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Abstract: Type I diabetes mellitus is a serious autoimmune condition impacting a large population
around the world that need a daily infusion of insulin substitutes to regulate blood glucose levels
within healthy limits. The purpose of the study was to design a robust µ-controller based on
an uncertain linear-time invariant (LTI) representation of the Hovorka model for glucose–insulin
metabolism. The model set was obtained using linearization around an equilibrium point and adding
parametric uncertainty to account for the time delay variation between plasma glucose concentration
and its subcutaneous measurement. As a result, the robust stability and performance of the closed
loop were proved using the structured singular value µ. The performance of the designed controller
was also checked with a numerical simulation in connection with the nonlinear model.
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1. Introduction

Glucose has a primary place in energy metabolism as an initial substrate for glycolysis.
Glycolysis in conjunction with the Krebs cycle is the basic catabolic pathway, producing
nicotinamide adenine dinucleotide (NADH). NADH is used in processes of oxidative
phosphorylation, which generates adenosine triphosphate (ATP)—the main energy source
required for cell biochemical reactions. On the other hand, glucose is a major precursor
for the synthesis of different carbohydrates such as glycogen, glycolipids, glycoproteins,
and proteoglycans [1]. The transport of glucose across cell membranes is facilitated by a
large group of receptors called glucose transporters (GLUTs). Some GLUT receptors are
unidirectional and concentration-dependent—such as GLUT3 expressed in neuron cells.
Bidirectional GLUT3 receptors are expressed in liver cells and pancreatic beta cells. Skeletal
and cardiac muscle cells, as well as adipose tissue cells, express the insulin regulated
GLUT4 receptor. Maintaining glucose homeostasis is an essential feature of adaptation
for all mammals, and it is a critical requirement for normal body function and organism
survival. Homeostatic mechanisms are mediated by various hormones and neuropeptides,
released by the brain, pancreas, liver, intestine, etc. The most important regulators are
the hormone insulin and its antagonist glucagon, both of which are secreted from the
pancreatic beta cells, located in the so-called Langerhans islets.

Type 1 diabetes is a chronic autoimmune disease, characterized by the T-cell-mediated
destruction of insulin-producing β cells in pancreatic islets, that results in insulin defi-
ciency [2,3]. Subjects with type 1 diabetes lack the ability for natural insulin secretion and
need an intake of synthetic insulin replacement therapy administered subcutaneously or,
in case of emergency, intravenously. Serious life-treating complications of type 1 diabetes
associated with hyperglycemia are diabetic ketoacidosis, hyperosmolar hyperglycemic
state, etc. On the other hand, a hypoglycemic period can also be dangerous, leading to
unconsciousness, seizures, and others. Late complication of type 1 diabetes associated
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with poor control of blood glucose levels is categorized as microvascular (retinopathy,
nephropathy, and neuropathy) and macrovascular (cardiovascular disease, cerebrovascular
disease, and peripheral vascular disease).

The concept of an artificial pancreas (AP) system has been investigated for several
decades, with many successful experiments in clinical trials or in field applications. The de-
velopment of AP systems started with intravenous administration prototypes, which give
fast and robust response [4]. The invasive nature of intravenous intervention limited the
practical application of such systems in the past. With the appearance of subcutaneous
glucose-monitoring sensors [5] and insulin-delivery pumps [6], the potential for the devel-
opment of a wearable extracorporal AP system is increased. However, the subcutaneous
sensing and delivery path introduce additional absorption delay in the control system,
which fundamentally limits the achievable regulation performance [7]. The main problem
with the subcutaneous AP system is that insulin already administered cannot be removed,
which can easily cause under-regulation after meals and, hence, hypoglycemic periods.
A critical in measure to reduce such effects is to use next-generation short-acting insulin [8].
Some AP systems benefit from dual hormone control algorithms using glucagon to coun-
teract insulin with a structure from three controllers for basal delivery, aggressive insulin
and glucagon controller to prevent hypoglycemia [9]. An alternative approach to CGM
can be found in [10], proposing an integrated islet-based biosensor to mimic the inborn
regulation capabilities.

The AP system is obviously within the framework of feedback control theory and
poses an interesting challenge where various methods can be effectively applied. There
are a couple of notable practical applications for AP systems, an open source project
OpenAPS [11], Medtronic MiniMed [12], Nightscout [13], and intelligent control assistant
for diabetes (INCA) [14]. Authors in [15] clinically evaluate a system that integrates a
control algorithm with standard subcutaneous sensors and pumps with the implementation
of an adaptive PD controller. However, introduction of novel algorithms for glucose
regulation in medical trial is approached with caution; for example, Ref. [16] gives an
extensive review of the possible hazards associated with the closed-loop AP system with
respect to physiological changes in the patient. An established benchmark for testing a
developed control system is the UVa/Padova large-scale simulator [17] for type 1 diabetes
treatment. The American Food and Drug Administration (FDA) has established that
Padova simulator results can be used as a substitute for pre-clinical animal model studies.

Since the primary exogenous disturbance in the AP system is the meal intake, from a
control perspective, it would be most beneficial to assume that the treated subject is an-
nouncing their meals around 15 min in advance by specifying the equivalent amount of
carbohydrate units for the meal. In response, the AP system would calculate the appro-
priate dose of bolus to be administered. The meal announcement could be prone to errors
in practical applications and requires considerable discipline from the subject. There have
been many attempts to design an AP system for unannounced meals. For example, Ref. [18]
used a fifth-order switched glucose model to build an extended meal disturbance observer.
The resultant control system shows good performance in the A and B zones in the control
variability grid analysis (CVGA) plot. Insulin delivery is a continuous working system that
must be robust to model uncertainty or intersubject variability. Also, Ref. [19] developed
a meal-detection algorithm applying an unscented Kalman filter to a Bergman glucose
model which successfully detects meals and snacks to administrate the boluses in case of
unannounced meals and prevent hyperglycemia. Ref. [20] propose a closed-loop design
that operates in a fully automated fashion, without requiring manual meal announcements.
Authors in [21] attempted a novel approach using reinforcement learning techniques based
on a temporal cost function with discount factors reflecting the individual’s specific phar-
macological characteristic. The aim of the algorithm is to handle unannounced meal intake,
which was investigated in Padova simulations. In [22], a novel event-triggered modification
of model predictive techniques was applied, which ensures glucose regulation within safe
limits. Control approaches extending the conventional PID controllers are also possible;
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for example, Ref. [23] implemented multiple-model PID control tuned with a genetic opti-
mization algorithm. The weighting between multiple controllers was decided with a fuzzy
gain scheduling strategy. An additional onboard insulin constraint and pump stopping
are described as safety mechanisms. Insulin activity can vary depending on time of day,
other health conditions, and physical exercise. The topic of model-based anomaly detection
in AP systems based on machine learning is also present in research [24]. The common
logic for designing AP systems in the presence of long delays is to estimate blood glucose
and blood insulin concentrations from the subcutaneous measurements and also to pre-
dict the future insulin activity and insulin on board. There are successful studies with
zone model predictive control [25]. The response of the subcutaneous glucose sensor is
typically modeled as a first-order transfer function, with the impact of absorption lag on
sensor precision [26]. The lag from subcutaneous insulin administration is approximately
90 min–50 min for insulin absorption, 30 min for insulin action, and 10 min for glucose
measurement [27]. One approach to modeling the dynamic of such a lagged process is
through delayed differential equations [28].

