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Abstract: Aspect-level sentiment classification (ALSC) is a fine-grained sentiment analysis task that
aims to predict the sentiment of the given aspect in a sentence. Recent studies mainly focus on
using the Graph Convolutional Networks (GCN) to deal with both the semantics and the syntax of a
sentence. However, the improvement is limited since the syntax dependency trees are not aspect-
oriented and the exploitation of syntax structure information is inadequate. In this paper, we propose
a Syntactic Structure-Enhanced Dual Graph Convolutional Network (SSEDGCN) model for an ALSC
task. Firstly, to enhance the relation between aspect and its opinion words, we propose an aspect-wise
dependency tree by reconstructing the basic syntax dependency tree. Then, we propose a syntax-
aware GCN to encode the new tree. For semantics information learning, a semantic-aware GCN is
established. In order to exploit syntactic structure information, we design a syntax-guided contrastive
learning objective that makes the model aware of syntactic structure and improves the quality of the
feature representation of the aspect. The experimental results on three benchmark datasets show that
our model significantly outperforms the baseline models and verifies the effectiveness of our model.

Keywords: aspect-level sentiment classification; contrasitve learning; graph convolutional networks

MSC: 68T07

1. Introduction

Aspect-level sentiment classification (ALSC) is a fine-grained task in the field of
sentiment analysis. The main purpose of ALSC is to identify the user-expressed sentiment
polarity at aspect-level [1]. In practical use, ALSC not only focuses on analyzing opinions
in a given text but also looks into the aspects and its sentiment, and thus, giving a much
clearer understanding. For example, in the sentence “I am never disappointed at the system and
software”, the sentiment toward aspects “system” and “software” are both positive (Figure 1).

I    am    never    disappointed    at    the    system and    software

nsubj

aux

advmod

obl

case

det

conj

cc

Aspect-Polarity:  {system, positive},  {software, positive}

Figure 1. An example sentence with its dependency tree where aspects are highlighted in green and
opinion words are highlighted in blue.

A key issue for addressing ALSC lies in modeling the relationship between the as-
pect and its opinion words. Early studies [2–8] principally focus on integrate attention
mechanisms into recurrent neural networks (RNNs) to capture the opinion words that
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semantically relate to the aspect. The devising of pre-trained model BERT allows to exploit
abundant semantic information in ALSC tasks. Song et al. proposed an attention-based
encoder and a BERT-SPC model to learn features of the aspect and its context words [9].
By contrast, the syntax-based models also pave a way for resolving ALSC issues for sen-
tences of complex syntactic structures. The application of graph neural networks to syntax
dependency tree encoding is most pronounced [10–17]. Both GCN and GAT are capable
of learning syntactic-based feature representations by aggregating neighboring node fea-
tures through node connection on a syntax dependency tree. Zhang and Song [10,11] took
GCN to encode the syntax dependency tree and achieve satisfying results, indicating the
introduction of sentence syntax benefits the relation modeling. Note that syntax-based
models have deficiencies in syntactic-insensitive sentences; thus, the integration of syntax
and semantics is developed [18,19]. Zhang et al. [20] defined a syntactic mask matrix and
enhance the interaction between semantics and syntax by multiplying the syntactic mask
matrix with the semantic-based attention matrix.

Despite the improvement in ALSC, existing GCN-based methods have two limitations.
On the one hand, for syntax-based models, the syntax dependency trees generated by
the parser are not aspect-oriented. As such, the dependency tree may miss important
connections to the aspect. As presented in Figure 1, if the context toward aspect “software”
is processed using one-layer GCN, only the information from “system” and “and” can
be aggregated. By contrast, no connection is built between the aspect “software” with
its opinion words “never disappointed”. Although an aspect-based dependency tree is
proposed [16], the sentiment is still mis-identified due to its neglecting the information
flow in the basic syntax dependency tree. Taking the words “never disappointed” as an
example, if the syntactic connection between “never” and “disappointed” is disregarded, the
sentiment polarity can be classified as negative. The main reason is that neither “never” nor
“disappointed” expresses a positive sentiment. On the other hand, GCN aggregates node
feature merely via the relation in the graph. Such GCN-based models mainly focus on node
features and do not fully leverage syntactic structure, which may affect the performance of
GCN-based models in ALSC.

Aiming to address the issues mentioned above, we propose Syntactic Structure-
Enhanced Dual Graph Convolutional Network for ALSC task. To start with, an aspect-wise
dependency tree is developed, which preserves the basic syntax and enhances the connec-
tion toward the aspect. The aspect-wise dependency tree is encoded via GCN with the
integration of dependency relation aware attention mechanism. Likewise, the sentence
semantics is also processed by GCN and self-attention mechanism. To fully consider the
syntactic structure, we design a contrastive learning objective with a contrastive coefficient
based on the syntactic structure similarity which is characterized by the distribution of
anonymous walks. Training with this objective encourages the model to generate closer rep-
resentations for those aspects with the same labels and similar syntactic structure, thereby
further improving the classification performance.

The contributions of our work are summarized as follows:

• A novel aspect-wise dependency tree is established to overcome the deficiencies of a
classical syntax dependency tree. The relation between aspect and its opinion words
is enhanced, while the basic syntax is preserved.

