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Abstract: This paper investigated the verification of detectability for discrete event systems based
on a class of partially observed unbounded Petri nets. In an unbounded net system, all transitions
and partial places are assumed to be unobservable. The system administrator can only observe
a few observable places, i.e., the number of tokens at these places can be observed, allowing for
the estimation of current and subsequent states. The concepts of quasi-observable transitions, truly
unobservable transitions, and partial markings are used to construct a basis coverability graph.
According to this graph, four sufficient and necessary conditions of detectability are proposed.
Correspondingly, a specific example is proposed to prove that the detectability can be verified in the
unbounded net system. Furthermore, based on the conclusion of detectability, the system’s ability
to detect critical states was explored by using the basis coverability graph, called C-detectability.
Two real-world examples are proposed to show that the detectability of discrete event systems has
not only pioneered new research methods, but also demonstrated that the real conditions faced
by this method are more general, and it has overcome the limitations of relying only on the ideal
conditions of bounded systems for verification.
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1. Introduction

Detectability (as well as controllability, observability [1,2], diagnosability [3], and
opacity [4,5]) is a basic property of discrete event systems (DESs). It addresses the problem
of whether the current and subsequent states of a system can be accurately determined.
Detectability was proposed by Shu et al. in [6] for the first time. The work in [6] categorizes
detectability into four cases: strong detectability, weak detectability, strongly periodic
detectability, and weakly periodic detectability. In other words, a system has strong
(or weak) detectability if, after all (or some) event strings are observed, the current and
subsequent states can be always determined. Moreover, a system is strongly (or weakly)
periodically detectable if, after all (or some) event strings are observed, some current states
can be periodically determined.

In the previous studies, Petri nets were used to implement systems’ security and
opacity [7–11], liveness enforcement [12,13], fault diagnosis [14,15], and state estimation [16].
In recent years, to solve the problem of state space explosion that may exist in net sys-
tems, Cabasino et al. [14] proposed a new reachability graph, called a basis reachability
graph (BRG), according to the minimum length unobservable transition sequence before
an observable transition is triggered. In a subsequent study, Lefaucheux et al. [17] extended
the concept of BRGs to an unbounded Petri net (UPN), proposing a novel coverability
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graph, i.e., a basis coverability graph (BCG), and performed fault diagnosis based on
a UPN.

To date, there have been few studies and reports on UPNs. In 1998, Ushio et al. [18]
addressed the fault diagnosis problem in a UPN. In the work of [19], the authors used
a verifier net to diagnose if a fault has occurred in an unbounded net system. Recently,
Yin [20] reported an approach to verify prognosability based on a labeled Petri net. The au-
thor successfully applied this method to an unbound net system. Afterward, You et al. [21]
proposed a predictor graph to improve the concept of fault predictability.

In the last decade, the verification of detectability problems has received much atten-
tion from many investigators [22–30]. In the work of [22], the detectability to D-detectability
was extendedfrom deterministic systems to nondeterministic systems by using an observer.
Furthermore, in the work of [23], they discussed the I-detectability problem using a finite-
state automaton, that is whether the initial state can be detected in DESs. In 2016, Hadjicostis
and Seatzu [24] introduced a novel detectability into a DES, i.e., K-detectability. Different
from K-step opacity [31,32], K-detectability means that a given system is K-detectable if
the results of the current state estimation are always less than or equal to a non-negative
integer K. Shu and Feng [25] proposed a concept, called delayed detectability. In their
subsequent study, they considered the phenomenon that the current state estimation of
the system may be more accurate after some events have fired. Furthermore, Zhang [26]
reported a novel concurrent composition method to develop polynomial-time algorithms
for verifying the delayed detectability of DESs modeled by finite-state automata. Recently,
Tong et al. [28] considered a bounded labeled Petri net to verify the detectability by using a
BRG-based observer. This means that the method of verifying detectability was extended
from automata to Petri nets for the first time. After that, in the work of [29], C-detectability
based on BRGs was proposed. It requires that, for a given system, the critical state of the
system be able to be uniquely determined after a limited number of observations.

In this research, the detectability of DESs was investigated using a class of UPNs,
where all transitions are unobservable and only partial places are observable (i.e., the
number of tokens in such a place can be explicitly measured or counted). In this work, two
situations, current states or currently critical states of a system, were considered to verify
the detectability. A new type of coverability graph, i.e., a basis coverability graph, was
constructed to improve the verification method of detectability.

In this paper, the model of [18] was considered to develop the meaning of detectability
by borrowing the approach from [17] and [5]. The main contributions of this paper are
as follows:

1. A novel basis coverability graph was developed to solve the state estimation problem.
In this paper, we considered how to build a BCG when the net system is unbounded.
Based on the constructed BCG, we propose how to complete the state estimation
problem when only some places are observable.

2. The necessary and sufficient conditions for detectability are proposed. Based on the
novel BCGs, we define how strong (or weak) detectability and periodically strong
(or weak) detectability are implemented when the system is unbounded. Then, their
sufficient and necessary conditions are proposed and proven. A specific example
illustrates the feasibility of our approach.

3. The concept of C-detectability was extended to unbounded Petri nets. Based on
the above definitions and conclusions of detectability, the method of detectability
verification was extended to verify C-detectability. Similarly, strong (or weak) C-
detectability and periodically strong (or weak) C-detectability are defined. Two
real-world examples are proposed to illustrate that the proposed method is flexible.

This paper consists of eight sections. Section 1 gives a literature review. Section 2
presents the basic definitions and preliminaries of automata and Petri nets. Some results
of partially observed Petri nets are also displayed in this section. Section 3 introduces the
state estimation problems, the definitions of detectability, and how to construct a BCG for
an unbounded net system. The verification of detectability based on BCGs is illustrated
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in Section 4. Furthermore, the definition and verification of C-detectability on BCGs are
illustrated in Section 5. Two real-world examples are proposed in Section 6. The possible
challenges and shortcomings of this work are listed in Section 7. Section 8 is the conclusion
and presents the future work.

2. Previous Knowledge

This section briefly reviews the basics of automata, Petri nets, and partial markings.
For more details, the reader is referred to [1].

2.1. Automata

A deterministic finite-state automaton (DFA) is a four-tuple G = (X, E, f , X0), where
X is a finite set of states; E is a set of letter symbols; f : X× E→ X is the transition function;
and X0 is a set of initial states. A reversed automaton of G is defined as Gr = (X, E, fr, X).
Specifically, the transition function fr : X× E→ 2X is defined as follows: for arbitrary two
states x, x′ ∈ X and an event e ∈ E, we have x′ = f (x, e) if and only if x ∈ fr(x′, e) [33].

2.2. Petri Nets

A Petri net is a four-tuple N = (P, T, Pre, Post), where P is a finite set of h places with
h ∈ N, T is a finite set of transitions with P ∪ T 6= ∅, and P ∩ T = ∅, where N is the set
of non-negative integers. The pre-incidence function of N is defined by Pre : P× T → N,
and the post-incidence function is defined by Post : P× T → N. Normally, we graphically
represent a place with a circle and a transition with a box. Specifically, for a place p,
a transition t, and k ∈ N, Pre(p, t) = k > 0 means that there is an arc from p to t with
weight k; Post(p, t) = k > 0 means that there is an arc from t to p with weight k. In the case
of k = 0, there is no arc from p to t or t to p. C = Post− Pre is defined as the incidence
matrix of a Petri net N.

Given a node x ∈ P ∪ T in a Petri net, the pre-set of x is defined by •x = {y ∈ P ∪ T |
Pre(y, x) > 0}, and the post-set of x is defined by x• = {y ∈ P ∪ T | Post(x, y) > 0}.
Given a Petri net, let Po be the set of observable places. Then, Puo = P \ Po is the set of
unobservable places. A Kleene closure of the transitions T is defined as T∗, including all
finite sequences composed of the transitions in T and the empty transition sequence ε.

A marking is a mapping M : P → N, represented by a vector due to the finiteness
of the place set for operation convenience. An entry M(p) of a marking M indicates the
number of tokens in place p at the marking M. A net system is represented as 〈N, M0〉,
where M0 is an initial marking.

