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Abstract: The worldwide data for COVID-19 for active, infected individuals in multiple waves
show that traditional epidemic models with constant parameters are not able to capture this kind of
disease behavior. We solved this major open mathematical problem in this report. We first consider
the disease transmission rate for the stochastic SIRVI epidemic model, which satisfies the mean-
reverting Ornstein–Uhlenbeck (OU) process, and we propose a new stochastic SIRVI model. We then
showed the existence and uniqueness of the global solution and obtained sufficient conditions for the
persistent mean and exponential extinction of infectious disease, which have not been given before.
In the second part, we derive a nonlinear system of differential equations for the time-dependent
transmission rate from the deterministic SIRVI model and present an algorithm to compute the
time-dependent transmission rate directly from the given active, infected individuals’ data. We then
show that the time-dependent transmission obtained from and perturbed by the Ornstein–Uhlenbeck
process could be represented after using a smoothing technique using a finite linear combination of a
Gaussian radial basis function, which was obtained from our algorithm. This novel computer-assisted
proof provides a theoretical basis for other epidemic models and epidemic waves. Finally, some
numerical solutions of the stochastic SIRVI model are presented using COVID-19 data from Saudi
Arabia and Austria.

Keywords: stochastic SIRVI model; Ornstein–Uhlenbeck process; gaussian radial basis function;
statistical smoothing; epidemic waves
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1. Introduction

The aim of epidemic dynamics is to build up a mathematical model that can reflect
the biological mechanism according to development, occurrence, variance, and the effect
of environmental factors on diseases. In 1760, Daniel Bernoulli developed the first mathe-
matical model to explore the transmission of an infectious disease, which was smallpox.
Then, numerous mathematical models were developed to study the transmission dynamics
of different diseases, aiming to predict, assess, and control their transmission [1–4]. One
of the simplest models is the standard susceptible-infected-recovered (SIR) model, which
was originally proposed by Kermack and McKendrick in a series of three papers [5–7].
Recent variations on the SIR mathematical model take into consideration physiologi-
cal, social, and economic demands [8]. It is well known that infectious diseases pose
a great threat to human life. Therefore, the prevention and strong control of infectious
diseases is very crucial. Vaccination programs may help control the transmission of many
diseases [9]; hence, the term vaccination must be included in epidemic modeling. The
susceptible-infected-recovered-vaccination (SIRV) model in [10–13] and the susceptible-
infected-recovered-vaccination-death (SIRVD) model [14] study the effect of vaccination
on disease transmission worldwide. Omae et al. studied the effect of first and second
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doses of vaccination on the transmission of COVID-19 [15]; they proposed the SIRVVD
model and concluded that appropriate vaccination measures would sufficiently reduce
the number of infected individuals and reduce the mortality rate. However, it is well
known that there is still a possibility of getting infected after vaccination, and this is not
considered in the reports mentioned above. Nevertheless, it is necessary to investigate the
impact of vaccination in the case of temporal/weak immunity on disease transmission, as
in SIRV epidemic models (see [16–18]). More recently, Turkyilmazoglu [19] considered the
following SIRVI epidemic model with temporal/weak immunity, as is shown in Figure 1.
If we consider the same system with recruitment rate (Λ) and natural date rate (µ), then
the system of ordinary differential equations in [19] becomes

dS
dt = Λ− β̂SI − νS− µS, S(t = 0) = S0

dI
dt = β̂SI + αVI − γI − µI, I(t = 0) = I0

dV
dt = νS− αVI − µV, V(t = 0) = V0

dR
dt = γI − µR, R(t = 0) = R0 = 0

 (1)

where β̂ represents the transmission rate of disease to the susceptible population, α is the
transmission rate between vaccinees and infected individuals, ν is the vaccination rate, and
γ denotes recovery rate. All parameters here are positive. Since R(t) is not involved in the
first three equations, we can consider the last equation separately.

