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Abstract: Motivated by the relation between Albert’s Problem and irreducible modules within
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1. Introduction

Given a class of algebras, it is always interesting to have knowledge about the simple
objects within that class. In the class of power-associative nilalgebras, there exists an
intriguing unsolved problem: classifying the finite-dimensional simple nilalgebras. Unlike
some well-known classes of algebras, for instance, associative, Jordan and other ones
where there are no simple nilalgebras, in the class of power-associative nilalgebras, simple
nilalgebras are an open problem. This problem has an immediate equivalence indeed—
Problem 1 described in [1], commonly known as Albert’s Problem [2]: “Is every (commutative)
finite-dimensional power-associative nilalgebra over a field of characteristic different from two
solvable?” This problem has been studied by many authors, and initially, it was proved that
such an algebra is not necessarily nilpotent since D. Suttes [3] discovered a solvable but
not nilpotent five-dimensional commutative power-associative nilalgebra over any field of
characteristic different from two. In certain specific cases, this problem has an affirmative
answer [4–12]. In summary, if the characteristic of the base field is zero or sufficiently large,
the nilalgebra A is solvable if nilindA ≥ n− 3, where dimA = n and nilind denotes the
nilindex of the algebra A. Furthermore, the same holds for the zero characteristic and
dimA ≤ 9.

Throughout this paper, k represents an algebraically closed field, and its characteristic
does not divide 30. Moreover, it should be noted that all the algebras under consideration
here are commutative power-associative algebras over the field k. In particular, An denotes
the vector space over k of dimension n with zero product, i.e., the zero algebra of dimension n.

I. P. Shestakov (see [13] Lemma 1) proposed another way to investigate Albert’s
Problem: with the study of irreducible bimodules over the class of commutative power-
associative nilalgebras. Indeed:

Lemma 1. Let A be an algebra with zero multiplication and M be a faithful irreducible A-bimodule
in the variety of commutative power-associative algebras, both of a finite dimension. Assume that
we can define a product on M with values in A, (m, n) 7→ m · n ∈ A, such that M · M = A.
If the vector space Q = A⊕ M with the multiplication (a + m)(b + n) = m · n + (an + bm)
is a commutative power-associative algebra, then Q is nil, simple and gives a counterexample to
Albert’s Problem.

This approach is the first to study Albert’s Problem via irreducible modules. Thus, the
authors in [13] started the classification of the irreducible A2-modules. In their paper, they
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showed that, via isomorphism, the only nontrivial irreducible module has a dimension of
three. Using this irreducible module, they constructed an irreducible module of dimension
3l for any l = 1, 2, . . . , n− 1 over the zero algebra of dimension n. After that, in [14], the
low commutative power-associative nilalgebras and their annihilator were studied. In [15],
the author provided families of irreducible modules of dimension 3n for the zero algebra
of dimension four, although a complete classification of finite-dimensional irreducible
modules for this algebra was not achieved.

Thus, Lemma 1 provides the impetus for the classification of finite-dimensional irre-
ducible modules over commutative power-associative algebras, even though no such construc-
tions are currently known. Clearly, Lemma 1 is enough for the existence of simple nilalgebras.
However, we adapt the thesis of this Lemma to find an equivalence to Albert’s Problem.

The paper’s structure unfolds as follows: Section 2 furnishes the fundamental insights
into power-associative algebras. In Section 3, we use some well-known equivalences to
Albert’s Problem, and we prove a new equivalence to it. Finally, in Section 4, we study
some general properties of the irreducible modules. They allow us to conclude that there
are no irreducible modules of dimension four.

Let us recall that k represents a field with a characteristic distinct from two, three
and five. Denote with V the class of commutative power-associative algebras. Consider
A ∈ V and M an A-module such that there exists a bilinear map m : M×M→ A. Define
Qm = A×M as the algebra with a product given by

(a, v) · (b, w) = (ab + m(v, w), aw + bv).

Therefore, the main contribution of this paper is the next equivalence, which allows
us to study Albert’s Problem from another point of view:

1. Albert’s Problem holds.
2. Given A ∈ V and M an irreducible A-module. If there exists m such that Qm ∈ V ,

then π ◦m is not onto, where π : A→ A/A2.