A transition t is enabled at M if, for all p ∈ •t, M(p) ≥ Pre(p, t), denoted as M ≥ Pre(·, t).
The firing of an enabled transition t at marking M yields a marking M′, denoted by M[t〉M′,
with M′ = M + C(·, t). A transition sequence σ = t1t2 . . . tn ∈ T∗ is enabled at M if
there exist markings M1, M2, . . ., Mn such that M1[t1〉M2[t2〉 . . . Mn−1[tn〉Mn, denoted by
M[σ〉Mn or simply M[σ〉 if Mn is of no interest. In this case, Mn is said to be reachable from
M. The set of markings from the initial marking M0 defines the reachability of net system
〈N, M0〉, denoted by R(N, M0) = {M ∈ Nh | ∃σ ∈ T∗ : M0[σ〉M}, called the reachability
set of (N, M0).

A function π : T∗ → Nn that associates a sequence σ ∈ T∗ with a vector yσ = π(σ) ∈ Nn

defines the Parikh vector of the transition sequence σ, where n = |T| is the number of
transitions in a net. Moreover, yσ(t) = k means that transition t appears k times in σ.

Especially, if a transition sequence σ is an empty sequence, i.e., σ = ε, then M[σ〉M
holds trivially. Given an empty sequence ε, we have |ε| = 0. The language of a net system
〈N, M0〉 is defined as

L(N, M0) = {σ ∈ T∗ | M0[σ〉},
which is a set of transition sequences that are enabled from the initial marking. Write, by
a slight abuse of notation, t ∈ σ to represent that transition sequence σ contains transition t.

Given a transition sequence σ, σ′ is said to be a prefix of σ if there exists a sequence σ′′

satisfying σ = σ′σ′′. Write σ′ � σ if σ′ is a prefix of σ.
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A node sequence x1x2 . . . xr in (N, M0) is called a path if xu ∈ x•u−1 holds for u = 2, . . . , r,
where xv (v = 1, . . . , r) is a node in P∪ T. A path x1x2 . . . xr is a circuit if x1 = xr. A self-loop
is the simplest case of circuits in a Petri net. A Petri net is said to be self-loop-free if it
contains no self-loop. A Petri net is said to be acyclic if there is no circuit in the net system.

A reachability graph is a digraph starting from the initial marking M0, whose nodes
are markings in R(N, M0) and an edge from M to M′ labeled with t if M[t〉M′ holds.

A net system 〈N, M0〉 is bounded if there is an integer K > 0 such that, for all
reachable markings M ∈ R(N, M0) and for all places p ∈ P, M(p) ≤ K holds; other-
wise, it is unbounded. For an unbounded net system, the number of tokens in an un-
bounded place can be an arbitrary integer, denoted by ω, satisfying, given any n ∈ N,
ω± n = ω, ω× n = ω, ω × 0 = 0, and n < ω. Its state space is approximated by
a coverability set CS(N, M0) ⊂ (N ∪ {ω})h. The previous works reported that the cov-
erability set includes all the markings of the reachability set [34,35]. In other words, for
a coverability set CS(N, M0), the following hold:

1. This set covers all the markings of the reachability set;
2. For each marking M′ in CS(N, M0), but not in the reachability set, there is an infinite

strictly increasing sequence of reachable markings converging to M′ (this notion is
defined in [34]).

Thus, the following two conditions hold [36]:

1. For the initial marking M0, M0 ∈ CS(N, M0);
2. For all M ∈ CS(N, M0) and for all σ ∈ T∗, it holds that M′ ∈ CS(N, M0), where

M′ = M + C · yσ and where π(σ) = yσ.

Based on the coverability set CS(N, M0), a coverability graph CG(N, M0) is a graph
in which there exists an arc labeled with a transition t ∈ T between two markings labeled
by M and M′ if and only if the transition t is enabled in M, whose firing reaches marking
M′. In brief, a coverability graph can be constructed analogously to the reachability graph
of a bounded Petri net; see [37] for details.

2.3. Partial Markings

A marking M ∈ CS(N, M0) restricted to Po is represented by a vector M̃ with j
entries, called a partially observable marking of the marking M [14], where |Po| = j. Then,
a partially observable marking (partial marking for simplicity) can be readily calculated by

A ·M = M̃, (1)

where A is a j× h matrix, called the observability mapping matrix with A(i, i) = 1 for
i = 1, 2, . . . , j and the other entries are 0. The matrix A is used to project a marking M
onto a partial marking based on the set of observable places Po. Therefore, a set of partial
markings is defined as follows:

CSo(N, M0) = {M̃ | ∃M ∈ CS(N, M0) : A ·M = M̃}.

The set of transitions contains quasi-observable transitions, whose set is defined as

Tq = {t ∈ T | (•t ∪ t•) ∩ Po 6= ∅}.

Similarly, the transitions not in Tq are called truly unobservable transitions, i.e., Tu = T \ Tq.
In addition, the systems of this work are assumed to be self-loop-free.

Given two quasi-observable transitions t1, t2, they are said to be confused if Pre(p, t1) =
Pre(p, t2) or Post(t1, p) = Post(t2, p), where p is an arbitrary observable place, with either
p ∈ •t1 ∩ •t2 or p ∈ t•1 ∩ t•2 .

Note that the number of tokens in an unbounded place is denoted by ω. Therefore, if
some unbounded places are observable, the system administrators or intruders can detect
the change of the tokens in these places, but they are not clear about the number of tokens.
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In other words, if some unbounded places are observable, their pre-sets and post-sets are
detectable and quasi-observable.

Example 1. Shown in Figure 1 is a partially observed UPN, where the place puo is unobservable.
The coverability graph is shown in Figure 2, where a marking is denoted by M = (po1, po2, puo)T .
Moreover, a mapping matrix A1 is assumed to be:

A1 =

[
1 0 0

0 1 0

]
.

Partial markings of this net system are computed, i.e., M̃0 = (0, 0)T , M̃1 = (1, 0)T ,
M̃2 = (0, ω)T , and M̃3 = (1, ω)T . Furthermore, all transitions can be inferred when a system ad-
ministrator observes the change in observable places. Therefore, all transitions are quasi-observable.

puo

t1
po1

t2 po2

Figure 1. An unbounded Petri net.

M0 = (0, 0, 1)T

M1 = (1, 0, 0)T

M2 = (0, ω, 1)T

M3 = (1, ω, 0)Tt2

t1

t2

t1

Figure 2. A coverability graph.

Given a transition sequence σ ∈ T∗, let P denote the natural projection to quasi-
observable transitions, i.e., P : T∗ → T∗q , defined as

P(ε) = ε

P(σ) = σ, σ ∈ T∗q
P(σ) = ε, σ ∈ T∗u
P(σs) = P(σ)P(s), σ ∈ T∗, s ∈ T.

(2)

The inverse projection P−1 : T∗q → 2T∗ is defined as P−1(w) = {σ ∈ L(N, M0)|w =

P(σ)}, i.e., P−1(w) consists of all transition sequences in L(N, M0) whose observations
are w.

Moreover, given a string consisting of quasi-observable transitions w and a partial
marking M̃, a set of states that are possibly reachable by detecting and observing w and M̃
is defined as

E(w, M̃) = {M|∃σ ∈ P−1(w) : M0[σ〉M, A ·M = M̃}

which is a collection of markings consistent with w and M̃.
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Suppose that there are no transition cycles composed of truly unobservable transitions.
The definition of unobservable transitions’ subnet [14] is extended to truly unobservable
transitions as follows.

Definition 1. Given a Petri net (N, M0) and a set of truly unobservable transitions Tu, the truly
unobservable subnet N′ = (P, Tu, Pre′, Post′) of N is derived by removing T \ Tu, where Pre′ and
Post′ are the restriction of Pre and Post to P× Tu, respectively. The incidence matrix of this subnet
is denoted by Cû = Post′ − Pre′.

3. Detectability in UPNs

This section deals with the detectability in UPNs. The current state estimation problem
will be discussed.

3.1. Current State Estimation in UPNs

In this subsection, a BCG is constructed to improve the verification method of de-
tectability. From now on, the above new sets, i.e., the set of quasi-observable transitions
and the set of truly unobservable transitions, are used to construct the BCG in this work.

Definition 2. Given a partially observed UPN (N, M0) whose truly unobservable subset is acyclic,
a partial marking M̃, and a transition tq ∈ Tq,

Γ(M̃, tq) = {σ ∈ T∗u |M[σ〉M′, M′ ≥ Pre(·, tq), A ·M = M̃}

is defined as a set of explanations of quasi-observable transition tq at partial marking M̃ and
Y(M̃, tq) = {yσ ∈ N|Tu ||∃σ ∈ Γ(M̃, tq) : yσ = π(σ)} is defined as the corresponding set of
explanation vectors.