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 16 
 

 

of vaccination on the transmission of COVID-19 [15]; they proposed the SIRVVD model 
and concluded that appropriate vaccination measures would sufficiently reduce the num-
ber of infected individuals and reduce the mortality rate. However, it is well known that 
there is still a possibility of getting infected after vaccination, and this is not considered in 
the reports mentioned above. Nevertheless, it is necessary to investigate the impact of 
vaccination in the case of temporal/weak immunity on disease transmission, as in SIRV 
epidemic models (see [16–18]). More recently, Turkyilmazoglu [19] considered the follow-
ing SIRVI epidemic model with temporal/weak immunity, as is shown in Figure 1. If we 
consider the same system with recruitment rate Λ  and natural date rate 𝜇 , then the 
system of ordinary differential equations in [19] becomes 𝑑𝑆𝑑𝑡 = Λ − 𝛽𝑆𝐼 − 𝜈𝑆 − 𝜇𝑆, 𝑆 𝑡 = 0 = 𝑆𝑑𝐼𝑑𝑡 = 𝛽𝑆𝐼 + 𝛼𝑉𝐼 − 𝛾𝐼 − 𝜇𝐼, 𝐼 𝑡 = 0 = 𝐼𝑑𝑉𝑑𝑡 = 𝜈𝑆 − 𝛼𝑉𝐼 − −𝜇𝑉, 𝑉 𝑡 = 0 = 𝑉𝑑𝑅𝑑𝑡 = 𝛾𝐼 − 𝜇𝑅, 𝑅 𝑡 = 0 = 𝑅 = 0 ⎭⎪⎪

⎬⎪
⎪⎫  (1)

where 𝛽 represents the transmission rate of disease to the susceptible population, 𝛼 is 
the transmission rate between vaccinees and infected individuals, 𝜈  is the vaccination 
rate, and 𝛾 denotes recovery rate. All parameters here are positive. Since 𝑅 𝑡  is not in-
volved in the first three equations, we can consider the last equation separately. 

 
Figure 1. The SIRVI epidemic model with main parameters. 

However, in the real world, different forms of random factors affect disease trans-
mission and some of the biological parameters, such as disease transmission rate and per 
capita birth rate and mortality. In order to study the dynamic properties of an ecosystem 
with a changing environment, scientists generally consider that the basic parameters of a 
model are affected by environmental noise. Regarding stochastic biological mathematical 
models, there are basically two methods to randomize the model parameters in a random 
environment; one of them is Gaussian linear white noise, which was assimilated in many 
papers to adopt environmental variability in the parameters, for example [20–24]. 

However, as pointed out by E Allen in [25], the mean-reverting processes possess 
several important features that better characterize environmental variability in biological 
systems when compared with the linear function of white noise; more importantly, he 
stated that mean-reverting processes are conceptually and biologically realistic when 
compared to the linear function of white noise. Therefore, many authors assimilated the 

Figure 1. The SIRVI epidemic model with main parameters.

However, in the real world, different forms of random factors affect disease trans-
mission and some of the biological parameters, such as disease transmission rate and per
capita birth rate and mortality. In order to study the dynamic properties of an ecosystem
with a changing environment, scientists generally consider that the basic parameters of a
model are affected by environmental noise. Regarding stochastic biological mathematical
models, there are basically two methods to randomize the model parameters in a random
environment; one of them is Gaussian linear white noise, which was assimilated in many
papers to adopt environmental variability in the parameters, for example [20–24].

However, as pointed out by E Allen in [25], the mean-reverting processes possess
several important features that better characterize environmental variability in biological
systems when compared with the linear function of white noise; more importantly, he stated
that mean-reverting processes are conceptually and biologically realistic when compared
to the linear function of white noise. Therefore, many authors assimilated the Ornstein–
Uhlenbeck process for the parameters in a random environment. For example, Y Song
and X Zhang, in [26], considered a stochastic SVEIS epidemic model, incorporating the
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Ornstein–Uhlenbeck process, and they proved that this stochastic model has a stationary
distribution when the critical value of the stochastic reproducing number is greater than
one. They also established sufficient conditions on the stochastic reproducing number for
exponential extinction. This study is different from our study; we consider transmission
rate by initially satisfying the mean reverting OU process, and we then show that the
transmission rate can be written as a finite linear combination of a Gaussian radial basis
function (β(t) ≈ s0 + ∑N

n=1 snφ(ε(t− ζn)), φ(r) = e−(εr)2
). Because of this reason, in our

study, β̂ is the most important parameter, which is in a randomly varying environment,
where we assume, initially, that the disease transmission rate, β̂, satisfies the mean reverting
OU process.

