of the population. In the context of hyperparameter optimization, it
implies that solutions with promising hyperparameters influence or guide other solutions
towards better hyperparameter configurations.

(5) Communication and information sharing: In DMO, solutions share information
about their performance and hyperparameters with others. This communication helps the
population converge toward better solutions.

(6) Update hyperparameters: Based on the cooperative search and shared information,
the hyperparameters of each solution are updated.

(7) Fitness evaluation: After updating the hyperparameters, the fitness of each solution
is re-evaluated using the objective function. Solutions that perform better are favored and
contribute more to the cooperative search process.

(8) Termination: The algorithm terminates when a stopping criterion is met.
(9) Final solution selection: Once the optimization process concludes, the solution

with the best-performing hyperparameters, according to the objective function, is selected
as the final model configuration.

2.4. Model Evaluation Metrics

In this study, four metrics were employed to assess the performance of the proposed
models, including the coefficient of determination (R2 score), the RMSE, the mean absolute
error (MAE), and the variance accounted for (VAF). RMSE and VAF are maximization
performance metrics, while MAE and VAF are minimization performance metrics [54].

R2 score represents the proportion of the squared correlation between the predicted
and actual values of the target variable, which can be calculated by:

R2 = 1−
∑
i
(yi − ŷi)

2

∑
i
(yi − yi)

2 (9)

where yi indicates the actual value, ŷi indicates the predicted value of the model, and yi
represents the average of the actual values.

RMSE represents the standard deviation of the fitted error between the predicted value
and the actual value, which can be calculated by:

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (10)

where n indicates the total number of samples.
VAF characterizes the prediction performance by comparing the standard deviation of

the fitted error with the standard deviation of the actual value, which is defined as:

VAF =

[
1− var(yi − ŷi)

var(yi)

]
× 100 (11)

where var indicates the variance.
MAE represents the average error between predicted value and actual value, which

can be calculated by:
MAE =

1
n

n

∑
i=1
|yi − ŷi|, (12)

2.5. Proposed Approach

In this study, two novel hybrid ensemble learning models were proposed to estimate
the E of rock by optimizing the XGBoost and RF models through the DMO algorithm. The
structure of the proposed approach is indicated in Figure 3. Firstly, a database including
90 rock samples with five indicators was established. Secondly, 80% of the samples were
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utilized for training, while the remaining 20% were reserved for testing [55]. Thirdly, to
validate the superiority of the proposed hybrid ensemble learning models, a comparison
against default XGBoost and RF models was performed. Finally, the R2 score, RMSE, MAE,
and VAF were adopted to evaluate the performance of models on the test set.
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The XGBoost and RF algorithms were implemented on the Python library “sci-kit-
learn” [56], and the DMO algorithm was implemented on the Python library “MELPY” [57,58].
All experiments were processed using a Windows 10, 64-bit computer with 8 Gb of RAM
running an Intel® Core™ i7-9700F CPU @ 3.00 GHz × 2.

3. Data and Variables

According to the work of Abdi et al. [25], four types of rocks, including marl, siltstone,
claystone, and limestone, were collected and cored in the laboratory to obtain standard
core samples. A total of 90 rock samples were obtained for conducting physical tests
and developing E-estimation models. Among the 90 samples, each set of data contains
five indicators, including porosity (A1), dry density (A2), P-wave velocity (A3), slake
durability (A4), and water absorption (A5). Among them, porosity (A1) is an important
factor in determining the strength and deformation behavior of rock, and water absorption
(A5) is related to porosity. Dry density (A2) and P-wave velocity (A3) are two common
petrophysical properties related to the E of rock. Yagiz et al. [28] found that slake durability
(A4) cycles have a significant effect on the prediction of UCS and modulus of elasticity for
carbonate rocks. It is important that these five indicators can be conveniently measured
in the laboratory, and therefore, they were selected as input indicators. The detailed
descriptions of these indicators are displayed in Table 2, and the statistics of the dataset are
illustrated in Table 3.

Table 2. Descriptions of input indicators.

Indicator Description

Porosity (%) The ratio of void space to the total volume of rock.
Dry density (g/cm3) The mass per unit volume of a rock sample without any water content.
P-wave velocity (m/s) The speed at which compressional waves travel through a rock sample.

Slake durability (%) A measure of the resistance of a rock sample to disintegration when exposed to
wetting and drying cycles.

Water absorption (%) The amount of water that a rock sample can absorb when it is immersed in water
for a specified period of time.
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Table 3. Statistical values of the dataset.

