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Abstract: Aerodynamic shape optimization is frequently complicated and challenging due to the
involvement of multiple objectives, large-scale decision variables, and expensive cost function evalu-
ation. This paper presents a bilayer parallel hybrid algorithm framework coupling multi-objective
local search and global evolution mechanism to improve the optimization efficiency and convergence
accuracy in high-dimensional design space. Specifically, an efficient multi-objective hybrid algorithm
(MOHA) and a gradient-based surrogate-assisted multi-objective hybrid algorithm (GS-MOHA) are
developed under this framework. In MOHA, a novel multi-objective gradient operator is proposed
to accelerate the exploration of the Pareto front, and it introduces new individuals to enhance the
diversity of the population. Afterward, MOHA achieves a trade-off between exploitation and ex-
ploration by selecting elite individuals in the local search space during the evolutionary process.
Furthermore, a surrogate-assisted hybrid algorithm based on the gradient-enhanced Kriging with
the partial least squares(GEKPLS) approach is established to improve the engineering applicability
of MOHA. The optimization results of benchmark functions demonstrate that MOHA is less con-
strained by dimensionality and can solve multi-objective optimization problems (MOPs) with up to
1000 decision variables. Compared to existing MOEAs, MOHA demonstrates notable enhancements
in optimization efficiency and convergence accuracy, specifically achieving a remarkable 5–10 times
increase in efficiency. In addition, the optimization efficiency of GS-MOHA is approximately five
times that of MOEA/D-EGO and twice that of K-RVEA in the 30-dimensional test functions. Finally,
the multi-objective optimization results of the airfoil shape design validate the effectiveness of the
proposed algorithms and their potential for engineering applications.

Keywords: hybrid algorithm; multi-objective optimization; aerodynamic shape optimization; global
evolutionary; local gradient search

MSC: 68T20; 90C26

1. Introduction

Multi-objective optimization techniques are widely used in the field of engineering op-
timization to reduce the budget of design, particularly in aerodynamic shape design [1–3].
However, complex aerodynamic shape design is often faced with large-scale design vari-
ables and expensive fitness evaluations. As a result, the efficiency of existing multi-objective
algorithms is correspondingly reduced. Their huge computational cost limits the engineer-
ing practicality of multi-objective optimization algorithms. Therefore, the development
of efficient multi-objective optimization algorithms to reduce computation cost is highly
attractive for aerodynamic shape design in engineering optimization.

The common optimization methods mainly include gradient-based algorithms (GBAs)
and metaheuristic optimization algorithms [4]. The GBAs start from an initial point and
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determine the best local search direction by the gradients of the objective and constraint
functions with respect to the design variables. Subsequently, the optimal descent step is
evaluated and the local search procedure is iterated until the local optimal solution in the
vicinity of the initial point is reached. Generally, the weighted sum method is used to
convert multiple cost functions into a single integrated cost function to solve multi-objective
optimization problems (MOPs).

The two main advantages of GBAs are fast convergence and high accuracy. However,
GBAs are also sensitive to starting points and weight vectors and tend to fall into local
optimal solutions. Currently, the commonly used gradient-based optimization methods
include the quasi-Newton algorithm [5,6], conjugate gradient method [7], and sequential
quadratic programming algorithm [8]. As the number of design variables increases, the
computational cost of evaluating gradients by using finite difference or complex step
methods is prohibitive. Fortunately, the adjoint method proposed by Jameson [9] can be
used to calculate the gradient accurately and efficiently. The computational cost of the
adjoint method is independent of the dimension of design variables, so it is widely used in
the aerodynamic optimization of large-scale decision variables.

Evolutionary algorithms (EAs) are typical metaheuristic algorithms that simulate
the biological evolution phenomenon in nature to achieve a search for the global optimal
solution [10]. Compared with GBAs, EAs are global methods with high robustness and
universality, which can effectively handle complex optimization problems that GBAs find
difficult to solve. Although EAs have good global search capabilities, they suffer from
problems such as slow convergence and low search efficiency. As a consequence, the adjoint
method is almost the only choice in aerodynamic shape design optimization with large-
scale decision variables. For example, GBAs are successfully applied to the optimization of
wing shape design (with 721 design variables) and blended wing body shape design (with
273 design variables) [11,12].

Most recently, the aerodynamic shape optimization method is developing towards
solving MOPs with many objectives; large-scale design variables; the coupling of objec-
tive characteristics; and expensive objective calculations. The accuracy and efficiency of
the optimization results are directly influenced by the search capability of optimization
algorithms. Therefore, multi-objective aerodynamic shape optimization methods face the
following several challenges:

(1) As the number of design variables and objectives increases, the multi-objective evolu-
tionary algorithm (MOEA) requires a larger population size and more iterations to
approach the optimal Pareto front (PF), resulting in a significant decrease in optimiza-
tion efficiency and accuracy.

(2) Although the existing gradient-based multi-objective optimization algorithms are
efficient, they can only obtain local optimal solutions and cannot solve MOPs with
arbitrary PF.

(3) High-fidelity aerodynamic shape optimization is usually calculated using a computa-
tional fluid dynamics (CFD) solver based on the Reynolds-Averaged Navier–Stokes
(RANS) equations, which makes the aerodynamic analysis very computationally costly.

To address the first two challenges, this paper proposes improved GBAs that can solve
MOPs with any type of PF and any number of objective functions. It should be noted
that a stochastic weight function is introduced in the weighted sum method and a set
of stochastic weights is re-assigned to each individual at each iteration to distinguish it
from traditional weighting algorithms. The PF is generated by constantly changing the
weights to explore the objective space. Moreover, to avoid the multi-objective gradient-
based algorithm (MOGBA) from falling into local optimal solutions, a new multi-objective
hybrid algorithm (MOHA) is considered to be developed by combining the evolution-
ary mechanism in MOEA and the local search mechanism based on the GBA. The core
idea of the hybrid algorithm is to design a reasonable hybrid strategy to overcome the
shortcomings of each algorithm, thus improving efficiency and accuracy. Through this
process, the hybrid algorithms can learn from each other and achieve better overall per-
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formance. In several recent studies, researchers have proposed various hybrid strategies
to balance diversity and convergence for solving single-objective optimization problems
or MOPs [13–15]. To improve the optimization efficiency while taking into account the
global search capability, a bilayer parallel hybrid strategy is designed in this paper. This
hybrid strategy introduces a multi-objective local search mechanism into MOEA using a
non-cooperative co-evolutionary approach to improve performance by balancing the global
search and local search capabilities of the algorithm.

However, with the development of aerodynamic analysis methods, high-fidelity CFD
calculation methods based on solving the RANS equations are gradually eliminating low-
fidelity methods such as solving the velocity potential and Euler equations. Meanwhile, the
shape parameterization and grid generation of aircraft are becoming increasingly refined.
These factors make it possible for a single CFD simulation to take several minutes to
several hours. MOEA is the primary source of computational cost, serving as the main
driving engine of hybrid algorithms. While MOHA can improve optimization efficiency by
reducing the number of algorithm iterations, it cannot reduce the time required for fitness
evaluation. The application of MOHA in high-fidelity aerodynamic shape optimization
design is hindered as the computational cost remains difficult to accept.

Based on the above descriptions, to overcome problem 3, a popular approach is to use
the surrogate model to approximate the objective function. Once the surrogate model is
established, the subsequent optimization design can be carried out based on the surrogate
model. In engineering optimization, the multi-objective evolutionary algorithm (MOEA)
necessitates repetitive and cost-intensive calculations. Conversely, the surrogate-assisted
evolutionary algorithm (SAEA) employs surrogate models as substitutes for these costly
evaluations. By minimizing the count of expensive fitness evaluations, SAEA effectively
achieves the objective of reducing optimization time [16–19]. In summary, this paper
proposes a novel gradient-based surrogate-assisted multi-objective hybrid algorithm (GS-
MOHA) by combining a hybrid multi-objective evolutionary algorithm with a metamodel
technique. The algorithm enhances the engineering application capability of MOHA in
high-dimensional multi-objective optimization for aerodynamic shape design.

The commonly used surrogate models mainly include the polynomial response surface
model [20] (RSM), Kriging [21], artificial neural network [22] (ANN), radial basis function
network model [23] (RBF) and support vector machine [24] (SVM). However, there is
a lack of theoretical guidance in choosing a surrogate model. The Kriging model is a
popular choice, which not only has a good approximation ability for nonlinear functions
but also provides uncertainty assessment. Many well-known surrogate-assisted multi-
objective evolution algorithms use the Kriging model as the approximate model, such as
ParEGO [25], MOEA/D-EGO [26], and K-RVEA [27]. After establishing the initial surrogate
model, the dynamic surrogate-based optimization algorithm needs to update the surrogate
model to improve accuracy, which is achieved by selecting new sample points according to
the optimization infill criterion.

Although many algorithms using surrogate models in MOEA have been proposed,
there are still many challenges. One is the selection of surrogate models as there is no
clear criterion for selecting a suitable type of surrogate model to replace the expensive
fitness evaluation. The second is the time cost of training the surrogate model; the training
time increases exponentially as the dimension of the design variable increases, sometimes
even exceeding the cost of direct CFD simulation. The third aspect involves managing
the surrogate model, including determining the optimal timing for updating the model
and selecting suitable sample points for the update process. Most SAEAs solve problems
with fewer than 10 dimensions of decision variables [17,18,28]. This is mainly because they
require more samples and iterations to train the hyperparameters in the model when the
dimension increases. To address this issue, we use the gradient-enhanced Kriging with
partial least squares (GEKPLS) method to approximate each objective function, and the
Kriging model is established by using the objective function values and their gradient infor-
mation [29]. This gradient-enhanced Kriging (GEK) method improves modeling efficiency



Mathematics 2023, 11, 3844 4 of 31

in high-dimensional spaces significantly by reducing the number of hyperparameters
through dimensionality-reduction techniques.

The remainder of this paper is organized as follows. In Section 2, we briefly recall the
difficulties of multi-objective optimization and of the GEKPLS model, as well as the moti-
vation for this paper. Meanwhile, a gradient-based multi-objective algorithm is proposed,
which is an improvement on the traditional gradient algorithm. Sections 3 and 4 present
details of the proposed MOHA and GS-MOHA. Section 5 presents an experimental study to
validate the excellent performance of the proposed algorithms. In Section 6, the efficiency
and engineering applicability of MOHA and GS-MOHA are compared and verified through
a multi-objective shape optimization of an airfoil. Finally, the conclusions and future work
are drawn in Section 7.

2. Related Work and Motivation

This section first introduces the difficulties of existing multi-objective optimization
algorithms when facing high-dimensional optimization. MOGBA is then proposed and
validated against MOEA. In addition, the performance of the GEKPLS model is discussed in
comparison with ordinary Kriging and GEK models. Finally, the motivation for developing
efficient hybrid algorithms in this paper is emphasized.

2.1. Difficulties of Multi-Objective Optimization Problems

The MOP involving M objectives can be formulated as follows:

min f (x) = ( f1(x), f2(x), . . . , fM(x))T

s.t. gi(x) ≤ 0, i = 1, . . . , p
hj(x) = 0, j = 1, . . . , q

(1)

where x = (x1, x2, . . ., xD)
T ∈ Ω is the decision vector, and f = ( f1, f2, . . ., fM)T ∈ Λ is the

objective vector. All of the decision vectors constitute a known D-dimensional decision
space Ω, and all of the objective vectors constitute an unknown M-dimensional objective
space Λ. gi(x) is the i inequality constraint, p is the number of inequality constraints, hj(x)
is the q equality constraint, and q is the number of equality constraints. When the number
of decision variables is greater than 100, MOPs are called large-scale MOPs [30].

Multi-objective optimization is used to obtain a set of equilibrium solutions that trade-
off the values of multiple objectives rather than searching for a single objective optimal
solution. The primary challenge associated with multi-objective optimization is that enhanc-
ing one objective may typically require sacrificing another, thereby rendering it arduous to
identify solutions that are optimal across all objectives concurrently. Generally speaking, it
is difficult to solve MOPs using traditional mathematical planning methods. Conversely,
MOEA is widely used because it is capable of obtaining an approximate PF by iteratively
considering the correlation between multiple objectives within the population [31,32].

On the one hand, multi-objective optimization makes the obtained approximate so-
lution set as close as possible to the real optimal PF. On the other hand, such a set should
be uniformly distributed throughout the entire PF. One of the current difficulties in multi-
objective optimization is that the efficiency of the algorithm for solving large-scale MOP
decreases dramatically with the increase in the objective and decision dimensions. Taking
the DTLZ1 [33] function as an example, 100 initial individuals are randomly generated and
evolved for one generation by the NSGA-II [34] algorithm. Subsequently, the algorithm
is repeatedly executed 20 times to obtain an average. The proportion of non-dominated
solutions is illustrated in Figure 1.

The number of non-dominated solutions increases approximately linearly with the
number of objectives and decision variables. The high proportion of non-dominated
solutions makes it difficult for the selection operator to select excellent individuals to
drive the evolution of the population. The slow convergence of the algorithm is caused
by the degradation of the convergence pressure due to the increase in the design space
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and dimensionality of the objectives. Consequently, it is necessary to design particular
multi-objective algorithms to deal with large-scale MOPs efficiently.
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Figure 1. The proportion of non-dominated solutions in relation to (a) the number of objectives and
(b) the dimension of decision variables, respectively. The error bar is a standard deviation.