β = r
(

β̂− β(t)
)
dt + σdB (2)

where r > 0 is the speed of reversion, σ is the intensity of volatility, and B(t) is the standard
Brownian motion; Equation (2) can be solved easily as

β(t) = β̂ + e−rt

−β̂ + β(0) +
t∫

0

σerzdB(z)

 (3)

The average disease transmission rate β on any time interval [0, T] is found to be

β =
1
T

T∫
0

β(t)dt = β̂ +
1
T

T∫
0

σ

r

(
1− er(s−T)

)
dB(s) ∼ N

(
β̂,

σ2T
3

+ O
(

T2
))

(4)

so that E
(

β
)
= β̂ and Var

(
β
)
= σ2T

3 + O
(
T2) [27]. The variance in the average disease

transmission rate tends to zero as T → 0 . If we now assume that Gaussian linear white
noise perturbs the transmission rate in model (1), then we have

β(t) = β̂ +
σdB
dt

(5)

For any time interval [0, T], the average value is

β =
1
T

T∫
0

β(t)dt = β̂ +
B(T)

T
∼ N

(
β,

σ2

T

)
(6)

Clearly, E
(

β
)
= β̂ and Var

(
β
)
= σ2

T . It is not difficult to see that Var
(

β
)
→ ∞ as the

time interval T → 0 . Hence, it is more acceptable to introduce the OU process to perturb
the parameters in the epidemic model than Gaussian linear white noise. Based on the
above conclusion, let us replace β with the OU process β(t) in system (1)a–c and consider
incorporating the OU process; thus, from (1)a–c, we obtain

dS = (Λ− β+(t)SI − νS− µS)dt,
dI = (β+(t)SI + αVI − γI − µI)dt

dV = (νS− αVI − µV)dt,
dβ(t) = r

(
β̂− β(t)

)
+ σdB(t)

 (7)

where β+(t) = max{β(t), 0}. By adding the first three equations in (7) and solving the result,
we have S(t) + I(t) + V(t) ≤ A

µ +
[
S(0) + I(0) + V(0)− A

µ

]
e−µt. If we assume that S(0) +

I(0) + V(0) ≤ A
µ , then we can define the set by Ξ = {(S(t), I(t), V(t), β(t)) ∈ R3

+ ×R :

S(t) + I(t) + V(t) ≤ A
µ }, which is the invariant set of system (7).



Mathematics 2023, 11, 3876 4 of 15

This article is organized as follows: the existence and uniqueness of the positive
solution of system (7) are shown in Section 2. In this section, we also develop a suitable
Lyapunov function and use the method of Khasminskii [28] to show the existence of a
stationary distribution of solutions in terms of model (7). In Section 3, we assume the trans-
mission rate in system (1) to be time-dependent, derive a nonlinear differential equation,
and present an algorithm and numerical solutions for the time-dependent transmission
rate directly from COVID-19 data from Saudi Arabia. In Section 4, we numerically solve
the transmission rate perturbed from the OU process and compare the result with the
prediction obtained from our algorithm. An exponential smoothing technique is used for
the transmission rate obtained from the OU process, and the numerical solutions of the
system in Equation (7) are also given in this section. The last section is devoted to the
conclusion of the present results.

2. Existence of the Unique Global Positive Solution

Theorem 1. Given any initial value (S(0), I(0), V(0), β(0)) ∈ Ξ, system (7) has a unique
solution: (S(t), I(t), V(t), β(t)), t > 0. Furthermore, the solution will remain in R3

+ ×R with a
probability equal to 1.