There are some important results in the literature concerning the robust control of AP
systems. Reference [29] is similar to the present work through its use of the µ-synthesis
technique, assuming bounded variation in several meaningful physiological parameters.
The controller design was carried out on the basis of the Sorensen pharmacokinetic model,
assuming relatively large uncertainty bounds in four parameters. The results of this
paper provide a promising indication that the µ-controller is an appropriate approach for
calculation of the insulin infusion rate. The difference with the present work is that we
use a new uncertainty model where we take into account the variability of the glucose
measurement dynamics. The authors of [30,31] use the model from the first version of
the UVa/Padova simulator, which is of the 13th order with respect to insulin infusion.
The controller design is achieved through closed-loop H∞ norm minimization. It is well
known that such an approach does not guarantee the robust performance of the closed
loop by design and may require the optimization problem to be solved multiple times
to obtain robustness. In [32], a multi-objective H2/H∞ design is employed. The solution
to the optimization problem is obtained with the help of linear matrix inequality (LMI)
methods. The obtained results are acceptable. However, in contrast to the model utilized in
the present paper, the authors there use a low-order Bergman model.

The purpose of the present research was to characterize uncertainty of one of the
commonly employed pharmacokinetic models with a bounded model set that accounts
simultaneously for the sensor lag and the intersubject variability. Then, using the recent
results from robust control theory, we designed a state feedback controller minimizing the
structured singular value µ of the closed-loop system to achieve robust stability and robust
performance. The resultant controller is from the 24th dynamic order. Its performance is
verified for the adult population from the UVa/Padova simulator. Because the obtained
controller is of a relatively high order, based on its Hankel singular values, we reduced its
order to 10th. The reduced-order controller still preserves the robust performance of the
closed-loop system, even when tested with a nonlinear model simulator from UVa/Padova.

Section 2 presents briefly the nonlinear Hovorka model, Section 3 extends it with an
uncertain element in order to convert it into a model-set, Section 4 details the synthesis of
the µ-controller using mixed-sensitivity weighting, and Section 5 presents the results from
simulation with the Hovorka model and with the UVa/Padova simulator.

2. Nonlinear Glucose Metabolism Model

Since the µ-control design is a model-based procedure, we start with a mathematical
formulation of glucose–insulin dynamics. There are various models employed in the field
of AP system analysis and design—Hovorka [33], Bergman [34], etc. A key challenge
is model parameter estimation, which can be approached using the methods of system
identification theory; for example, Ref. [35] employs weighted recursive least squares
to estimate an individual model of the treated subject with guaranteed stability. The
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Hovorka model was developed as a predictive model for subjects with type 1 diabetes with
prescribed insulin replacement therapy with a short-term acting Lispro. It characterizes
glucose-insulin dynamics as a two-compartment pharmacokinetic model incorporating
gut absorption dynamics obtained from the intake of carbohydrates, subcutaneous insulin
absorption dynamics, insulin interaction with the plasma glucose, and rate of endogenous
glucose production. The two compartments in the model are the subcutaneous fluid and
the plasma. Furthermore, the model specifies the kinetic rates of species transfer between
the compartments.

Here, we translated one version of the Hovorka model into a system of state space
equations in Cauchy form. The state vector of the model is described in Table 1. The
second-order gut absorption dynamics with states x1 and x2 is

ẋ1 = −τ−1
D x1 + KAG MG d(t)

ẋ2 = −kg x2 + (τ−1
D VG) x1

, (1)

with d(t) being carbohydrate (CHO) intake rate in g/min per kg of body weight. From the
control perspective, d(t) represents an exogenous disturbance variable. It depends on
meal intake even though it can be assumed to a certain extent based on the subject meal
announcement. Otherwise, it can be regarded as a stochastic signal with impulse-like
nature. The subcutaneous insulin infusion is also a second-order model with states x3
and x4

ẋ3 = −τ−1
S x3 + u(t)

ẋ4 = −ke x4 + (τSVI)
−1 x3

, (2)

where u(t) represents the insulin replacement infusion rate in insulin units (IUs) per
minute. The signal u(t) is the manipulated variable in the system, and it is calculated by
the controller. Conventional AP controllers, which are heuristically tuned, assume that
the control signal is composed of basal and bolus components to mimic the physiological
manner of insulin regulation. However, we assume basal infusion, since that will not make
a difference from mathematical perspective for the µ-controller design.

The nonlinear part of the model concerns the interaction between glucose and insulin.
The glucose concentration is presented in the extracellular fluid as a state x6 and in the
plasma as a state x5

ẋ5 = kg x2 − F01,c − x5 x7 + k12 x6 + SEGP(t)
ẋ6 = x5 x7 − k12 x6 − x6 x8

. (3)

The nonlinearity in this model, as in many metabolic models, arises from the multiplicative
terms correlating amplitudes of 2 states—in this case, x5x8 and x6x9. This reflects a pharma-
cokinetic law that the reaction rate between 2 species is proportional to their concentration.
The term F01,c = F01x5/(1 + x5) represents glucose elimination due to glycolysis. From a
control theory perspective, this is a smooth nonlinearity and can be well approximated
with first-order Taylor expansion for a fixed regulation point. The term

SEGP(t) = SEGP,0(1− (tanh(2.6518(x9(t)− 0.5)) + 1)/2), (4)

represents the endogenous glucose production (EGP) rate, and its form is slightly modified
from the original Hovorka model, where it has a point with a discontinuous derivative. Hence,
we approximated the nonlinearity with the help of the tanh function, which is differentiable.

The final component in the model describes the insulin activity with states x7, x8, and
x9 for disposition, disposal, and EGP, respectively, as

ẋ7 = −ka,1 x7 + kb,1 x4
ẋ8 = −ka,2 x8 + kb,2 x4
ẋ9 = −ka,3 x9 + kb,3 x4,

(5)
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Table 1. Model state variables.

Variable Symbol Unit

Gut CHO x1 mmol
Plasma CHO x2 mmol/L

Subcutaneous insulin x3 IUs
Plasma insulin x4 IUs/L
Plasma glucose x5 mmol/L

ECF glucose x6 mmol/L
IA on glucose distribution x7 L/min

IA on glucose disposal x8 L/min
EGP rate x9 mmol/min

CHO—carbohydrate concentration, ECF—extracellular fluid, EGP—endogenous glucose production, IA—
insulin action.