Generally, if a net system is bounded, the set of explanations is definitely finite. If
there is an unbounded place that is unobservable and there is only one transition called the
source transition (i.e., ∃t ∈ T, •t ∈ ∅, t• /∈ ∅) in the place’s pre-set, then this transition may
be truly unobservable. In this case, the number of explanations may be infinite. Therefore,
to avoid this result, we need to make sure that all source transitions are quasi-observable.

Definition 3. Given a partially observed UPN (N, M0) whose truly unobservable subset is acyclic,
a partial marking M̃, and a transition tq ∈ Tq,

Γmin(M̃, tq) = {σ ∈ Γ(M̃, tq)|@σ′ ∈ Γ(M̃, tq) : π(σ′) � π(σ)}

is defined as the set of minimum explanations of quasi-observable transition tq at partial marking M̃
and Ymin(M̃, tq) = {yσ ∈ N|Tu ||∃σ ∈ Γmin(M̃, tq) : yσ = π(σ)} is defined as the corresponding
set of minimum explanation vectors.

Definition 4. Given a partially observed UPN (N, M0) whose truly unobservable subset is acyclic
and an initial partial marking M̃0, the set of basis partial markings, denoted byMb, is defined
as follows:

1. M̃0 ∈ Mb;
2. For all M̃ ∈ Mb, for all tq ∈ Tq, for all σ′ ∈ Γmin(M̃, tq), and yσ = π(σ′), it holds that

M̃
′ ∈ Mb, where M̃

′
= M̃ + C(·, tq) + Cû · yσ.

In simple words, a BCG is constructed by triggering a quasi-observable transition and
minimal explanations consisting of a set of truly unobservable transitions.

A special situation should be noted: there can be multiple confused transitions in the
net system that result in the same change in the observable places. This ambiguity prevents
intruders from determining which transition has been fired. As a result, a BCG may have
two or more confused transitions labeled on an arc from one node to another. This means
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that the system administrator does not need to identify the quasi-observable transition that
has been fired. He/she only needs to determine if any of them has been fired.

Given a marking M, a sequence σ ∈ T∗, and a quasi-observable transition tq such
that M0[σtq〉M and A · M = M̃, a set of markings, defined as U (M̃) = {M′|∃σ′ ∈ T∗u :
M[σ′〉M′}, is called the unobservable reach of the partial marking M̃.

Given a partial marking M̃ and a quasi-observable transition tq, we define that the
firing of an enabled quasi-observable transition tq at partial marking M̃ yields a partial
marking M̃′ = M̃ + C(·, tq) + Cû · yσ, where σ ∈ Γmin(M̃, tq) and π(σ) = yσ, which
is denoted by M̃[tq〉M̃′. A quasi-observable string w = P(σ) = tq1tq2 . . . tqn ∈ T∗q is
enabled at partial marking M̃ if there exist partial markings M̃1, M̃2, . . . , M̃n such that
M̃[tq1〉M̃1[tq2〉 . . . M̃n−1[tqn〉M̃n, denoted as M̃[w〉M̃n, where σ ∈ T∗ and n ∈ N. Especially,
if w happens to be an empty string, then M̃[w〉M̃ holds.

Theorem 1. [5] Consider a UPN (N, M0) with N = (P, T, Pre, Post) whose truly unobservable
subnet is acyclic. Given a mapping matrix A, a marking M′, and σ ∈ T∗ such that M0[w〉M′ and
A ·M = M̃, where w = P(σ), it holds that

E(w, M̃)= U (M̃)

= {M|M = M′ + Cû · yσ, A ·M = M̃}.
(3)

In other words, Theorem 1 demonstrates the states in which the system may be when
a new partial marking is observed.

3.2. Definitions of Detectability in UPNs

In this subsection, strong detectability, weak detectability, periodically strong de-
tectability, and periodically weak detectability are defined in partially observed UPNs.

Moreover, for all unobservable and unbounded places, more details of the symbol
“ω” are not focused on. In other words, no matter the value of “ω”, the system is still
considered to be in the same state.

Definition 5. Given a partially observed UPN (N, M0) whose truly unobservable subset is acyclic,
a non-negative integer k, and an initial partial marking M̃0 ∈ CSo(N, M0), the net system 〈N, M0〉
is said to be strongly detectable if

(∀σ ∈ L(N, M0))(∀σ′ � σ)P(σ′) = w&|w| ≥ k
⇒ M̃0[w〉M̃& | E(w, M̃) |= 1.

In other words, a partially observed UPN is strongly detectable if the net system’s
current state and subsequent states can be uniquely determined after a finite number of
quasi-observable transitions for all languages.

Definition 6. Given a partially observed UPN (N, M0) whose truly unobservable subset is acyclic,
a non-negative integer k, and an initial partial marking M̃0 ∈ CSo(N, M0), the net system 〈N, M0〉
is said to be weakly detectable if

(∃σ ∈ L(N, M0))(∀σ′ � σ)P(σ′) = w&|w| ≥ k
⇒ M̃0[w〉M̃&|E(w, M̃)| = 1.

In plain words, a partially observed UPN is weakly detectable if the current state and
subsequent states can be uniquely determined after a finite number of quasi-observable
transitions for some languages. Moreover, if an unbounded net system is strongly de-
tectable, then it is also weakly detectable.

Definition 7. Given a partially observed UPN (N, M0) whose truly unobservable subset is acyclic,
a non-negative integer k, and an initial partial marking M̃0 ∈ CSo(N, M0), the net system 〈N, M0〉
is said to be periodically strongly detectable if
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(∀σ ∈ L(N, M0))(∀σ′ � σ)(∃σ′′ ∈ T∗)σ′σ′′ � σ
⇒ (P(σ′σ′′) = w)&(w < k)&
(M̃0[w〉M̃)&(|E(w, M̃)| = 1).

In plain words, a partially observed UPN is periodically strongly detectable if, as
the transition sequence continues, the current state can be periodically and uniquely
determined for all languages.

Definition 8. Given a partially observed UPN (N, M0) whose truly unobservable subset is acyclic,
a non-negative integer k, and an initial partial marking M̃0 ∈ CSo(N, M0), the net system 〈N, M0〉
is periodically weakly detectable if

(∃σ ∈ L(N, M0))(∀σ′ � σ)(∃σ′′ ∈ T∗)(σσ′′ � σ)
⇒ (P(σσ′′) = w)&(w < k)&
(M̃0[w〉M̃)&(|E(w, M̃)| = 1).

In plain words, a partially observed UPN is periodically strongly detectable if, as
the transition sequence continues, the current state can be periodically and uniquely
determined for some languages. Moreover, if an unbounded net system is periodically
strongly detectable, then it is also periodically weakly detectable.

Example 2. Reconsider the system and its coverability graph, which are shown in Figures 1 and 2,
respectively. Based on Definition 5, this net system is strongly detectable. Since no matter which
transition is triggered, the current and subsequent states can be uniquely determined.

For the sake of the rigor of exploring detectability, a result is naturally derived as follows.

Proposition 1. Given a partially observed UPN (N, M0) whose truly unobservable subset is
acyclic, the unbounded net system does not perform detectability verification if all places are
unbounded places.

Proof. By contrast, if there is no bounded place in an unbounded net system, then the
marking will satisfy the following statement: for all p ∈ P, M(p) = ω. According to the
descriptions for the symbol “ω”, the number of tokens in unbounded places is undetectable.
Therefore, the unbounded net system cannot be detected.

Generally, when an unbounded net system is detectable, this indicates that the net
system conforms to one of the definitions of detectability.

4. Verification of Detectability on UPNs

In this section, the detectability in partially observed UPNs will be verified by using
a BCG. Based on the above description of the current state estimation problem, a binary
scalar ϕ(M̃) concerning current partial marking M̃ is defined as follows. Given a marking
M ∈ CS(N, M0), if ϕ(M̃) = 1, this means that there is a sequence σu ∈ Tu with yσu = π(σu)
such that 

A ·M = M̃
M + C · yσu = M′

A ·M′ = M̃
M 6= M′.

(4)

Otherwise, ϕ(M̃) = 0.
A BCG is denoted, by using a non-deterministic finite-state automaton, as C =

(X, T̂q, f , (M̃0, ϕ(M̃0))), where X ⊆ M̃× {0, 1} is a set of states, f is the transition function,
i.e., f ⊆ X× Tq → X, and (M̃0, ϕ(M̃0)) is the initial state. Moreover, for a state of the BCG
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x = (M̃, ϕ(M̃)), x(1) = M̃ denotes the first element of x; by analogy, x(2) is the second
element, i.e., x(2) = ϕ(M̃). Algorithm 1 is proposed to illustrate how to construct a BCG to
verify detectability.