This new equivalence to Albert’s Problem outspread some other equivalences already
known (see Theorem 3).

2. Preliminaries

The concepts introduced in this section are the base for comprehending the subse-
quent ones. We delve into key concepts related to power-associative algebras and their
associated modules.

Let A be an algebra and x ∈ A. The (right) powers of x are defined inductively in the
following way: x1 = x, and for any l ≥ 2, xl = xl−1x. If the algebraA satisfies the identities
xixj = xi+j for all positive integers i and j, then we say that A is a power-associative algebra.
These algebras generalize various other algebraic structures, such as associative, alternative,
Jordan and Lie algebras.

The properties and characteristics of commutative power-associative algebras were
extensively studied by A. A. Albert in his seminal work [2]. He established that

Theorem 1. A commutative algebra A is power-associative if and only if x2x2 = x4 for any
x ∈ A.

For the complete understanding of the objects we are studying, we define the
following concept:

Definition 1. A power-associative algebra A is referred to as nil or nilalgebra if, for every x ∈ A,
there exists a positive integer n such that xn = 0. If there exists a positive integer n such that
xn = 0 holds for all x ∈ A, then A is said to have a bounded nilindex. The smallest positive integer
n for which xn = 0 holds for all x ∈ A is known as the nilpotent index or nilindex of A, denoted by
nilindA.
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Albert, in his article [2], posed a question regarding power-associative nilrings and
stated “One can then hardly expect to be able to prove that a nilring is nilpotent, but a limited
result of this type is provable”. It is worth noting that there exist non-nilpotent nilalgebras.
Hence, the modified problem posed by Albert is commonly referred to as:

Problem 1 (Albert’s Problem). Every finite-dimensional commutative power-associative nilalge-
bra over a field of characteristics different from two is solvable.

Two different approaches have been pursued to address this problem; specifically,
this involves either constraining the dimension of the algebra or comparing the nilindex
with the dimension of the algebra. In the former scenario, it has been established that
the problem yields an affirmative solution for algebras with dimensions less than nine
over the field k or for algebras with dimensions less than or equal to nine over a field of
characteristic zero. In the latter case, for algebras of dimension n, the problem yields a
positive solution if the nilindex is greater than or equal to n− 3 for algebras over a field of
characteristic of zero or that are sufficiently large.

The approach centered around bimodules, inspired by Lemma 1, necessitates a
more profound comprehension of bimodules within the category of commutative power-
associative algebras.

S. Eilenberg in [16] extended the theory of associative modules to encompass a broader
class of algebras which are defined by multilinear identities:

Definition 2. Let V be a class of algebras over a field k, and consider an algebra A belonging to
V . An A-bimodule in the class V , or simply a V-bimodule, is a vector space M over the field k
equipped with two bilinear maps A×M→ M and M×A → M, denoted by (a, m) 7→ am and
(m, a) 7→ ma, respectively. These maps satisfy the property that the algebra E = A⊕M, with
the multiplication defined as (a + m)(b + n) = ab + (an + mb) for all a, b ∈ A and m, n ∈ M,
belongs to V .

It is worth noting that the notions of modules and bimodules over commutative
algebras coincide.

From this point onward, we will use the notation V to refer to the class of commutative
power-associative algebras, and V4 will denote the class of commutative power-associative
nilalgebras with a nilindex less than or equal to four. There is interest in studying the
irreducible V-modules of the algebra An.

In [13] we find the classification of the irreducible A2-modules:

Lemma 2. Let A2 = span{a, b} be the two-dimensional algebra with zero multiplication. Then,
every irreducible power-associative A2-module M has a dimension of one or three. If M has a
dimension of one, then AM = {0}. If M has a dimension of three, there exists a suitable basis
{u, v, w} of M and a nonzero scalar λ ∈ k such that

au = v, av = w, aw = 0, bu = 0, bv = λu, bw = −λv.

So far, the complete classification of finite-dimensional An-modules has only been
achieved for the case of n = 2. For n ≥ 3, examples of irreducible modules of dimensions
3, 9, . . . , 3n−1 have been constructed by using the method described in ([13], Proposition 1).
For n = 4, in [15], families of examples of dimension 3n for any n ≥ 2 were constructed.