The numerical values of the model parameters assumed for an average adult subject,
together with their physical units are summarized in Table 2. The numerical values of these
parameters may exhibit intersubject variability or even interday variability for a single
subject. Estimation of these parameters and their deviations is an interesting problem
and certainly influences the robustness of the AP system. But a researcher may easily be
misguided by considering independent uncertainty variations in all these parameters at the
same time. The sensitivity of the glucose concentration to any of them has to be examined
concerning the internal feedback loops in the model and with respect to the external insulin
infusion rate controller, since this feedback will reduce sensitivity of the closed-loop system
to uncertainty variations. Finally, in many cases, parametric variations in a model can be
represented as an equivalent signal disturbance acting on the output or input of the system.

Table 2. Model parameters.

Parameter Symbol Unit Value

Transfer rate k12 L/min 0.066
Deactivation rate ka,1 L/min 0.006
Deactivation rate ka,2 L/min 0.06
Deactivation rate ka,3 L/min 0.03

Insulin transport sensitivity SI,1 L/U 5.12
Insulin disposal sensitivity SI,2 L/U 0.82

Insulin EGP sensitivity SI,3 L/U 52.0
CHO metabolic rate ke L/min 0.033

CHO absorption timeconstant τD min 30.0
Insulin absorption timeconstant τS min 60.0

CHO utilization KAG - 0.8
Glucose equivalent per unit CHO MG mmol/g 6.94

Glucose distrib. volume VG L 11.2
Insulin distrib. volume VI L 8.4
Glucose consumption F0,1 mmol/min 0.679

Liver glucose production SEGP,0 mmol/min 1.127

3. Uncertain LTI Model

The nonlinearity in the Hovorka model from the previous section is concentrated in
the equations for plasma and subcutaneous glucose concentrations. The rest of the model
equations are linear. The design of the µ-controller requires an uncertain LTI representation
of the system. We convert the Hovorka model to such representation using two steps.
First, we linearize the model using analytic Taylor approximation around the operating
point. And second, we introduce an additional equation to the model reflecting the major
difficulty in the AP systems, i.e., the delay between plasma glucose concentration and its
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subcutaneous measurement. The linearization is performed for an operating point with the
following coordinates

x0 = (4.2, 4.2, 0.173, 0.173, 10.2, 10.2, 645, 6450, 16.1)T (6)

and the resultant linearized model is in the following matrix-vector form

~̇x(t) = A~x(t) + Bu(t) + Gd(t)
y(t) = C~x(t)

(7)

where the matrices A ∈ R9x9, B ∈ R9x1, C ∈ R1x9, and G ∈ R9x1 are of suitable dimensions.
To account for the uncertain time delay in the system, we assume a single uncertain

parameter Tunc ∈ [10, 100] with a nominal value of Tunc = 50 min. Therefore, the linearized
model is extended with one additional equation

ẋunc(t) = −
1

Tunc
xunc(t) +

1
Tunc

x5(t). (8)

This essentially extends the dynamic model between plasma and ECF glucose concentration.
The uncertainty of this parameter transforms the linearized model into a model setM,
accounting for all possible values in the Tunc range. Then, we can extend model (3) with
the state xunc (

ẋ(t)
ẋunc(t)

)
=

(
A 0

T−1
unc C T−1

unc

)(
x(t)

xunc(t)

)
+

(
B
0

)
u. (9)

The disturbance signal d, that represents the carbohydrate intake rate, is dropped from
the model at this stage. The reasons for this are as follows. The equivalent effect of the
disturbance d over the BG concentration y can be represented with a transfer function Tyd(s),
extracted from the linearized model, such that y(s) = Tyu(s)u(s) + Tyd(s)d(s). As can be
seen, the signal d(t) can be thought of as output (loading) disturbance over the closed-loop
system, weighted by the transfer function Tyd(s). The actual response of the closed-loop AP
system to this disturbance will be determined by the output sensitivity function of the loop
So = (I + Tyu K)−1, which depends only on the open loop transfer function Tyu and on the
controller K but not on the weighting filter Tyd. In addition, from fundamental closed-loop
relations, minimization of the effect of loading disturbance is equivalent to a reduction
in the tracking error of the system e = r − y between the target BG concentration r and
the measured one y. The role of the weighting filter Tyd is then only to impose some band
limiting action over the frequency spectrum of the meal intake disturbance. Due to the
intersubject variability, the Tyu in practice will incorporate additional uncertain elements;
however, the inclusion of such additional uncertainty is not expected to significantly affect
the overall closed-loop performance.

After the extension of the model with the uncertain element xunc, the resultant output
signal will be produced as

y(t) = xunc(t). (10)

The model setM can be examined in the time and frequency domain by conducting random
sampling over the range of uncertain parameter Tunc to obtain a set of representative LTI
systems. The random sampling approach does not guarantee that minimal and maximal
deviations of the characteristics will be captured, but since such extremes will depend on
more complicated analytical examination, the random sampling approach is usually enough
for practical applications. Since the linearized model (3) is valid only for a deviations from
the operating point where BG levels are regulated, it can be conveniently examined in
frequency domain using the Bode diagram in Figure 1.
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Figure 1. Frequency response of the uncertain linearization of the Hovorka model from the insulin
rate to glucose concentration.

As can be seen, the effect of the uncertain parameter is evident in both magnitude
and phase responses of the uncertain LTI model. Since the parameter Tunc has a physical
significance as a time-constant, we observe its impact as a shift in the bandwidth of the
open-loop system, determined by the cut-off frequency. The impact of the uncertainty on
the magnitude response increases with the frequency, which, however, does not impose
any constraints on the achievable performance of the closed loop in the low-frequency
range. The impact of the uncertainty in the phase response is more pronounced and extends
around the cut-off frequency up to the low-frequency domain. The critical zone for system
stability and performance is the phase angle of −180◦, where it can be seen that phase
response uncertainty is accumulated. As long the phase response is associated with the
delay of the open-loop reaction to an applied input action, such uncertain delay can be
again related to the difficulties encountered in the conventional AP systems based on
subcutaneous CGM—even if the system is tuned to one subject, its response will not be
guaranteed across a larger group of individuals.

4. Mixed-Sensitivity µ-Controller Design

It was established that the main benefit of the feedback loop is that uncertainty of
the closed-loop system can be made smaller than the uncertainty of the open loop system.
A large variety of methods exist that properly capture the features of the underlying plant
uncertainty, and a controller has been proposed which can minimize the uncertainty effect
on the system performance. µ-synthesis is a powerful procedure that explicitly accounts
for the uncertain model parameters. The purpose of structured singular value µ is to
characterize the stability range of the M− ∆ configuration

µ∆(jω) =
1

min{σ(∆) : ‖∆‖∞ < 1, det(I −M(jω)∆) = 0} . (11)

M(jω) represents a deterministic LTI system connected in a feedback configuration with
a static matrix ∆ containing block diagonal uncertain elements. In other words, for each
frequency ω, µ(jω) is calculated as an inverse of the maximal singular value of the uncertain
block matrix ∆, which can drive the M− ∆ feedback loop at the stability bounds. If the
system possesses robust stability for a given frequency, then the value of µ < 1 for this
frequency because for all admissible values of the uncertain element ∆ with infinity norm
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smaller than the unit, the closed-loop configuration will have no poles with a real positive
part, i.e., will remain stable. In addition, the proximity of the µ value to the unit bound will
characterize the margin of robustness, or how much the uncertainty can be increased while
the system preserves stability. The structured singular value can be used also to characterize
system performance by reformulating performance requirements into stability ones.