Indicators Minimum Median Maximum Mean Standard

A1 (%) 5.44 21.32 56.55 22.69 9.59
A2 (g/cm3) 1.61 2.06 2.98 2.17 0.24

A3 (m/s) 1011.53 2075.05 3250.45 1989.66 541.78
A4 (%) 22.75 80.52 96.54 74.87 16.40
A5 (%) 2.51 10.59 26.54 11.62 5.24
E (GPa) 1.12 3.59 13.23 4.50 2.92

The violin plots of the five indicators and E are shown in Figure 4. These plots are a
combination of box plots and density plots, offering insights into the overall distribution
of the dataset. In each violin plot, the white dot at the center represents the median of
the samples, the upper and lower extents of the thick black line denote the third and first
quartiles of the samples, the top and bottom of the thin black line indicate the upper and
lower adjacent values, and the black dots are outliers. From Figure 4, it can be seen that
the distribution of all the data is relatively balanced, but there are some outliers, which
indicates the complexity of estimating the E of rock.
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To visualize the distribution of this dataset, the correlation pair plots and heatmap
of the Pearson correlation coefficient between indicators and E are displayed in Figure 5.
The results show that A2, A3, and A4 are positively correlated with E, while others are
negatively correlated. Among them, the strongest correlation was found between A2 and
E with an absolute value of the correlation coefficient of 0.78, and the weakest correlation
was found between A1 and E with an absolute value of the correlation coefficient of 0.28.
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4. Results and Analysis
4.1. Results of Hyperparameters Tuning

In contrast to other optimization methods, swarm intelligence algorithms need to
determine the population size and the number of iterations, which directly affect the
running time of the models and the ability to tune the optimal hyperparameters [59]. In this
study, each model performed 100 iterations at population sizes of 10, 20, 30, 40, 50, 75, and
100, and the average RMSE values of five-fold CV were employed as the fitness function.
The fitness curves and the running time of all models are indicated in Figure 6. With an
increase in the number of iterations, the average fitness value gradually reaches a stable
point. The minimum fitness value corresponds to the optimal population size of the models.
However, an excessively large population size will significantly prolong the running time,
which is not conducive to the practical application of these models in engineering [60,61].
Therefore, the best trade-off between performance and efficiency was achieved when the
population sizes of the DMO-RF and DMO-XGBoost models were 75 and 20, respectively.
After tuning the population size, the hyperparameters of the RF and XGBoost models
were tuned based on the optimization algorithm. The scope, interval values, and ultimate
optimization results of the hyperparameter values are presented in Table 4.

Table 4. Scope and interval values of DMO-RF and DMO-XGBoost models.

ML Algorithms Hyperparameters Scope of Values Interval of Values Optimal Values

DMO-RF
n_estimators (10, 300) 10 10
max_depth (1, 20) 1 4

min_samples_split (2, 10) 0.001 5

DMO-XGBoost

n_estimators (10, 300) 10 12
max_depth (1, 15) 1 5

learning_rate (0.001, 1) 0.001 1
reg_alpha (0.001, 1) 0.001 1

reg_lambda (0.001, 1) 0.001 0.636
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4.2. Model Comparison and Evaluation

To further compare the estimation performances of the two proposed hybrid ensemble
learning models with the default XGBoost and RF models, the scatter plots of the four mod-
els in the training and testing phases are presented in Figure 7. The vertical and horizontal
axes represent predicted and actual values of E, respectively. The diagonal dashed line rep-
resents the ideal regression line, representing that the predicted and actual values are equal.
Models with more data points lying on this line exhibit higher predictive performance. The
solid blue lines are the 10% boundaries, which were set to better observe the distribution of
points and compare models. The green and red scatters represent the training data points
and test data points, respectively. At the same time, the values of the evaluation metrics (R2,
RMSE, MAE, and VAF) of each model in the training and testing phases are recorded in
Table 5. Some observations can be obtained from Figure 7 and Table 5. First, in the training
phase, the XGBoost and DMO-XGBoost models performed better than the RF and DMO-RF
models without the phenomenon of the green scatters outside the 10% boundaries, and the
default XGBoost model performed the best in all evaluation metrics. Second, in contrast to
the training phase, the predictive performance of each model decreased during the testing
phase, but the DMO approach improved the performance of the default XGBoost and RF
models in the testing phase. Third, in the testing phase, the DMO-RF and DMO-XGBoost
models had fewer red scatters outside the 10% boundaries than the default RF and XGBoost
models, and the DMO-RF model performed best in all evaluation metrics.
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Table 5. Performance comparison of different models.