Proof. Constructing the C2-function V0 on R3
+ as

V0 =

(
S− C− C ln

S
C

)
+ (I − 1− ln I) + (V − 1− ln V) + C1x(t)2 (8)

where C and C1 are the constants to be defined later, and x(t) = β+(t)− β̂ when applying
Itô’s formula; the action of differential operator L on V0 is

LV0 = Λ− µS− C
(
−Λ

S +
(

x(t) + β̂
)

I + υ + µ
)
− γI − µI − β+S− αV + γ + 2µ− µV − υS

V

+αI − C1rx2(t) ≤ Λ + C(µ + υ) + γ + 2µ + CΛ
µ

(
|x| − x2(t)

)
≤ K

(9)

where C = γ−α+µ
β+

, C1 = CΛ
µ , and K is a positive constant, which is independent of the

initial condition. For the rest of the proof, it has exactly the same line as in [27]; hence, it is
omitted here. This completes the proof. �

Theorem 2. Assume that

Rs
0 =

β̂Λ(
ν + µ + Λ

µ
σ

2
√

πr

)
(γ + µ)

+
αν

µ
(

ν + µ + Λ
µ

σ
2
√

πr

)
(γ + µ)

> 1 (10)

and lim
t→∞

inf V1(t)
t ≥ 0 (V1 = −(b1 + b5) ln S− ln I − b3 ln V + b2S + (S + I + V)b4). Then, for

any initial value, Z(0) = (S(0), I(0), R(0)) ∈ Ω, the solution of (7) has the following:

lim
t→∞

inf
1
t

t∫
0

Idτ ≥ (γ + µ)

(αb3 + bb1 + b1b5)
(Rs

0 − 1) (11)

where

b2 =
β̂Λ(

ν + µ + Λ
µ

σ
2
√

πr

) , b1 =
b2(

ν + µ + Λ
µ

σ
2
√

πr

) , b3 =
αηb2

β+µ2 , b4 = µb3, b5 = αη
b1

µ
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Proof. We define a series of Lyapunov functions. Define V1 = −(b1 + b5) ln S − ln I −
b3 ln V + b2S + (S + I + V)b4. By applying Itô’s formula, we obtain

LV1 = L(−(b1 + b5) ln S− ln I − b3 ln V + b2S + (S + I + V)b4)

=
(

Iβ+(t)− Λ
S + ν + µ

)
(b1 + b5)− αV − Sβ+(t) + γ + µ

+
(
− νS

V + αI + µ
)

b3 + (Λ− ISβ+(t)− (ν + µ)S)b2

+(Λ− µ(S + I + V)− γ)b4‘ f
≤ −3 3

√
Λβ+(t)b1b2 − 4 4

√
Ληαb3b4b5 + b1

(
ν + µ + Λ

µ
σ

2
√

πr

)
+ b1|x(t)|

−b1

∞∫
−∞

max{x(t), 0}θ(τ)dτ + b2 + b3µ + b1

(
ν + µ + Λ

µ
σ

2
√

πr

)
+ b5|x(t)|

−b5

∞∫
−∞

max{x(t), 0}θ(τ)dτ + (αb3 + β+b1 + b1b5)I + γ + µ

(12)

As before, assume that

b2 =
β̂Λ(

ν + µ + Λ
µ

σ
2
√

πr

) , b1 =
b2(

ν + µ + Λ
µ

σ
2
√

πr

) , b3 =
αηb2

β+µ2 , b4 = µb3, b5 = αη
b1

µ
(13)

then,

LV1 ≤ −(γ + µ)
(

Rs
0 − 1

)
+ |x(t)|(b1 + b5) + (αb3 + β+b1 + b1b5)I + 3 3

√
bb1b2

−3 3
√

Aβ+(t)b1b2 + b1

∞∫
−∞

max{x(t), 0}θ(τ)dτ − b1

∞∫
−∞

max{x(t), 0}θ(τ)dτ
(14)

where

Rs
0 =

β̂Λ(
ν + µ + Λ

µ
σ

2
√

πr

)
(γ + µ)

+
αΛν

µ
(

ν + µ + Λ
µ

σ
2
√

πr

)
(γ + µ)

and from [22], we have

lim
t→∞

1
t E
[

1
t

t∫
0

max{x(τ), 0}dτ −
∞∫
−∞

max{x(τ), 0}θ(τ)dτ

]