Algorithm 1: Construction of a BCG for detectability.

Input: UPN (N, M0) and a set of partial markings CSo(N, M0).
Output: A BCG C = (X, Tq, f , (M̃0, ϕ(M̃0))).

1 Let the initial node be (M̃0, ϕ(M̃0)), and attributeno label to this node;
2 while nodes with no label exist do
3 Select a node with no label;
4 Let M̃ ∈ CSo(N, M0) be the first element in the node;
5 for all tq ∈ Tq do
6 if Ymin(M̃, tq) 6= ∅ then
7 for all yσ ∈ Ymin(M̃, tq) do
8 M̃′ = M̃ + C(·, tq) + Cû · yσ;
9 if an identical node as M̃′ is not present then

10 if M̃ + Cû · yσ = 0 then
11 ϕ(M̃′) = 1, and add to the new node;

12 else
13 ϕ(M̃′) = 0, and add to the new node;

14 Add an arc from (M̃, ϕ(M̃)) to (M̃′, ϕ(M̃′));

15 label the node “old”;

16 remove all labels.

Proposition 2. Given a UPN (N, M0) whose truly unobservable subset is acyclic, the unbounded
net system is not detectable if, for all the states in its BCG C, the binary scalar ϕ(M̃) = 0.

Proof. For a node of a BCG x ∈ X and its partial marking M̃, if the binary scalar of this
node is ϕ(M̃) = 0, this means that there exist a regular marking M, a sequence σu ∈ T̂∗u ,
and yσu = π(σu), such that M + C · yσu = M′ and A ·M = A ·M′ = M̃, where M 6= M′.
Then, |E(w, M̃)| 6= 1. This indicates that this node is not detectable.

Furthermore, if the binary scalar of all nodes is equal to 1, for all M̃ ∈ CSo(N, M0)
such that |E(w, M̃)| 6= 1, this unbounded net system is undetectable.

A BCG-based observer is constructed by using a reversed automaton of its BCG,
i.e., Co = {X , T̂q, fo, X}, where X ⊆ 2X is the set of states in the BCG-based observer and
fo is the transition relation of the observer, i.e., fo ⊆ X × Tq ×X .

Definition 9. Given a UPN (N, M0) whose truly unobservable subset is acyclic and a BCG
with the set of its nodes being {n1, n2, . . . , nn}, a cycle in a BCG-based observer is defined as
γi = n1tq1n2tq2 . . . nntqnn1, where i means the ith cycle in this observer, {tq1, tq2, . . . , tqn} ⊆ Tq
is a subset of quasi-observable transitions, and n ∈ N. Furthermore, let Q denote the set of cycles.
Moreover, we use n ∈ γi to denote the fact that a state n is in a cycle γi.

Based on the above definition and proposition, the verification of detectability can be
extended to the partially observed UPNs. First, we present a result.

Theorem 2. Given a UPN (N, M0) whose truly unobservable subset is acyclic and its BCG C, the
unbounded net system 〈N, M0〉 is strongly detectable if and only if, in its BCG-based observer, for
all γi ∈ Q, for all w ∈ T∗q , and for all x, x′ ∈ γi, fo(x, w, x′) is defined and x = (m, 0), where
M̃ ∈ CSo(N, M0).
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Proof. (⇐) Given an arbitrary cycle γ ∈ Q, if any state x ∈ γ satisfies x(1) ∈ CSo(N, M0)
and x(2) = 0, this means that, for any partial marking in this cycle, there is not a truly unob-
servable sequence σu ∈ T∗u and yσu = π(σu) such that M̃ + C · yσu = 0, and |E(w, M̃)| = 1.
Then, this net system is strongly detectable.

(⇒) We assume that there exists a cycle γ ∈ Q. If there is a state y ∈ γ, such
that x(1) = M̃ and x(2) = 1, i.e., there is a truly unobservable sequence σu ∈ T∗u with
yσu = π(σu) such that M̃ + C · yσu > 0, and |E(w, M̃)| 6= 1, then this net system is not
strongly detectable.

In other words, a partially observed unbounded net system is strongly detectable if
and only if, for an arbitrary cycle in its BCG C, all reachable states in the cycle meet that
x(1) ∈ CSo(N, M0) and x(2) = 0.

Theorem 3. Given a UPN (N, M0) whose truly unobservable subset is acyclic and its BCG C, the
unbounded net system 〈N, M0〉 is weakly detectable if and only if, in its BCG-based observer, there
exists γi ∈ Q, and for all w ∈ T∗q and for all x, x′ ∈ γi, fo(x, w, x′) is defined and x = (M̃, 0),
where M̃ ∈ CSo(N, M0).

Proof. (⇐) Given a cycle γ ∈ Q, for an arbitrary state x ∈ γ, if x(1) = M̃ and x(2) = 0, there
is not a truly unobservable sequence σu ∈ T∗u with yσu = π(σu) such that M̃ + C · yσu = 0
and |E(w, M̃)| = 1. Then, this net system is weakly detectable.

(⇒) For all cycles Q, if there exists a state in these cycles, i.e., there is a state x ∈ Y
with x(1) ∈ CSo(N, M0) and x(2) = 1, there is a partial marking M̃ and |E(w, M̃)| 6= 1,
implying that the net system is not weakly detectable.

In other words, a partially observed unbounded net system is weakly detectable if
and only if there are some cycles in its BCG C such that all reachable states x in these cycles
satisfy x(1) ∈ CSo(N, M0) and x(2) = 0.

Theorem 4. Given a UPN (N, M0) whose truly unobservable subset is acyclic and its BCG C, the
unbounded net system 〈N, M0〉 is periodically strongly detectable if and only if, in its BCG-based
observer, for all γi ∈ Q, there exists a state x ∈ γi such that x = (M̃, 0), where M̃ ∈ CSo(N, M0).

Proof. (⇐) Given an arbitrary cycle γ ∈ Q, if there is a state x ∈ γ such that x(1) = M̃
and x(2) = 0, i.e., there is not a truly unobservable sequence σu ∈ T∗u with yσu = π(σu),
then we have M̃ + C · yσu = 0 and |E(w, M̃)| = 1, i.e., this net system is periodically
strongly detectable.

(⇒) Assume that there is a cycle γ ∈ Q. If there is an arbitrary state x ∈ γ such that
x(1) = M̃ and x(2) = 1, that is there exists a truly unobservable sequence σu ∈ T∗u with
yσu = π(σu), then we have M̃ + C · yσu > 0 and |E(w, M̃)| 6= 1, i.e., this system is not
periodically strongly detectable.

In other words, a partially observed unbounded net system is periodically strongly
detectable if and only if, for the arbitrary cycle in its BCG C, there exists at least one
reachable state in these cycles satisfying x(1) ∈ CSo(N, M0) and x(2) = 0.

Theorem 5. Given a UPN (N, M0) whose truly unobservable subset is acyclic and its BCG C, the
unbounded net system 〈N, M0〉 is periodically weakly detectable if and only if, in its BCG-based
observer, there exist γi ∈ Q and x ∈ γi, x = (M̃, 0), where M̃ ∈ CSo(N, M0).

Proof. (⇐) Given a cycle γ ∈ Q and a state x ∈ γ, if x(1) = M̃ and x(2) = 0, this means
that there is not a truly unobservable sequence σu ∈ T∗u with yσu = π(σu), such that
M̃ + C · yσu = 0 and |E(w, M̃)| = 1. Then, this net system is periodically weakly detectable.

(⇒) Assume that, for arbitrary cycle γ ∈ Q, if for all x ∈ γ, it holds that x(1) ∈
CSo(N, M0) and x(2) = 1, then all states cannot determine the current state of the system.
In this case, the net system is not periodically weakly detectable.
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In other words, a partially observed unbounded net system is periodically weakly
detectable if and only if there exist some cycles in its BCG C and there exists at least one
reachable state x in these cycles such that x(1) ∈ CSo(N, M0) and x(2) = 0.

Example 3. As shown in Figure 1, the partially observed UPN is reconsidered. Figure 3 is the BCG-
based observer, where there is only one cycle, i.e., (M̃0, ϕ(M̃0))t1(M̃1, ϕ(M̃1))t2(M̃0, ϕ(M̃0)) with
ϕ(M̃0) = ϕ(M̃1) = 0. This means that all current states and subsequent states can be determined
when a new partial marking is observed. We conclude that this system is strongly detectable.

