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Abstract: This article presents a study on forecasting silver prices using the extreme gradient boosting
(XGBoost) machine learning method with hyperparameter tuning. Silver, a valuable precious metal
used in various industries and medicine, experiences significant price fluctuations. XGBoost, known
for its computational efficiency and parallel processing capabilities, proves suitable for predicting
silver prices. The research focuses on identifying optimal hyperparameter combinations to improve
model performance. The study forecasts silver prices for the next six days, evaluating models based
on mean absolute percentage error (MAPE) and root mean square error (RMSE). Model A (the best
model based on MAPE value) suggests silver prices decline on the first and second days, rise on
the third, decline again on the fourth, and stabilize with an increase on the fifth and sixth days.
Model A achieves a MAPE of 5.98% and an RMSE of 1.6998, utilizing specific hyperparameters.
Conversely, model B (the best model based on RMSE value) indicates a price decrease until the third
day, followed by an upward trend until the sixth day. Model B achieves a MAPE of 6.06% and an
RMSE of 1.6967, employing distinct hyperparameters. The study also compared the proposed models
with several other ensemble models (CatBoost and random forest). The model comparison was
carried out by incorporating 2 additional metrics (MAE and SI), and it was found that the proposed
models exhibited the best performance. These findings provide valuable insights for forecasting
silver prices using XGBoost.
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1. Introduction

Silver, denoted by the symbol Ag and originating from the Latin term ‘argentum’,
stands as a metallic element with an atomic number of 47. Its distinct properties and traits
render it a sought-after resource across diverse industries. Renowned for its remarkable
electrical and thermal conductivity, silver frequently assumes a crucial role in the produc-
tion of electronic devices within the manufacturing sector [1]. Furthermore, within the
realm of medicine, the utilization of silver nanoparticles has wielded a substantial influence
on the progression of treatments in the past few decades [2]. Silver’s antimicrobial proper-
ties empower the application of silver nanoparticles as coatings for medical instruments
and treatments. Beyond this, silver assumes a pivotal function in the realm of solar energy
capture, with a standard solar panel necessitating around 20 g of silver for its production [3].
Year by year, the manufacturing of solar panels demonstrates a consistent rise, driving an
escalating need for silver. Additionally, classified as a precious metal, silver maintains a
relatively high value and demand in the market [4].

Precious metals such as gold, silver, and platinum have correlations that influence their
respective prices [5]. The price correlation among these precious metals can be influenced by
various factors, including politics, the value of the US dollar, market demand, and others [6].
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For example, in a gold price forecasting study conducted by Jabeur, Mefteh—Wali, and
Viviani, supplementary variables including platinum prices, iron ore rates, and the dollar-to-
euro exchange rate were incorporated [7]. By incorporating these variables, the forecasting
results were more accurate compared to using only one variable [8]. Many investors choose
to invest in precious metals (such as silver, gold, and platinum) as valuable assets [9]. The
time series data for international silver prices, sourced from investing.com (accessed on
21 February 2023) [10], reveals notable volatility in silver price trends. Considering this
challenge, there emerges a necessity for a predictive model capable of forecasting silver
prices—a tool that holds value for investors when making informed decisions.

Forecasting is a discipline that involves studying the available data to predict the
future [11]. The forecasting process typically involves using time series data with target
categories that align with the research objectives. There are many traditional methods
available, such as statistical analysis, regression, smoothing, and exponential smoothing,
to perform forecasting [12]. However, these traditional methods are often deemed less
effective in addressing complex problems. Therefore, machine-learning approaches have
been developed to tackle more complex problems.

Machine learning involves a system capable of learning from targeted training data,
and automating the creation of analytical models to adeptly tackle various problems [13].
Machine learning finds its common classification in three principal types: supervised learn-
ing (involving labeled output), unsupervised learning (operating without labeled output),
and reinforcement learning. These categories house an array of evolving methodologies.
In particular, supervised learning plays a significant role in forecasting, especially when
dealing with time series data containing inherently desired outputs. Amid the plethora of
techniques within supervised learning, prominent forecasting methods comprise gradient
boosting, LSTM, CatBoost, extreme gradient boosting, and several others.