The purpose of the µ design is to select the controller K such that the closed loop will
keep its stability and performance for all uncertainties ‖∆‖∞ < 1. With the help of lower
fractional transform (LFT) Fl , which represents the closed-loop interconnection between
the controller and the open-loop system, the design problem is expressed as

min
K
‖µ∆(Fl(M, K))‖∞. (12)

We sought an LTI controller K to minimize the peak value of the structured singular value µ,
hence maximizing the robust stability margins of the system with respect to the prescribed
uncertainty bounds in the model.

4.1. Model Transformations

For the described uncertain LTI model of the AP system, we have a single scalar
uncertain element ∆ ∈ [−1, 1], corresponding to the time constant Tunc. To show this, we
exploit the structure of the uncertain model (3) and convert it into the framework of robust
control theory [36,37], i.e., obtaining its M− ∆ representation. The goal in M− ∆ structure
is to decompose the system into deterministic and uncertain subsystems, such that all fixed
parameters are in a dynamic M subsystem, and all uncertain parameters are in a static ∆
block. First, let the uncertain term admit a representation

T−1
unc = T−1

unc + δ, (13)

where T−1
unc is equal to the central value in the range of the uncertain element T−1

unc, and the
deviation δ ∈ [δmin, δmax] is calculated such that the range of T−1

unc matches the range of
Tunc ∈ [10, 100]. Therefore,

T−1
unc = (min(T−1

unc) + max(T−1
unc))/2 = 0.055, (14)

δmin = min(T−1
unc)− T−1

unc = −0.045, (15)

δmax = max(T−1
unc)− T−1

unc = 0.045. (16)

The result of this representation is that we can additively separate the uncertain term from
the model Equations (3) such as(

ẋ
ẋunc

)
=

(
A 0

T−1
unc C T−1

unc

)(
x

xunc

)
+

(
0 0

Cδ δ

)(
x

xunc

)
+

(
B
0

)
u. (17)

Therefore, we can replace the term containing the uncertain element δ with a new external
signal y∆ = ∆uδ, where |∆| ≤ 1 is a static gain matrix (with dimension 1 in our case),
accumulating the uncertainty of the system. Therefore, the M− ∆ representation becomes(

ẋ
ẋunc

)
=

(
A 0

T−1
unc C T−1

unc

)(
x

xunc

)
+

(
0 B
1 0

)(
y∆
u

)
, (18)(

u∆
y

)
=

(
kδC kδ

0 1

)(
x

xunc

)
, (19)

where kδ = δ−1
min = δ−1

max is a scaling constant to map the range of parameter δ into the
range [−1, 1] (Figure 2). As can be seen, the resultant dynamic model does not contain any
uncertain elements. The uncertainty is represented as an external ∆ element interacting with



Mathematics 2023, 11, 3856 9 of 26

the model as a feedback generator of disturbances y∆. The participation of the uncertain
parameters in a feedback loop is a critical factor impacting the internal stability of the
modeled system, which in the case of AP can be interpreted in the line that there exists
some uncertainty in the organism which can determine the stability of the BG concentration.

For further analysis, we need the frequency domain representation of the above
relations, which can be obtained by taking the Laplace transform of both sides of the
equation and applying matrix inversion and multiplication formulas for block matrices
to obtain (

u∆
y

)
=

1

s− T−1
unc

(
kδ kδ s L(s)
1 T−1

unc L(s)

)(
y∆
u

)
, (20)

where L(s) = C(sI − A)−1B is the transfer function of the linearized model from the
previous section. It can be noted that the outputs of the model are filtered with a low-pass
filter with the pole at the center of the uncertainty range. The uncertainty term y∆ acts
additively over the BG output. The uncertain element ∆ of the open loop system is excited
by the rate of change in the BG; hence, when the BG rate is higher, we can be less confident
of the actual level of plasma glucose. In addition, the output of the uncertain block y∆ is
routed back to its input with a gain kδ, which could introduce further deviations in the
measured signal due to uncertainty, i.e., if the current output level is uncertain, the future
one will be even more so. This analysis is here to show that even with the introduction of a
single uncertain element Tunc in the model, we are able to account for a large spectrum of
dynamic phenomena.

M

K

r

y
e

u

We ze

Wu zu

D
u
D

y
D

Figure 2. Closed-loop interconnection of the µ-controller K with the uncertain element ∆ and
weighting filters We and Wu.

Figure 2 also contains the designed controller K. The input to the controller is the
error signal e, calculated as a difference between BG target r (typically held constant at
105 mg/dL) and measured BG concentration with the subcutaneous sensor y. To represent
the performance requirements for the system, two weighting filters were designed for
tracking error We and for the control signal Wu. The purpose of these filters is to represent
the performance requirements for the closed loop in a normalized coordinates ze and zu.

The glucose concentration tracking error weighting filter was designed according
to [37] as

We(jω) =
M−1 jω + ω0

jω + ω0 A
=

1.8−1 jω + 0.01
jω + 0.01× 1/5

, (21)

where the parameters A, M, and w0 are tunable. The parameter A determines the amount
of loading disturbance reduction in the low-frequency range, i.e., when ω → 0, We → A−1.
In our design, we selected A = 0.2, which reflects a requirement for nearly 5 times reduction
in the long-term effect of disturbances in subcutaneous glucose concentration. That will
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eventually establish zero error tracking of the target concentration after the disturbance
signal is removed. The parameter M determines the behavior of the weighting filter in
the high-frequency range. When ω → ∞, the We(jω)→ M−1. In our design, we selected
a value of M = 1.8, which is close to the unit. We did not impose any constraints over
the high-frequency oscillations of the subcutaneous glucose concentration. The reasons
for this are twofold. First, we know that the signal-to-noise ratio (SNR) of continuous
glucose-monitoring sensors worsens with the increase in the frequency; hence, we do
not want the insulin bolus injections to correlate with the random sensor noise. Second,
there are certain fundamental limitations in feedback theory in the Bode theorem, which
could prevent obtaining high disturbance rejection for all frequencies. The tuning of
M in our case above the unit is guided by its numerical effect over the DK iterative
procedure and the resultant model order. The parameter ω0 determines the requirements
for the bandwidth of the closed-loop system, which is reflected in the time domain as how
aggressive the controller will be in responding to disturbances and what will be the peak
value of glucose concentration. As is well known, if AP systems increase the aggressiveness
of the controller, this may lead to a consistent under-regulation in the hypoglycemic region.
Our experiments with the linearized model show that we can select ω0 = 0.01 rad/s.
Such a value corresponds to a settling time of glucose concentration after a meal to about
1 h, which will not be too demanding for the closed-loop AP system and will prevent the
occurrence of hypoglycemic periods.