(M̃0, 0), (M̃1, 0)

(M̃1, 0)(M̃0, 0)

t2

t1t2
t1

Figure 3. A BCG-based observer.

5. C-Detectability in UPNs

In this section, the above results of detectability are extended to C-detectability [29]
based on the partially observed UPNs. In this part, we are no longer interested in the
precise current state. We focus on the fact that some currently crucial states can be detected
based on our BCGs. Observably, as far as C-detectability is concerned, “C” means “crucial”.

5.1. Definitions of C-Detectability in UPNs

In this subsection, strong C-detectability, weak C-detectability, periodically strong C-
detectability, and periodically weak C-detectability are defined. In general, the crucial states
are given by the system administrator. Therefore, two symbolsMc and Σ are used to denote
the set of crucial markings and the set of sequences, respectively, where Σ ⊆ L(N, M0).
In other words, a sequence σ does not belong to the set Σ if for all σ′ � σ, P(σ′) = w
such that M̃0[w〉M̃ and E(w, M̃) ∩Mc = ∅. Based on the above descriptions, four types of
C-detectability are proposed as follows.

Definition 10. Given a UPN (N, M0) with the acyclic truly unobservable subnet, a non-negative
integer k, an initial partial marking M̃0, and the set of crucial markingsMc, the unbounded net
system is strongly C-detectable if

(∃Σ ⊆ L(N, M0))(∀σ ∈ Σ)(∀σ′ � σ)
(P(σ′) = w)&(|w| ≥ k)

⇒ (M̃0[w〉M̃)&(E(w, M̃) ∩Mc 6= ∅)&(|E(w, M̃)| = 1).

In simple words, for an arbitrary sequence, an unbounded net system is strongly
C-detectable if the crucial state and subsequently crucial states of the net system can be
inferred after a finite number of quasi-observable transitions. Therefore, in this research,
given a sequence, after its natural projection, if there is no crucial marking in the state
estimation that is the result of the partial markings reached by any prefix, then we are not
interested in this sequence.

Definition 11. Given a UPN (N, M0) with the acyclic truly unobservable subnet, a non-negative
integer k, an initial partial marking M̃0, and the set of crucial markingsMc, the unbounded net
system is weakly C-detectable if

(∃Σ ⊆ L(N, M0))(∃σ ∈ Σ)(∀σ′ � σ)
(P(σ′) = w)&(|w| ≥ k)

⇒ (M̃0[w〉M̃)&(E(w, M̃) ∩Mc 6= ∅)&(|E(w, M̃)| = 1).
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In simple words, for some arbitrary sequences, an unbounded net system is weakly
C-detectable if the crucial state and subsequently crucial states of the net system can be
inferred after a finite number of quasi-observable transitions. Observably, if an unbounded
net system is strongly C-detectable, then it is necessarily weakly C-detectable.

Definition 12. Given a UPN (N, M0) with the acyclic truly unobservable subnet, a non-negative
integer k, an initial partial marking M̃0, and the set of crucial markingsMc, the unbounded net
system is periodically strongly C-detectable if

(∃Σ ⊆ L(N, M0))(∀σ ∈ Σ)(∀σ′ � σ)
(∃σ′′ ∈ T∗)(σ′σ′′ � σ)&(P(σ′σ′′) = w)&(w < k)

⇒ (M̃0[w〉M̃)&(E(w, M̃) ∩Mc 6= ∅)&(|E(w, M̃)| = 1).

In simple words, for an arbitrary sequence, an unbounded net system is periodically
strongly C-detectable if, as the transition sequence continues, the crucial state of the system
can be uniquely determined.

Definition 13. Given a UPN (N, M0) with the acyclic truly unobservable subnet, a non-negative
integer k, an initial partial marking M̃0, and the set of crucial markingsMc, the unbounded net
system is periodically weakly C-detectable if

(∃Σ ⊆ L(N, M0))(∃σ ∈ Σ)(∀σ′ � σ)
(∃σ′′ ∈ T∗)(σ′σ′′ � σ)&(P(σ′σ′′) = w)&(w < k)

⇒ (M̃0[w〉M̃)&(E(w, M̃) ∩Mc 6= ∅)&(|E(w, M̃)| = 1).

In simple words, for some sequences, an unbounded net system is periodically weakly
C-detectable if, as the transition sequence continues, the crucial state of the system can be
uniquely determined. Observably, if an unbounded net system is periodically strongly
C-detectable, then it is necessarily periodically weakly C-detectable. Similarly, when an
unbounded net system is C-detectable, it indicates that the net system conforms to one of
the definitions of C-detectability.

Compared with [29], there are some differences. The authors of [29] reported that
a bounded net system is periodically C-detectable if there exists at least one sequence
enabled at the initial marking such that, from time to time, the set of markings consistent
with the corresponding observation contains either a single marking or no marking inMc.
In this work, for the sake of a clearer understanding of detectability, we only require that
an unbounded net system should be periodically C-detectable if at least one sequence is en-
abled at the initial marking such that the set of markings consistent with the corresponding
partial markings contains a single marking.

Example 4. As shown in Figure 4, a partially observed UPN is considered, where the places
in {po1, po2, po3} are observable and the others are unobservable. A marking is denoted as
M = (po1, po2, po3, puo1, puo2)

T . The mapping matrix A2 is assumed to be

A2 =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

.

The coverability graph and BCG of this system are shown in Figures 5 and 6, respectively. Let
the marking M1 be the crucial marking. We found that the transition t2 is quasi-observable. This
means that, after the system periodically triggers transition t2, the critical marking can be uniquely
determined. Therefore, this system is periodically strongly C-detectable.

In the above example, a test arc is presented between place po2 and transition t2. In
brief, when the transition t2 fires, the number of tokens in the place will not be consumed.
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In real life, the concept of test arcs has also been widely applied [38]. For example, when
a system is running, it only needs to read the data in this place, rather than modify it.

po1

ω

po2 t1

t2 po3 t3 puo1 t4

t5

puo2

t6

Figure 4. An unbounded Petri net model.

M0 = (1, ω, 0, 0, 0)T

M1 = (0, ω, 1, 0, 0)T

M2 = (0, ω, 0, 1, 0)T

M3 = (0, ω, 0, 0, 1)T

t4 t6

t1

t1

t1

t1

t2

t3

t5

Figure 5. A coverability graph of the net system.

M̃0 = (1, ω, 0)T

M̃1 = (0, ω, 1)T

M̃2 = (0, ω, 0)T

t4

t1

t1

t1

t2

t3

Figure 6. A BCG.

5.2. Verification of C-Detectability Based on BCGs

This subsection deals with verifying C-detectability based on the BCGs. Four sufficient
and necessary conditions will be proposed.

Intuitively, the approach of verifying detectability based on the BCGs can be extended
to C-detectability. Therefore, a new binary scalar θ(M̃) is defined as
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θ(M̃) =

{
1 E(w, M̃) ∩Mc 6= ∅,
0 otherwise.

(5)

We continue to use a non-deterministic finite-state automaton to extend the BCGs
for detectability to C-detectability, i.e., C ′ = (Y, Tq, f ′, (M̃0, ϕ(M̃0), θ(M̃0))), where Y ⊆
M̃ × {0, 1} × {0, 1} is a set of states, f ′ ⊆ Y × Tq × Y is the transition relation, and
(M̃0, ϕ(M̃0), θ(M̃0)) is the initial state. Similarly, for a state of the BCG y = (M̃0, ϕ(M̃0),
θ(M̃0)), y(1) = M̃ denotes the first component. Analogously, y(2) = ϕ(M̃0) and y(3) =
θ(M̃0) are the second and third components, respectively. Moreover, Algorithm 2 is pro-
posed to construct BCGs for C-detectability.

Algorithm 2: Construction of a BCG for C-detectability.

Input: The BCG of a UPN (N, M0).
Output: A BCG for C-detectability C ′ = (Y, Tq, f ′, (M̃0, ϕ(M̃0), θ(M̃0))).

1 Let the initial node be (M̃0, ϕ(M̃0), θ(M̃0)), and attributeno label to this node;
2 while nodes with no label exist do
3 Select a node with no label;
4 if E(w, M̃′) ∩Mc 6= ∅ then
5 θ(M̃′) = 1, and add to the new node;

6 else
7 θ(M̃′) = 0, and add to the new node;

8 label the node “old”; remove all labels.

Proposition 3. Given a UPN (N, M0) with the acyclic truly unobservable subnet, if the un-
bounded system is not detectable, then the unbounded system is not C-detectable.