Extreme gradient boosting, popularly referred to as XGBoost, stands out as one of
the most prevalent techniques in the realm of machine learning, employed extensively
for tasks like forecasting and classification. XGBoost was first introduced by Friedman as
an enhancement of decision tree and gradient boost methods [14]. XGBoost has several
advantages, including relatively high computational speed, parallel computing capability,
and high scalability [15]. In the process of creating and training an XGBoost model, there
are several aspects to consider. Notably, XGBoost entails hyperparameters that require
careful tuning to achieve optimal model performance [16]. Researchers must delve into
hyperparameter combinations, a process referred to as hyperparameter tuning, to attain
an XGBoost model performance that optimally suits the specific problem. In the realm of
machine learning, mean absolute error (MAE) and root mean square Error (RMSE) stand as
prevalent metrics, employed to gauge the effectiveness of the model [17].

Several previous studies use machine learning in forecasting. One example is the
research conducted by Nasiri and Ebadzadeh [18] where they predicted time series data
using a multi-functional recurrent fuzzy neural network (MFRENN). It was found that
the proposed method performed better than the second-best method in the Lorenz time
series. Luo et al. [19] conducted a study using the ensemble learning method where they
compared several methods to estimate the aboveground biomass and found the CatBoost
method has the best performance. In addition, there are also several previous studies
that use the XGBoost method in forecasting. Li et al. employed XGBoost to forecast solar
radiation and discovered that XGBoost outperformed previous research with the lowest
RMSE value [20]. Fang et al. conducted forecasting of COVID-19 cases in the USA by
comparing the ARIMA and XGBoost methods. It was found that the XGBoost method had
better performance based on the metrics used in the study [14]. Jabeur et al. predicted
gold prices using XGBoost and compared it with other machine learning methods such as
CatBoost, random forest, LightGBM, neural networks, and linear regression. They found
that XGBoost demonstrated the best performance [7]. However, it is worth noting that
Jabeur et al. conducted their research without hyperparameter tuning, as their focus was
on comparing the performance of different machine learning methods.
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Based on the background presented, this study aims to forecast silver prices using
the XGBoost method, similar to the approach employed by Jabeur et al. [7], but with the
addition of hyperparameter tuning using grid search. The novelty offered in this research
focuses on the hyperparameter tuning process before grid search. Generally, a random
value is selected for each hyperparameter for grid search, but this research proposes to
perform hyperparameter tuning for each hyperparameter first by plotting the MAPE and
RMSE evaluation values to determine the value to be selected. The study incorporates gold
and platinum prices, as well as the euro-to-dollar exchange rate, as additional variables.
To attain the best XGBoost model, the performance of the model was evaluated using
the MAPE and RMSE. In addition, this research also compares models by adding two
evaluation metrics, namely MAE and SI, to obtain a more comprehensive conclusion.

2. Materials and Methods
2.1. Data Collection

This research aims to analyze a time series dataset encompassing silver prices, as well
as supplementary variables including gold prices, platinum prices, and the dollar-to-euro
exchange rate. This analysis serves as a foundation for conducting forecasting, utilizing
a comprehensive dataset comprising 2566 data points. The dataset comprises a daily
timeframe obtained from investing.com [10], covering the period from 20 February 2013
to 20 February 2023. Notably, the prices of silver, gold, and platinum are denominated in
USD per troy ounce. Captured as a daily time series, the data span a decade.

This dataset is partitioned into training and testing subsets, accounting for 80% and
20%, respectively. The training data encompasses the period from 20 February 2013 to
11 February 2021, while the testing data spans from 12 February 2021 to 20 February 2023.
Employing the Python programming language, the data are randomly divided, resulting in
2052 data points for training and 514 for testing. Table 1 presents the descriptive statistics
of the time series data used. Figure 1 displays data visualization in graphical form. Figure 2
presents the correlation matrix between variables.

Table 1. Descriptive statistics.

Silver Price Gold Price Platinum Price USD/EUR
Mean 19.11 1441.03 1048.56 0.8637
Median 17.82 1318.50 979.75 0.8797
Std. Dev 3.80 260.60 208.44 0.0664
Maximum 29.42 2069.40 1624.80 1.0421
Minimum 11.77 1049.60 595.20 0.7177
Count 2566 2566 2566 2566
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Figure 1. Graphical plots of each variable. (a) Silver price; (b) gold price; (c) platinum price; (d) USD
in EUR.
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Figure 2. Correlation heatmap.