Similarly, the control signal weighting filter that allows separated tuning in low- and
high-frequency domains was selected according to [37]

Wu(jω) = ku
jω + M−1ω0

Ajω + ω0
= 0.001

jω + 1.4−1

80jω + 1
, (22)

where the low-frequency gain of the filter is M−1, the high frequency gain is A−1, and
ω0 determines the bandwidth of the filter. The ku is an additional wide-band gain acting
on all frequencies. The control weighting has a critical effect on the iterative controller
design procedure as well as on the closed-loop behavior (especially when the manipulated
variable is constrained). In the AP systems, the insulin infusion rate has a lower bound
of 0 because we cannot remove the already injected bolus. The current generation of
automatic insulin-delivering pumps does not pose any upper bound for the bolus or
infusion rate. For example, the maximal amount of bolus which can be injected in a period
of an hour is usually about several IUs, which is far beyond what is metabolically feasible
for any individual.

The selected value of M = 1.4 does not pose any restriction on the control signal
behavior in the low-frequency range. Its value is tuned to guarantee numerical convergence
of the DK iterative procedure. Increasing the value of M slightly above 1 guides the
procedure to be more tolerable to slowly varying lower doses of insulin, which can be
intuitively linked to mimicking basal-like injections in the classical AP variants. The high-
frequency damping is set to A = 80 to prevent any erratic or unweighted insulin infusions
during normal glucose oscillations in a real-life scenario. The frequency band for the control
signal is tuned with the ω0 parameter, which in the presented design is set to 1 rad/s. This
corresponds to a settling time of the control signal of about 1 min, which matches the
maximal reaction time of subcutaneous glucose measurement as well as the pump response
time. There is no purpose in faster variation of the control signal. Finally, the value of
ku determines the global weight of the control signal concerning the plant requirements
and uncertainty. If the ku is set too high, the control signal will not be powerful enough
to achieve the requirements specified with We. Or, if ku is too low, then the control signal
amplitudes will be increased significantly, hence violating the constraints of the nonlinear
system. In this manner, the value of this parameter is selected, such that the observed
control signal matches the range of the constraints and at the same time permits compliance
with the close loop performance requirements.
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Since the controller design is performed in a discrete-time domain with sampling time
TS = 0.1 min, the weighting filters are replaced with their Z-domain approximations

We(z) =
0.5556z− 0.5546

z− 0.9998
, (23)

and
Wu(z) =

0.08z− 0.07929
z− 0.0003355

, (24)

where z = ejωTS . The level of fit between continuous-time weighting filters and their
discrete-time approximations can be easily assessed in the frequency domain or in the
time domain. However, given the well-recognized numerical sensitivity of the µ-controller
design procedure, the selected method for discretization will lead to different realizations
of the controller and eventually to different performance results.

One may note that the selected sampling time of 0.1 s is considerably lower than the
conventional implementations of AP system where the sampling periods vary between
1 to 5 min to match the subcutaneous sensor response time. However, in our case, since we
employ a variation of the state feedback controller, which relies on estimates of the internal
model states, the sampling periods should be considered regarding the dynamics of the
model. The Hovorka model incorporates terms for modeling blood glucose concentration;
hence, the temporal scale of the processes there is below 1 min.

To incorporate performance requirements, specified with the weighting filters Wu
and We into robust stability formulation (12), we introduce another uncertain element ∆ f
between the exogenous signal r and the performance metrics ze, zu:

r(jω) = ∆ f

(
ze(jω)
zu(jω)

)
, ∆ f ∈ C1×2, ‖∆ f ‖∞ < 1. (25)

The matrix ∆ f completes an imaginary loop between weighting filters and the BG target.
The purpose then is to select the filters We and Wu to match the required spectral charac-
teristics of the tracking error and control signal toward the amplitude of the exogenous
reference signal r. Therefore, we have


u∆
ze
zu
e

 =



kδ

s−T−1
unc

0 kδ
s

s−T−1
unc

L(s)

−We(s) 1
s−T−1

unc
We(s) −We(s)

T−1
unc

s−T−1
unc

L(s)

0 0 Wu(s)

− 1
s−T−1

unc
1 − T−1

unc

s−T−1
unc

L(s)


 y∆

r
u

. (26)

This representation combines all known information about the open loop system with
performance requirements and uncertainty bounds. It is the starting point for µ-synthesis
and for the examination of robust stability and performance. The analysis of robust
performance can be seen in the framework of robust stability by noting that

(
y∆
r

)
=

(
∆ 0
0 ∆ f

) u∆
ze
zu

 = ∆

 u∆
ze
zu

, (27)

where ‖∆‖∞ < 1 because ‖∆‖∞ < 1 and ‖∆ f ‖∞ < 1. In this case, the robust performance
requirement becomes µ∆(M) < 1 for all ω, where M(s) is the transfer matrix from (26).
This continuous time model is discretized using the selected sampling period TS to allow
the synthesis of a discrete-time controller K, which can be embedded in the production AP
system microcontroller.
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4.2. (D,G)-K Iteration

The solution to the problem (12) for minimization of structured singular value still
does not have a suitable mathematical solution, and only the approximate procedures are
known because of the difficulties in obtaining an exact expression for µ. The most common
procedure for µ-synthesis is the so-called DK iteration procedure, which stems from a
particular approximation of the upper and lower bound of µ∆(M) as

max
U

ρ(UM) ≤ µ∆(M) ≤ inf
D

σ(DMD−1), (28)

where U is a unitary matrix such that ‖U∆‖∞ < 1, ‖∆U‖∞ < 1, and D ∈ C3×3 is a
symmetric matrix to make D∆ = ∆D. Then, by varying elements of U and D, one can
obtain an arbitrary close approximation for the structured singular value. Once the upper
bound for the µ value is estimated, the finding of controller K is equivalent to H∞ design
problem, which can be carried out by various approaches such as Riccati equations, linear
matrix inequalities (LMIs), etc. The classical approach is to solve 2 coupled Riccati equations
and apply the bisection algorithm. In this manner, the suboptimal problem for finding K
for a fixed constant γ is solved as

σ(µ∆(Fl(M, K))) = σ(DFl(M, K)D−1) =< γ. (29)