2.2. Multi-Objective Gradient Algorithm Based on Dynamic Stochastic Weights

GBAs are widely used in the field of large-scale single-objective aerodynamic opti-
mization. Even though GBAs may only find local optima, they are always the fastest way to
find an optimum. The L-BFGS-B [6] Quasi-Newton algorithm is the most common gradient
optimization method, which is improved from the BFGS [5] algorithm. The extremely low
iteration cost of the method makes it highly applicable for solving large-scale nonlinear
optimization problems.

However, the implementation of GBAs to solve MOPs is hindered due to the following
three reasons. Firstly, GBAs are typically developed for solving single-objective optimiza-
tion problems, so they may not work well solving MOPs where different objectives often
interact or conflict with each other. Secondly, the Pareto optimal set of MOPs often consists
of multiple non-dominant solutions instead of a single optimal solution, so it is difficult to
determine a single gradient direction between multiple objectives. Finally, the complexity
involved in evaluating gradients for multiple objectives can be computationally expensive
and may not be feasible for high-dimensional MOPs.

Generally speaking, when the GBAs method is used to solve MOPs, the weighted
sum method is usually used to linearly weight the gradients of multiple objectives onto
a combined gradient direction. Nevertheless, the traditional weighted sum method can
only obtain the optimal solution corresponding to a specific set of weight combinations.
Therefore, the optimization procedure must be run several times by repeatedly adjusting
the initial fixed weights to obtain a set of Pareto optimal solutions [35]. When a fixed set of
weights is initialized, GBAs cannot obtain the solutions across the whole PF evenly. For
instance, the optimization results may converge to the extremal points A and B, and the
trade-off solutions among multiple objectives are lost, as shown in Figure 2. Furthermore,
the GBAs may fall into a local optimum when solving non-convex optimization problems,
as shown in point C. Although GBAs have many disadvantages, they are still attractive in
aerodynamic optimization due to their extremely high optimization efficiency.

Figure 2. Weighted sum method applied to MOP with non-convex Pareto front. A and B are extreme
points and C is the local optimum point.
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To address these issues, this paper introduces uncertainty in the deterministic weight.
Specifically, the present algorithm dynamically re-assigns random weights to each indi-
vidual during each GBAs iteration, unlike traditional GBAs methods that use fixed and
invariant weights in each iteration. Take the optimization problem of M objectives as an
example: stochastic weights are introduced λi = [λi1, λi2, . . ., λiM], λi is a set of weights
for the i individual in the population, and λi1, λi2, . . ., λiM are random numbers and sat-
isfy the condition of ∑M

k−1λik = 1. The weighted sum method is used to transform the
multi-objective function into a single-objective form:

f (x) = ∑M
k−1λik fk(x) (2)

Then, each individual is taken as the initial value of L-BFGS-B, and the gradient information
is obtained according to each objective function for local search to obtain the offspring
population. The procedure is presented in Algorithm 1. The differences between this
method and the traditional weighted sum method are summarized as follows:

• The new MOGBA assigns stochastic weights to each individual. In addition, the
stochastic weights are dynamically updated during iterations.

• In each iteration, the solutions can diffuse in different directions, which makes it possi-
ble to generate arbitrary PFs by scanning the weight space. The MOGBA effectively
solves the issue of inequivalence between the fixed weight vectors and the solutions
in objective space.

• A combined gradient descent direction based on multiple objective functions can be
provided for each individual so that a uniformly distributed Pareto optimal solution
can be obtained. However, the convergence speed may be slightly reduced com-
pared to the traditional gradient weighting method due to the constantly changing
search directions.

Algorithm 1 Multi-Objective Gradient-Based Algorithm

Input: N (population size), M (number of objectives) T (maximum iteration number)
Output: P (final population)

1: P← Initialize(N);
2: for t = 1→ T do
3: for i = 1→ N do
4: λi = {λi1, . . ., λiM} // generate random weights
5: f (x) = ∑M

1 λik fk(x) //weight sum methods
6: compute yi from the L-BFGS-B procedures
7: Q← yi
8: end for
9: P← EnvironmentSelection(P ∪Q);

10: end for

In order to demonstrate the performance between two optimization algorithms MOGBA
and MOEA, we applied these two algorithms to solve the DTLZ2 [33] problem with three
objectives on 10 and 30-dimensional search spaces and compared their convergence capabil-
ities. The population size is set to 100 in both the 10 and 30-dimensional search spaces, the
number of iterations is 100 generations, and other parameters refer to [36]. In each case, the
two algorithms were independently run 20 times. Figure 3 illustrates the iteration process of
the algorithm’s inverted generational distance (IGD) [37]. The results demonstrate that the
efficiency of MOGBA is exceptionally high in various dimensions. The results demonstrate
that the efficiency of MOGBA is exceptionally higher than that of MOEA in both 10 and 30
dimensions. Specifically, MOGBA converges almost within 40 generations, while NSGA-III
does not converge until after 80 generations. MOGBA can rapidly explore promising
regions of DTLZ2, and its search efficiency is significantly superior to NSGA-III. When
d = 30, the final average IGD value of MOGBA is slightly higher than that of NSGA-III,
and it is difficult for it to continue decreasing after 40 generations. This indicates that the
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proposed MOGBA may fall into a local optimal solution, with the dimensionality of the
decision variables increasing.

In summary, the proposed MOGBA is a very efficient algorithm compared with
NSGA-III. MOGBA retains the advantage of GBAs being high-efficiency but also inherits
the disadvantage that GBAs can easily fall into local optimum. In addition, the convergence
efficiency of MOGBA is less affected by the dimension of decision variables, which further
improves GBAs’ ability to solve MOP with non-convex PF. Therefore, the proposed MOGBA
has high efficiency and is less constrained by dimensionality, making it widely applicable
in large-scale MOPs.
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Figure 3. Comparison of average IGD convergence curve of MOGBA and NSGA-III algorithm on
(a) DTLZ2 D = 10 and (b) DTLZ2 D = 30. The error band is the standard deviation.

2.3. Gradient-Enhanced Kriging with Partial Least Squares Approach

The GEK model was developed based on the Kriging model. Its principle is the same
as the Kriging model. The difference is that not only the function values at the sample
points but also the gradient values at the sample points are used in the training of the
model. Adding gradient information can improve model training accuracy under a given
number of sampling points [38]. In aerodynamic shape design, the gradient information
can be easily obtained through the adjoint method. Therefore, gradient-based approximate
modeling techniques are widely used and developing rapidly [39,40]. The training of the
Kriging model is accomplished by solving the maximum likelihood function to determine
the most suitable hyperparameters. This training process requires inverse operations on
the matrices, leading to significant computational costs. Although the GEK model is more
accurate than Kriging, the training efficiency still decreases rapidly as the dimensionality of
the variables increases. To improve the training efficiency of high-dimensional optimization
problems, the partial least squares (PLS) method is adopted in the GEK model to simplify
the problem and establish the GEKPLS model [29]. It is a surrogate modeling method that
leverages gradient information to achieve greater accuracy with fewer hyperparameters in
high-dimensional problems. This method generates a set of approximating points using the
first-order Taylor approximation method around each sampling point. The local influence
of each vector space is then determined through several applications of the PLS method.
Moreover, the global impact on the output function is obtained by calculating the average
of all PLS coefficients. In essence, GEKPLS can reduce the hyperparameters and slightly
increase the size of the correlation matrix, thus requiring fewer computational resources.
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The global PLS coefficient is w(l) = [wl
1, . . ., wl

d], l = 1, . . ., h, d is the input dimension
of the original problem, and h is the number of principal component vectors in the PLS
method. To construct the GEKPLS Gaussian kernel, we first define the linear map Fl via:

Fl : B −→ B

x 7−→
[
w(l)

v1 x1, . . . , w(l)
vd xd

] (3)

Then, we build the GEKPLS kernel:

k
(
x, x′

)
= σ2

h

∏
l=1

d

∏
i=1

exp
[
−θl

(
w(l)

vi xi − w(l)
vi x′i

)2
]

, ∀θl ∈ [0,+∞), ∀x, x′ ∈ B (4)

where B is a hypercube represented by the product of each vector space interval. This
approach reduces the number of hyperparameters from d to h, where h << d. In practical
applications, h generally takes 1–3, thus significantly reducing the time to construct the
model. More details of this approach are given by [29,41].

Take the multivariate sphere function as an example:

f (x) =
d

∑
i=1

x2
i ,−10 ≤ xi ≤ 10, i = 1, . . ., d (5)

To evaluate the errors of different surrogate models, we calculate the mean square error
(MSE) using the following equation:

MSE =
1
n

n

∑
i=1

( fi − yi)
2 (6)

where fi and yi represent the real value of the sample points and their corresponding
predicted values and n is the number of sample points. We use Kriging, indirect GEK,
and GEKPLS methods to build the surrogate model, respectively. The sample points
are increased from n = 20 to n = 100 with an interval of 20. But we use 2n sampling
points for each case in the Kriging model. Since the Kriging model cannot utilize the
gradient information, the gradient computation time is replaced by increasing the number
of function calculations. Moreover, we change the dimension of the sphere function from
d = 10 to d = 50 with an increment of 10.

As shown in Figure 4, the GEK and GEKPLS models based on gradient information are
more accurate than traditional Kriging in most cases, but the training time of GEK models
is longer. For example, in Figure 4c, when N = 100 and d = 10, the GEK model training
time is 60.4 s, while GEKPLS takes only 0.3 s. Furthermore, we compare the training time
of GEKPLS in different dimensions, as shown in Figure 4d. In the sphere function with up
to 50 dimensions, the GEKPLS model completed the training of 100 sample points in less
than 2 s, demonstrating high efficiency. The GEKPKS model is able to construct an accurate
Kriging model for high-dimensional problems using gradient information at sampling
points. This method solves the issues of the ordinary Kriging model, which has a large and
dense correlation matrix. For high-dimensional problems, the training time for the model is
often much longer than the CFD analysis time, making it difficult to apply to aerodynamic
optimization problems with 30 dimensions or more. Therefore, it can be ascertained that
GEKPLS shows good performance in the domains of training time as well as accuracy. The
aforementioned benefits are indeed alluring in the context of engineering applications.
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Figure 4. Performance comparison of surrogate models: (a) accuracy at different number of sampling
points when d = 10, (b) accuracy at different number of sampling points when d = 20, (c) training time
with different number of sampling points, and (d) training time of GEKPLS in different dimensions.

2.4. Motivation

EAs attain global optimization for diverse problem typologies, inclusive of continuous
and discontinuous, convex and non-convex, and unimodal and multimodal ones, via the
curation of superior genetic sequences through selection, recombination, and mutation.
However, EAs require a large population size and numerous fitness evaluations to find
the global optimum solution, and their convergence speed is relatively slow. Therefore,
to improve the optimization speed, GBAs are a commonly used approach. GBAs need
initial points that are close to the optimal solution to reach the global optimum during
convergence. Additionally, the algorithm has the potential to converge towards a local
optimum rather than the global optimum and is sensitive to the initial conditions. Both
algorithms have their advantages and limitations but remain widely used in the field
of aerodynamic optimization. Hybrid algorithms combining EAs and GBAs have been
successfully applied to the single objective aerodynamic shape optimization of a fore body
of a hypersonic air-breathing vehicle [42].

In complex aerodynamic shape design, we often encounter high-dimensional aerody-
namic optimization problems with many decision variables (D > 10) for multiple objectives
and disciplines, as shown in Figure 5. Currently, we mainly use adjoint methods to solve
large-scale optimization problems. For high-dimensional multi-objective aerodynamic
optimization problems, MOEAs can be used in addition to the weighted sum method for
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solving. But most existing MOEAs need multiple iterations to search for the PFs, making
them inefficient and unacceptable.

To alleviate this problem, it is necessary to improve the efficiency of optimization in
two respects: (1) the search efficiency of multi-objective optimization algorithms, and (2) the
efficiency of CFD analysis in aerodynamics. Therefore, it is highly attractive to propose
an efficient multi-objective algorithm if it can solve large-scale aerodynamic optimization
problems while reducing expensive CFD calculations.

Based on the above, we present two optimization algorithms: MOHA and GS-MOHA.
The former is a hybrid multi-objective optimization algorithm based on global evolution
and local gradient search. It makes full use of the advantages of gradient algorithm
and evolutionary algorithm to improve the efficiency of MOEA. The latter is an efficient
generalization of MOHA combined with the GEKPLS model under a hybrid framework
to solve the expensive CFD analysis. Their biggest difference is that GS-MOHA is a
surrogate-assisted algorithm that replaces expensive CFD calculations through surrogate
models. GS-MOHA requires fewer true evaluations than MOHA when solving the same
optimization problem.

The proposed algorithm process in this paper is shown in Figure 6. MOHA is the
core algorithm in this framework, and its main idea is to accelerate the evolution pro-
cess of MOEA through the multi-objective local gradient search algorithm. In addition,
aerodynamic shape design often faces the problems of many design variables and long
CFD simulation time. Therefore, combining the GEKPLS model with a hybrid algorithmic
framework overcomes the disadvantages of slow algorithm convergence and long model
training time in high-dimensional global optimization.
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3. Hybrid Multi-Objective Algorithm Coupling Global Evolution and Local
Gradient Search

In this section, we design a reasonable hybrid framework that balances the algorithm’s
global exploitation and local exploration capabilities. In the hybrid framework, MOHA
is proposed, which not only improves the convergence speed of the algorithm but also
maintains population diversity.