= E
[

∞∫
0

x(τ)θ(τ)dτ

]
−

∞∫
0

x(τ)θ(τ)dτ = 0
(15)

lim
t→∞

inf
1
t

t∫
0

(
αb3 + β+b1 + b1b5

)
Idτ ≥ (γ + µ) (Rs

0 − 1) + lim
t→∞

inf
V1(t)−V1(0)

t
(16)

Since we assume lim
t→∞

inf V1(t)
t ≥ 0. Then, we obtain

lim
t→∞

inf
1
t

t∫
0

Idτ ≥ (γ + µ)

(αb3 + β+b1 + b1b5)
(Rs

0 − 1) (17)

In other words, the disease will spread in the world. �

Theorem 3. If µ + ν < 1 and Re
0 =

bΛ(1+α)+ σ
2
√

πr
µ(ν+µ)(γ+µ)

< 1, then the disease of system (7) will tend to
zero exponentially with a probability of one.
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Proof. When applying the generalized Itô’s formula,

V4 = ln I +
1− ν− µ

µ(ν + µ)
ln I (18)

and we have,

d(V4) =
((

β̂ + x(t)
)
S + αV

)
− (γ + µ) ≤

≤
(

β̂ + x(t)
)Λ

µ + α Λ
µ − (γ + µ) +

1−ν−µ
µ(ν+µ)

((
β̂ + x(t)

)Λ
µ + α Λ

µ

)
= β̂Λ

µ(ν+µ)
+ αβ̂Λ

µ(ν+µ)
− (γ + µ) + |x(t)| Λ

µ(ν+µ)

(19)

By integrating (19) from zero to t and dividing by t, we obtain

V4(t)−V4(0)
t

≤ β̂A(1 + α)

µ(ν + µ)
− (γ + µ) +

Λ
µ(ν + µ)

1
t

t∫
0

|x(τ)|dτ (20)

By taking the superior limit on both sides of (17) and combining it with (12), we obtain

lim
t→∞

sup
V4(t)−V4(0)

t
= (γ + µ)(Re

0 − 1), a.s, (21)

From here, we have

lim
t→∞

sup ln I +
1− ν− µ

µ(ν + µ)
ln I < 1, (22)

This shows that the disease I will tend to zero exponentially with a probability of one.
This completes the proof. �

3. Driving Transmission Rate from the Infected Population for the Deterministic
SIRVI Model and Numerical Solution

From Equation (1), we assume that the transmission rate is time-dependent. By solving
S(t) from the second equation in (1) and substituting it into the first, we obtain

M(I(t))
dβ1(t)

dt
+ N(I(t))β2

1(t) + P(I(t))β1(t) = 0. (23)

where

M(I(t)) = I(t)
(
(γ + µ)I(t)− αV(t)I(t) +

dI
dt

)
, N(I(t)) = I(t)M(I(t)) + ΛI3(t),

P(I(t)) = I2(t)
(
(αµ + αν)V(t)− γµ− γν + α dV

dt − µ(µ + ν)
)
− (µ + ν)I(t) dI

dt +
(

dI
dt

)2

+I(t) dI
dt − I(t) d2 I

dt2

If there is no vaccination, (23) is reduced to a differential equation, which is obtained
from the classical SIR model with a time-dependent transmission rate [29]. In the case
of vaccination, (23) must be coupled with the third equation in Equation (1). Since the
analytical solution is not possible, we need a numerical method to solve Equations (23)
and third equation of system (1); here, we used a finite difference technique. We now
try to compute a grid function consisting of the values B1, B2, . . . , Bm, where Bi is our
approximation of the solution β1(ti); here, ti = ih and h = ti+1 − ti are the step sizes, and

we use centered, finite difference to approximate dI(t)
dt , d2 I(t)

dt2 , and dβ(t)
dt , if we replace dI(t)

dt ,
d2 I(t)

dt2 , and dβ(t)
dt by centered finite difference approximation.
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Dij =
ij+1 − ij−1

2h
, D2yj =

ij+1 − 2ij + ij−1

h2 , DBj =
Bj+1 − Bj−1

2h
we then obtain

M(i(t))
Bj+1 − Bj−1

2h
+ N(i(t))Bj+1Bj−1 + P(I(t))Bj−1 = 0. (24)

and similarly,
vj+1 − vj−1

2h
= νsj−1 − αvj−1ij−1 − µvj−1 (25)

where sj−1 =
γij−1+µij−1−αvj−1ij−1+

ij+1−ij−1
2h

Bj−1ij−1
.