• On the task of ALSC, the SSEDGCN model is proposed, which deals with both the
syntax and the semantics. Moreover, a contrastive learning module is exploited to
learn the feature representation of the aspect.

• Experimental results on three benchmark datasets reveal that our model is a competi-
tive alternative comparable with the state of the art.

The paper is mainly divided into five sections. In the introduction, we present an
overview of the article and propose our solution to address the limitations of current ALSC
methods. Section 2 provides a summary of research related to our work. In Section 3, we
offer a detailed description of the proposed model and its individual modules. In Section 4,
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experiments and result analysis are performed on three public datasets. Finally, concluding
remarks are given in Section 5.

2. Related Work
2.1. Aspect-Level Sentiment Analysis

As pointed out in the introduction, ALSC involves with classified the sentiment to-
wards a given aspect according to a predefined set of sentiment polarities. Early research
focuses on employing RNN-based method, together with the integration of attention mech-
anisms or knowledge distillation [21,22], to extract aspect-related information. In recent
years, advances in GCN-based algorithms significantly improve the working performance
in ALSC tasks. The ALSC methods can be loosely classified into the three categories, i.e.,
semantic-based models, syntactic-based models, and their integration. For semantic-based
models, the most widely-used models are developed based on deep neural networks and
attention mechanisms, which are capable of modeling the semantic relation between aspect
and its contexts [2–8]. Another main focus is the exploiting of syntax [10–17], because
the syntactic information can be applied to set the connection of aspect to its opinion
words. On the task of ALSC, the GCNs are first employed in syntax-based models to
encode the syntax dependency tree of the given sentence, and thus, model the syntactic
relation between aspect and the contexts [10,11]. Wang et al. reconstructed the syntax
dependency tree by pruning the irrelevant edges and encode the revised dependency tree
using GAT [16]. Considering the interaction between syntactic and semantic information,
multi-channel GCN-based approaches has been proposed to extract syntactic and semantic
information [18,19,23]. Zhang et al. [20] generated an attention matrix and a syntactic mask
matrix based on word-syntactic distances, which are processed to enhance the interaction
between semantics and syntax.

2.2. Random Anonymous Walks

Given a graph G = (V, E), with V = {v1, · · · v|V|} and E = {(vi, vj)} separately
representing the node set and the edge set, the random anonymous walk aims to capture
the structural pattern of the graph [24]. Let w = (v1, v2, · · · vl) be a random walk with
length l and (vi, vi+1) ∈ E. We shall define the random anonymous walk with respect to
w as:

aw(w) = (DIS(w, v1), DIS(w, v2), · · ·DIS(w, vl))

where DIS(w, vi) represents the number of distinct nodes in w when vi first appears in
w. Specifically, the anonymous walks of length l can be written as ωl

1, ωl
2, · · · in line with

their lexicographical order. For example, the four-length anonymous walks can be given as
ω4

1 = (1, 2, 3, 1), ω4
2 = (1, 2, 3, 2), ω4

3 = (1, 2, 1, 3), etc.
On this occasion, an intuitive description of anonymous walks is also provided. Dis-

tinguishing from random walks, the essence of anonymous walks lies in denoting the
underlying pattern of random walks, regardless of the specific node being visited. Accord-
ing to Figure 2, all three random walks can be mapped into one anonymous walk referring
to certain structure, such as triadic closure.

Random Walks

A B C A

P Q R P

X Y Z X

1 2 3 1

Anonymous Walk

4

1 {(1,2), (2,3), (3,1)} =
1

2 3

Graph

Figure 2. An example of anonymous walks.

2.3. Graph Neural Networks

Graph Neural Networks (GNNs) [25–27] have emerged as a powerful framework
for learning representations of graph data. GNNs aim to learn expressive node represen-
tations by leveraging the graph structure and node features. Subsequently, researchers
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have explored the combination of self-supervised learning and GNNs [28–30]. For in-
stance, You [28] proposed a graph-contrastive learning framework that enhances graph
representations through data augmentation. Wei [29] utilized contrastive learning and the
information bottleneck principle to enhance recommendation systems based on graphs. In
the field of Aspect-Level Sentiment Classification (ALSC), GNNs have demonstrated signif-
icant potential. Numerous studies [10–20] have employed GNNs to capture the syntactic
information of sentences, where nodes represent words and edges indicate dependencies.
This enables the generation of representation vectors for nodes based on their neighboring
features. With the increasing performance of GNN-based models, it has been observed that
they effectively enhance contextual and aspectual dependencies in ABSA tasks through the
utilization of GNNs.

2.4. Contrastive Learning

In recent years, advances in contrastive learning algorithms significantly improve the
working performance in a variety of tasks. The main purpose of contrastive learning is to
pull an anchor and a positive sample closer in the feature space while pushing apart the
anchor with negative samples. Motivated by its success in computer vision tasks [31–33],
research in contrastive learning-based methods for NLP primarily focuses on the learning
of representations. Gao et al. [34] proposed a contrastive learning framework to derive
the sentence embeddings, aiming at improving the precision of sentence representations
through contrastive learning. Wang et al. [35] applied a contrastive learning-enhanced KNN
mechanism to Multi-Label Text Classification (MLTC) task, based on which the representa-
tion quality of the retrieved neighbors can be upgraded. For the ALSC task, Liang et al. [36]
took contrastive learning to extract aspect-invariant and aspect-dependent features to
discriminate the sentiment features among the sentiment pattern and polarity perspectives.