3.1. Hybrid Multi-Objective Algorithm Framework

As explicated in Section 2.1, the MOEAs exhibit robust global search capabilities. As
the number of objectives and decision variables increase, these algorithms encounter a
significant decline in their convergence pressure. Consequently, achieving convergence of
the algorithm becomes a formidable task. Dominance-based MOEAs are known to have
notable shortcomings when it comes to their capacity to attain the real PF. This is particularly
true when the objective value is in proximity to the PF because oscillations may arise. The
oscillation of the MOEA solution set can be attenuated by implementing local gradient
search techniques [13,43]. Figure 7 shows that by combining local search techniques with
the results of MOEA, the convergence pressure of the algorithm is enhanced and the
solution set is closer to the true PF. GBAs can provide sufficient convergence pressure on
the population, allowing them to converge faster to the PF. Consequently, local search
methods can facilitate EAs in generating solutions that effectively approximate the true PF.
Research indicates that incorporating additional information into the process of evolution,
such as gradient search techniques and special combination operators, can greatly improve
the search efficiency and solution accuracy of MOEAs [13,44–46].

f1

f 2

f1(max)f1(min)

f 2
(m

ax
)

f 2
(m

in
)

MOEA solution set

Set after local search

Figure 7. Improving the quality of MOEA solution sets using local search techniques.

Currently, most hybrid algorithms use local search techniques after the evolution of
MOEA is completed or alternate local search methods during the run of the algorithm [47].
Engaging in a local search predicated on gradient information for all individuals during
the algorithm’s iteration not only necessitates a substantial computation cost but also
culminates in the premature convergence of the algorithm. Inspired by the literature [42]
and [48], a bilayer parallel hybrid algorithm framework based on multi-objective gradient
search techniques is proposed in this paper, as presented in Figure 8.

The hybrid algorithm framework exhibits a parallel mechanism characterized by a
bilayer spatial configuration. This design displays remarkable flexibility and scalability
properties. Therefore, any MOEA and local search algorithm can be used in this framework.
To be specific, crossover and mutation operations are executed to generate offspring in
the global evolution space in MOHA. Meanwhile, using the MOGBA as proposed in
Section 2.2 for gradient search within the local search space has facilitated the evolution
of the population and greatly improved the efficiency of the algorithm. Furthermore, the
employment of the same environmental selection mechanism as NSGA-III by MOHA has
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led to the increased diversity of non-dominated solutions through the application of well-
distributed reference vectors to select new parent solutions. This hybrid strategy makes
full use of the global optimization capability of MOEA and the local convergence efficiency
of MOGBA.

Start

Population initialization

Select function

Simulated binary 
crossover

Generate
random weights

Polynomial mutation

Calculate the fitness

Merge offspring and
 parent

Efficient non-
dominated sorting

Weighted for multiple 
objectives

Calculate the 
weighted gradient

Generate offsprings of 
local search

Environment selection 
based on reference points

t < T ?

Y

N

G
lobal Evolution Space

Local Search Space

Bilayer Parallel Hybrid 
Framework

End

Calculate initial 
population fitness

Figure 8. Hybrid algorithm framework of global evolution and multi-objective local gradient search.

Through the inheritance and interaction of these two spaces, the diversity and conver-
gence of the algorithm population are balanced. As a consequence, the proposed MOHA
improves convergence while maintaining favorable diversity. Algorithm 2 presents the
details of MOHA, which is an efficient multi-objective optimization algorithm for solving
large-scale MOPs.

First, the global and local spaces are initialized according to the population size N and
initial acceptance probability P. The global space performs global evolution through genetic
operators, while the local space performs a multi-objective gradient search, which operates
in parallel, and the respective populations update themselves to generate offspring. In the
main loop, the number of individuals entering the local space is controlled by the dynamic
selection function. Each iteration selects naccept elite individuals into the local space by
using Equation (7). Then, the individuals after the gradient search are injected into the
global evolution space for individual migration interactions. By introducing new genes,
the diversity and convergence of the population can be promoted, thereby improving the
performance of the algorithm. Then, the original population and the newly generated
offspring are merged, and the non-dominated sort operation is performed on Rt. Finally,
use the environment selection mechanism to select new individuals for the next iteration.
The algorithm terminates until the maximum iteration number T is reached. The dynamic
selection function is:

naccept = [(P +
P
t
)× N] (7)
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Note that the brackets represent a Gaussian function, also known as a rounding function; t
is the current evolution generation; and P controls the number of individuals that go into
the local search space. With the utilization of the dynamic acceptance function, it is possible
to regulate the influx of individuals entering the local space by ensuring a higher number
in the initial stages of algorithm iteration and subsequently decrease their number later on.
As a result, the diversity and convergence of populations can be better balanced.

Algorithm 2 MOHA Procedure

Input: N (population size), Pc (crossover probability), Pm (mutation probability), T (maxi-
mum iteration number), P (acceptance probability), M (number of objectives)

Output: Qt+1 (next population)
1: t ← 0;
2: Z ← Re f erencePointsGeneration(M);
3: Pt ← GlobalSpaceInitialization();
4: Pb ← LocalSpaceInitialization();
5: while t < T do
6: Naccept←AcceptanceFunction(P);
7: if Local search then
8: for j = 1→ Naccept do
9: Qb ← Algorithm1(Pb); //Local search based on gradient information

10: end for
11: Ft ← NondominatedSort (Qb ∪ Pb);
12: else
13: Qt ← GeneticOperation (Pt,Pc,Pm);//Global search
14: end if
15: Rt ← Ft ∪ Qt;
16: (F1, F2, . . .) ← NondominatedSort (Rt);
17: St ← Ø, i ← 1;
18: repeat
19: St ← St ∪ Fi and i ← i + 1
20: until |St| ≥ N
21: Last front to be included: Fl = Fi;
22: if |St| = N then
23: Pt+1=St , break
24: else
25: Qt+1 =

⋃l−1
j=1Fj;

26: Zr ← Normalize(Z, St); //Zr:reference points on normalized hyperplane
27: Points to be chosen from Fl : K = N − |Qt+1|;
28: [π(s), d(s)] ← Associate (St, Zr); // π(s):closest reference point, d:distance be-

tween s and π(s)
29: Qt+1 ← Niching (K, ρj, π, d, Z, Fl , Qt+1);//ρj:niche count for the jth reference

point
30: end if
31: t ← t + 1
32: end while

3.2. Sensitivity Analysis of the Local Search Parameter P

To verify the efficiency of the developed hybrid framework and the influence law
of the multi-objective gradient search mechanism on MOEA, a sensitivity analysis was
carried out on the parameter P. Here, we still take DTLZ2 as an example, and the number
of iterations is set to 30 generations. We do this because a smaller number of iterations
can more clearly compare the difference between the algorithm under different P. Figure 9
shows the influence of the local search frequency P on the convergence performance of
the algorithm. The convergence speed of the algorithm will become increasingly faster
when P changes from 0 to 0.4. If the value of P is too large, the computational cost of the
algorithm will increase. The algorithm degenerates to an ordinary MOEA at P = 0. At this
moment, the convergence is the slowest and the search efficiency also is the lowest. With
the increase in P, the more individuals are selected into the local search space, the faster the
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algorithm converges. However, this promotion effect non-linearly increases. For example,
after p > 0.1, the search efficiency improves very slowly. Moreover, even with a very small
value such as P = 0.01 is still very significant for improving the search efficiency of MOEA,
which demonstrates the rationality and efficiency of the hybrid algorithm framework. The
solution generated by the MOGBA can guide MOEA to approach the PF fast. In summary,
the MOHA algorithm selects elite individuals in the local search space with a probability of
P = 0.1 during the iterations and only performs one gradient iteration each time. Finally,
the individuals after the local search and the global search are mixed to generate new
offspring, which produces new knowledge and increases the diversity of the population.

(a) (b)

Figure 9. Influence of local search frequency P on algorithm performance: (a) Box plot of the MOHA
for different P (red dots are outliers, black dots are means, and black dashed lines are medians), and
(b) average IGD convergence curves for different P.

3.3. Population Evolution and Acceleration Mechanism Analysis of Multi-Objective
Hybrid Algorithm

Figure 10 illustrates the variation process of the approximate PF distribution for the
three algorithms on ZDT2 [33]. According to Figure 10, discovering the approximate PF
through MOEA requires about 100 generations of evolution. In contrast, MOGBA and
MOHA are capable of finding the optimal PF in only 10 iterations. Obviously, the con-
vergence efficiency of MOGBA and MOHA is about 10 times higher than that of MOEA,
while the efficiency of MOGBA and MOHA is similar. Moreover, ZDT2 is a non-convex
function and MOGBA can still solve it very well, further proving that our improvement
of the gradient algorithm is reasonable and feasible. By comparing Figure 10b,c, the pro-
posed MOHA also has better diversity than MOGBA while maintaining high convergence.
As demonstrated, hybrid algorithms are not simply the combination of two algorithms.
The advantages of hybrid algorithms lie in their ability to leverage the strengths of each
algorithm while avoiding their weaknesses. The acceleration mechanisms of MOHA are
analyzed as follows:

• In the hybrid framework, elite individuals are selected into the local space. These elite
individuals are generated by MOEA and carry the vast majority of useful information.
A multi-objective gradient search on this basis not only amplifies this advantage but
also increases population diversity.

• The quality of most offspring solutions generated by local search is always better than
that of global search as shown by the red dots in Figure 10c. They carry a great number
of excellent genes and a great deal of knowledge and are therefore able to guide the
evolutionary direction of other individuals. This information exchange substantially
improves the speed of the algorithm in finding the global optimal solution.

• The proposed algorithm can quickly approximate the global optimal PF, mainly due
to its good global exploration and local search capabilities. When MOEA approaches
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the true Pareto front, it tends to slow down and the solutions generated may oscillate.
This phenomenon can be eliminated by using hybridization.

(a) MOEA.

(b) MOGBA.

(c) MOHA.

Figure 10. The evolution of PF for different algorithms on ZDT2: (a) the evolution process of PF
after 100 generations with NSGA-III, and (b,c) the evolution process of PF after 20 generations with
MOGBA and MOHA. The red dots are the offspring generated by the local search.

The above three mechanisms work together synergistically to produce an accelerated
convergence effect that improves algorithm performance significantly. It is these accelera-
tion mechanisms of the hybrid algorithm that make it possible to solve large-scale MOPs.

4. Hybrid Optimization Algorithm Based on GEKPLS Surrogate Model

The proposed MOHA, as presented in the preceding section, enhances the search pro-
ficiency of the algorithm. This section aims to further enhance the optimization efficiency
of the hybrid algorithm by tackling the issue of costly fitness assessment in engineering
optimization. Thus, we have proposed the GS-MOHA, which employs the GEKPLS surro-
gate model to approximate costly fitness calculations. The algorithm takes full advantage
of the scalability of the hybrid algorithmic framework. The gradient information generated
in the local search space not only promotes population convergence but also improves
the accuracy of the surrogate model. Overall, GS-MOHA has enhanced the engineering
applicability of MOHA for complex aerodynamic shape optimization in aircraft.

4.1. Surrogate-Assisted Hybrid Multi-Objective Algorithm Framework

In this section, we present the details of GS-MOHA proposed for solving expensive
MOPs. GS-MOHA uses both surrogate-assisted global search strategies and local search
update strategies to improve the optimization efficiency of MOHA. The optimization
framework of GS-MOHA is plotted in Figure 11, which is similar to the MOHA framework.
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Figure 11. Flow chart of the GS-MOHA algorithm.

To fully utilize data and save time, GS-MOHA maintains a similar framework to
MOHA. The efficiency and simplicity of the hybrid algorithm framework are inherited.
GS-MOHA consists of three main components: (1) global optimizer; (2) local optimizer;
(3) GEKPLS surrogate model. Specifically, MOEA and MOGBA are employed as global
and local optimizers, respectively, to strike a balance between global exploration and
local exploitation capabilities. Unlike MOHA, we embed the GEKPLS model into the
hybrid framework to reduce the number of expensive fitness evaluations. The numerical
implementation of GS-MOHA is expounded in a step-by-step manner as follows:

• Step 1: Generate random populations and evaluate their objective function values and
gradient values. After that, the initial surrogate model of GEKPLS is built.

• Step 2: Control the global evolution and local search behaviors of individuals using
selection functions. The global optimizer uses a surrogate model for fitness calculation.
The global search of the surrogate model is performed using polynomial mutation
(PM) and simulated binary crossover (SBX) operators. Meanwhile, the real fitness and
gradient of individuals entering the local optimizer are calculated.

• Step 3: An external database is created to store the real fitness and gradient information
generated by the local optimizer in each iteration. Here, the gradient is calculated
using the finite difference method, but the adjoint method is used in aerodynamic
optimization.

• Step 4: Decide whether the GEKPLS model needs to be updated. If the surrogate
model is updated, the GEKPLS model is rebuilt with the individual information from
the external archive set. Otherwise, the original model is used for function evaluation.

• Step 5: Merging the offspring generated by the global and local optimizers. Then, the
next generation population is selected through the environmental selection mechanism.

• Step 6: Stop the algorithm if the stopping criterion is satisfied. Otherwise, go to Step 2.

The proposed GS-MOHA has four significant merits:

(1) With MOHA as the main driving engine, GS-MOHA inherits all the advantages of the
hybrid algorithm and has a faster convergence speed.

(2) Combining fitness values and gradient values at each sampling point has the potential
to enrich the surrogate model. This means that GS-MOHA runs faster and with higher
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accuracy for the same number of sampling points. The local search technique based
on gradient information not only facilitates the evolution of the population but also
enhances the quality of the surrogate model.

(3) GS-MOHA uses a multi-point infill strategy. The number of filling points is related to
the number of elite solutions in local search. This infill strategy makes reasonable and
efficient use of the hybrid algorithm framework.