This relation should hold for all frequencies ω, which makes D(jω) a frequency-
dependent transfer function matrix. For each fixed γ and D(jω), a stabilizing controller
satisfying (29) may or may not exist. If such a controller does not exist, the value of γ
is increased, and, if a solution K exists, γ can be decreased until its minimal value is
approximated. When a particular H∞ controller K is produced, the robustness of the closed-
loop system Fl(M, K) is analyzed by calculating the upper bound of the structured singular
value µ, which is equivalent to the minimization of the peak value of σ(DFl(M, K)D−1) by
varying elements of the transfer matrix D(jω). To satisfy commutative property D∆ = ∆D,
D is usually selected as a diagonal scaling matrix. The optimization of D(jω) can be carried
out either manually or with numerical optimization methods in the frequency domain,
followed by the fitting transfer function polynomials to the obtained frequency responses.
Hence, the calculation of µ for a given K is an iterative procedure which attempts to prove
the robustness of K. After a particular upper bound for the µ is fixed with proper tuning
of D, the order of the open loop system will be increased since terms of D will be added
to meet inputs and outputs of the uncertainty block ∆. So, essentially, this will lead to
the filtering of the signals sent to and received from the uncertain element ∆. That will
position the system at the worst-case operating condition if the uncertain element action
is replaced by exogenous disturbance signals with the unit norm. In this way, the H∞
design can be carried out again but for a modified weighting of the open loop to obtain
another candidate controller K and its peak µ to be further evaluated. What this iterative
process can guarantee is a sequence of controllers accounting for different estimates of
the worst-case spectral properties of the exogenous disturbances and their impact on the
performance metrics. From this sequence, the controller with minimal peak µ-value is
selected because this controller has the most robust stability margin.

Since the minimization of the upper bound of µ with a D-scaling matrix is carried out
in the frequency domain, all uncertain elements from the block matrix ∆ are assumed to be
complex. However, in our case, the uncertain parameter ∆ is a real variable in the interval
[−1, 1]. Approximation of such real uncertainties with complex disks around them can
lead to more conservative estimates for the upper bound of the structured singular value.
If we consider that a real interval can be embedded as a chord in a complex disk in many
different ways, an approach to further optimizing the upper bound of µ is through the
employment of additional scaling matrices Gm, Gr, and Gc, leading to the so-called (D,G)-K
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iterations [36]. The idea is in addition to D scaling to apply affine scaling of the exogenous
disturbance signals

σ

((
β(ω)−1D(jω)Fl(M, K)D−1(jω)− jG(jω)

)(
I + G(jω)2

)−0.5
)
≤ 1, (30)

with the help of frequency-dependent positive constant β and complex matrices D and G.
Then, β can be used as a better estimate of the upper bound of structured singular value µ,
i.e., obtaining a less conservative estimate. The action of matrix G can be seen as scaling
the output of the uncertainty block yδ with Gr = (I + G2)−0.5 and as shifting the input u∆
to the uncertainty block with G f c = −jGGr.

For the proposed uncertain AP model, the evaluation of the D scaling matrix is
performed at 200 equally spaced frequencies from 0 to maximal frequency for the selected
sample period of π/TS rad/s. The result from the DK iteration is presented in Table 3.
The elements of the D matrix are selected with the aid of an optimization algorithm. As can
be seen, the best controller is produced from the second iteration. The controller order from
each consecutive iteration is equal to the order of the open loop system with the weighting
filter plus the order of the left and right scaling matrices used to approximate the peak µ in
the previous iteration.

Table 3. Summary of µ-iterations.

Iteration Controller
Order

D-Scale
Order

G-Scale
Order γ Peak µ

1 12 0 0 2.272 1.088
2 24 10 2 1.112 0.942
3 24 10 2 1.096 1.042
4 22 10 0 3.019 2.7

The controller from the second iteration is from the 24th order, and the original
linearized model was from the 10th order after the extension with the uncertain state.
From state feedback theory, we know that the order of the controller matches the order of
the plant, since the controller incorporates an observer subsystem, composed of a model of
the plant itself. However, in the case of H∞ design the model of the system is extended with
the weighing filters to produce performance-determining signals. In our case, the weighting
filters are both first-order transfer functions, so the first iteration of the design leads to
12th-order controller. With the following DK iterations, the weighting filters are further
extended to highlight the worst-case spectrum of the exogenous disturbances.

Figure 3 compares the Bode plots of the controllers from each iteration. The controllers
have similar dynamics in the low-frequency range up to 0.01 Hz, and the difference
between them is only in the amplification. The first-iteration controller (a pure H∞) is
with the highest gain of about 10 dB. The 2nd- and 3rd-iteration controllers share an
identical proportional action, while the 4th iteration gives a controller with smaller unit
amplification of around −10 dB. The reduction in the proportional term can improve the
system’s robust stability but can have a negative effect on robust performance. On the
other hand, the controller’s action is concentrated in frequencies between 0.01 up to 1 Hz,
where a pronounced resonance is observed. The controller will react to the transient
changes in the blood glucose concentrations in this frequency range, i.e., minimizing their
future impact. The resonant frequency from the first and second-iteration controller is
about the same at 0.03 Hz. The 2nd-iteration controller band is slightly narrower around
its peak compared to the first one. The third-iteration controller is more aggressive and
tries to shift the resonance frequency up to 0.1 Hz, obviously aiming for faster insulin
infusion in a wider range of frequencies; however, in that case, its µ value goes above 1,
i.e., not all performance requirements will be satisfied. The 4th-iteration controller is an
attempt to keep the resonance frequency of the 3rd controller and reduce its bandwidth,
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but unfortunately the structure of such a controller is not feasible because of the very high µ.
This can be understood by looking at the phase response where the 4th-iteration controller
contains many unbalanced poles, which increase its phase delay below 200 degrees, which
correlates negatively with stability.
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Figure 3. Frequency response of the µ-controller.

The structure of D and Gr scaling matrices obtained from the automatic optimization
procedure is diagonal where D = diag(D1(jω), 1, 1) and Gr = diag(Gr,1(jω), 1, 1). Hence,
the terms D1 and Gr,1 will scale the uncertainty element arising from the parameter Tu
representing the variable reaction of the subcutaneous BG concentration to plasma levels.
The values of D1 for 2nd, 3rd, and 4th iterations are plotted in Figure 4, since for the
1st iteration the D-scale is the identity matrix. And the Gr term is presented in Figure 5,
where it can be seen that the damping frequency for the controller from the 3rd iteration
is less than the damping frequency for the controller from the 2nd iteration. For the other
iterations, the Gr term is zero.
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Figure 4. Frequency response of the uncertainty D1 element from the D-scaling matrix.
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Figure 5. Frequency response of Gr = (I + G2)−0.5 scaling.

4.3. Closed-Loop Performance

The sensitivity functions of the closed-loop control system with the designed
µ-controller from the 2nd iteration, which has the best robust metrics, satisfy the per-
formance requirements from the specification of weighting filters Wu and We. Since the
controller guarantees that

‖We(jω)S(jω)‖∞ < γ, (31)

where S(jω) is the output sensitivity function, this requirement is equivalent to an upper
bound constraint for the magnitude of S, determined by the inverse magnitude response of
the weighting filter when γ ≈ 1, i.e.,

|S(jω)| < 1
|We(jω)| . (32)

Figure 6 presents the examination of this requirement, where plots are for both the upper
bound determined by We and for the uncertain LTI closed loop with the µ-controller, where
the uncertain element is randomly sampled 30 times.
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Figure 6. Output sensitivity function for the 30 samples from the uncertain closed-loop system (blue)
and the inverse weighting filter 1/We(jω) (red).
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It is evident that the closed-loop system satisfies the weighing requirement both in
the low- and high-frequency domains with a margin. The critical region where the system
performance is tightly limited by the upper bound is around the cut-off frequency, which
determines the response time with respect to output disturbances [38]. In this region, the
majority of plant variation due to uncertainty is concentrated. If we compare this with the
open loop uncertainty ranges from Figure 1, we can see that the µ-controller effectively
reduces the closed-loop uncertainty. The closed loop also exhibits resonance behavior
around 0.02 Hz, which can be related to the level of over-dosing in case of meal events.