3. Methodology

Figure 3 shows the architecture of the SSEDGCN model. The proposed model consists
of five major components, i.e., a Sentence Encoder, a Syntax-aware GCN, a Semantic-aware
GCN, a Syntax-guided contrastive learning module, and a Sentiment classifier. More details
of each component are described as follows. We start with an aspect-oriented dependency
tree constructed in our model.

Mini-batch

…

Mini-batch

Syntax  GCNSemantic  GCN

BiAffine

BERT

[CLS]   w1   w2   w3   w4   w5   w6 w7  [SEP]   w4   [SEP]

Reshape

concat

close
r

farther

classifer

Syntax-Guided  CL

rossCL

ConL
Distribution  1

Distribution  2

Self-attention DRA-attention

Figure 3. The overall architecture of SSEDGCN.
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3.1. Aspect-Wise Dependency Tree

In syntax-based ALSC methods, most existing models [11,17,37] tend to derive the
sentence syntactic information by processing the dependency relation. Typically, the syntax
dependency tree that depicts the sentence dependency relation is directly developed via
dependency parsers. Nevertheless, such dependency trees are not aspect-oriented, in which
case the aspect word may not connect to its opinion words in line with the sentence syntax
dependency. Notably, the ALSC task aims to assign the predominant focus to the aspect
instead of the root nodes of the syntax dependency tree. For this reason, an aspect-wise
dependency tree is devised based on the classical syntax dependency tree. Specifically,
we designate the aspect as the root node and connect all other nodes to it. Concurrently,
we assign syntactic dependency relationships to these connecting edges, based on their
respective syntactic distances.

Figure 4 shows the basic syntax dependency tree of the sentence and the aspect-wise
dependency tree. Comprehensively, we start with obtaining the classical sentence syntax
dependency tree via syntactic parser. Then, each unidirectional connection is revised to
a bidirectional relation. The aspect-wise dependency tree is established by setting the
aspect as the root node of the basic syntax dependency tree. With respect to an aspect
composed of multiple words, all these words are considered as one root node. For nodes
that have no direct syntactic connection with the aspect in the basic syntax dependency tree,
a directional relationship to the aspect is developed. According to Figure 4, the directional
relation between the node and the aspect is denoted as [n: con] where n represents the
shortest distance between the two nodes in the original syntactic tree. For example, in the
sentence “I love the system and the software”, the relation between “software” and “and” is
defined as [2: con]. The reason is that these words are not exactly connected to each other
in the basic syntax dependency tree, but the word “software” reaches “and” through the
path of software-system-and. That is, the distance between “software” and “and” in the basic
syntactic dependency tree is 2, so the connection between them is written as [2: con].

I   love   the   system   and   the   software

I   love   the   system   and   the   software

nsubj

root

det

dobj

cc

conj

det

nsubj

dobj

det cc det

root

conj

2:con

2:con

2:con

3:con

Figure 4. Aspect-wise dependency tree.

Two primary superiorities can be observed from the aspect-wise dependency tree. For
one thing, each aspect retains a distinctive dependency tree, avoiding the condition that
multiple aspects in one sentence possess the same syntax dependency tree. For another,
every single node directionally relates to the aspect, which enhances the connection between
the opinion word and the aspect word.
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3.2. Sentence Encoder

Let s = {w1, w2, . . . , wn} be a n-word sentence with aspect a = {wstart, wstart+1, . . . , wend},
where start and end represent the starting index and the ending index of a, respectively. In light of
the recent success of BERT [38] in word embedding, we employ a pre-trained BERT model to obtain
the hidden representation of the sentence. The sequence “[CLS]s[SEP]a[SEP]” is generated and
sent to BERT encoder. Thus, we obtain the contextual feature vector H = {h1, h2, . . . , hn}:

H = BERT{[CLS]s[SEP]a[SEP]} (1)

where H ∈ Rn×d and d represent the hidden layer dimension. Notably, the subvector
ha = {ha1, ha2, . . . ham} indicates the aspect representation.

3.3. Syntax-Aware GCN with DRA Attention

As previously described [10–12], we transform the aspect-wise dependency tree into
a syntactic graph Gsyn(Asyn, H), where Asyn ∈ Rn×n refers to the adjacency matrix of the

graph and H = {h1, h2, . . . , hn} is the hidden representation of the sentence. We take H(0)
syn

as the initialized feature representation of nodes and feed it into the syntax-aware GCN.
Normally, A GCN iteratively updates a node representation by averagely aggregating

neighboring nodes, which is carried out based on the element in the adjacency matrix.
Specifically, the element Asyn

ij stands for the relation between node i and node j. Only

if Asyn
ij = 1 are the two nodes regarded as connected, whereas since the dependencies

of different neighboring nodes toward the aspect vary, the specific dependency relation
and its effect have to be considered during aggregating. Thereby, dependency relation
aware attention (DRA attention) is performed in the process of aspect node updating. In
such a manner, the dependency weights are assigned to the aspect-neighboring nodes for
information aggregation. We map the dependency relations of the aspect node and its
neighboring nodes into vector representations. The dependency relation between nodes is,
thus, incorporated into the graph convolution. The attentive weights are taken to control the
information flow from neighboring nodes to the aspect. Computation with DRA attention
is conducted using the following equations:

H(0)
syn = {hsyn,0

1 , hsyn,0
2 , · · · hsyn,0

n } = H (2)

hsyn,l
i = σ(

n

∑
j=1

Asyn
ij
′
W l

synhsyn,l−1
j + bl

syn) (3)

Asyn
ij
′
=

{
Asyn

ij i /∈ (start, end)
δij i ∈ (start, end)

(4)

δij =
exp(gij)

∑Ni
j=1 exp(gij)

(5)

gij = σ(relu(rijW1 + b1)W2 + b2) (6)

where rij indicates the dependency relation between words wi and wj, hsyn,l
i ∈ Rd is the

embedding of node i in the l-th GCN layer, δij is a normalized attention coefficient for the
DRA attention mechanism, W l

syn and bl
syn are the trainable parametric matrix and bias in

the l-th GCN layer, respectively, and W1, W2 and b1, b2 are the trainable parametric matrices
and biases for computing the attention weights.

3.4. Semantic-Aware GCN with Self-Attention

The working performance of ALSC methods is not just affected by the syntax, but also
the semantics [20]. In this way, the semantic-aware module is introduced. Similar to the
syntax-aware GCN, we define Gsem(Asem, H) as the semantic graph, with Asem ∈ Rn×n as
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the semantic graph adjacency matrix. H = {h1, h2, . . . , hn} is also taken as the initialized
feature representations H(0)

sem of nodes in the semantic-aware GCN. With respect to semantic
information learning, the self-attention mechanism is exploited to build the semantic
adjacency matrix Asem ∈ Rn×n. The idea behind this approach is that the attention matrix
generated by self-attention can represent semantic correlations between words.

H(0)
sem = {hsem,0

1 , hsem,0
2 , · · · hsem,0

n } = H (7)

Asem = softmax(
(H(0)

semWsem,k)(H(0)
semWsem,q)

T

√
d

) (8)

hsem,l
i = σ(

n

∑
j=1

Asem
ij W l

semhsem,l−1
j + bl

sem) (9)

where hsem,l
i ∈ Rd is the embedding of node i in the l-th GCN layer, d is the dimension of

the node feature representation, Wsem,k, Wsem,q are trainable parametric matrices for self-
attention mechanism, and W l

sem and bl
sem are trainable parametric matrix and bias of the

l-th layer in GCN, respectively.

3.5. Sentiment Classifier

For the purpose of information interaction, the BiAffine mechanism [17,18] is exploited
to integrate the syntactic and semantic information in advance to sentiment classification.
The processing of outputs from syntax-aware GCN and semantic-aware GCN are presented
in Equations (10) and (11):

H(l)′
sem = softmax(H(l)

semW3(H(l)
syn)

T
)H(l)

syn (10)

H(l)′
syn = softmax(H(l)

synW4(H(l)
sem)

T
)H(l)

sem (11)

where W3 and W4 are trainable parametric matrices.
The pooling operation f (·) is performed to derive the semantic representation hsem

a
and the syntactic representation hsyn

a of the aspect. Then, hsem
a and hsyn

a are concatenated to
obtain the final aspect representation r, which is fed into the linear layer and the softmax
classifier to identify the sentiment polarity of the aspect.

hsem
a = f ({hsem

a1 , hsem
a2 , · · · , hsem

am }) (12)

hsyn
a = f ({hsyn

a1 , hsyn
a2 , · · · , hsyn

am }) (13)

r = [hsem
a , hsyn

a ] (14)

ŷ(a) = softmax(Wyr + by) (15)

where Wy and by are the trainable parametric matrix and the bias, respectively, and {hsem
a1 ,

hsem
a2 , · · · hsem

am } ∈ Rm×d and {hsyn
a1 , hsyn

a2 , · · · hsyn
am } ∈ Rm×d stand for aspect sequence derived

from H(L)′
sem ∈ Rn×d and H(L)′

syn ∈ Rn×d.

3.6. Syntax-Guided Contrastive Learning

Inspired by [32,35], the syntax-guided contrastive learning is designed to learn the
feature representation of the aspect. Specifically, we design a contrastive learning objective
with a contrastive coefficient based on the syntactic structure similarity for positive instance
pair. For each input aspect, the remaining aspects with the same sentiment polarity within
the same batch are considered as the positive examples, otherwise as negative examples.
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Then, we use the distribution of anonymous walks to characterize syntactic graph structures
since the anonymous walk is a powerful tool that represents graph structural patterns.
Subsequently, we employ KL divergence to compute the differences in the anonymous
walk distribution of positive samples, such as fG(i) and fG(j) in Figure 5. The resulting KL
divergence is then used as the contrast coefficient βij in contrastive learning to measure the
similarity of syntactic structure between two positive samples.