(4) GS-MOHA is capable of solving expensive MOPs with decision variable dimensions
greater than 10. Due to the adoption of the GEKPLS and hybrid algorithm frame-
work, the search efficiency and modeling accuracy in high-dimensional design spaces
are better than traditional methods. This fulfills our primary purpose of pursuing
efficiency in engineering optimization.

4.2. Model Update Management and Validation

In SAEA, model management is a very important strategy that controls the update
of the surrogate model and has a great influence on the optimization results. A good
model management strategy can guide the algorithm to converge to the global optimum
faster, while a bad model management strategy is just the opposite. Currently, the expected
improvement (EI) criterion based on the uncertainty of the predicted value is the most com-
mon. But when extended to high-dimensional multi-objective optimization, the formula
becomes more complicated and only one new point can be added each time [25,26]. Other
management strategies such as the probability of improvement (PI) criterion, surrogate-
based optimization (SBO) criterion, and lower confidence bound (LCB) criterion are also
widely used in SAEA [49–51]. The role of the surrogate model in SBO has changed. It
is no longer a simple substitution role but constitutes an optimization mechanism based
on historical data to drive sample point addition and thus the approximation of locally
or globally optimal solutions. This approach is particularly suitable for multi-objective
optimization. Because this method can add points in batches around PF, it focuses on
high-precision surrogate modeling in the local area where the optimal solution is located
rather than approximating the global space.

Algorithm 3 presents the update strategy of the GEKPLS model. Firstly, a population
is randomly generated and its fitness values and gradients are calculated. Then, an initial
GEKPLS surrogate model is established for each objective using the fitness values and
gradient values. Next, naccept individuals are selected for local search using the selection
function. The fitness values and gradient information of the offspring generated after
the local search are saved to the external archive set, while the redundant solutions are
removed. Eventually, the GEKPLS model is updated when the update conditions are
satisfied. Otherwise, a global search is executed on the original model.

With the iteration of the algorithm, the solution after local search becomes closer and
closer to the real PF, thus improving the accuracy of the GEKPLS model fitting the space
near the PF. It is worth noting that the acceptance probability is P = 0.1 in MOHA, while
the recommended value range in the GS-MOHA is (0.01, 0.05), which is set to P = 0.02
in this paper. The reason for this is that GS-MOHA is a surrogate-based optimization
algorithm to reduce expensive CFD calculations in aerodynamic shape design. The utility
of GEKPLS is mainly to replace the fitness calculations of the global optimizer with a larger
population size, while the small number of children generated by the local optimizer is
mainly used to update the model. Therefore, the number of individuals accessing the
local space must be limited, and larger values of P increase the number of expensive
fitness evaluations. Although local search techniques can improve the efficiency of the
algorithm, this improvement is much smaller than the CFD computational cost. Moreover,
a larger P value leads to too many individuals stored in the archive set and more redundant
solutions, increasing the cost of training the model. After comprehensive consideration,
GS-MOHA abandons the best acceptance probability in MOHA. The cost of doing so is a
slight reduction in the effectiveness of the gradient operator, but it improves the overall
performance of the algorithm.
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Algorithm 3 The Surrogate-Assisted Model Update Strategy

Input: P (current population), M (number of objectives), V (decision variables), K (update
frequency), T (maximum number of iterations)

Output: Qe (offspring population of MOEA), Qg (offspring population of MOGBA),
Q (next population)

1: Y ← PopulationInitialization(V);
2: G ← GradientInitialization(V);
3: for i = 1 : M do
4: Yi ← the ith column of Y;
5: Gi ← the ith column of G;
6: GEKPLS ← BuildSurrogateModel(V, Yi, Gi);
7: end for
8: for j < T do
9: if j > 0 and j/K == 0 then

10: Update GEKPLS with the solutions generated by Algorithm 1;
11: else
12: Qe ← Predicted objective values by the ith GEKPLS model;
13: Qg ← Algorithm 1;
14: Q ← Qe ∪ Qg;
15: Pt+1 ← EnvironmentalSelection(Q);
16: end if
17: end for

The update frequency K has a significant impact on the performance of GS-MOHA.
Nonetheless, there is still a lack of strict frequency adjustment criteria, and we usually
set them empirically. Note that if K is too small, it increases the computation time of
the algorithm and cannot fully explore the surrogate model; if K is too large, the search
direction may deviate from the optimal solution due to the low accuracy of the surrogate
model. To choose a reasonable update frequency, this section tests the DTLZ2 and DTLZ7
functions. DTLZ2 is a continuous concave function, while DTLZ7 is a discontinuous
multimodal function, which can be a good test of the performance of the algorithm. We
vary the update frequency from K = 5 to K = 20 in increments of 5. The number of true
fitness evaluations is set to 300, and the algorithm is run 20 times independently. Figure 12
presents a comparison of the algorithm performance. When K = 10, the algorithm has the
smallest average IGD metric on DTLZ2 and DTLZ7, followed by K = 15. Compared to
other operating conditions, the data fluctuation range is smaller; therefore, the algorithm
has the best performance. In addition, multiple outliers appeared at K = 5, which may be
caused by frequent model updates resulting in changing search directions. Overall, the
recommended value of K is 10.
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(b) DTLZ7 D = 10

Figure 12. Effect of model update frequency K on algorithm performance: (a) box plot of different
frequencies on DTLZ2 and (b) box plot of different frequencies on DTLZ7. (Red dots are outliers,
black dots are means, and black dashed lines are medians.)
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5. Numerical Experiments and Discussion

In this section, comparative experiments are conducted between MOHA and four
state-of-the-art MOEAs, including MOEA/D [52], NSGA-III [36], RVEA [53], and VaEA [54].
Then, we compare GS-MOHA with two SAEAs (MOEA/D-EGO [26] and K-RVEA [27])
on the DTLZ [33] problems. Furthermore, we also analyze the efficiency and scalability of
MOHA and GS-MOHA.

5.1. Performance Comparison between MOHA and Existing MOEAs
5.1.1. Experimental Setting

The algorithms are tested with DTLZ problems (DTLZ1-DTLZ7), which are well
known for their scalability in decision space and objective space. Notably, we change the
dimensionality of the decision variables and the number of objectives of the benchmark test
function. Table 1 provides the test functions and their features. To ensure a fair comparison,
all of the algorithms are evaluated using prescribed parameter values to achieve optimal
performance. This study conducted all tests on a computer with an Intel® CoreTM i7-
10700K 3.80 GHz processor and 32 G memory. The parameter settings used in all of the
experiments are listed below.

(1) Population Sizing: The population size of NSGA-III and MOEA/D is not arbitrarily
specified but depends on the number of reference points or weight vectors. As
recommended in [55], the population size is set at 105 when M = 3 and 126 for the
corresponding M = 5.

(2) Termination Conditions: An increase in the number of decision variables and objec-
tive functions will increase the optimization difficulty. For the three-objective test
problems, with 30 and 50 decision variables, the maximum number of evaluations is
set to 50,000 and 100,000. Similarly, when M = 5, the evaluations are set to 100,000
and 150,000, respectively. Statistical results of all test problems were obtained by 20
independent experiments for each algorithm.

(3) Performance Metrics: The performances of the algorithms are evaluated with IGD [37]
and hypervolume (HV) [46]. In principle, both IGD and HV can evaluate the conver-
gence and diversity of the obtained non-dominated solutions. A smaller value of IGD
indicates a better quality of the obtained solution set, while HV is just the opposite: a
larger value indicates better solution quality.

(4) Control parameters: For the MOHA, the acceptance probability is set to P = 0.1. And
the gradient is estimated using a 2-point finite difference estimation with an absolute
step size. The number of local gradient searches is set to one. All of the algorithms
adopt the same evolutionary operators such as PM and SBX. The parameters of the
evolutionary operator are consistent with the literature [55].

Table 1. Test problems and characteristics.

Problems Features

DTLZ1 Linear, multi-modal
DTLZ3 Non-convex, multi-modal
DTLZ2,4 Non-convex, unimodal
DTLZ5,6 Non-convex, degenerate PF
DTLZ7 Mixed, disconnected, and multi-modal

5.1.2. Discussion of Results

The statistical IGD and HV results of different algorithms are listed in Tables 2 and 3.
The Wilcoxon rank sum test is also adopted at a significance level of 0.05. As can be seen
from the table, although MOEA/D, NSGA-III, RVEA, and VaEA can solve high-dimensional
MOP, the performance decreases significantly as the number of decision variables and
target dimensions increases. The average values of IGD and HV calculated by MOHA are
consistently good for each DTLZ problem. The increase in decision variables did not reduce
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the performance of the algorithm significantly for the same number of target dimensions.
All exhibit good search capabilities on arbitrary unimodal, multimodal, non-convex, and
discontinuous test problems. This indicates again that the hybrid strategy of coupling
global evolution and local search is reasonable. In addition, for the existing MOEAs, HV
becomes 0 with increasing decision variables and target dimensions, while IGD becomes
larger on DTLZ1 and DTLZ3. This indicates that the multimodal high-dimensional MOP
cannot be solved efficiently. However, the proposed MOHA can still maintain a stable
solution, which shows good scalability.

Table 2. IGD metric values of five algorithms on DTLZ problems, where the best result on each
test problem is displayed in black and bold. (“+, −, =” indicate that the result is significantly better,
significantly worse, and statistically similar to that of MOHA, respectively).

Problem M D MOEA/D NSGA-III RVEA VaEA MOHA

DTLZ1

3 30 2.1856× 100 (1.43× 100) − 8.1406× 10−1 (6.33× 10−1) − 1.5151× 100 (8.10× 10−1) − 7.4534× 10−1 (4.88× 10−1) − 2.0561× 10−2 (2.47× 10−5)
3 50 2.3154× 101 (8.26× 100) − 1.3432× 101 (4.21× 100) − 1.7094× 101 (4.79× 100) − 1.4645× 101 (3.83× 100) − 2.0662× 10−2 (1.29× 10−5)
5 30 4.6352× 100 (1.91× 100) − 5.0216× 100 (1.65× 100) − 2.0707× 100 (1.13× 100) − 9.2347× 100 (4.52× 100) − 6.4905× 10−2 (8.29× 10−5)
5 50 3.2270× 101 (8.18× 100) − 3.1468× 101 (6.19× 100) − 1.8731× 100 (4.58× 100) − 4.2893× 101 (1.05× 101) − 6.8126× 10−2 (1.27× 10−4)

DTLZ2

3 30 5.4464× 10−2 (1.92× 10−7) = 5.4465× 10−2 (6.63× 10−7) − 5.4464× 10−2 (6.91× 10−7) − 5.8066× 10−2 (8.02× 10−4) − 5.3612× 10−2 (4.69× 10−7)
3 50 5.4467× 10−2 (8.48× 10−7) − 5.4468× 10−2 (2.02× 10−6) − 5.4466× 10−2 (8.20× 10−7) − 5.8108× 10−2 (8.67× 10−4) − 5.3634× 10−2 (6.72× 10−7)
5 30 2.1205× 10−1 (1.09× 10−4)+ 2.1223× 10−1 (2.87× 10−5) − 2.1222× 10−1 (5.79× 10−6) − 2.1653× 10−1 (1.46× 10−3) − 2.1220× 10−1 (1.73× 10−5)
5 50 2.1209× 10−1 (1.01× 10−4)+ 2.1227× 10−1 (1.24× 10−5) − 2.1224× 10−1 (9.02× 10−6) − 2.1737× 10−1 (1.20× 10−3) − 2.1311× 10−1 (1.65× 10−5)

DTLZ3

3 30 8.6438× 100 (4.97× 100) − 1.1698× 100 (9.57× 10−1) − 6.3482× 100 (3.53× 100) − 1.6131× 100 (1.40× 100) − 5.4491× 10−2 (1.16× 10−6)
3 50 7.9663× 101 (2.14× 101) − 3.3094× 101 (7.37× 100) − 6.5109× 101 (1.86× 101) − 3.3455× 101 (8.32× 100) − 5.4493× 10−2 (1.06× 10−6)
5 30 1.9898× 101 (1.05× 101) − 1.4293× 101 (5.88× 100) − 7.2137× 100 (3.69× 100) − 2.4082× 101 (9.36× 100) − 2.1790× 10−1 (1.27× 10−2)
5 50 1.2696× 102 (3.01× 101) − 1.0811× 102 (2.69× 101) − 7.6486× 101 (2.17× 101) − 1.5170× 102 (3.63× 101) − 2.2840× 10−1 (1.86× 10−2)

DTLZ4

3 30 3.9787× 10−1 (3.36× 10−1) − 1.8436× 10−1 (2.19× 10−1) − 5.4464× 10−2 (8.32× 10−7)+ 5.8094× 10−2 (5.81× 10−4) − 5.4465× 10−2 (8.49× 10−7)
3 50 5.5993× 10−1 (3.57e× 10−1) − 2.0060× 10−1 (2.27× 10−1)− 5.4466× 10−2 (9.11× 10−7) = 8.8005× 10−2 (1.62× 10−1)− 5.4465× 10−2 (9.40× 10−7)
5 30 5.2263× 10−1 (1.79× 10−1)− 2.8917× 10−1 (1.11× 10−1)− 2.4803× 10−1 (8.14× 10−2)− 2.1997× 10−1 (1.66× 10−3)− 2.1225× 10−1 (3.56× 10−5)
5 50 6.3359× 10−1 (2.03× 10−1)− 2.7934× 10−1 (1.04× 10−1)− 2.4105× 10−1 (7.45× 10−2)− 2.2088× 10−1 (1.40× 10−3)− 2.1226× 10−1 (3.84× 10−5)