Models R2 RMSE MAE VAF

Training
RF 0.964 0.541 0.368 0.965
XGBoost 0.999 0.001 0 0.999
DMO-RF 0.968 0.513 0.353 0.968
DMO-XGBoost 0.999 0.016 0.012 0.999
Testing
RF 0.913 0.886 0.748 0.920
XGBoost 0.795 1.357 0.994 0.816
DMO-RF 0.967 0.541 0.447 0.969
DMO-XGBoost 0.935 0.763 0.674 0.936

The results presented in bold denote the best values.

5. Discussion
5.1. Comparison with Different Classical Hybrid Models

To verify the effectiveness of the proposed DMO algorithm, the classical simulated
annealing (SA) and Bayesian optimization (BO) algorithms were introduced to optimize
the RF and XGBoost models for comparison [62–65]. The evaluation metrics of the SA-RF,
SA-XGBoost, BO-RF, and BO-XGBoost models in the training and testing phases are shown
in Table 6.

To compare the developed models more visually, the Taylor diagram was plotted,
as seen in Figure 8. A complete Taylor diagram consists of three components: standard
deviation (SD, black and green dashed line), root mean square deviation (RMSD, red dashed
line), and correlation coefficient (CC, blue dashed line) [66]. The red pentacle in Figure 8
was the reference point, which represents the actual E values, and the scatters represent
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the different prediction models. The scatter with the closest distance to the reference point
(with the lowest RMSD value) corresponds to the optimal prediction model. The SD, RMSE,
and CC values of all scatters are calculated in Table 7. It can be seen that the DMO-RF
model was the best model that was closest to the reference point with an RMSD of 0.530,
followed by the BO-RF, DMO-XGBoost, BO-XGBoost, SA-RF, and SA-XGBoost models.

Table 6. Performance comparison of different hybrid models.

Models R2 RMSE MAE VAF

Training
SA-RF 0.949 0.646 0.491 0.949
SA-XGBoost 0.997 0.029 0.022 0.997
BO-RF 0.950 0.644 0.478 0.950
BO-XGBoost 0.996 0.183 0.138 0.996
Testing
SA-RF 0.933 0.774 0.641 0.935
SA-XGBoost 0.918 0.858 0.681 0.921
BO-RF 0.933 0.773 0.654 0.936
BO-XGBoost 0.953 0.648 0.559 0.954

Table 7. Taylor diagram values of all models.

Reference DMO-RF DMO-XGBoost SA-RF SA-XGBoost BO-RF BO-XGBoost

SD 2.998 2.7 2.999 2.519 2.513 2.671 2.562
CC 0 0.988 0.968 0.977 0.968 0.981 0.975
RMSD 1 0.530 0.757 0.764 0.843 0.641 0.758
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5.2. Comparison with Other ML Models

To confirm the performance of the developed models, three other ML models were
introduced for comparison, namely the SVM, decision tree (DT), and multilayer perceptron
neural network (MLPNN). The hyperparameters of these models were default. In addition,
Adaptive boosting machine (Adaboost) and Category gradient boosting machine (CatBoost)
methods were developed by Abdi et al. [25] on the same dataset. Furthermore, to visually
compare the seven ML models, a scoring system was implemented to give corresponding
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scores to each model [67]. The values and scores of all models on four evaluation metrics are
calculated in Table 8. It can be seen that the overall score ranking for all models is DMO-RF
(28) > DMO-XGBoost (24) > CatBoost (20) > Adaboost (16) > SVM (12) > MLPNN (8) > DT (4).

Table 8. Performance comparison of different ML models on test set.

Models R2 Score RMSE Score MAE Score VAF Score Total Score

Adaboost 0.841 5 1.188 5 0.920 5 0.849 5 20
CatBoost 0.784 4 1.382 4 1.075 4 0.788 4 16
SVM 0.737 3 1.410 3 1.132 3 0.745 3 12
DT 0.688 1 1.679 1 1.321 1 0.701 1 4
MLPNN 0.721 2 1.473 2 1.163 2 0.722 2 8
DMO-RF 0.967 7 0.541 7 0.447 7 0.969 7 28
DMO-XGBoost 0.935 6 0.763 6 0.674 6 0.936 6 24