F
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E
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B

…

1 2 3 2

1 2 3 1
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A F C F

A F E A

A E D G
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Figure 5. The local syntactic structure distribution.

As reported by [39], the number of anonymous walks with length l in a given graph
is fixed. For instance, there are only two kinds of anonymous walks ω2 with length 2,
i.e., ω2

1 = (1, 1) and ω2
2 = (1, 2). In our model, we take the aspect node as the starting

node of the sentence s in the syntactic graph. As Figure 5 show, a set of γ random walks
RW with the length of l is sampled, which corresponds to a set of η different anonymous
walks (ωl

1, ωl
2, · · · , ωl

η). The empirical distribution of these γ random walks over the η
anonymous walks is thus determined, which is:

fG(s) = (ps(ω
l
1), ps(ω

l
2), · · · , ps(ω

l
η)) (16)

ps(ωl
i ) =

∑
w∈RW

I(aw(w)=ωl
i )

γ , i = 0, 1, · · · η (17)

where ps(ωl
i ) refers to the probability of an anonymous walk ωl

i with the starting point of
the aspect node, I is the indicator function, and fG(s) denotes the distribution of γ random
walks over η anonymous walks.

Given an anchor aspect ri, we designate other aspect with the same sentiment P =
{j ∈ B, yj = yi, j 6= i} as the positive example set of ri, and otherwise as a negative example
set. The syntax-guided contrastive loss is written as:

LCon =
1
B ∑

i∈B

1
|P| ∑

j∈P
L(ri, rj) (18)

L(ri, rj) = −βij log
exp(sim(ri, rj)/τ)

∑k∈B,k 6=i exp(sim(ri, rk)/τ)
(19)

βij =
C(i, j)

∑m∈P C(i, m)
(20)

C(i, j) =
1

KL( fG(i) ‖ fG(j))
(21)

where B indicates the total number of samples in the mini-batch, τ is the temperature
coefficient in contrastive learning, and sim(ri, rj) is taken to calculate the cosine similarity
of the vectors ri and rj. For the positive example pair (ri, rj), the more similar the local
structure of the aspect nodes is, the smaller the KL divergence can be calculated, and hence,
the larger C(i, j) is determined. Furthermore, a larger C(i, j) results in a larger contrastive
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coefficient βij, which enlarges the loss term L(ri, rj) of (ri, rj). In this way, the distance
between their representation vectors will be optimized to be closer.

3.7. Model Training

The loss function in our model is given by:

L(θ) = LCross + λLCon (22)

LCross = − ∑
(s,a)∈D

∑
c∈C

log ŷ(a) (23)

where θ refers to the set of trainable parameters, λ is the contrastive learning loss weight,
LCross is the cross entropy loss function for ALSC task, D is the set of all sentence-aspect
pairs, and C is the class of sentiment polarity.

4. Experiment
4.1. Datasets

We evaluate our model on three publicly available benchmark datasets, i.e., Restaurant
and Laptop from SemEval 2014 Task 4 [40] and Twitter [41]. Each sample contains a
sentence, with the aspect (single or multiple words) and its corresponding sentiment
polarity (positive, negative or neutral). The statistics of the datasets are shown in Table 1.

Table 1. Statistics of the experimental datasets.

Dataset
Positive Negative Neutral

Train Test Train Test Train Test

Laptop 976 337 851 128 455 167
Restaurant 2164 727 807 196 637 196

Twitter 1507 172 1528 169 3016 336

4.2. Implementation Details

In this experiment, the Stanford parser (https://stanfordnlp.github.io/CoreNLP/,
accessed on 2 November 2022) is employed to build the basic syntax-dependent tree, based
on which the aspect-wise dependency tree is re-constructed. The pre-trained bert-base-
uncased model is used for sentence encoding. Notably, the dimension of the relation
embedding between aspect nodes and the remaining nodes is set to 100 while the hidden
layer dimension for both GCN modules is 384. In addition, the layer number for SynGCN
and SemGCN is set to 2 to prevent overfitting. The dropout function, with a dropout rate
of 0.1, is used in both modules. With respect to anonymous walks, the length l is 6 and the
sampling number γ is 100. The weight λ of contrastive loss for contrastive learning scheme
is set to 0.4, 0.6, and 0.1 for the three datasets. Besides, the Adam optimizer is adopted with
a learning rate of 0.002. The SSEDGCN model is trained for 20 epochs with a batch size of
16. We use accuracy (Acc) and Macro-F1 (F1) to evaluate the model performance, which are
the primary evaluation measures used in ALSC models.

4.3. Baseline Methods

The following methods are taken as the baselines in the experiment:

• CDT+BERT [11]: The first model that employs GCN to learn syntactic information
based on dependency trees and generate aspect node representation. The model is
trained for 20 epochs with a batch size of 16 and a learning rate of 0.02.

• BERT-SPC [9]: The sentence-aspect pair is fed into BERT model, whose token output
is used for sentiment classification.

https://stanfordnlp.github.io/CoreNLP/
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• R-GAT+BERT [16]: An aspect-specific dependency tree is constructed, which is fur-
ther encoded using the relational graph attention network. The model is trained for
30 epochs with a batch size of 16 and a learning rate of 0.00005.