DTLZ5

3 30 3.3866× 10−2 (2.71× 10−5)− 1.3181× 10−2 (1.86× 10−3)− 7.4851× 10−2 (1.55× 10−2)− 5.5460× 10−3 (2.25× 10−4)− 4.7204× 10−3 (1.48× 10−4)
3 50 3.3776× 10−2 (6.01× 10−5)− 1.4107× 10−2 (2.30× 10−3)− 7.5091× 10−2 (1.46× 10−2)− 5.5915× 10−3 (2.01e× 10−4)− 5.1166× 10−3 (4.92e× 10−4)
5 30 2.6013× 10−2 (6.13× 10−4)− 1.6185× 10−1 (4.28× 10−2)− 2.4838× 10−1 (5.28× 10−2)− 2.2965× 10−1 (3.80× 10−2)− 2.4262× 10−2 (3.18× 10−4)
5 50 2.6340× 10−2 (6.08× 10−4)− 1.8359× 10−1 (3.51× 10−2)− 2.4593× 10−1 (5.66× 10−2)− 2.9337× 10−1 (3.02× 10−2)− 2.5046× 10−2 (5.03× 10−4)

DTLZ6

3 30 3.3884× 10−2 (4.63× 10−5)− 1.9484× 10−2 (2.68e× 10−3)− 1.2542× 10−1 (2.85× 10−2)− 5.1653× 10−3 (1.87× 10−4)+ 6.6196× 10−3 (2.38× 10−3)
3 50 3.6268× 10−2 (5.89× 10−3)− 2.5487× 10−2 (9.27× 10−3)− 2.0971× 10−1 (2.16× 10−1)− 1.3708× 10−2 (1.19× 10−2)+ 2.2452× 10−2 (1.98× 10−3)
5 30 2.4153× 10−1 (1.95× 10−3)− 8.4383× 10−1 (2.68× 10−1)− 2.4051× 10−1 (5.79× 10−2)− 2.2215× 100 (1.32× 100)− 7.1353× 10−2 (1.01× 10−2)
5 50 2.9795× 10−1 (4.71× 10−1)− 3.5023× 100 (1.41× 100)− 4.0863× 10−1 (2.84× 10−1)− 1.3260× 101 (2.56× 100)− 7.8761× 10−2 (5.30× 10−2)

DTLZ7

3 30 1.5421× 10−1 (1.64× 10−1)− 7.0356× 10−2 (5.45× 10−2)− 1.0501× 10−1 (1.37× 10−3)− 6.4146× 10−2 (7.23× 10−2)− 6.2330× 10−2 (2.93× 10−3)
3 50 1.7749× 10−1 (1.18× 10−1)− 7.7570× 10−2 (3.62× 10−3)− 1.0497× 10−1 (1.46× 10−3)− 6.7215× 10−2 (1.55× 10−3)+ 6.8855× 10−2 (5.35× 10−2)
5 30 1.0070× 100 (2.10× 10−1)− 3.7415× 10−1 (3.22e× 10−2)+ 5.0679× 10−1(5.78× 10−3)− 3.7955× 10−1 (1.10× 10−2) = 3.7962× 10−1 (7.72× 10−2)
5 50 1.0737× 100 (1.70× 10−1)− 4.0329× 10−1 (1.32× 10−2)− 5.0781× 10−1 (2.73× 10−3)− 3.8611× 10−1 (1.05× 10−2) = 3.8598× 10−1 (6.37× 10−2)

+/−/= 2/25/1 1/27/0 1/26/1 3/23/2 N/A

Table 3. HV metric values of five algorithms on DTLZ problems, where the best result on each test
problem is displayed in black and bold.

Problem M D MOEA/D NSGA-III RVEA VaEA MOHA

DTLZ1

3 30 6.4718× 10−3 (2.49× 10−2)− 8.4464× 10−2 (2.31× 10−1)− 2.6614× 10−2 (1.42× 10−1)− 1.1018× 10−1 (2.40× 10−1)− 8.4172× 10−1 (8.60× 10−5)
3 50 0.0000× 100 (0.00× 100)− 0.0000× 100 (0.00× 100)− 0.0000× 100 (0.00× 100)− 0.0000× 100 (0.00× 100)− 8.4172× 10−1 (3.57× 10−5)
5 30 0.0000× 100 (0.00× 100)− 0.0000× 100 (0.00× 100)− 1.9022× 10−3 (5.86× 10−3)− 0.0000× 100 (0.00× 100)− 9.7080× 10−1 (5.45× 10−4)
5 50 0.0000× 100 (0.00× 100)− 0.0000× 100 (0.00× 100)− 0.0000× 100 (0.00× 100)− 0.0000× 100 (0.00× 100)− 9.7104× 10−1 (5.72× 10−4)

DTLZ2

3 30 5.5960× 10−1 (5.26× 10−6)− 5.5960× 10−1 (3.92× 10−6)− 5.5960× 10−1 (1.09× 10−5)− 5.5446× 10−1 (1.28× 10−3)− 5.5962× 10−1 (1.74× 10−6)
3 50 5.5946× 10−1 (3.57× 10−5)− 5.5951× 10−1 (2.92× 10−5)− 5.5952× 10−1 (2.23× 10−5)− 5.5353× 10−1 (1.38× 10−3)− 5.5962× 10−1 (2.36× 10−6)
5 30 7.7430× 10−1 (5.28× 10−4)− 7.7474× 10−1 (5.24× 10−4) = 7.7477× 10−1 (3.77× 10−4) = 7.5569× 10−1 (2.71× 10−3)− 7.7475× 10−1 (8.94× 10−4)
5 50 7.7394× 10−1 (4.73× 10−4)− 7.7426× 10−1 (3.72× 10−4)− 7.7462× 10−1 (3.80× 10−4)+ 7.5414× 10−1 (2.97× 10−3)− 7.7458× 10−1 (1.58× 10−3)

DTLZ3

3 30 0.0000× 100 (0.00× 100)− 1.1975× 10−1 (1.74× 10−1)− 9.9231× 10−4 (5.44× 10−3)− 9.7411× 10−2 (1.58× 10−1)− 5.5961× 10−1 (4.76× 10−6)
3 50 0.0000× 100 (0.00× 100)− 0.0000× 100 (0.00× 100)− 0.0000× 100 (0.00× 100)− 0.0000× 100 (0.00× 100)− 5.5961× 10−1 (4.05× 10−6)
5 30 1.7222× 10−2 (7.49× 10−2)− 0.0000× 100 (0.00× 100)− 2.2754× 10−3 (1.25× 10−2)− 0.0000× 100 (0.00× 100)− 7.6958× 10−1 (1.31× 10−2)
5 50 0.0000× 100 (0.00× 100)− 0.0000× 100 (0.00× 100)− 0.0000× 100 (0.00× 100)− 0.0000× 100 (0.00× 100)− 7.6111× 10−1 (1.81× 10−2)

DTLZ4

3 30 3.9422× 10−1 (1.71× 10−1)− 5.0098× 10−1 (9.88× 10−2)− 5.5960× 10−1 (1.35× 10−5)− 5.5286× 10−1 (1.31× 10−3)− 5.5962× 10−1 (2.93× 10−6)
3 50 3.0773× 10−1 (1.89× 10−1)− 4.9344× 10−1 (1.03× 10−1)− 5.5953× 10−1 (2.18× 10−5)− 5.3748× 10−1 (8.44× 10−2)− 5.5962× 10−1 (2.29× 10−6)
5 30 5.9739× 10−1 (1.33× 10−1)− 7.2830× 10−1 (6.74× 10−2)− 7.5893× 10−1 (3.60× 10−2)− 7.5415× 10−1 (3.82× 10−3)− 7.7497× 10−1 (1.12× 10−3)
5 50 5.1310× 10−1 (1.74× 10−1)− 7.3584× 10−1 (5.92× 10−2)− 7.6169× 10−1 (3.31× 10−2)− 7.4816× 10−1 (4.19× 10−3)− 7.7496× 10−1 (1.12× 10−3)

DTLZ5

3 30 1.8187× 10−1 (1.55× 10−5)− 1.9316× 10−1 (1.39× 10−3)+ 1.5053× 10−1 (1.06× 10−2)− 1.9904× 10−1 (1.68× 10−4)+ 1.8891× 10−1 (1.49× 10−3)
3 50 1.8191× 10−1 (3.12× 10−5)− 1.9286× 10−1 (9.66× 10−4)+ 1.4804× 10−1 (8.84× 10−3)− 1.9897× 10−1 (1.76× 10−4)+ 1.8831× 10−1 (2.05× 10−3)
5 30 1.2487× 10−1 (4.20× 10−4)+ 8.3442× 10−2 (1.23× 10−2)− 9.1930× 10−2 (1.71× 10−3)− 7.6922× 10−2 (7.01× 10−3)− 1.1935× 10−1 (6.02× 10−3)
5 50 1.2480× 10−1 (3.68× 10−4)+ 4.8933× 10−2 (1.14× 10−2)− 9.3119× 10−2 (3.30× 10−3)− 1.4363× 10−2 (1.52× 10−2)− 1.1770× 10−1 (3.83× 10−3)
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Table 3. Cont.

Problem M D MOEA/D NSGA-III RVEA VaEA MOHA

DTLZ6

3 30 1.8186× 10−1 (7.64× 10−6)− 1.9052× 10−1 (1.67× 10−3)+ 1.2136× 10−1 (1.02× 10−2)− 1.9946× 10−1 (3.37× 10−4)+ 1.8921× 10−1 (2.05× 10−3)
3 50 1.7583× 10−1 (8.98× 10−3)− 1.7693× 10−1 (1.17× 10−2)− 6.1209× 10−2 (2.90× 10−2)− 1.8988× 10−1 (1.20× 10−2) = 1.8869× 10−1 (1.64× 10−3)
5 30 1.2392× 10−1 (3.61× 10−4)+ 1.6326× 10−5 (8.94× 10−5)− 9.7732× 10−2 (5.37× 10−3)− 0.0000× 100 (0.00× 100)− 1.0573× 10−1 (4.87× 10−3)
5 50 9.0147× 10−2 (4.27× 10−2)− 0.0000× 100 (0.00× 100)− 3.0883× 10−2 (2.46× 10−2)− 0.0000× 100 (0.00× 100)− 1.0324× 10−1 (7.15× 10−3)

DTLZ7

3 30 2.5306× 10−1 (1.38× 10−2)− 2.6616× 10−1 (1.11× 10−2)− 2.6503× 10−1 (1.07× 10−3)− 2.7543× 10−1 (9.00× 10−3)+ 2.6700× 10−1 (6.31× 10−3)
3 50 2.5384× 10−1 (9.80× 10−3)− 2.5142× 10−1 (5.64× 10−3)− 2.6504× 10−1 (1.14× 10−3)− 2.7373× 10−1 (7.17× 10−4)+ 2.6733× 10−1 (1.86× 10−3)
5 30 3.7528× 10−2 (5.34× 10−2)− 2.0587× 10−1 (5.77× 10−3)− 2.0909× 10−1 (5.42× 10−4)− 2.2771× 10−1 (5.54× 10−3) = 2.3195× 10−1 (1.28× 10−2)
5 50 2.1543× 10−2 (4.24× 10−2)− 2.0372× 10−1 (3.77× 10−3)− 2.0909× 10−1 (6.67× 10−4)− 2.2659× 10−1 (5.18× 10−3)− 2.3065× 10−1 (1.47× 10−2)

+/−/= 3/25/0 3/24/1 1/26/1 5/21/2 N/A

5.1.3. Performance of MOHA on Large-Scale MOPs with 1000 Decision Variables

As mentioned, MOHA demonstrates excellent performance on DTLZ problems with a
number of decision variables of 30 and 50. In this section, we further challenge the ability
of MOHA to solve MOPs on a larger scale of decision variables.

Figure 13 shows the average IGD metric convergence curve of MOHA on the DTLZ
problems with dimensions from 100 to 1000. Overall, we can conclude that with the
increase in decision variable dimensions, the convergence speed of the algorithm shows a
decreasing trend, especially for DTLZ1, DTLZ3, and DTLZ7. Specifically, MOHA needs a
higher number of iterations to solve the multimodal problems. This phenomenon occurs
due to the fact that the landscape of the search domain can become exceedingly erratic as
the number of dimensions increases. In contrast, the solution efficiency of MOHA remains
high for the remaining test problems, which can converge within about 40 generations.
In summary, MOHA is not sensitive to the dimensionality of decision variables, which
is highly favorable for searching in high-dimensional decision spaces. For large-scale
MOPs, MOHA is far more efficient than we can anticipate by balancing the exploitation and
exploration capabilities. These tests illustrate the generality and efficiency of the proposed
multi-objective local search operator. In the framework of gradient-based hybrid algorithms,
the multi-objective local search operator is a powerful technique. It improves the ability of
the algorithm to solve large-scale optimization problems. MOHA is less constrained by the
dimensionality of the decision variables, and convergence can be achieved with a small
number of evolutions. Therefore, this high efficiency is very meaningful for optimization
problems with thousands of variables.
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Figure 13. Average IGD convergence curves of MOHA on 100, 500, and 1000-dimensional DTLZ
problems, averaged over 20 runs. The error band is the standard deviation.
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5.1.4. Efficiency Analysis of MOHA

From the previous analysis, the hybrid algorithm can fully leverage the advantages of
both MOEA and MOGBA, achieving the goal of playing to their strengths and avoiding
their weaknesses. Therefore, the algorithm can quickly approach the PF and improve the
optimization efficiency dramatically. To verify the computational efficiency of MOHA,
Table 4 summarizes the minimum number of iterations for MOHA and NSGA-III to reach
convergence. From the table, since DTLZ1 and DTLZ3 are multimodal functions, the
convergence speed of NSGA-III on such functions is very slow and requires greater than
1000 generations to find the Pareto optimal solutions. However, the MOHA can converge
within about 210 generations, with an efficiency improvement of about five times. It is
worth noting that there is a significant improvement of approximately 10 times when
applying the mentioned approach on the 30-dimensional DTLZ1 problem. For the two
sets of non-convex functions DTLZ2 and DTLZ4, NSGA-III can find the Pareto optimal
solution within 300 generations, while MOHA requires only 50 generations. This illustrates
that MOHA can solve non-convex problems effectively and converge six times faster than
NSGA-III. Then, DTLZ5 and DTLZ6 are concave with degenerate PF functions, and the
efficiency of MOHA is about seven times higher than that of NSGA-III. Finally, for DTLZ7,
a concave/convex mixed, multimodal, discontinuous function, both MOHA and NSGA-III
are able to find the Pareto optimal solution, but MOHA is still more efficient than NSGA-III.