We use the data provided by the Ministry of Health Saudi Arabia for the daily infected
cases. Mathematically, there are infinitely many choices of B(0), so we used some well-
known values [30]. We will give the numerical solutions of (24) with (25) in the following
section.

4. Numerical Simulations

In this section, in order to verify the theoretical results obtained in this article, the num-
ber of confirmed, recovered, and death cases in Saudi Arabia and Austria were used. They
can be found on this website: https://ourworldindata.org/coronavirus/country (accessed
on 5 June 2023). A graph of the daily active cases is given in Figure 2a,b. We note that vacci-
nation started on 18 December 2020 in Saudi Arabia. In order to provide numerical simula-
tions, we must first determine the value of the parameters. The birth rate for Saudi Arabia in
2020 was 17.097 births for 1000 people, and the death rate was 3.557. The Saudi Arabian pop-
ulation in 2020 was 34,813,871; hence, ΛS = n×N

365 = 1630, µS = 3.557
365×1000 = 9.7452× 10−6.

For Austria, the birth rate, death rate, and population in 2020 are 9.939, 10.3, and 8,907,777,
respectively; hence, ΛA = n×N

365 = 242.55, µA = 10.3
365×1000 = 2.8219 × 10−5. We first

give the numerical solutions from Equation (23) for the time-dependent transmission rate,
whereby we first used the real data from the Ministry of Health in Saudi Arabia (Figure 3a).
We see that the transmission rate initially increases with time, then reaches a peak at around
day 50, and then fluctuates while decreasing. We can see some peak times, which is when
we believe the government eased some of the restrictions, resulting in an increase in the
value of the transmission rate that then reduces because people become more careful. In
Figure 3b, we considered the transmission rate for the COVID-19 data of Austria, which
was provided by the Ministry of Health in Austria. We can clearly see that the initial
transmission rate was higher; it then oscillates, having four peaks. It is clear that both
numerically obtained transmission rates can be approximated by finite linear combination
using Gaussian radial basis functions. We note that if the infected population was a con-
stant, then the transmission rate is zero, provided that µ = Λ = 0 (constant population).
If there is a change in a country’s population, the transmission rate can be given by the
following simple analytical function:

β(t) =
µ(γ + µ)eµt

(ICγ + ICµ−Λ)eµt − µβ(0)(γ + µ)

where IC represents the constant of the infected individuals in the current day. Overall,
we can represent the transmission rate by finite linear combination using Gaussian ra-
dial basis functions, which provide us with real data applications. Let us now consider
the numerical solution of Equation (7), where we assumed r (speed of reversion) = 1,
β(mean value) = 0.5, σ(volatility ) = 2, and r = 0.5, β = 0.5, and σ = 2. The result can
be seen in Figures 3 and 4, respectively. When we compare the transmission rate from
the Ornstein–Uhlenbeck process with the other one from Equation (23) (see Figures 3–5),
we see that there is no relation between the two graphs, but once they are smoothed by

https://ourworldindata.org/coronavirus/country
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exponential smoothing (see Figures 6 and 7), we find a similar structure for the transmis-
sion rate, and we see that this is can also be represented by a finite linear combination
using the Gaussian radial basis function. This computer-assisted proof has never been
mentioned before in the literature; hence, if we assume that a transmission rate is perturbed
by the Ornstein–Uhlenbeck process, this function can then be represented as a finite linear
combination of a Gaussian radial basis function. This provides us with a theoretical basis
for the transmission rate. Epidemic waves can then be obtained from system (1) or (7),
which represent the real case.
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We can now numerically simulate the solution to system (7) and take the initial value
(S(0), I(0), V(0))T = (34, 813, 870, 1, 0)T . for Saudi Arabia and (S(0), I(0), V(0))T =

(8, 907, 777, 1, 0)T for Austria. We used the higher-order method of Milstein, which was
introduced in [31], and the corresponding discretization equations of system (7) are given
according to 