• DGEDT+BERT [17]: A dual-transformer structure is devised, which learns the flat
representations via the Transformer and the graph-based representations via the
corresponding dependency graph in an iterative interaction manner. The model is
trained for 50 epochs with a batch size of 32 and a learning rate of 0.001.

• T-GCN+BERT [37]: A type-aware graph convolutional network is proposed to encode
distinguishing dependency types, while the attentive layer ensemble is used to learn
the contextual information within GCN layers. The model is trained for 30 epochs
with a batch size of 16 and a learning rate of 0.00002.

• DualGCN+BERT [18]: A dual-channel GCN is developed to tackle both the syntax
and the semantics. The orthogonal regularization and differential regularization are
also applied. The model is trained for 20 epochs with a batch size of 16 and a learning
rate of 0.002.

• DMGCN+BERT [19]: A dynamic and multi-channel graph convoiution network is
proposed to encode the syntactic and semantic information for aspect-based sentiment
analysis. The model is trained for 50 epochs with a batch size of 32 and a learning rate
of 0.001.

• TCL+BERT [42]: A triple contrastive learning network, focusing on achieving the
alignment of syntactic and semantic features for sentiment classification. The model is
trained for 15 epochs with a batch size of 16 and a learning rate of 0.00002.

• SSEGCN+BERT [20]: Both the semantic information and the syntactic information is
comprehensively learned while the word representations are enhanced via GCN. The
model is trained for 15 epochs with a batch size of 16 and a learning rate of 0.00002.

• DR-BERT [43]: A dynamic re-weighting BERT model is built, which tends to learn
the dynamic aspect-oriented semantic information.

• SSK-GAT+BERT [23]: A novel graph attention network model is proposed to incor-
porate syntactic, semantic, and knowledge-based features. The model is trained for
15 epochs with a batch size of 16 and a learning rate of 0.000022.

• HD-GCN+BERT [22]: A hierarchical graph convolutional network is proposed to
fuse the outputs of multiple GCN layers as the final representation for prediction. The
model is trained for 20 epochs with a batch size of 16 and a learning rate of 0.002.

4.4. Comparison of Results

The overall results on three benchmark datasets are recorded in Table 2. We provide
accuracy and Macro-F1 score as evaluation metrics. Among all the methods, SSEDGCN
obtains the best and most consistent results in sentiment classification accuracy. In contrast
with classical syntax dependency tree-based methods (DGEDT and T-GCN), our model
consistently dominates these baselines. The main reason is that the relation between
aspect and its opinion words is enhanced in the aspect-wise dependency tree, which
facilitates the sentiment classification. Comparing with R-GAT+BERT, which also concerns
the encoding of aspect-oriented dependency tree, our model shows its superiority in all
evaluation settings. Furthermore, the proposed model outperforms the state-of-the-art
methods that deal with semantics and syntax (i.e., DualGCN and SSEGCN). In addition,
our model also exceeds the contrastive-learning network that tackles the overall alignment
(i.e., TCL+BERT), indicating the significance of explicitly considering syntactic structural
information. Therefore, SSEDGCN presents a more precise way to extract the aspect-related
information and model both the semantic and syntactic relation between aspect and its
corresponding opinion words, which validates the effectiveness of our model.
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Table 2. Experimental results comparison on three publicly available datasets.

Models
Restaurant Laptop Twiitter

Accuracy F1 Accuracy F1 Accuracy F1

CDT+BERT [11] 86.24 80.66 80.06 76.17 77.10 75.90
BERT-SPC [9] 84.46 76.98 78.99 75.03 73.55 72.14
R-GAT+BERT [16] 86.60 81.35 78.21 74.07 76.15 74.88
DGEDT+BERT [17] 86.30 81.35 79.80 75.60 77.90 75.40
T-GCN+BERT [37] 86.16 79.95 80.88 77.96 76.45 75.25
DualCGN+BERT [18] 87.13 81.16 81.80 78.10 77.40 76.02
DMCGN+BERT [19] 87.66 82.79 80.22 78.10 78.06 77.06
TCL+BERT [42] 87.40 82.12 81.80 78.96 77.55 76.57
SSEGCN+BERT [20] 87.31 81.09 81.01 77.96 77.40 76.02
DR-BERT [43] 87.72 82.31 81.45 78.16 77.24 76.10
SSK-GAT+BERT [23] 87.41 81.65 80.25 75.85 75.72 74.44
HD-GCN+BERT [22] 87.13 81.40 81.80 78.88 77.34 76.12

SSEDGCN(Ours) 87.85 82.08 82.91 80.12 78.14 77.08

4.5. Ablation Study

We carry out an ablation study to further analyze the impact of different components
in SSEDGCN; see Table 3. The results show that the most significant module for our
method is SynGCN. The removal of SynGCN results in the largest accuracy for the datasets
Restaurant and Laptop, which indicates the effectiveness of syntactic feature extraction in
ALSC. Moreover, the ablating of dependency relation aware attention (DRA attention) in
SynGCN also degrades the performance, especially for Twitter. A possible explanation is
that the colloquial expression in Twitter introduces an amount noise, which confuses the
model in relation setting without the DRA attention. In addition, removing SemGCN lead
to different degrees of model performance degradation, which suggests that the working
performance of ALSC methods is not just affects by the syntactic information, but also the
semantic information. As for the “w/o SGCL” model, the accuracy decreases 0.83%, 1.18%,
and 0.9% on Restaurant, Laptop, and Twitter, respectively, demonstrating the capability of
contrastive learning in obtaining the aspect representation.