Table 4. Approximate minimum number of iterations required for the algorithm to converge on the
DTLZ problems.

Problem M D MOHA NSGA-III

DTLZ1

3 30 112 >1000
3 50 130 >1000
5 30 165 >1000
5 50 188 >1000

DTLZ2

3 30 35 116
3 50 40 158
5 30 42 170
5 50 48 293

DTLZ3

3 30 168 >1000
3 50 195 >1000
5 30 175 >1000
5 50 210 >1000

DTLZ4

3 30 30 96
3 50 35 184
5 30 45 152
5 50 48 283

DTLZ5

3 30 25 123
3 50 30 195
5 30 104 454
5 50 115 611

DTLZ6

3 30 36 248
3 50 55 692
5 30 126 967
5 50 144 >1000

DTLZ7

3 30 33 150
3 50 35 216
5 30 40 265
5 50 48 352
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To sum up, as the dimensionality of the objective and decision variables increases,
the number of iterations of NSGA-III increases significantly, which not only increases the
computational cost but may even lead to failure to search for the approximate PF. On all
the DTLZ problems, the proposed MOHA always converges with a smaller number of
iterations than NSGA-III. MOHA generates new offspring by mixing individuals carrying
elite knowledge with MOEA through a local search of a small number of individuals. The
result is a significant increase in efficiency, far exceeding our expectations. In addition,
MOHA is less constrained by dimensionality, and the efficiency is generally improved by
about 5–10 times with different dimensional DTLZ problems. Therefore, we can conclude
that the offspring generation mechanism based on the MOGBA contributes to the rapid
convergence of the algorithm and enhances the exploitation ability. By combining these
two complementary offspring generation methods, the proposed MOHA is efficient and
robust for various types of problems. MOHA has great potential for solving large-scale
MOPs with high efficiency.

5.2. Performance Comparison between GS-MOHA and Existing SAEAs

A large population will occupy too many evaluations, which is not conducive to
algorithm optimization, and the computational cost is high for excessively large evaluation
times. Therefore, the initial population size is 100 and the maximum number of expensive
fitness evaluations is set to 300. Both MOEA/D-EGO and K-RVEA have adopted Kriging
as a surrogate model. The Kriging model is known to be unsuitable for high-dimensional
problems due to the “dimension disaster”. Generally, the sampling point dimension of
the Kriging model does not exceed 10 dimensions to ensure its accuracy and reliability.
For expensive MOPs, when the dimensionality of the decision variables is greater than 10
(D > 10), they can be called high-dimensional problems [29]. Therefore, we compared the
performance of the three algorithms on DTLZ problems with decision variables dimensions
of 10, 20, and 30. For a fair comparison, the remaining parameters of MOEA/D-EGO
and K-RVEA are the same as in the literature [26,27], except for the modification of the
population size. The algorithm terminates when the number of true fitness evaluations
reaches 300. For each test problem, the algorithm was executed independently a total of
20 times. This section also uses IGD and HV to evaluate the performance of the algorithms.

5.2.1. Experimental Results of Algorithms in Different Dimensions

Through Tables 5 and 6, GS-MOHA achieves the best mean for 17 questions of the
IGD metric and the best mean for 11 questions on the HV metric. For DTLZ1, DTLZ3,
and DTLZ6, none of the algorithms can obtain a good Pareto distribution, which may
require a higher number of evaluations. For other test problems, GS-MOHA outperforms
the comparison algorithm in most situations. In addition, MOEA/D-EGO and K-RVEA
performance decreases significantly when increasing from 10 to 30 dimensions, while
GS-MOHA decreases slightly. This is made possible by the fact that both the GEKPLS
model and the proposed MOHA are effective at solving high-dimensional decision variable
problems. The combination of the two enables G-HOMEA the ability to solve expensive
MOPs for high-dimensional decision variables. GS-MOHA inherits the advantages of the
hybrid algorithm well and can obtain a satisfactory global optimal solution with a limited
number of real fitness evaluations.

For further observations, the iteration curves of the mean IGD values of the three
algorithms when the decision variables are 10 and 30 dimensions are plotted in Figure 14.
Through comparison, the following three observations can be made. First, the IGD value of
GS-MOHA decreases faster on all test functions and therefore converges more efficiently. It
can be concluded that GS-MOHA is insensitive to changes in the dimensionality of decision
variables. Second, as the dimension of decision variables increases, the convergence speed
of MOEA/D-EGO and K-RVEA decreases significantly. For example, in the 30-dimensional
DTLZ2 and DTLZ5 problems, the phenomenon of falling into the local optimum and thus
failing to find the global optimum solution occurs. Although GS-MOHA also appears to
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be trapped in a local optimum, the algorithm could jump out of the local optimum and
show excellent performance due to the superiority of the hybrid framework. Finally, the
algorithm adopts the dual acceleration mechanism of the hybrid framework based on local
search and the GEKPLS model based on gradient-enhanced Kriging, thus alleviating the
“dimension disaster”.
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(a) DTLZ2 D = 10.
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(b) DTLZ2 D = 30.
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(c) DTLZ5 D = 10.
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Figure 14. Convergence curves of three algorithms in the 10- and 30-dimensional DTLZ2, DTLZ5,
and DTLZ7 problems.

Table 5. IGD metric values of three algorithms on DTLZ problems, where the best result on each test
problem is displayed in black and bold.

Problem M D MOEA/D-EGO K-RVEA GS-MOHA

DTLZ1
3 10 8.1113× 101 (1.56× 101)− 8.9763× 101 (2.03× 101)− 4.4856× 101 (1.48× 101)
3 20 2.2247× 102 (4.32× 101)− 3.2528× 102 (4.39× 101)− 1.0378× 102 (2.47× 101)
3 30 4.4293× 102 (1.33× 102)− 5.9754× 102 (4.73× 101)− 2.6745× 102 (5.59× 101)

DTLZ2
3 10 3.4606× 10−1 (2.19× 10−2)− 1.6513× 10−1 (3.07× 10−2)− 6.3519× 10−2 (2.96× 10−2)
3 20 6.2647× 10−1 (7.29× 10−2)− 8.8597× 10−1 (1.06× 10−1)− 7.1353× 10−2 (4.57× 10−2)
3 30 8.5044× 10−1 (1.24× 10−1)− 1.5940× 100 (1.09× 10−1)− 9.3448× 10−2 (9.13× 10−2)

DTLZ3
3 10 1.8837× 102 (1.95× 101)− 2.4005× 102 (5.31× 101)− 1.2479× 102 (2.14× 101)
3 20 5.2358× 102 (9.68× 101) = 9.4022× 102 (7.54× 101)− 4.5657× 102 (7.28× 101)
3 30 9.4924× 102 (2.28× 102)− 1.7254× 103 (1.24× 102)− 6.9858× 102 (8.90× 101)

DTLZ4
3 10 6.2575× 10−1 (5.93× 10−2)− 4.0569× 10−1 (1.02× 10−1) = 3.7943× 10−1 (3.97× 10−2)
3 20 1.1737× 100 (1.17× 10−1)− 1.0677× 100 (1.31× 10−1)− 5.7216× 10−1 (2.44× 10−2)
3 30 1.4843× 100 (2.26× 10−1)− 1.7804× 100 (1.49× 10−1)− 7.4431× 10−1 (7.37× 10−2)

DTLZ5
3 10 2.4627× 10−1 (4.08× 10−2)− 1.1278× 10−1 (3.96× 10−2)− 3.7622× 10−2 (1.89× 10−3)
3 20 5.5126× 10−1 (8.99× 10−2)− 7.9328× 10−1 (8.33× 10−2)− 4.3125× 10−2 (8.17× 10−3)
3 30 7.8638× 10−1 (1.39× 10−1)− 1.4810× 100 (1.25× 10−1)− 9.0656× 10−2 (1.52× 10−2)

DTLZ6
3 10 1.8794× 100 (6.22× 10−1)− 3.0309× 100 (3.90× 10−1) − 1.4268× 100 (5.62× 10−1)
3 20 6.8555× 100 (1.48× 100)+ 1.0630× 101 (6.86× 10−1)− 8.1262× 100 (7.02× 10−1)
3 30 1.1799× 101 (1.79× 100)+ 1.9665× 101 (9.64× 10−1)− 1.3062× 101 (1.32× 100)

DTLZ7
3 10 2.7282× 10−1 (1.19× 10−1)− 1.2710× 10−1 (2.15× 10−2)+ 1.3062× 10−1 (3.22× 10−2)
3 20 4.7749× 100 (1.23× 100)− 1.6647× 10−1 (2.29× 10−2)+ 1.7846× 10−1 (2.47× 10−2)
3 30 7.3196× 100 (1.20× 100)− 2.3256× 10−1 (6.18× 10−2) = 1.9245× 10−1 (5.74× 10−2)

+/−/= 2/18/1 2/17/2 N/A
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Table 6. HV metric values of three algorithms on DTLZ problems, where the best result on each test
problem is displayed in black and bold.

Problem M D MOEA/D-EGO KRVEA GS-MOHA

DTLZ1
3 10 0.0000× 100 (0.00× 100) = 0.0000× 100 (0.00× 100) = 0.0000× 100 (0.00× 100)
3 20 0.0000× 100 (0.00× 100) = 0.0000× 100 (0.00× 100) = 0.0000× 100 (0.00× 100)
3 30 0.0000× 100 (0.00× 100) = 0.0000× 100 (0.00× 100) = 0.0000× 100 (0.00× 100)

DTLZ2
3 10 8.5641× 10−2 (2.70× 10−2)− 3.6223× 10−1 (6.05× 10−2)− 6.4441× 10−1 (5.28× 10−2)
3 20 7.0733× 10−3 (1.17× 10−2)− 9.6527× 10−5 (4.32× 10−4)− 4.2630× 10−1 (3.03× 10−2)
3 30 4.1283× 10−4 (1.85× 10−3)− 0.0000× 100 (0.00× 100)− 2.8064× 10−1 (5.70× 10−1)

DTLZ3
3 10 0.0000× 100 (0.00× 100) = 0.0000× 100 (0.00× 100) = 0.0000× 100 (0.00× 100)
3 20 0.0000× 100 (0.00× 100) = 0.0000× 100 (0.00× 100) = 0.0000× 100 (0.00× 100)
3 30 0.0000× 100 (0.00× 100) = 0.0000× 100 (0.00× 100) = 0.0000× 100 (0.00× 100)

DTLZ4
3 10 1.5058× 10−2 (2.19× 10−2)− 8.4914× 10−2 (1.01× 10−1)− 2.7599× 10−1 (1.13× 10−1)
3 20 0.0000× 100 (0.00× 100)− 0.0000× 100 (0.00× 100)− 5.9873× 10−2 (2.71× 10−2)
3 30 0.0000× 100 (0.00× 100)− 0.0000× 100 (0.00× 100)− 1.4039× 10−2 (2.52× 10−2)

DTLZ5
3 10 1.3048× 10−2 (1.31× 10−2)− 1.0287× 10−1 (3.24× 10−2)− 1.9443× 10−1 (1.43× 10−3)
3 20 2.7393× 10−4 (1.23× 10−3)− 0.0000× 100 (0.00× 100)− 1.8305× 10−1 (3.28× 10−3)
3 30 0.0000× 100 (0.00× 100)− 0.0000× 100 (0.00× 100)− 6.1012× 10−2(4.81× 10−2)

DTLZ6
3 10 4.5578× 10−3 (2.04× 10−2) = 0.0000× 100 (0.00× 100) = 0.0000× 100 (0.00× 100)
3 20 0.0000× 100 (0.00× 100) = 0.0000× 100 (0.00× 100) = 0.0000× 100 (0.00× 100)
3 30 0.0000× 100 (0.00× 100) = 0.0000× 100 (0.00× 100) = 0.0000× 100 (0.00× 100)

DTLZ7
3 10 1.8909× 10−1 (2.35× 10−2)− 2.5303× 10−1 (4.39× 10−3)+ 2.2037× 10−1 (3.31× 10−2)
3 20 0.0000× 100 (0.00× 100)− 2.2474× 10−1 (6.93× 10−3) = 2.5072× 10−1 (2.35× 10−2)
3 30 0.0000× 100 (0.00× 100)− 1.9609× 10−1 (2.24× 10−2)− 2.8748× 10−1 (6.52× 10−2)

+/−/= 0/12/9 1/10/10 N/A

5.2.2. Efficiency Analysis of GS-MOHA

For the surrogate-assisted optimization algorithm, the time consumption is mainly
generated by training the surrogate model and real fitness evaluation. With the same
number of sampling points, the fitting accuracy and training time of the surrogate model
deteriorates rapidly as the dimension of the decision variable increases. Therefore, the time
consumption of the algorithm is one of the important metrics to measure its performance.