The class of commutative power-associative algebras V is characterized by a set of identities,
as established by Albert in Theorem 1. These identities can be expressed as follows:

xy− yx = 0, x2x2 − x4 = 0,

and V4 is defined by
xy− yx = 0, x2x2 = 0, x4 = 0.
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By employing the linearization technique of identities [17], we derive a set of useful
identities for the variety V :

x3y + x(x2y) + 2x(x(xy)) = x2(xy),

x(xy2) + y(yx2) + 2x(y(xy)) + 2y(x(xy)) = 4(xy)2 + 2x2y2.
(1)

Analogously, some identities for the variety V4 are

x3y + x(x2y) + 2x(x(xy)) = 0, x2(xy) = 0, (2)

x(xy2) + y(yx2) + 2x(y(xy)) + 2y(x(xy)) = 0, 2(xy)2 + x2y2 = 0, (3)

2
[
x(x(yz)) + x(y(xz)) + x(z(xy)) + y(x(xz)) + z(x(xy))

]
+ y(zx2) + z(yx2) = 0, (4)

x2(yz) + 2(xy)(xz) = 0, (5)

s(x1, x2, x3, x4) = 0, (xy)(zt) + (xz)(yt) + (xt)(yz) = 0, (6)

where s(x1, x2, x3, x4) := 1
2 ∑σ∈S4

xσ(1)(xσ(2)(xσ(3)xσ(4))) and S4 is the set of all permuta-
tions on the set {1, 2, 3, 4}.

Clearly, M is a V-module for the algebra A if the following holds for any x ∈ A:

Lx3 + LxLx2 + 2L3
x = Lx2 Lx, (7)

where Lx denotes the left multiplication by x endomorphism of M.
By linearizing the identity x4 = 0, it follows that M is an An-module in the class V4 if

and only if we have the following for any x ∈ An:

L3
x = 0. (8)

We shall denote with span{X} the vector subspace of A spanned by a subset X of A.
Let M be an A-module and v ∈ M, whereby we use 〈v〉 to denote the submodule of M
spanned by v.

In order to establish that irreducible modules of dimensions less than five over An
are limited to those of A2, we use the following result in [18], where Fasoli classifies all
maximal nilpotent linear subspaces ofM(4,C). We denote with Eij the 4× 4 matrix with
one in the (i, j) position and zeros everywhere else.

Theorem 2. Every maximal nilpotent linear subspace ofM(4,C) is conjugated to exactly one of
the following six subspaces:

C1 = all strictly upper triangular matrices,

C2 = spanC{E12 + E23, E21 − E32, E41, E42, E43},
C3 = spanC{E12 + E23, E21 − E32, E14, E24, E34},
C4 = spanC{E12 + E34, E31 − E42, E23},
C5 = spanC{E12 + E23 + E34, E21 − E32, E31 − E42},
C6 = spanC{E12 + E24 + E34, E12 + E23 + E34, E21 + E31 − E32 − E42}.

3. The Equivalence

The investigation of irreducible modules over the class of commutative power-associative
algebras extends beyond Lemma 1. Furthermore, we can utilize the irreducible modules of
An to construct an irreducible module for an algebra A such that codimA2 = n.
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Lemma 3. Let A ∈ V such that codimA2 = n and M be a V-irreducible module of An. Then,
M could be considered a V-module of A.

Proof. Let C be a basis of A2 and B ∪ C be a basis of A. Without a loss of generality, we
can identify An with span{B}. It should be noted that any x ∈ A can be written uniquely
as x = xB + a2, where xB ∈ An and a2 ∈ A2. For any v ∈ M, we define xv := xBv. It can be
easily verified that Equation (7) holds since A2M = 0 and L3

xB
= 0.

In the general case, we do not know if the annihilator of a module is an ideal of A.
However, in the class V4, we have this weaker result:

Lemma 4. Let M be a non trivial irreducible A-module over V4. Then, ann M is a subalgebra of A.