Proof. Given an unbounded net system, if it is detectable, i.e., for the arbitrary state of its
BCG, the binary scalar ϕ(M̃) is always equal to 1, then, when the system administrator
detects an arbitrary quasi-observable string w, we have M̃0[w〉M̃ and |E(w, M̃)| = 1. Ac-
cording to the definitions of detectability, the unbounded net system is not C-detectable.

Corollary 1. A UPN (N, M0) is strongly detectable if the net system is strongly C-detectable.

Proof. Given an unbounded net system 〈N, M0〉, if it is strongly C-detectable, then, for
an arbitrary transition sequence σ, there exists an arbitrary sequence σ′ � σ such that
P(σ′) = w, M̃0[w〉M̃, |E(w, M̃)| = 1, and E(w, M̃) ∩Mc 6= ∅. This indicates that all
results of the current state estimation are always unique and determinable. Furthermore, all
the current and subsequent states are crucial. Based on the definition of strong detectability,
the net system is necessarily strongly detectable.

Corollary 2. A UPN (N, M0) is weakly detectable if the net system is weakly C-detectable.

Proof. Given an unbounded net system 〈N, M0〉, if it is weakly C-detectable, then there
exists at least one transition sequence σ, and for an arbitrary prefix σ′ of σ, i.e., σ′ � σ, such
that P(σ′) = w, one has M̃0[w〉M̃, |E(w, M̃)| = 1, and E(w, M̃) ∩Mc 6= ∅. This indicates
that some results of the current state estimation can always be unique and determinable.
All the current and subsequent states concerning the sequence σ are crucial. Based on the
definition of weak detectability, the net system is necessarily weakly detectable.

However, a special situation should be considered. Observably, if an unbounded
net system is strongly detectable, then the net system is weakly detectable as well. In
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other words, for a strongly detectable and weakly C-detectable net system, there may be
at least one transition sequence σ such that there exists an arbitrary sequence σ′ � σ with
P(σ′) = w, satisfying M̃0[w〉M̃, |E(w, M̃)| = 1, but E(M̃) ∩Mc = ∅. Therefore, the net
system is at least weakly detectable.

Corollary 3. A UPN (N, M0) is periodically strongly detectable if the net system is periodically
strongly C-detectable.

Proof. Given an unbounded net system 〈N, M0〉, if it is periodically strongly C-detectable,
then for an arbitrary sequence σ ∈ Σ∗, there exist two sequences σ′ and σ′′ such that
σ′ � σ, σ′σ′′ � σ, P(σ′σ′′) = w, M̃0[w〉M̃, |E(w, M̃)| = 1, and E(w, M̃) ∩Mc 6= ∅. This
indicates that, for an arbitrary sequence, the result of the current state estimation concerning
M̃ can be periodically determined. Correspondingly, the current state is crucial. Based on
the definition of periodically strong detectability, the net system is necessarily periodically
strongly detectable.

Corollary 4. A UPN (N, M0) is periodically weakly detectable if the net system is periodically
weakly C-detectable.

Proof. Given an unbounded net system 〈N, M0〉, if it is periodically weakly C-detectable,
then there exists at least one sequence σ ∈ Σ∗ in which there are two sequences σ′ and
σ′′ such that σ′ � σ, σ′σ′′ � σ, P(σ′σ′′) = w, M̃0[w〉M̃, |E(w, M̃)| = 1, and E(w, M̃) ∩
Mc 6= ∅. This indicates that, for this sequence σ, the result of the current state estimation
concerning M̃ can be periodically determined. Correspondingly, the current state is crucial.
Based on the definition of periodically weak detectability, the net system is necessarily
periodically weakly detectable.

However, a special situation should be considered. Observably, if an unbounded
net system is periodically strongly detectable, then the net system is periodically weakly
detectable as well. In other words, for a periodically strongly detectable and periodically
weakly C-detectable net system, there may be at least one transition sequence σ such
that there are two arbitrary sequences σ′, σ′′, satisfying σ′ � σ, σ′σ′′ � σ,P(σ′σ′′) =
w, M̃0[w〉M̃, and |E(w, M̃)| = 1, but E(w, M̃) ∩Mc = ∅. Therefore, the net system is at
least periodically weakly detectable.

Proposition 4. Given a detectable UPN (N, M0) with the acyclic truly unobservable subnet and
its BCG C ′, the unbounded system is not C-detectable if, for an arbitrary partial marking M̃,
θ(M̃) = 0.

Proof. For a BCG of a detectability unbounded net system, if the binary scalar θ(M̃) of
a node (M̃, ϕ(M̃), θ(M̃)) is 0, this means that there does not exist any marking that belongs
to the set of crucial markings. By Definitions 10–13, the unbounded net system is not
C-detectable.

In addition, a revised automaton is used to construct an observer C ′o = (Y , Tq, f ′o, Y,Ym),
where Y ⊆ 2Y is a set of states, Y is the initial state, Ym ⊆ Y is a set of marked states, and
f ′o ⊆ Y × Tq × Y is the transition relation. In this work, based on the above definitions
and descriptions, a set of marked states is defined as Ym = {y ∈ Y|y(2) = 0∧ y(3) = 1}.
For the verification of C-detectability, Definition 9 is still considered. For any cycle of the
observer, a new definition can be proposed as follows.

Definition 14. [29] Given a set of crucial markings Mc, a cycle γ ∈ Q in observer C ′o =
(Y , Tq, f ′o, Y, Ym) is said to be:

1. Unambiguous with respect toMc if for all y ∈ γ, y ∈ Ym;
2. Semi-unambiguous with respect toMc if there exists y ∈ γ, y ∈ Ym;
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3. Ambiguous with respect toMc if for all y ∈ γ, y /∈ Ym.

Based on the above necessary and sufficient conditions of strong detectability, weak
detectability, periodically strong detectability, and periodically weak detectability, the
method for verifying C-detectability will be derived and proven.

Corollary 5. Given a detectable UPN (N, M0) in which the truly unobservable subnet is acyclic
and its BCG C ′, the unbounded net system 〈N, M0〉 is strongly C-detectable if and only if, in its
BCG-based observer, for all γ ∈ Q, γ is unambiguous.

Proof. (⇐) Given an arbitrary cycle γ ∈ Q, if there exists any node y ∈ γ and y ∈ Ym,
i.e., γ is an unambiguous cycle, then, for any partial marking M̃ in this cycle, there exists
a unique marking M belonging to E(w, M̃) that is also a crucial marking. Therefore, this
detectable unbounded net system is strongly C-detectable.

(⇒) We assume that there exists an ambiguous cycle γ ∈ Q, i.e., there exists a node
y ∈ γ such that y(2) = y(3) = 0, and y /∈ Ym. This indicates that there is a partial
marking such that it is not detectable or C-detectable. Then, this system is not strongly
C-detectable.

In other words, an unbounded net system is strongly C-detectable if and only if, in its
BCG-based observer, the crucial marking can be only determined in the result of current
and subsequent state estimation in any cycle.

Corollary 6. Given a detectable UPN (N, M0) in which the truly unobservable subnet is acyclic
and its BCG C ′, the unbounded net system 〈N, M0〉 is weakly C-detectable if and only if, in its
BCG-based observer, there exists γ ∈ Q and γ is unambiguous.

Proof. (⇐) We assume that there is a cycle γ ∈ Q such that, for arbitrary node y ∈ γ, we
have y(1) = M̃, y(3) = 1, and y ∈ Ym. In other words, the cycle γ is an unambiguous cycle.
This means that there only exists a marking M concerning M̃ and M is a crucial marking.
Therefore, the unbounded net system is weakly C-detectable.

(⇒) By contraposition, for any arbitrary cycle γ ∈ Q, we assume that there is at least
one node y ∈ Y in the cycle such that y /∈ Ym, i.e., γ is ambiguous. This indicates that, for
an arbitrarily detectable cycle, there does not exist any crucial marking. Therefore, this
unbounded net system is not weakly C-detectable.

In other words, an unbounded net system is weakly C-detectable if and only if, in
its BCG-based observer, the crucial marking can be only determined through the result of
current and subsequent state estimation in at least one cycle.

Corollary 7. Given a detectable UPN (N, M0) in which the truly unobservable subnet is acyclic
and its BCG C ′, the unbounded net system 〈N, M0〉 is periodically strongly C-detectable if and only
if, in its BCG-based observer, for all γ ∈ Q, γ is semi-unambiguous.