Figure 15 shows the mean running times of these three algorithms for different decision
variable dimensions. According to the results in Figure 15, the overall running time of the
algorithm tends to increase with the growth of dimensionality. Specifically, the runtime
of GS-MOHA in the 10-dimensional DTLZ instances is significantly smaller than that of
MOEA/D-EGO but similar to that of K-RVEA. For the 30-dimensional test problems, the
computational efficiency of the proposed GS-MOHA is about two times that of K-RVEA and
about five times higher than that of MOEA/D-EGO, which is demonstrated in Figure 15
clearly. The reason why the proposed GS-MOHA has high operating efficiency is because
it adopts the GEKPLS surrogate model. The GEKPLS model has the advantage of fast
training speed and high accuracy in high-dimensional space. In contrast, MOEA/D-EGO
and K-RVEA use traditional Kriging models, so the training time increases significantly as
the dimensionality of the decision variables increases. Furthermore, GS-MOHA adopts a
hybrid algorithm framework, which also has a certain acceleration effect on the evolution
of the algorithm. Based on the above empirical results, GS-MOHA can significantly reduce
the optimization time required to solve expensive MOPs with high-dimensional decision
variables and has good prospects for engineering applications.
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Figure 15. 3D stacked bar chart of algorithm runtimes.

6. Multi-Objective Aerodynamic Shape Optimization of Airfoil

The airfoil shape design optimization problem [2,56] has been extensively studied to
verify the efficiency of hybrid algorithms in aerodynamic optimization problems. Aircraft
aerodynamic design experience has shown that the mechanism of increasing lift and
decreasing drag is different in different speed domains, and thus the requirements for
airfoil shape are significantly different. For the sake of simplicity, a bi-objective airfoil
design optimization problem is used to verify the efficiency of the proposed algorithm
and its value in engineering applications, considering two different flight states. A multi-
objective optimization problem is carried out using the NACA0012 airfoil as the baseline
airfoil. The objective of the optimization problem is to minimize the drag coefficient (Cd) in
two states simultaneously by changing the airfoil shape of NACA0012. The initial design
state is:

(1) Ma1 = 0.75, Re1 = 5.5× 106, α1 = 2.0◦

(2) Ma2 = 0.5, Re2 = 4.5× 106, α2 = 2.5◦
(8)

where Ma1 and Ma2 represent Mach numbers, Re1 and Re2 are the Reynolds numbers, and
α1 and α2 are the angles of attack. The computation of Cd and lift coefficient (Cl) involves
aerodynamic simulation, so the open-source DAFoam [57] solver was used. The solver
uses the S− A turbulence model to accurately simulate the airflow around the aircraft by
solving the RANS equations. Furthermore, it has developed an efficient discrete adjoint
method. With this solver, we can easily calculate the Cd, Cl and gradient information of the
airfoil. In addition, a structural meshing of the airfoil was performed with a mesh number
of 4.6× 104 and a first layer mesh height of 2× 10−5. The control points were then moved
by the free-form deformation (FFD) [58] parameterization method, thus changing the shape
of the airfoil of NACA0012. We used 22 design variables, which include the variations in
FFD control points in the y-direction (y1, y2, . . ., y20) and two angles of attack (α1, α2). A
schematic diagram of the mesh and parameterization of the geometric model is shown in
Figure 16.
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Figure 16. Mesh and FFD control points of the NACA0012.

The mathematical model of this multi-objective optimization problem is formulated
as follows: {

min : f1(x) = Cd1, f2(x) = Cd2

s.t. : A ≥ A0, t ≥ 0.95t0, Cl1 ≥ Clini1, Cl2 ≥ Clini2
(9)

where A0, t0, Clini1, and Clini2 are the area, thickness, and lift coefficients of the baseline
airfoil for both states. Using the above optimization model, three algorithms NSGA-II,
MOHA, and GS-MOHA are used for optimization comparison. The parameter settings
and optimization results of the three algorithms are compared, as shown in Table 7 and
Figure 17.

Optimization 1 has the best subsonic performance, and Optimization 3 is the best
airfoil for transonic performance. By comparing the pressure distributions, it is observed
that the shock waves in Optimization 2 and Optimization 3 are largely eliminated in the
transonic state. Compared to the baseline airfoil, the optimized airfoil exhibits a maximum
thickness shift towards the trailing edge, the increased camber, and a concave shape on the
lower surface. These changes help improve the lift characteristics and reduce the drag of
the airfoil in both subsonic and transonic states.

Compared with NSGA-II, MOHA exhibits significantly superior PF distribution and
convergence with only 2000 evaluations. Therefore, this validates the superiority of the
proposed algorithm as the introduction of gradient information in evolutionary algorithms
can enhance optimization results and improve efficiency. Moreover, the optimization results
of GS-MOHA are also superior to those of NSGA-II while consuming only a quarter of the
computational iterations for flow field calculations. Hence, this signifies that under limited
flow field calculation iterations, the surrogate-assisted algorithm can significantly reduce
the optimization time and demonstrate tremendous engineering practical value.

Although the example of airfoil optimization is relatively simple, it still effectively
demonstrates the superiority of the proposed algorithms. When faced with the optimization
of complex shapes, the decision variables increase, leading to an increase in the number
of iterations of the algorithm and the population size. But the essence of the optimization
algorithms remains the same. It is crucial to consider parameterization, flow field solving,
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and adjoint solving, among other issues. Therefore, the proposed algorithm has the
potential to be fully extended to solve complex aerodynamic shape optimization problems.

(a) (b)

C
p

(c)

C
p

(d)

Figure 17. Comparison of airfoil optimization results. (a) Comparison of the PFs of the three
algorithms; (b) comparison of the geometrical shapes of the airfoil; (c) comparison of the pressure
coefficient distribution of airfoil in State 1; and (d) comparison of the pressure coefficient distribution
of airfoil in State 2.

Table 7. Comparison of parameter settings and optimization efficiency of algorithms.

NSGA-II MOHA GS-MOHA

Population size 50 50 50
Number of design variables 22 22 22
Number of CFD evaluations 4000 2000 1000
Number of gradient evaluations - 115 1000
Number of CPU 16 16 16
Number of non-dominated solutions 25 37 33
CPU cost (h) ≈133 ≈71 ≈26

7. Conclusions

This paper proposed two efficient optimization algorithms (i.e., MOHA and GS-
MOHA) based on a bilayer parallel hybrid algorithm framework to solve large-scale MOPs
and expensive MOPs in engineering optimization. The hybrid framework couples global
evolutionary and local multi-objective gradient search techniques, which jointly determine
the performance of the algorithm. Then, the diversity and convergence of the algorithm
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are balanced through the information exchange of the bilayer space. A multi-objective
gradient operator based on dynamic random weights is designed to improve the ability of
GBAs to find non-convex and disconnected PFs in MOHA. The efficiency of the algorithm
can be greatly improved by incorporating individuals with excellent genes after gradient
update into the evolutionary process. Moreover, embedding the GEKPLS surrogate model
in the hybrid algorithm framework further improves the engineering application capability
of MOHA. Eventually, in order to validate the performance of the proposed algorithm,
the DTLZ problem with different numbers of decision variables and objectives as well as
the multi-objective shape optimization problem of NACA0012 are tested. The following
conclusions can be achieved:

(1) The proposed MOHA is insensitive to the dimension of MOPs. For benchmark test
functions with different numbers of decision variables (30, 50) and objectives (3, 5),
the convergence and diversity of MOHA are significantly better than the comparison
algorithms (i.e., MOEA/D, NSGA-III, RVEA, and VaEA) and the computational
efficiency is increased by about 5–10 times. Furthermore, MOHA still illustrates
good stability and efficiency for large-scale MOPs with decision variables up to
1000 dimensions. This demonstrates that MOHA is an efficient optimization algorithm
capable of solving large-scale MOPs.

(2) GS-MOHA could solve expensive MOPs efficiently in high dimensions (D > 10).
GEKPLS utilizes the PLS method to accelerate Kriging construction. The higher
the dimensionality of the decision variables, the more significant the efficiency im-
provement of the algorithm. For the 30-dimensional DTLZ problems, the runtime of
GS-MOHA is about half that of K-RVEA and one-fifth that of MOEA/D-EGO.

(3) The rational use of low-cost gradient information is a very promising approach in the
framework of hybrid algorithms. We can not only promote the evolution of MOEA
and maintain population diversity through multi-objective gradient search but also
use this low-cost gradient information to improve the accuracy of Kriging.

(4) Computing gradients in local search can use the adjoint method, which does not
impose an additional huge computational burden, because the cost of computing
gradients using the adjoint method is roughly equivalent to that of fitness evaluation.
Moreover, unlike the finite-difference approximation, the computational cost of the
adjoint method is independent of the dimensionality of the decision variables. This
makes it easy to apply our proposed two hybrid algorithms to the high-dimensional
aerodynamic shape optimization design.

(5) In this work, the optimization efficiency of MOHA and GS-MOHA was preliminarily
validated on a multi-objective optimization problem of NACA0012 with 22 design
variables. The results demonstrated promising engineering application potential. The
proposed algorithms will be applied to the multi-objective aerodynamic optimization
of complex aircraft shapes in the future.

Author Contributions: Data curation, F.C. and Z.T.; formal analysis, Z.T. and X.Z.; funding acqui-
sition, Z.T.; investigation, F.C.; methodology, F.C. and Z.T.; project administration, Z.T. and C.Z.;
resources, C.Z. and X.Z.; software, F.C.; supervision, Z.T.; validation, F.C. and C.Z.; writing—original
draft, F.C.; and writing—review and editing, Z.T. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (12032011,
11772154), the Project Funded by the Priority Academic Program Development of Jiangsu Higher
Education Institutions (PAPD), and the Fundamental Research Funds for the Central Universi-
ties (NP2020102).

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated during and analyzed during the current study
are available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2023, 11, 3844 30 of 31

References
1. Tang, Z.; Zhang, L. A new Nash optimization method based on alternate elitist information exchange for multi-objective

aerodynamic shape design. Appl. Math. Model. 2019, 68, 244–266. [CrossRef]
2. Jing, S.; Zhao, Q.; Zhao, G.; Wang, Q. Multi-Objective Airfoil Optimization Under Unsteady-Freestream Dynamic Stall Conditions.

J. Aircr. 2023, 60, 293–309. [CrossRef]
3. Anosri, S.; Panagant, N.; Champasak, P.; Bureerat, S.; Thipyopas, C.; Kumar, S.; Pholdee, N.; Yıldız, B.S.; Yildiz, A.R. A Compara-

tive Study of State-of-the-art Metaheuristics for Solving Many-objective Optimization Problems of Fixed Wing Unmanned Aerial
Vehicle Conceptual Design. Arch. Comput. Methods Eng. 2023,30, 3657–3671. [CrossRef]

4. Yu, Y.; Lyu, Z.; Xu, Z.; Martins, J.R. On the influence of optimization algorithm and initial design on wing aerodynamic shape
optimization. Aerosp. Sci. Technol. 2018, 75, 183–199. [CrossRef]

5. Dai, Y.H. Convergence properties of the BFGS algoritm. Siam J. Optim. 2002, 13, 693–701. [CrossRef]
6. Zhu, C.; Byrd, R.H.; Lu, P.; Nocedal, J. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained

optimization. ACM Trans. Math. Softw. (TOMS) 1997, 23, 550–560. [CrossRef]
7. Yuan, G.; Hu, W. A conjugate gradient algorithm for large-scale unconstrained optimization problems and nonlinear equations. J.

Inequal. Appl. 2018, 2018, 1–19. [CrossRef]
8. Bomze, I.M.; Demyanov, V.F.; Fletcher, R.; Terlaky, T.; Fletcher, R. Nonlinear Optimization; Springer: Berlin, Germany, 2010.
9. Jameson, A. Optimum aerodynamic design using CFD and control theory. In Proceedings of the 12th Computational Fluid

Dynamics Conference, San Diego, CA, USA, 19–22 June 1995; p. 1729.
10. Wang, Z.; Pei, Y.; Li, J. A Survey on Search Strategy of Evolutionary Multi-Objective Optimization Algorithms. Appl. Sci. 2023,

13, 4643. [CrossRef]
11. Lyu, Z.; Martins, J.R. Aerodynamic design optimization studies of a blended-wing-body aircraft. J. Aircr. 2014, 51, 1604–1617.

[CrossRef]
12. Lyu, Z.; Kenway, G.K.; Martins, J.R. Aerodynamic shape optimization investigations of the common research model wing

benchmark. AIAA J. 2015, 53, 968–985. [CrossRef]
13. Gao, W.; Wang, Y.; Liu, L.; Huang, L. A gradient-based search method for multi-objective optimization problems. Inf. Sci. 2021,

578, 129–146. [CrossRef]
14. Zhao, X.; Tang, Z.; Cao, F.; Zhu, C.; Periaux, J. An Efficient Hybrid Evolutionary Optimization Method Coupling Cultural

Algorithm with Genetic Algorithms and Its Application to Aerodynamic Shape Design. Appl. Sci. 2022, 12, 3482. [CrossRef]
15. Kiani, F.; Nematzadeh, S.; Anka, F.A.; Findikli, M.A. Chaotic Sand Cat Swarm Optimization. Mathematics 2023, 11, 2340. [CrossRef]
16. He, C.; Zhang, Y.; Gong, D.; Ji, X. A review of surrogate-assisted evolutionary algorithms for expensive optimization problems.