Table 3. Ablation study results.

Models
Restaurant Laptop Twitter

Accuracy F1 Accuracy F1 Accuracy F1

SSEDGCN 87.85 82.08 82.91 80.12 78.14 77.08
w/o SGCL 87.02 81.46 81.73 78.61 77.24 76.12
w/o SemGCN 86.56 80.50 81.24 77.23 77.10 76.34
w/o DRA attention 86.33 79.92 81.63 77.77 76.69 75.56
w/o SynGCN 85.88 79.25 80.94 77.45 76.54 75.42

To validate the effectiveness of the aspect-wise dependency tree, we conducted com-
parative experiments based on the two types of dependency trees. The implementation
results are shown in Table 4. From Table 4, it can be observed that the model based on
the aspect-wise dependency tree outperform the model based on the classical dependency
tree on all three datasets. This indicates the superiority of the aspect-wise dependency tree
proposed in our work.
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Table 4. Results of SSEDGCN based on two different dependency trees.

Dependency Tree Models
Restaurant Laptop Twitter

Accuracy F1 Accuracy F1 Accuracy F1

Aspect-wise SSEDGCN 87.85 82.08 82.91 80.12 78.14 77.08

Classic SSEDGCN 86.06 79.78 81.48 78.14 77.59 76.13

4.6. Attention Visualization

To validate whether the DRA attention mechanism effectively helps aspect nodes
capture important nodes, we visualized the attention weight distribution. The experimental
results are shown in Figure 6, where brighter colors indicate higher weights and vice
versa. Additionally, to compare the effectiveness of the DRA attention mechanism, we
also compared it with the classical attention mechanism. In this experiment, the classical
attention mechanism refers to using the aspect as a query to calculate attention scores based
on the interaction between the aspect and other tokens.

Figure 6. Attention visualization for DRA Attention (DRA-Att) and Classic Attention (Classic-Att)
for the aspect word ‘web browsing’.

Figure 6 shows the attention weight distribution. It can be observed that, after using
the DRA attention mechanism, the opinion word “quick” receives a higher attention score.
This indicates that the introduction of syntactic dependency relationships helps aspect
nodes capture important nodes. Furthermore, it can be seen that the weight distribution of
the classical attention mechanism is more uniform, and the attention score for the opinion
word “quick” is only slightly higher than other tokens. We believe that this is because the
semantic correlation between “web browsing” and “browser” is high, which leads to an
increased attention score for “browser” and reduces the focus on “quick”.

4.7. Impact of the GCN Layer Number

To examine the effect of varying the number of GCN layers, we conducted experiments
with the number of GCN layers ranging from 1 to 8, and present the results in Figure 7. The
results indicate that our model achieves best performance with two GCN layers, which we
adopt in our model. It is noteworthy that a single-layer GCN yields suboptimal accuracy
and F1, suggesting that a single layer is insufficient to effectively leverage syntactic and
semantic information. Furthermore, we observe a decline trend in performance when
the number of GCN layers is excessively large, indicating that an indiscriminate increase
in the number of GCN layers may hinder the model’s learning ability due to the sharp
increase parameters.
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(a) (b)

Figure 7. Effect of the number of GCN layers (a) Accuracy performance based on different numbers
of GCN layers. (b) F1-score performance based on different numbers of GCN layers.

4.8. Impact of the Training/Testing Data Ratio

To investigate the impact of the training/testing data ratio the accuracy, we have
included a supplementary experiment using the Restaurant dataset. The initial ratio in
the Restaurant dataset is 3.22/1, meaning that the training set contains 3.22 times more
samples than the testing set. To better understand the influence of the training/testing
data ratio on accuracy, we gradually reduced this ratio by 20% increments. The purpose of
this approach is to observe whether there are any changes in model accuracy as the ratio
decreases. The experimental results are shown in the Table 5.

Table 5. Impact of the training/testing data ratio on accuracy.

Train:Test Accuracy (%)

3.22:1 87.85
2.58:1 84.72
1.93:1 84.53
1.29:1 73.02
0.64:1 64.96

Based on our experimental results, we observed a consistent decrease in accuracy as the
ratio decreased. We believe that this trend can be attributed to the reduced size and diversity
of the training set when the ratio decreases. Consequently, the model receives fewer samples
during the training process, which may limit its ability to fully capture the complexity and
variability of the data. As a result, the performance of the model is compromised.