2.2. Random Forest

Random forest (RF) is an ensemble learning algorithm commonly used to perform
classification or regression processes. RF models are often used as base models to assess
the performance of more complex models and are known for their good performance
in performing a variety of tasks. The RF method offers better generalizations and valid
estimates because it includes random sampling and improved properties of techniques
in ensemble methods [21]. The predicted value, Y}, in the RF algorithm can be expressed
as follows:

1 T
Y= =) () M
k=1
where [ (x) is a set of k-th learner random tree learners and T is the number of samples/tree.

2.3. CatBoost

CatBoost or “Categorical Boosting” is one of the machine learning algorithms devel-
oped from gradient boosting. CatBoost modifies the standard gradient boosting algorithm
called the ordering principle, which avoids target leakage, and a new algorithm for pro-
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cessing categorical features [22]. CatBoost is commonly used on datasets with a mix of
categorical and numerical features, which are commonly used in real-world applications.
The function of decision tree /1 can be written as:

h' = argmin— E (X, Ye) — h(Xk))2 ()

where X is the random vector of N input variables, Y} is the outcome, and f function is a
least squares approximation by the Newton method.

2.4. Extreme Gradient Boosting

Extreme gradient boosting, commonly known as XGBoost, is a method that further
enhances or optimizes the gradient boosting technique. XGBoost is a robust and widely
used machine learning technique that has swept the data science world [23]. In the boosting
method, models are trained sequentially, where the results from each weak learner’s
training influence the next model to be trained [24]. This method was developed by Chen
and Guestrin [15] to propose an algorithm that exhibits sparsity awareness (identifying
data that has little impact on calculations) for tree learning predictions. XGBoost utilizes
the output values from each constructed tree to obtain the final output value, as shown in
the following equation:

t
90 = L fba) =9V +filw), freF ®
k=1

where ﬁlw is the predicted value, ﬁgt_n is the predicted value at the previous iteration,

x; is the input vector, t is the number of regression trees, F represents the set of all re-
gression trees, fi is the output of the kth tree, and f; is the t—th regression trees. The
objective in XGBoost modeling is to minimize the value of the loss function using the
following equation:

£=Y1(5") +a0) @
i=1

where I(y;, ;) is the loss function and Q)( f¢) is the regularization term. The equation £ can
be expanded as follows:

D=3l ) + O ®

where f indicates the number of iterations.

The equation £() can be rewritten by applying the second-order Taylor series [25] and
5(t=1)

eliminating the constant variable / (yl, v;

) as follows:

n

o kax1+hﬁwo]+ow> ®)

i=1
A(t—1 1
where g; = ag(f—1>l(yi/y§t )> and h; = 8 ) (yu%(t ))'

2.5. Hyperparameter Tuning

Each machine learning method typically has more than one hyperparameter. The
values of these hyperparameters need to be initialized by the model creator before building
the model, and they are independent of the data or model used [26]. Hyperparameter tun-
ing is an optimization process performed by the model creator to improve the constructed
model by modifying the parameter values that influence the model’s training process [27].
This research uses the grid search method [26] in performing the hyperparameter tuning
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process. Grid search is an approach in machine learning for systematically exploring a
predetermined set of hyperparameter values to find the combination that yields the optimal
performance for a model [28]. Here are several hyperparameters of the XGBoost method
that were tuned in this research using the Python programming language. More detailed
information about the hyperparameters can be found in Table 2.

Table 2. List of hyperparameters that are tuned.

Hyperparameter

learning_rate

max_depth
n_estimators

gamma

Description Default Value
A hyperparameter that sets the step size shrinkage in the 03
output value update '
A hyperparameter that sets the maximum depth of the tree 6
Hyperparameters that set the maximum number of trees 100
A hyperparameter that sets the minimum required 0

branching constraint for each node

2.6. Model Evaluation
2.6.1. Mean Absolute Percentage Error

MAPE (mean absolute percentage error) is a metric used as an indicator of model
accuracy. Suppose there are n samples with forecasted values §j; (forecasted data for the
i-th sample) and actual values y; (actual data for the i-th sample). The formula for MAPE is
as follows [29]:

n
MAPE = * Y.
i3

Yi— 7

. 7
Yi @)

2.6.2. Root Mean Square Error

RMSE (root mean square error) is commonly used to measure the difference (error)
between actual and forecasted data. It calculates the square root of the average squared
differences between the actual and forecasted values [30]. The RMSE is given by:

RMSE = 8)

2.6.3. Mean Absolute Error

MAE (mean absolute error) is a commonly used metric to evaluate models for re-
gression or classification. It quantifies the average magnitude of errors between predicted
values and actual (observed) values. The formula for MAE is as follows [31]:

1 n
MAE = 0} lyi = 9il- ©)
i=1

2.6.4. Scatter Index

SI (scatter index) is a normalized metric of RMSE. The range of the SI for the classifica-
tion of the models is “excellent” if SI < 0.1, “good” if 0.1 < SI < 0.2, “fair” if 0.2 < SI < 0.3,
and “poor” if SI > 0.3 [32]. The SI formula is given by:

s1— ~MSE (10)
alic1Yi

2.6.5. K-Fold Cross Validation

K-fold cross-validation is a commonly used evaluation technique in machine learn-
ing [33]. This technique divides the data into k segments without repetition to calculate
the average metric for each training. In each training process, the model is trained on k — 1
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segments and then validated using the remaining segment [34]. This process continues k
times until each segment is used exactly once as validation data.