Expert Syst. Appl. 2023, 217, 119495. [CrossRef]
17. Li, J.; Cai, J.; Qu, K. Surrogate-based aerodynamic shape optimization with the active subspace method. Struct. Multidiscip.

Optim. 2019, 59, 403–419. [CrossRef]
18. He, Y.; Sun, J.; Song, P.; Wang, X.; Usmani, A.S. Preference-driven Kriging-based multiobjective optimization method with a

novel multipoint infill criterion and application to airfoil shape design. Aerosp. Sci. Technol. 2020, 96, 105555. [CrossRef]
19. Yang, Z.; Qiu, H.; Gao, L.; Chen, L.; Liu, J. Surrogate-assisted MOEA/D for expensive constrained multi-objective optimization.

Inf. Sci. 2023, 639, 119016. [CrossRef]
20. Khuri, A.I.; Mukhopadhyay, S. Response surface methodology. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 128–149. [CrossRef]
21. Martin, J.D.; Simpson, T.W. Use of Kriging models to approximate deterministic computer models. AIAA J. 2005, 43, 853–863.

[CrossRef]
22. Dongare, A.; Kharde, R.; Kachare, A.D. Introduction to artificial neural network. Int. J. Eng. Innov. Technol. (IJEIT) 2012, 2, 189–194.
23. Buhmann, M.D. Radial basis functions. Acta Numer. 2000, 9, 1–38. [CrossRef]
24. Zhong, L.; Liu, R.; Miao, X.; Chen, Y.; Li, S.; Ji, H. Compressor Performance Prediction Based on the Interpolation Method and

Support Vector Machine. Aerospace 2023, 10, 558. [CrossRef]
25. Knowles, J. ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization

problems. IEEE Trans. Evol. Comput. 2006, 10, 50–66. [CrossRef]
26. Zhang, Q.; Liu, W.; Tsang, E.; Virginas, B. Expensive multiobjective optimization by MOEA/D with Gaussian process model.

IEEE Trans. Evol. Comput. 2009, 14, 456–474. [CrossRef]
27. Chugh, T.; Jin, Y.; Miettinen, K.; Hakanen, J.; Sindhya, K. A surrogate-assisted reference vector guided evolutionary algorithm for

computationally expensive many-objective optimization. IEEE Trans. Evol. Comput. 2016, 22, 129–142. [CrossRef]
28. Cai, X.; Ruan, G.; Yuan, B.; Gao, L. Complementary surrogate-assisted differential evolution algorithm for expensive multi-

objective problems under a limited computational budget. Inf. Sci. 2023, 632, 791–814. [CrossRef]
29. Bouhlel, M.A.; Martins, J.R.R.A. Gradient-enhanced Kriging for high-dimensional problems. Eng. Comput. 2019, 35, 157–173.

[CrossRef]
30. Hong, W.J.; Yang, P.; Tang, K. Evolutionary Computation for Large-scale Multi-objective Optimization: A Decade of Progresses.

Int. J. Autom. Comput. 2021, 18, 155–169. [CrossRef]
31. Xu, Y.; Zhang, H.; Huang, L.; Qu, R.; Nojima, Y. A Pareto Front grid guided multi-objective evolutionary algorithm. Appl. Soft

Comput. 2023, 136, 110095. [CrossRef]

http://doi.org/10.1016/j.apm.2018.11.034
http://dx.doi.org/10.2514/1.C036708
http://dx.doi.org/10.1007/s11831-023-09914-z
http://dx.doi.org/10.1016/j.ast.2018.01.016
http://dx.doi.org/10.1137/S1052623401383455
http://dx.doi.org/10.1145/279232.279236
http://dx.doi.org/10.1186/s13660-018-1703-1
http://dx.doi.org/10.3390/app13074643
http://dx.doi.org/10.2514/1.C032491
http://dx.doi.org/10.2514/1.J053318
http://dx.doi.org/10.1016/j.ins.2021.07.051
http://dx.doi.org/10.3390/app12073482
http://dx.doi.org/10.3390/math11102340
http://dx.doi.org/10.1016/j.eswa.2022.119495
http://dx.doi.org/10.1007/s00158-018-2073-5
http://dx.doi.org/10.1016/j.ast.2019.105555
http://dx.doi.org/10.1016/j.ins.2023.119016
http://dx.doi.org/10.1002/wics.73
http://dx.doi.org/10.2514/1.8650
http://dx.doi.org/10.1017/S0962492900000015
http://dx.doi.org/10.3390/aerospace10060558
http://dx.doi.org/10.1109/TEVC.2005.851274
http://dx.doi.org/10.1109/TEVC.2009.2033671
http://dx.doi.org/10.1109/TEVC.2016.2622301
http://dx.doi.org/10.1016/j.ins.2023.03.005
http://dx.doi.org/10.1007/s00366-018-0590-x
http://dx.doi.org/10.1007/s11633-020-1253-0
http://dx.doi.org/10.1016/j.asoc.2023.110095


Mathematics 2023, 11, 3844 31 of 31

32. Cao, B.; Zhao, J.; Gu, Y.; Ling, Y.; Ma, X. Applying graph-based differential grouping for multiobjective large-scale optimization.
Swarm Evol. Comput. 2020, 53, 100626. [CrossRef]

33. Huband, S.; Hingston, P.; Barone, L.; While, L. A review of multiobjective test problems and a scalable test problem toolkit. IEEE
Trans. Evol. Comput. 2006, 10, 477–506. [CrossRef]

34. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

35. Marler, R.T.; Arora, J.S. The weighted sum method for multi-objective optimization: New insights. Struct. Multidiscip. Optim.
2010, 41, 853–862. [CrossRef]

36. Deb, K.; Jain, H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting
Approach, Part I: Solving Problems With Box Constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [CrossRef]

37. Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C.M.; Da Fonseca, V.G. Performance assessment of multiobjective optimizers: An
analysis and review. IEEE Trans. Evol. Comput. 2003, 7, 117–132. [CrossRef]

38. Zuhal, L.R.; Zakaria, K.; Palar, P.S.; Shimoyama, K.; Liem, R.P. Polynomial-chaos–Kriging with gradient information for surrogate
modeling in aerodynamic design. AIAA J. 2021, 59, 2950–2967. [CrossRef]

39. Han, Z.H.; Zhang, Y.; Song, C.X.; Zhang, K.S. Weighted gradient-enhanced Kriging for high-dimensional surrogate modeling and
design optimization. Aiaa J. 2017, 55, 4330–4346. [CrossRef]

40. Liu, F.; Zhang, Q.; Han, Z. MOEA/D with gradient-enhanced Kriging for expensive multiobjective optimization. Nat. Comput.
2022, 22, 329–339. [CrossRef]

41. Bouhlel, M.A.; Bartoli, N.; Otsmane, A.; Morlier, J. Improving Kriging surrogates of high-dimensional design models by Partial
Least Squares dimension reduction. Struct. Multidiscip. Optim. 2016, 53, 935–952. [CrossRef]

42. Tang, Z.; Hu, X.; Périaux, J. Multi-level Hybridized Optimization Methods Coupling Local Search Deterministic and Global
Search Evolutionary Algorithms. Arch. Comput. Methods Eng. 2020, 27, 939–975. [CrossRef]

43. Zhang, Y.; Wang, G.; Wang, H. NSGA-II/SDR-OLS: A Novel Large-Scale Many-Objective Optimization Method Using Opposition-
Based Learning and Local Search. Mathematics 2023, 11, 1911. [CrossRef]

44. Bouaziz, H.; Bardou, D.; Berghida, M.; Chouali, S.; Lemouari, A. A novel hybrid multi-objective algorithm to solve the generalized
cubic cell formation problem. Comput. Oper. Res. 2023, 150, 106069. [CrossRef]

45. Nayyef, H.M.; Ibrahim, A.A.; Mohd Zainuri, M.A.A.; Zulkifley, M.A.; Shareef, H. A Novel Hybrid Algorithm Based on Jellyfish
Search and Particle Swarm Optimization. Mathematics 2023, 11, 3210. [CrossRef]

46. Cao, B.; Zhang, W.; Wang, X.; Zhao, J.; Gu, Y.; Zhang, Y. A memetic algorithm based on two_Arch2 for multi-depot heterogeneous-
vehicle capacitated arc routing problem. Swarm Evol. Comput. 2021, 63, 100864. [CrossRef]

47. Deb, K.; Goel, T. A Hybrid Multi-objective Evolutionary Approach to Engineering Shape Design. In Proceedings of the Evolutionary
Multi-Criterion Optimization, Zurich, Switzerland, 7–9 March 2001; Springer: Berlin/Heidelberg, Germany, 2001; pp. 385–399.

48. Sun, Y.; Zhang, L.; Gu, X. A hybrid co-evolutionary cultural algorithm based on particle swarm optimization for solving global
optimization problems. Neurocomputing 2012, 98, 76–89. [CrossRef]

49. Forrester, A.I.J.; Keane, A.J. Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 2009, 45, 50–79. [CrossRef]
50. Parr, J.M.; Keane, A.J.; Forrester, A.I.; Holden, C.M. Infill sampling criteria for surrogate-based optimization with constraint

handling. Eng. Optim. 2012, 44, 1147–1166. [CrossRef]
51. Han, Z.H. SurroOpt: A generic surrogate-based optimization code for aerodynamic and multidisciplinary design. In Proceedings

of the 30th Congress of the International Council of the Aeronautical Sciences—ICAS 2016, Daejeon, Republic of Korea, 25–30
September 2016.

52. Zhang, Q.; Li, H. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans. Evol. Comput. 2007,
11, 712–731. [CrossRef]

53. Cheng, R.; Jin, Y.; Olhofer, M.; Sendhoff, B. A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization.
IEEE Trans. Evol. Comput. 2016, 20, 773–791. [CrossRef]

54. Xiang, Y.; Zhou, Y.; Li, M.; Chen, Z. A Vector Angle-Based Evolutionary Algorithm for Unconstrained Many-Objective
Optimization. IEEE Trans. Evol. Comput. 2017, 21, 131–152. [CrossRef]

55. Zhang, X.; Tian, Y.; Cheng, R.; Jin, Y. A Decision Variable Clustering-Based Evolutionary Algorithm for Large-Scale Many-
Objective Optimization. IEEE Trans. Evol. Comput. 2018, 22, 97–112. [CrossRef]

56. Areias, P.; Correia, R.; Melicio, R. Airfoil Analysis and Optimization Using a Petrov–Galerkin Finite Element and Machine
Learning. Aerospace 2023, 10, 638. [CrossRef]

57. He, P.; Mader, C.A.; Martins, J.R.; Maki, K.J. Dafoam: An open-source adjoint framework for multidisciplinary design optimization
with openfoam. AIAA J. 2020, 58, 1304–1319. [CrossRef]

58. Kenway, G.; Kennedy, G.; Martins, J.R. A CAD-free approach to high-fidelity aerostructural optimization. In Proceedings of the
13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, Ft. Worth, TX, USA, 13–15 September 2010; p. 9231.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.swevo.2019.100626
http://dx.doi.org/10.1109/TEVC.2005.861417
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1007/s00158-009-0460-7
http://dx.doi.org/10.1109/TEVC.2013.2281535
http://dx.doi.org/10.1109/TEVC.2003.810758
http://dx.doi.org/10.2514/1.J059905
http://dx.doi.org/10.2514/1.J055842
http://dx.doi.org/10.1007/s11047-022-09907-0
http://dx.doi.org/10.1007/s00158-015-1395-9
http://dx.doi.org/10.1007/s11831-019-09336-w
http://dx.doi.org/10.3390/math11081911
http://dx.doi.org/10.1016/j.cor.2022.106069
http://dx.doi.org/10.3390/math11143210
http://dx.doi.org/10.1016/j.swevo.2021.100864
http://dx.doi.org/10.1016/j.neucom.2011.08.043
http://dx.doi.org/10.1016/j.paerosci.2008.11.001
http://dx.doi.org/10.1080/0305215X.2011.637556
http://dx.doi.org/10.1109/TEVC.2007.892759
http://dx.doi.org/10.1109/TEVC.2016.2519378
http://dx.doi.org/10.1109/TEVC.2016.2587808
http://dx.doi.org/10.1109/TEVC.2016.2600642
http://dx.doi.org/10.3390/aerospace10070638
http://dx.doi.org/10.2514/1.J058853

	Introduction
	Related Work and Motivation
	Difficulties of Multi-Objective Optimization Problems
	Multi-Objective Gradient Algorithm Based on Dynamic Stochastic Weights 
	Gradient-Enhanced Kriging with Partial Least Squares Approach
	Motivation

	Hybrid Multi-Objective Algorithm Coupling Global Evolution and Local Gradient Search
	Hybrid Multi-Objective Algorithm Framework
	Sensitivity Analysis of the Local Search Parameter P
	Population Evolution and Acceleration Mechanism Analysis of Multi-Objective Hybrid Algorithm

	Hybrid Optimization Algorithm Based on GEKPLS Surrogate Model
	Surrogate-Assisted Hybrid Multi-Objective Algorithm Framework 
	Model Update Management and Validation

	Numerical Experiments and Discussion
	 Performance Comparison between MOHA and Existing MOEAs
	Experimental Setting
	Discussion of Results
	Performance of MOHA on Large-Scale MOPs with 1000 Decision Variables
	Efficiency Analysis of MOHA

	Performance Comparison between GS-MOHA and Existing SAEAs
	Experimental Results of Algorithms in Different Dimensions
	Efficiency Analysis of GS-MOHA


	Multi-Objective Aerodynamic Shape Optimization of Airfoil
	Conclusions
	References