Proof. For any m ∈ M, take a ∈ A such that am 6= 0. Since M is irreducible, m ∈ 〈am〉.
Thus, m = ∑ aivi for some ai ∈ A and vi ∈ M. Hence, without a loss of generality, suppose
that m = av. If b, c ∈ ann M, then

0 = (bc)(av) + (ba)(cv) + (ca)(bv) = (bc)(av).

Now, observe that for any V-module M of An, the null split extension A⊕M belongs
to V4.

Lemma 5. Let M be a V-module of the algebra An. Then, M is a V4-module.

Proof. Note that for any x ∈ A and v ∈ M, we have (a + v)2 ∈ M. Hence, 0 = (a + v)2(a +
v)2 = (a + v)4.

Consequently, the null split extension, in the notation introduced at the end of previ-
ously section Qm, has the property that Q0 ∈ V4.

Consider a commutative power-associative algebra A, M as an irreducible A-module,
m : M×M→ A as a product and the algebra Qm, where the product is given by

(a, v)(b, w) := (ab + m(v, w), aw + bv).

Consider the following statement:

Statement 1. There exists A, M as an irreducible A-module and a product m such that Qm ∈ V
and π ◦m is onto.

In [14], we find a generalization of the next Lemma. However, we will use this
weaker version:

Lemma 6. If Statement 1 holds, then Qm is nil, Q2
m = Qm and it gives a counterexample to

Albert’s Problem.

Now, we establish several equivalences to Albert’s Problem, some of which are already
known, but we include the equivalence given for 1–2, which is the principal result of this paper.

Theorem 3. The following are equivalent:

1. Albert’s Problem holds.
2. Given A ∈ V and M an irreducible A-module. If there exists m such that Qm ∈ V , then

π ◦m is not onto, where π : A→ A/A2.
3. There are no simple commutative power-associative nilalgebras.
4. Given A ∈ V , there exists a nonzero symmetric associative bilinear form.
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Proof. Note that Lemma 6 gives that (1) implies (2). Now, suppose that there exists a
simple nilalgebra A. Since V = A is an irreducible A-module, considering m : V ×V → A
as the product of A, for any a ∈ A and v ∈ V,

(a, v)2 = (a2 + v2, 2av),

(a, v)2(a, v)2 = ((a2 + v2)2 + 4(av)2, 4(av)(a2 + v2))

= (a4 + v4 + 2a2v2 + 4(av)2, 4a2(av) + 4v2(va)),

= (a4 + v4 + 2a(v(av)) + 2v(a(av)) + v(v(a2)) + a(a(v2)),

a3v + v(av2) + 2v(v(av)) + a(v(a2)) + v3a + 2a(a(av)))

= (a, v)4.

Thus, Qm ∈ V , but π ◦ m is onto, which is contrary to (2). Now, suppose that A is
not simple; then, there exists x ∈ A \ A2. Define f (x, x) = 1 and f (y, z) = 0 otherwise.
Note that f (ab, c) = f (a, bc) = 0; hence, f is a nonzero symmetric bilinear form. Since (4)
implies (1) due to Theorem 1 [19], the equivalences are established.

This equivalence enables us to approach Albert’s Problem from various angles: con-
centrating solely on the study of nilalgebras, from the viewpoint of representation theory
or even from the perspective of symmetric associative bilinear forms.

4. Irreducible Modules

The last theorem in the previous section emphasizes the importance of irreducible
modules over the class V . Thus, this section is dedicated to describing some properties
that irreducible modules satisfy. We introduce the concept of the breadth of a module, and
using Theorem 2, we are able to determine the irreducible modules of dimensions less than
five over zero algebras.

Definition 3. Consider V a subspace ofM(n, k) and {A1, A1, . . . , Al} a basis of V and the n× nl
matrix N = [A1|A2| · · · |Al ]. We define the absolute breadth of V as

B(V) = rank N.

Note that B(V) is independent of the choices of the basis of V.
If we consider A ∈ V of dimension l and M an A-module of dimension n, we transfer

the absolute breadth to M in the following way:

Definition 4. Let {a1, . . . , al} be a basis of A and B = {m1, . . . , mn} be a basis of M. If Ai is the
matrix representation of the operator Lai : M→ M in the basis B, and N = [A1|A2| · · · |Al ], we
define the absolute breadth of M as

B(M) = rank N.