Similarly, for the sensitivity of the control signal to external disturbances, we have

|K(jω)S(jω)| < 1
|Wu(jω)| , (33)

where K is the designed LTI controller. The comparison between the upper bound of the
control sensitivity and the actual closed-loop frequency response is presented in Figure 7.
Again, the closed-loop response is evaluated for 30 random samples for the introduced un-
certainty element. The controller satisfies with good margin the performance requirement
for the control signal u for all frequencies.
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Figure 7. Control signal sensitivity function to output disturbances for the 30 samples from the
uncertain closed-loop system (blue) and the inverse weighting filter 1/Wu(jω) (red).

The complementary sensitivity function T = 1− S of the closed-loop system with
the µ-controller is evaluated in Figure 8, which represents the relationship between the
BG target and the actual measured concentration. Here, we can measure the bandwidth
of the system, which is between 0.001 and 0.01 Hz. The effect of the uncertainty over
the complementary sensitivity function is to reduce its bandwidth. Depending on the
variable delay between the plasma concentration and subcutaneous BG measurements,
we can expect that system will respond faster or slower to maintain the BG concentration
but within the limits of less than 1 decade of frequency variation. For the worst case, when
the delay is largest, the controller will regulate the BG back to normal slower but still will
achieve the target.

Since the controller order is 24, which might be high for implementation in digital
devices, we decided to assess the possibility for its order reduction. In Figure 9 the Hankel
singular values of the designed controller are shown. It is seen that the possible order
of reduced controller may be selected as 10. In Figure 10, the singular values of the
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original and the reduced-order µ-controllers are compared. They are almost the same.
Therefore, it is expected that with the reduced-order controller, the achieved closed-loop
performance will be similar. Finally, we evaluated the bounds of structured singular value
for robust performance of the closed-loop system (Figure 11). Both controllers provide
robust performance for the prescribed range of uncertainty.
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Figure 8. Complementary sensitivity function of the uncertain closed loop with the µ-controller.
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5. Results and Discussion

The examination of the controller performance in the time domain was executed first
with the nonlinear Hovorka model presented in Section 2. And after this, the controller was
applied to the UVa/Padova simulator for the population of adult subjects. The UVa/Padova
is recognized by the FDA as a benchmark software for testing AP algorithms for their
acceptance in actual medical trials.

5.1. Simulation with Hovorka Model

The nonlinear Hovorka model described with Equations (1)–(5) was prepared by the
authors in the MATLAB/Simulink environment as a Simulink block diagram. The states
of the nonlinear model are represented with Integrator blocks, where the output of the
integrator block is the state xi, and the input to the integrator block is the state derivative
ẋi. Then, the arithmetic relations for the calculation of the state derivatives according to
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the model equations are entered with the help of respective mathematical blocks. As a
result, we have a plant model with two inputs and one output. The inputs are the insulin
infusion rate in IUs/min and the meal intake rate in g/min equivalent carbohydrate
amount. The output of the model is BG concentration measured in mg/dL. Additionally,
the uncertain element Tunc is also introduced in the model as an additional dynamic element
represented as an integrator together with a feedback Gain block containing the current
setting of Tunc. The designed µ-controller was entered in the Simulink models with the
help of the Discrete State-Space block, where the A, B, C, and D matrices from the state
space realization of the controller are specified. The output of the controller is saturated to
not allow negative numbers for the insulin infusion rate (u(t) ≥ 0).

The closed-loop BG target was set to 6 mmol/L or about 105 mg/dL. The exogenous
disturbance signal d(t) was simulated as a pulse train signal, where each pulse duration
is set to 15 min to approximate the duration of a meal. The amount of carbohydrates
introduced with each meal is fixed at 100 g. Therefore, the purpose of the simulation is to
verify controller performance in the presence of loading disturbances.

The results from the simulation are presented in Figure 12, which contains the output
signal, and Figure 13, which contains the input signal. Because of the uncertain element
in the model, we simulated the closed nonlinear system for 30 random samples of the
uncertain element. From Figure 12, it is evident that the µ-controller ensures the robust
stability and performance of the system in the presence of the parametric uncertainty. All
instances of the simulation lead to successful regulation of the BG levels after the applied
disturbances. Two kinds of behavior are present. In some cases, disturbance regulation is
an aperiodic process, and in other cases, it is a criticalaperiodic process. The worst-case
deviation into the hypoglycemic region is above 90.

Figure 12. Glucose concentration from a Monte Carlo simulation with the nonlinear Hovorka model
with the µ-controller.

Figure 13 presents the compensation of glucose variation due to introduced meals
and endogenous glucose production. The basal level of BG for the simulation was set in
accordance with the operating point from the linearization of the Hovorka model. We can
see that the unconstrained controller output is oscillatory. This can also be confirmed from
the resonance in Figure 6 or Figure 7. When we put the non-negativity constraint over the
control signal, we obtain a half period of the oscillation cut-off. The resultant reaction of
the controller, when the BG is disturbed due to carbohydrate intake, is a train of oscillation
half periods or boluses of insulin. Such behavior is also evident in the conventional AP
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controllers, which distribute the dose of insulin over time intervals instead of trying to
infuse the full dose of calculated bolus. Recent research [39] revealed that 1–2 h after a
meal, insulin secretion from the pancreas is not continuous—it oscillates, and the period of
oscillation is about 3–6 min.

Figure 13. Insulin infusion rate from a Monte Carlo simulation with the nonlinear Hovorka model
with the µ-controller for 30 random samples.

5.2. Simulation with UVa/Padova

The controller was also evaluated in the environment of the UVa/Padova simulator,
which is a state-of-the-art tool for proving the feasibility of closed-loop controllers for
type 1 diabetes. The controller is applied to the provided simulator group of 10 adult
subjects, plus 1 subject representing an average adult population. The selected scenario is a
24 h period with an unannounced single meal equivalent to 50 g of carbohydrate intake.
Detailed results are presented for all subjects in Table 4.

Table 4. Result summary from the UVa/Padova simulation with the µ-controller for 10 subjects from
the adult population.