Proof. (⇐) Given an arbitrary cycle γ ∈ Q, if there is at least one node y ∈ γ such that
y ∈ Ym, i.e., γ is a semi-unambiguous cycle, there is a quasi-observable string w ∈ T̂q
such that M̃[w〉M̃, |E(w, M̃)| = 1 and E(w, M̃) ∩Mc 6= ∅. Therefore, this unbounded net
system is periodically strongly C-detectable.

(⇒) By contraposition, we assume that there is a cycle γ ∈ Q such that any node y ∈ γ
does not belong to Ym, i.e., y(3) = 1. This means that all cycles are not semi-unambiguous
cycles. Therefore, the unbounded net system is not periodically strongly C-detectable.

In other words, an unbounded net system is periodically strongly C-detectable if and
only if, in its BCG-based observer, the crucial marking can be only determined through the
result of periodic current state estimation in any cycle.
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Corollary 8. Given a detectable UPN (N, M0) in which the truly unobservable subnet is acyclic
and its BCG C ′, the unbounded net system 〈N, M0〉 is periodically weakly C-detectable if and only
if, in its BCG-based observer, there exists γ ∈ Q and γ is semi-unambiguous.

Proof. (⇐) Given a cycle γ ∈ Q, if there is at least one node y ∈ γ such that y ∈ Ym,
i.e., y(1) = M̃ and y(3) = 1, there only exists a marking M with respect to M̃, and the
marking M belongs to the set of crucial markings. Then, the cycle γ is a semi-unambiguous
cycle, and the unbounded net system is periodically weakly C-detectable.

(⇒) By contraposition, for a cycle γ ∈ Q, assume that any node y ∈ γ does not
belong to Ym, i.e., y(1) = M̃ and y(3) = 0. This means that there is at least one marking M
concerning M̃, and M is not a crucial marking. Therefore, the unbounded net system is not
periodically weakly C-detectable.

In other words, an unbounded net system is periodically weakly C-detectable if and
only if, in its BCG-based observer, the crucial marking can be only determined by the result
of the periodic current state estimation in at least one cycle.

6. Real-World Examples

In this section, two real-world examples are proposed. Based on these examples, the
necessity and importance of verifying the detectability of unbounded net systems can be
further explained.

6.1. A Public Service Department

As shown in Figure 7, it is a service system for a public service department. When
customers arrive at the department, they wait in line and are then led by a staff member to
handle the business. Two business jobs can be handled in this department: all customers
want to do the final business. However, when the customer’s conditions do not meet the
requirements, it is necessary to apply for intermediate business before solving the final
business. The customers will leave when all business jobs are complete. The staff will
receive the next customer. Furthermore, each business job is assigned to a corresponding
manager (or observer) to manage. Managers can see the status of the business jobs in
their jurisdiction.

Figure 7. A processing system of a public service department.
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As shown in Figure 8, the system is modeled by an unbounded Petri net. For the man-
ager of the final business, he or she can only observe the change of tokens in places po1, po2,
and po3. Therefore, places {po1, po2, po3} are observable. Places puo1 and puo2 are unobserv-
able. The set of quasi-observable transitions can be inferred as {t1, t2, t5, t6}. Its coverability
graph is shown as Figure 9, where a marking is denoted as M = (po1, po2, po3, puo1, puo2)

T .
Therefore, a mapping matrix A3 by this manager is assumed to be

A3 =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

.

ω

po1t1

po3 t2
puo1 t3

puo2

t4po2 t5t6

Figure 8. A partially observed unbounded Petri net.

M0 = (ω, 0, 1, 0, 0)T

M1 = (ω, 0, 0, 1, 0)T

M2 = (ω, 0, 0, 0, 1)T M3 = (ω, 1, 0, 0, 0)T

t4

t6

t1

t1

t1 t1

t2

t3 t5

Figure 9. A coverability graph of unbounded net system.

All meanings of each place and transition are listed in Tables 1 and 2, respectively.
Figure 10 is the BCG by using the partial markings. Let the set of crucial states be
Mc = {M3}, i.e., the customer is in the critical state when processing the final business.
Figure 11 is the BCG-based observer by using a reversed automaton.

Table 1. Meaning of places.

Places Meaning

po1 Number of waiting customers
po2 Number of customers in the final process
po3 Number of staff members
puo1 Evaluate whether the intermediate process is needed
puo2 Number of customers in the intermediate process
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Table 2. Meaning of transitions.

Transition Meaning

t1 Customer arrival
t2 Start handling business
t3 Start handling intermediate business
t4 Finish handling intermediate business
t5 Start handling final business
t6 Finish handling intermediate business and the customer has left

A situation can be noted that there exists an infinite cycle t∗1 such as t∗1 , t2t∗1 , and so on.
There does not exist any crucial marking in these cycles. Therefore, this unbounded net
system is not strongly C-detectable and periodically strongly C-detectable.

However, if the system administrator observes a string t2t5t∗1 , he or she can determine
that the current and subsequent marking is always M3. Therefore, this unbounded net
system is weakly C-detectable. In addition, if the system administrator observes a string
(t2t5t6)

∗, he or she can periodically determine the crucial marking M3. In this case, this
unbounded net system is also periodically weakly C-detectable.

M̃0 = (ω, 0, 1)T

M̃1 = (ω, 0, 0)T

M̃2 = (ω, 1, 0)T

t6

t1

t1

t1

t2

t5

Figure 10. A BCG of unbounded net system.

Based on the above descriptions, a conclusion is reached that the concept of C-
detectability can be applied to real life. This system reflects the steps and procedures
of its daily work. The middle manager (for example, the observer of the final business)
knows the system’s overall structure. Still, he or she cannot infer all the evolution informa-
tion of the system, e.g., he or she cannot decide in which step each customer has handled
business. C-detectability can help the middle manager of the system understand the critical
information of the system.

(M̃0, 0, 0), (M̃1, 1, 0), (M̃2, 0, 1)

(M̃0, 0, 0)(M̃1, 1, 0) (M̃2, 0, 1)

t2

t1

t1t1

t1

t6t2 t5
t5 t6

Figure 11. BCG-based observer of the net system.
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6.2. A Supply Chain System

In practical industrial practice and applications, compared with bounded Petri nets,
supply chain processes and industrial logistics systems are more suitable for modeling and
analysis using unbounded Petri nets, as there is no upper limit on the number of orders
from customers or goods that need to be transported by ship. Therefore, a supply chain
system model of a company [39,40] using unbounded net systems will be more universal.

The overall process of a company’s supply chain is considered in this example. The
supply chain process of this company involves personnel such as clients, sales, design,
finance, production, and bins. The information exchange between personnel is shown in
Figure 12, where Table 3 describes the working relationships between all departments in
this supply chain process. First, there is order information between clients and sales, com-
munication between sales and design personnel for product design needs, the interaction
between sales and finance for accounting verification, and the transmission of a series of
information related to product production between production and bins. Finally, the clients
settle the accounts with the financial personnel after receiving the goods.

Design

Sales

Finance Clients

Bin

Production

a

b

c
d

f
e

i j
g

h

Figure 12. A company’s supply chain process.

Table 3. Meaning of events.

Events Meaning

a Sales department sends a requirement to design department
b Reconciliation between sales and finance departments
c Finance department sends the bill to clients
d Clients make payment
e Transports
f Clients propose product requirements to the sales department
g Notify production
h Obtain production status
i Purchase
j Producing

Based on the above supply chain process, as shown in Figure 13, a Petri net is used
for modeling. Tables 4 and 5 list the specific meanings of each place and transition,
respectively. A phenomenon can be detected, by a department manager (or middle-
level manager); he or she can only detect the status of his or her department (or part
of the business) in the system, and he or she is not clear about more details of the en-
tire process. The middle-level manager can only see that the tokens in the places in
{po1, po2, po3, po4, po5, po6} have changed, and based on this, he or she speculates that the
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events represented by the transitions in {tw, t1, t3, t4, t5, t8, t9, t10, t12, t13} have occurred.
In other words, in this system, the places in {po1, po2, po3, po4, po5, po6} are observable;
those in {puo1, puo2, puo3, puo4, puo5, puo6, puo7, puo8, puo9} are unobservable; the transitions
in {tw, t1, t3, t4, t5, t8, t9, t10, t12, t13} are inferred as quasi-observable transitions.

tw

w po1

t1

puo1

t2

puo2

t3

po2

t4

t5

puo3

t6

puo4

puo5

t7 t8

po3

puo6

t9

puo7puo8

t10

po4

t11

puo9

t12

po5

t13

po6

Figure 13. A Petri net model of a supply chain system.