As well as above, the absolute breadth of a module is independent of the choice of
both the basis of A as well as M.

The importance of the absolute breadth of a module is observed in the following Lemma:

Lemma 7. Let M be an A-module of dimension n > 1. If M is irreducible, then B(M) = n

Proof. Set {a1, . . . , al} as a basis of A and B = {m1, . . . , mn} as a basis of M and denote
with [m]B the coordinate vector of m for the basis B . There exist r1, r2 such that v1 = ar1 m1,
v2 = ar2 v1 and {v1, v2} is linearly independent. Since M is irreducible, there exists r3,
and w3 ∈ span{v1, v2} such that v3 = ar3 w3 is not belonging to span{v1, v2}. Recur-
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rently, for any 1 ≤ j ≤ n, due to the irreducibility of M, there exists rj and wj ∈ Bj =
span{v1, . . . , vj−1} such that vj = arj wj 6∈ Bj. Hence,

L = [[vj]B| 1 ≤ j ≤ n],

satisfies det L 6= 0. Consequently, B(M) = n.

Note that B(M) = n is just a necessary condition but it is not sufficient, as exhibited in
the next example.

Example 1. Consider M as the irreducible module of A2 given in Lemma 2 with λ = 1. Then,
B(M⊕M) = 6 since

M1 = [La] =



0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

,

and

M2 = [Lb] =



0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 −1
0 0 0 0 0 0

.

where {a, b} is a basis for A2. Thus, N = [M1|M2] has rank 6; however, M⊕M is not irreducible.

Denoting withMn the irreducible modules over the zero algebra of dimension n, we
have the chain

M1 ⊂M2 ⊂ · · · ⊂ Mn ⊂ · · ·

Definition 5. Let M be an An-irreducible module. We say that M is n-purely irreducible if
n = minl(annAl (M) = 0).

Note that:

Lemma 8. M is n-purely irreducible if M is not an An−1-irreducible module.

Proof. If M is not n-purely irreducible, then there exists 0 6= a ∈ annAn(M). Thus, M is an
An/ka-irreducible module, which is a contradiction.

Thus, the classification of irreducible modules holds for any zero algebra of dimension
k ≥ n if M is n-purely irreducible. Using Theorem 2 and Lemma 7, we will deduce that
there are no irreducible modules of dimension 4, and consequently, the classification of
irreducible modules of dimensions less than five is given for Lemma 2 for any zero algebra
over an algebraically closed field of characteristic zero.

Lemma 9. There are no irreducible An-modules of dimension 4.

Proof. Let M be an irreducible module of dimension 4. Since Lx : M→ M is nilpotent for
any x ∈ An, then the matrix associated with Lx is nilpotent of index three and hence is
contained in some Ci in Theorem 2. However, from Lemma 7, it is not possible to be in C1,
C2 and C3 due to B(Ci) ≤ 3.
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Now, if Lx ∈ Ci for i = 4, 5, 6, there exists a1, a2, a3 ∈ An such that Lx ∈ span{La1 , La2 , La3}.
Thus, Lemma 8 allows us to considerA3-modules. If Lx ∈ C4, then

[Lx] =


0 a 0 0
0 0 b 0
c 0 0 a
0 −c 0 0

.

Since L3
x = 0, then b = 0 and B(M) = 3.

If Lx ∈ C5, then there exists a, b, c ∈ k such that

[Lx] =


0 a 0 0
b 0 a 0
c −b 0 a
0 −c 0 0

.

Once more, from L3
x = 0, implies a = 0 and B(M) = 3.

If Lx ∈ C6, then there exists a, b, c ∈ k such that

[Lx] =


0 a + b 0 0
c 0 b a
c −c 0 a + b
0 −c 0 0

,

and condition L3
x = 0 gives ab = c = 0, then B(M) ≤ 3.

Since any maximal nilpotent linear subspace with a nilindex less than four has B(M) ≤ 3,
then there does not exist irreducible modules of dimension 4.
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