5.3. Relative Importance of Indicators

In this study, the relative importance of each indicator was determined by combining
the DMO-RF and DMO-XGBoost models with the permutation feature importance tech-
nique, which is indicated in Figure 9 [68,69]. Based on the DMO-RF model, the rank of
the indicators’ importance was A2 > A4 > A3 > A5 > A1. According to the DMO-XGBoost
model, the rank of the indicators’ importance was A2 > A4 > A5 > A3 > A1. The results were
consistent with the calculations of the feature importance analysis module built into the
XGBoost and RF models. Apparently, two indicators were the most important: A2 (dry
density) and A4 (slake durability). The results can be used as a reference for developing
more reliable E estimation models of rock in the future.
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5.4. Overfitting Validation

Furthermore, to further analyze whether the proposed DMO-RF and DMO-XGBoost
models suffered from overfitting or underfitting, the convergence curves are plotted in
Figure 10. The horizontal axis represents the number of samples, while the vertical axis
represents the R2 score obtained through a five-fold CV. It can be seen that the DMO-RF
and DMO-XGBoost models tended to converge as the sample size increased. However,
the DMO-RF model performed with less error between the training and test sets than
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the DMO-XGBoost model, which indicates that the proposed DMO-RF model effectively
mitigated the issue of generalization error and exhibited a certain degree of resistance
against overfitting.
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5.5. Limitations

Although the proposed hybrid ensemble approaches obtained excellent results in
estimating the E of rock, there are still some limitations to consider:

(1) The dataset used in this study is relatively small, and the specimens in the original
dataset were composed of four types of weak rocks, including marl, siltstone, claystone,
and limestone. There is no consideration of other types of rock, such as granite, basalt, and
other hard rocks. This situation might lead to the presence of a sampling bias that might
affect the generalizability of the proposed ML models. Therefore, it is crucial to expand the
database by collecting various types of rock cases to increase the quantity and quality of
the dataset.

(2) More indicators should be considered. Although the five indicators in this study
affect the E of rock significantly, other factors such as depth of coring, mineral composition,
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grain size distribution, and RQD index also have an effect on the E of rock. It is valuable to
explore the influences of these indicators on the E of rock estimation.

Although the aforementioned limitations exist, the developed DMO-XGBoost and
DMO-RF models in this study could be considered a feasible and practical tool for estimat-
ing the E of rock. Compared to traditional expensive and time-consuming laboratory testing
methods for rock mechanical parameters, the proposed models have potential advantages
in terms of cost savings and time efficiency. Geotechnical engineers can significantly reduce
the need for costly laboratory testing, providing project budget savings while enabling
faster and more effective assessment of geologic and geotechnical risks. In addition, the
developed models could be extended to estimate other geotechnical parameters, such as
UCS, rock shear strength, and rock brittleness, et al.

6. Conclusions

E is one of the important parameters in rock mechanics. Accurately estimating the E
of rock is significant for the design and construction of geotechnical projects. In this study,
DMO-XGBoost and DMO-RF models were developed to estimate the E of rock. The effec-
tiveness of the proposed models was verified using a database including 90 rock samples
with five indicators. To avoid overfitting or selection bias, the five-fold CV method was
combined with the DMO algorithm to tune the hyperparameters on the training set (80% of
the dataset). The R2 score, RMSE, MAE, and VAF were adopted to evaluate the performance
of models on the test set (20% of the dataset). In addition, two default ensemble models
(XGBoost and RF) were introduced and compared with the proposed two hybrid models.
Overall, the DMO algorithm improved the predictive performance of the default XGBoost
and RF models, and the DMO-RF model performed best with an R2 of 0.967, RMSE of
0.541, MAE of 0.447, and VAF of 0.969 on the test set. Furthermore, the classical SA and
BO algorithms were introduced to optimize the RF and XGBoost models for comparison,
and the Taylor diagram was plotted to determine the comprehensive rank, which was
DMO-RF > BO-RF > DMO-XGBoost > BO-XGBoost > SA-RF > SA-XGBoost. The permu-
tation feature importance technique revealed that dry density and slake durability were
more influential than other indicators in the evaluation results. Based on the convergence
curves, it was verified that the DMO-RF model can reduce the generalization error and
avoid overfitting.

In future work, a larger dataset containing higher-quality data should be established
to improve the estimation performance. In conclusion, the proposed DMO-RF model in
this paper can be considered a viable and useful tool in estimating the E of rock and can
be recommended for the application of other geotechnical parameter estimations, such as
UCS, rock shear strength, and rock brittleness, amongst others.
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