Table 4. Meaning of transitions.

Transition Meaning

tw Clients’ arrival
t1 Received clients’ demand
t2 No appropriate product design exists
t3 Update product design
t4 Appropriate product design exists
t5 Quotation
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Table 4. Cont.

Transition Meaning

t6 Issue notification
t7 Prepare production schedule
t8 Collect clients’ deposit
t9 Inventory counting
t10 Basic processing of Product A
t11 Procurement completed
t12 Final processing
t13 Product outbound

Table 5. Meaning of places.

Place Meaning

po1 Clients
puo1 Product Library
Puo2 Product design
po2 Clients
puo3 Formal contract
puo4 Finance department
puo5 Production department
po3 Deposit notice
puo6 Production plan
puo7 Production method of Product A
puo8 Purchase order of Product B
po4 Purchase order of Product A
puo9 Purchased products of Product B
po5 Finish product
po6 Clients pay final payment

The overall evolution process of the supply chain system can be represented by the
coverage graph in Figure 14, where a marking is denoted as M = (po1, ..., po6, puo1, ..., puo9)

T ,
as shown in Table 6. The evolutionary details observed by department managers (or middle-
level managers) can be represented by the BCG shown in Figure 15, where a list of all
partial markings is shown in Table 7, and the mapping matrix A4 by this manager can be
assumed to be:

A4 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0


.
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M0

M1 M2

M3

M4

M5

M6 M7

M8

M9

M10 M11

M12

M13

t13

tw

tw

tw

tw

tw

tw

tw

tw

tw

tw

tw

tw

tw

tw

t1 t2

t4 t3

t5

t6

t8
t7

t7 t8

t9

t11
t10

t10 t11

t12

Figure 14. A coverability graph of a supply chain system.

Table 6. Table of markings.

Index Marking

M0 (ω, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

M1 (ω, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)T

M2 (ω, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)T

M3 (ω, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

M4 (ω, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)T

M5 (ω, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0)T

M6 (ω, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)T

M7 (ω, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0)T

M8 (ω, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)T

M9 (ω, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0)T

M10 (ω, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1)T

M11 (ω, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)T

M12 (ω, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)T

M13 (ω, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T
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M̃0

M̃1

M̃2 M̃3 M̃4

M̃5

t13

t6

tw

tw

tw tw

tw

tw

t1

t4 t8 t9 t10

t12

Figure 15. A BCG of a supply chain system.

Table 7. Table of partial markings.

Index Partial Marking

M̃0 (ω, 0, 0, 0, 0, 1)T

M̃1 (ω, 0, 0, 0, 0, 0)T

M̃2 (ω, 1, 0, 0, 0, 0)T

M̃3 (ω, , 0, 1, 0, 0, 0)T

M̃4 (0, 0, 0, 1, 1, 0)T

M̃5 (ω, 0, 0, 0, 1, 0)T

Based on the Petri net model, its coverability graph, and the BCG, the markings M0, M2, M12
can be decided to be the crucial markings, i.e.,Mc = {M0, M2, M12}. In other words, the
management of this company may hold that sensitive information belongs to the company
when there are new clients, when the company makes new product designs, or when the
semi-finished products have been completed and the finance department has negotiated
with the clients.

Moreover, as shown in Figure 16, a BCG-based observer for C-detectability is con-
structed to verify the detectability and C-detectability. In this observer, for an arbitrary-
length cycle M̃0[t∗wt1〉M̃1[t∗w〉, the current state estimation always fails to obtain a unique
result. In other words, this system is not strongly detectable. However, there exists another
arbitrary-length cycle, i.e., M̃0[t∗w〉M̃0 holds. This indicates that the result of current state
estimation is always M0, i.e., ϕ(M̃0) = 0. Therefore, this system is weakly detectable. In
addition, the manager can always detect that the initial marking has been reached periodi-
cally after observing an event “Product outbound”, i.e., transition t13, is fired. Therefore,
this system is also periodically weakly detectable.

On the other hand, for the verification of C-detectability, the manager knows that
this system is weakly and periodically weakly detectable, and the initial marking M0 is
crucial. In simple words, based on the above descriptions of C-detectability, this manager
can conclude that this system is also weakly and periodically weakly C-detectable.
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(M̃0, 0, 1), (M̃1, 1, 1),
(M̃2, 0, 0), (M̃3, 1, 0),
(M̃4, 1, 1), (M̃5, 0, 1)

(M̃0, 0, 1)

(M̃1, 1, 1)

(M̃2, 0, 0) (M̃3, 1, 0)

(M̃5, 0, 1)

(M̃4, 1, 1)
t4

t10

t8

t13

t1 t13

tw

tw

tw

tw tw

tw

twt1, t6,
t9

t4
t8 t10

t12

t9t6 t12

Figure 16. A BCG-based observer of supply chain system.

6.3. Discussion

Based on the examples, a certain commonality can be noticed: For many middle-level
managers, even if they know the structure of the system, they cannot know the current
overall system evolution. Using some observable places to estimate the current state, the
managers are able to prepare for the upcoming work in advance. This can greatly improve
work efficiency by reducing the time required for preparatory work.

For the system designer, he or she uses all the parameters in the system for modeling.
They can model and analyze the parameters in the actual process, such as the arrival and
departure of customers, the corresponding number of people, the number of machines,
and the running process. By using Petri nets to model these parameters, designers can
have a clearer understanding of the small changes in various parameters during system
operation, generally, achieved through changes in the number of tokens.

7. Comparison and Drawbacks

This section presents a comparison with the previous works. The similarities and
differences between the current study and previous works are emphasized in this part.
After that, this work is summarized with the drawbacks faced so far.

7.1. Comparison with Previous Work

Compared with the studies in [6,28,29], the current work is the first to extend the
concept of detectability to DESs modeled by a UPN.

The present work has similarities with the previous studies in [28] and [29], i.e., to
effectively analyze a system, it is imperative to use a bounded or unbounded Petri net and
construct the corresponding basic reachability or coverability graph. This graph serves
as an essential tool for accomplishing the task of current state estimation. On the other
hand, the number of either basis markings or partial markings is always less than or equal
to the number of markings. Since the construction of basis reachability (or coverability)
graphs is similar, the computational complexity of these methods is approximate. The
difference among these works are that there are no unobservable places in [28] and [29],
and the system administrators only need to determine the basis marking of the system.
Furthermore, based on the method proposed in this work, some examples were provided to
illustrate the application scenarios of detectability. The utilization of unbounded Petri nets
also demonstrated their superior modeling effectiveness for various complex situations.
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7.2. Drawbacks of This Work

It is essential to acknowledge that this study possessed certain inherent drawbacks,
which may hinder its suitability for certain specialized cases. These drawbacks can be
further considered and addressed in future work:

1. This work assumed that all systems do not have a cycle consisting of truly unob-
servable transitions; in other words, the method proposed in this work cannot verify
detectability when there is a truly unobservable cycle. However, in the context of
previous studies on the verification of the diagnosability, opacity, and detectability
of DESs based on automata [3,6,41,42] or Petri nets [5,8,14,37], many studies have
pointed out that an unobservable cycle cannot exist in the system. The corresponding
problem of inaccurate state estimation would be interesting and challenging.

2. This work assumed that all observations are accurate and reliable. However, in
practice, the data or results that we can observe are not always accurate due to
possible error problems in the transmission of measurement signals or the tampering
of data by trespassers. Therefore, it will be equally interesting to propose a solution to
the system facing the above situation in the subsequent work.

8. Conclusions

In this paper, detectability and C-detectability were investigated in discrete event
systems. A class of unbounded Petri nets was considered to model the DESs, i.e., only
partial places can be observed and detected. Correspondingly, a basis coverability graph
and its BCG-based observer are constructed to improve the verification method of de-
tectability by using partial markings, quasi-observable transitions, and truly unobservable
transitions. In this paper, the sufficient and necessary conditions of strong detectability,
weak detectability, periodically strong detectability, and periodically weak detectability
were proposed based on the BCG. An example was presented to illustrate that the proposed
approaches are practicable. We proved that C-detectability can also be used for unbounded
net systems. Finally, two real-world examples were proposed. These examples indicated
that detectability and C-detectability are significant in solving practical problems.

In the future, our research planning still will include unbounded Petri nets and their
BCGs. Using the BCGs, we will address the problem of the initial state estimation [23] and
k-step or infinite-step opacity verification [32] of discrete event systems.
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