4.9. Case Study

The impacts of aspect-wise dependency tree and the proposed model for ALSC are
investigated on case examples in the Table 6. To this end, we visualize the aspect and the
predicted sentiment polarity. Specifically, the CDT model, which is devised based on classical
syntax dependency tree, is taken for comparison. In the first sentence, both CDT and our model
set the connection between the aspect “food” and its opinion word “enjoyed”. For the second
sentence, the distance between aspect “sandwiches” and the sentiment word “good” is as long as
four hops, as indicated by the red line in Figure 8a. Therefore, the two-layer GCN model (i.e.,
CDT) fails to capture this valuable word and misidentifies the sentiment as neutral. By contrast,
our model is capable of establishing a direct syntactic relation of the sentiment word toward the
aspect, as indicated by the red line in Figure 8b. In the third sample, more importance is attached
to the noise word “tiny” instead of the opinion word “fast”, which causes the misclassification.
In the proposed aspect-wise dependency tree, both “tiny” and “fast” relate to the aspect word
“service”. The exploiting of DRA attention assigns more attention weights to the word “fast”,
based on which the sentiment is classified as positive. Lastly, no explicit sentiment word is
provided in the last sentence. Under this condition, both syntactic and semantic information
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has to taken into account. It is clear that our model identifies the positive polarity to the aspect
with the enhancing of sentence semantics.

Table 6. Case study. ALSC results of CDT and SSEDGCN on testing examples, along with their
predictions. The marker 4 and 7 indicate the correct classification and incorrect classification,
respectively.

# Testing Instance CDT Ours

1 I definitely enjoyed the food as well pos 4 pos 4

2 Most of the sandwiches are made with soy mayonaise
which is actually pretty good

neu 7 pos 4

3 tiny restaurant with very fast service neg 7 pos 4

4 and the food, well the food will keep you coming back neg 7 pos 4

Most     of     the     sandwiches are     made     with     mayonnaise     which     is     good

nsubjpass

nmod

case

det auxpass

nmod

case

acl:relcl

nsubj

cop

root

(a)

Most     of     the     sandwiches are     made     with     mayonnaise     which     is     good

nsubjpass

nmod

case

det auxpass

punct

nmod

case

acl:relcl

nsubj

cop

3:con

2:con

4:con

5:con
5:con

root

4:con

4:con

(b)

Figure 8. Visualization of dependency trees in the case study. (a) Classical dependency tree of the
second sentence. (b) Aspect-wise dependency tree of the second sentence.

4.10. Analysis of the Contrastive Coefficient

The contrastive coefficients in SGCL are studied to clarify its significance. The working
performance on ALSC with and without contrastive coefficient is presented in Table 7. One
can easily see that the proposed model overperforms the one using simply contrastive
learning without contrastive coefficient to a large extent. Accordingly, the contrastive
coefficient plays a pivot role in learning the word syntactic structure of ALSC tasks.

Table 7. Experimental results with and without the contrastive coefficient.

Models
Restaurant Laptop Twitter

Accuracy F1 Accuracy F1 Accuracy F1

SSEDGCN (w/ ω) 87.85 82.08 82.92 80.12 78.14 77.08
SSEDGCN (w/o ω) 87.13 81.54 82.07 78.76 77.34 76.89

The way of enhancing sentiment feature to the aspect using SGCL is presented as
well. We visualize the obtained aspect vectors generated on the Restaurant test set using
t-SNE [44] for SSEDGCN (w/o CL&SGCL), SSEDGCN (w/ CL), and SSSEGCN (w/ SGCL),
respectively. The sentiment classification results of three categories of methods are shown in
Figure 9. The dots in red, green, and blue correspond to the sentiment polarities of positive,
negative, and neutral, respectively. Without contrastive learning, a certain proportion of
the aspect nodes of different sentiment polarities overlap with each other, as presented in
Figure 9a. With the application of basic contrastive learning scheme, the aspect vectors are
partially distinguished, as presented in Figure 9b. Furthermore, it can be observed that
the separations of representations derived from SGCL are significantly clearer than that
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generated by basic contrastive learning scheme among different sentiment polarities. The
experimental result verifies not just the importance of contrastive coefficient in SGCL, but
also the superiority of SGCL in learning aspect representations.

(a) (w/o CL& SGCL) (b) (w/CL) (c) (w/SGCL)

Figure 9. Visualization of sentiment classification results. SSEDGCN (w/o CL& SGCL) refers to
the model without contrast learning and syntactic guidance, SSEDGCN (w/CL) refers to the use of
contrastive learning, and SSEDGCN is (w/SGCL) is the model with SGCL.

5. Conclusions

In this work, we propose a Syntactic Structure-Enhanced Dual Graph Convolutional
Network which focuses on effectively encoding comprehensive syntax information for
ALSC. To start with, a novel aspect-wise dependency tree is proposed by reconstructing the
basic syntax dependency tree. Then, the sentence syntax and semantics are encoded via two
specific GCNs: a self-attention mechanism is adopted by SemGCN and a DRA-attention
mechanism is adopted by SynGCN. Moreover, to fully consider the syntactic structural
information, the syntax-guided contrastive learning is designed to learn the feature repre-
sentation of the aspect. The experimental results on three benchmark datasets demonstrate
the effectiveness of our proposed method, achieving state-of-the-art performance in terms
of accuracy and macro-F1. Moreover, the ablation study and visual analysis have validated
the role of the new tree structure and each component in our proposed model.
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