ID BG preBG postBG AUC LBGI HBGI BGRI SDRoC A + B

1 125.59 124.83 165.35 95.76 0 0.63 0.63 0.3 96.18
2 123.72 123.36 148.89 62.52 0 0.44 0.44 0.23 100
3 123.35 119.39 153.82 86.63 0 0.45 0.45 0.24 92.16
4 120.77 119.46 164.45 113.76 0.01 0.5 0.51 0.34 96.81
5 124.31 121.45 161.69 110.87 0 0.6 0.6 0.31 95.49
6 117.67 115.69 169.96 120.49 0.03 0.4 0.43 0.37 100
7 120.18 114.98 174.71 155.1 0 0.58 0.59 0.41 97.43
8 134.15 130.54 175.91 124.37 0 1.33 1.33 0.35 46.22
9 114.84 113.16 163.97 123.04 0.08 0.35 0.42 0.36 100

10 113.71 113.26 148.24 84.3 0.08 0.2 0.28 0.28 100
E(•) 120.37 118.51 166.66 127.41 0.03 0.52 0.55 0.38 97.99

Columns: ID—subject identification, BG—blood glucose concentration in mg/dL, preBG—BG concentration
before meal, postBG—BG concentration after meal, AUC—postprandial area under the curve of BG per 1 g of
carbohydrates, LBGI—low blood glucose index, HBGI—high blood glucose index, BGRI—blood glucose risk
index, SDRoC—standard deviation of BG rate of change, A + B—% of time in A and B zones from CVGA.

Several well-recognized metrics in the AP field are presented in Table 4. It is evident
that the designed controller is quite successful, and all indicators are in the desired ranges.
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The average BG levels for all subjects are in the target zone between 70 and 180 mg/dL,
even during the carbohydrate intake. The glucose regulation time is between 2 and 3 h
after the meal. Low and high blood glucose indices are under 2 for all subjects. Blood
glucose does not fall under 50 mg/dL, violate either low or high target bounds, or reach
the excessive value of 300 mg/dL for any of the examined subjects.

The population graph trace of the BG variation for the selected scenario is presented in
Figure 14, where the mean BG for the population is plotted along with minimal, maximal,
and standard deviation bounds. All curves are in the range from 80 to 180 mg/dL, which
is perfectly acceptable. Figure 15 presents the hourly calculated glucose risk indices
where HBGI is positive number and LBGI is a negative number, along with their standard
deviations taken for the examined population.
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Figure 14. Glucose trace for the 10-adult population from the UVA/Padova simulator. The green line
represents the average glucose, the orange line represents the ±1 standard deviation interval, and the
red line is the minimal and maximal values from the envelope.
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Figure 15. Glucose risk index calculated for each hour with ±1 standard deviation confidence.
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Figure 16 presents the control-variability grid analysis (CVGA) per subject of the
simulated adult population. The CVGA is a powerful tool that is well accepted by AP
engineers for judging the outcomes of a simulation. We see that all subjects with the
µ-controller fall into the green A-zone and bordering with the upper B-zone, but not
intersecting into it. Figure 17 shows the CVGA when the Padova simulator is run with the
reduced-order controller from the 10th order. It is seen that the result is again satisfactory,
which justifies the controller order reduction. Thus, for practical implementation, we can
use a simpler µ-controller of the 10th order.
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Figure 16. CVGA analysis for the full order µ-controller.
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Figure 17. CVGA analysis for the reduced order µ-controller.

For more realistic results, we run the proposed controller with an additional scenario.
This is a 24 h scenario with three main meals and one snack. The timings of the meals were
set to 7:00, 14:00 and 20:00 with the amount of 30 g of carbohydrates without announcement.
A snack was added at 16:00 with amount of 15 g. We emphasize again that the insulin
bolus was not explicitly calculated due to the fact that we did not use the provided meal
announcement signal from the simulator. This is the more pessimistic case for the simulation
and is better for exposing controller advantages. In Figures 18 and 19, we show the results
from the simulation, where all subjects are in the A or B zone from the CVGA plot, and
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glucose levels are in the range from 80 to 270 mg/dL. This results confirm again the robust
stability and performance of the controller with the high-order nonlinear model used in the
Padova simulator.
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Figure 18. Glucose trace for the 10-adult population from the UVA/Padova simulator for 24 h
scenario. The green line represents the average glucose, the orange line represents the ±1 standard
deviation interval, and the red line is the minimal and maximal values from the envelope.
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Figure 19. CVGA analysis for 24 h scenario.

6. Conclusions

The present article demonstrates the successful application of µ-synthesis in the control
of the AP system without explicit meal announcements. The design was based on the
nonlinear Hovorka model to account for the typical adult subject with type 1 diabetes.
The addition of a single uncertain element to the model effectively converts it into an
infinite model set, which is a plausible description of the intersubject variability observed
in the real applications. The µ-controller achieves robust stability and robust performance
in the whole frequency range under consideration. This was validated in a simulation with
the linearized model, Hovorka model, and through the UVa/Padova simulator. The results
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from UVa/Padova are exceptionally good for the population of 10 adult subjects and a 24 h
simulation with several meals.

The authors are well aware of the limited conclusions, which can be generalized from
these preliminary results with the controller. To proceed with the controller implementation,
additional studies with a larger group of simulated subjects are needed. Also, the controller
should be simulated for all kinds of meal amount variations and extended simulation
periods. If a practical implementation of such a controller is envisioned, it should be
augmented with additional safety layers to prevent any non-simulated situations, which
can lead to over- or under-dosage. Despite these recognized concerns, the µ-controller
shows the great potential to properly decide insulin boluses according to the worst-case
estimate produced by an observer for the linearized model states. The observer inherent in
the H∞ controller design guarantees asymptotic convergence of the error between measured
BG signal and predicted BG from the model. The structure of the selected Hovorka model
is matching the structure of the metabolic process. When the model states are properly
estimated to establish functional matching to the process, we can be confident that the
model is representing the process. Then, the state feedback term of the µ-controller, which
is designed to regulate the particular linearized model, will be efficient in regulating the
actual glucose metabolism.

The µ-controllers are typically of relatively high order, i.e., excessive computational
requirements can be faced. In our case, the resultant controller is from the 24th order,
which is way beyond, for example, a conventional PID-based control (second-order). This
means that for every sample interval, the control algorithm must process a system of
24 differential equations with more than 500 coefficients. Hence, such a computation can
pose slightly higher power requirements for the microcontroller than a conventional AP
algorithm. However, that computational burden is considerably smaller than the power
requirement for the communication or pump. Additionally, the controller order could be
reduced by employing a model reduction technique such as examining its Hankel singular
values. In this work, we reduced the controller order from 24th to 10th, and the obtained
results show that the performance of the closed-loop system is not degraded.

The methods of the modern control theory, such as µ-synthesis, can lead to great
improvements in the design of AP systems, even when the system model is disturbed
by parametric or signal uncertainties. The robust controllers like the one presented are
capable of direct installation in the field with actual subjects, without the necessity for a
pre-learning phase, open-loop running time, explicit meal announcement, subject-specific
tuning, or a controller warm-up period.
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