Sj+1 = Sj +
(
Λ−max

(
β j, 0

)
Sj Ij − νSj − µSj

)
∆t,

Ij+1 = Ij +
(
max

(
β j, 0

)
Sj Ij + αVj Ij − γIj − µIj

)
∆t

Vj+1 = Vj +
(
νSj − αVj Ij − µVj

)
∆t,

β j+1 = β j + r
(

β̂− β j
)
∆t + σ

√
∆tXj

(26)

where
(
Sj, Ij, Vj

)
is the corresponding value of the jth iteration of the Equation (26). ∆t is

the time increment, which is positive, Xj are the independent Gaussian random variables,
which follow the distribution N(0, 1) for j = 1, 2, . . . n. We choose realistic parameter values
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from published references, and all the values for the biological parameters presented are as
above. The results are shown in Figures 8 and 9.
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Again, we now look at the COVID-19 active infected real data of Saudi Arabia and
Austria, or any other real data (see Figure 1a,b), which show several epidemic waves; we
know that if the transmission rate is a constant, then the numerical solution of system (1)
or (7) does not produce more than one epidemic wave for the active, infected population,
which is not true for COVID-19 data. In this current study, we solved this open problem;
in our analysis, the transmission rate is a function of time and can be represented by a
finite linear combination of a Gaussian radial basis function. By using this representation
in (26), we show that our model’s numerical solutions align with the real COVID-19 data
for predicting the epidemic waves for the active, infected population.

Next, by using numerical simulations, we pay attention to the first day of vaccina-
tion. Until the present day, we solve Equation (26) without the vaccination compartment.
The transmission rate (biologically) cannot be negative (it could be negative due to the
characteristic of the Ornstein–Uhlenbeck process). If it is negative, we use max

(
β j, 0

)
. We

also know that a zero transmission rate is only possible in the case where all people are
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immune to the disease, which is practically impossible. An almost zero or very small trans-
mission rate leads to solutions for active infected and susceptible populations, as is given
in Figures 8 and 9, which do not represent the real data. We proved that the transmission
rate could be represented by a linear combination of a finite number of Gaussian radial
basis functions; for example, choosing the radial basis function to be

βSA(t) = 8.617254887× 10−10 + 3.834678425× 10−9e−0.0002(t−40)2

+2.154313722× 10−9e−0.0001(t−400)2 (27)

By using this in (26), we obtain two epidemic waves that are in good agreement with
the real COVID-19 data of Saudi Arabia, as seen in Figure 10. We obtained similar results
for the Austria COVID-19 data. Figures 11 and 12 show the vaccinated and suspectable
populations, respectively.
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5. Conclusions

We considered a novel stochastic SIRVI epidemic model by incorporating the Ornstein–
Uhlenbeck process:

1. We proved the existence and uniqueness of a global solution to a stochastic SIRVI
epidemic model incorporating the Ornstein–Uhlenbeck process, and we developed a
suitable Lyapunov function to obtain sufficient conditions for persistence in the mean
and exponential extinction of infectious disease;

2. The transmission rate is perturbed by the Ornstein–Uhlenbeck process and is nu-
merically solved by using several speed-of-reversion and volatility values. This
was compared with the solutions of (23)–(24), and we found that there is no real
relationship between the two transmission rates;

3. After using an exponential smoothing technique, we concluded that the transmission
rate obtained from the perturbed (from the Ornstein–Uhlenbeck process) system could
be represented by a finite linear combination of the Gaussian radial basis function;

4. The numerical solutions of the stochastic SIRVI epidemic model incorporating the
Ornstein–Uhlenbeck process, where the transmission rate is smoothed by using an
exponential smoothing technique, predict epidemic waves accurately;

5. The selection of Saudi Arabia and Austria was random, and the method we provided
in this paper can be applied to any confirmed daily active cases from any other
countries;

6. The theory we developed here can also be used to study any epidemic compartmental
models;

7. There are many other parameters involved in epidemic modeling, which are also
functions of time. These parameters, such as mortality rate, will be the subject (on the
basis of our result) of future research.
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