3. Methodology

This research uses the XGBoost method to forecast the price of silver with additional
variables of platinum price data, gold, and the dollar exchange rate in euros. This research
uses the Python programming language. The research process includes the data input
process, model building, and hyperparameter tuning which can be seen in full in Figure 3.

A\
Input data on the price of
silver, gold, platinum, and
the dollar exchange rate in
euros

Split the data into training
and test data

| Training (80%) / Test (20%)

Default
hyperparameter
values

XGBoost model

Test data forecasting

training
[ Model performance evaluation ]

[]
f MAPE Target /

(] ] v
Se\ec:s multflple Selects multflple Selec:s multflple Selects multiple
values o values o values o values of gamma
learning_rate n_estimators max_depth

[ J

Choose
another

]
Hyperparameter
value combination

hyperparameter|
combination
Hyperparameter tuning Modeling and evaluation
of the XGBoost model
Is

there a model
with MAPE<MAPE
Initiation?

Choose the best
model based on
MAPE and RMSE

.

5-fold cross validation

Comparing the
XGBoost model with
other methods

L

Forecasting data for
the next 6 days

Figure 3. Research flowchart.
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In the hyperparameter tuning process, the values for each hyperparameter are selected
first. For example, to select the gamma value, several XGBoost models are built with
different gamma values (default values are used for hyperparameters other than gamma).
Then each model is evaluated and the MAPE and RMSE values are plotted into a graph.
Then from the graph, some hyperparameter values with the best performance are selected.
Then the process is carried out for other hyperparameters. After selecting several values
for each hyperparameter, GridSearch is performed to build XGBoost models for all possible
hyperparameter combinations. Finally, the model with the best MAPE and RMSE values is
selected as the final model.

4. Results and Discussion
4.1. Initial Model

First, an initial baseline model was constructed before performing hyperparameter
tuning using the Python programming language. The initial model utilized default values
for its hyperparameters (Table 1), which were pre-defined in the xgboost package, leading
to the creation of 100 trees. The initial model was built using the training data, and then
forecasting was conducted on the testing data, followed by evaluation. The comparison
between the forecasted results of the initial model and the actual data can be seen in
Figure 4.

Actual silver price and Forecasting results

30.0 A

27.5

25.0 1

22.54

20.0 A

15.0 1

12.5 A

—— Actual silver price
ﬁ) —— Forecasting results

i i

e

7_0‘«(’ -,_0\?’ 1010 1017’
Date

Figure 4. The forecasted results of the initial model and the actual silver prices.

The evaluation results of the initial model yielded an MAPE value of 7.77% (highly
accurate) and an RMSE value of 2.16. Subsequently, the hyperparameter tuning process
was conducted with the aim of finding hyperparameter values that could optimize the
model to achieve a MAPE value smaller than that of the initial model.

4.2. Hyperparameter Tuning

In order to optimize the model’s performance, a hyperparameter tuning process was
conducted to identify the optimal combination of hyperparameters for silver price forecast-
ing. The hyperparameters considered for tuning were max_depth, gamma, learning_rate,
and n_estimators. Initially, different values were tested for each hyperparameter using
Python programming, aiming to determine suitable value ranges. During each experiment,
default values were used for the remaining hyperparameters. MAPE and RMSE were
employed as evaluation metrics to assess the performance of each experiment.



Mathematics 2023, 11, 3813 9 of 15

4.2.1. Max_Depth

Several values of the hyperparameter max_depth was tested, including 2, 3,4, 5, 6,7,
8,9, and 10. The evaluation results for the RMSE and MAPE values of each model can be
observed in Figure 5.

0.10 1

0.09 1

0.08 1

MAPE

0.07 - 2.0

1.8 1
0.06

1.6

o

max_depth max_depth
(a) (b)

Figure 5. The evaluation scores for the hyperparameter max_depth. (a) MAPE values obtained from
hyperparameter tuning; (b) RMSE values obtained from hyperparameter tuning.

From Figure 5, it can be observed that the MAPE and RMSE values tend to increase as
the max_depth value increases. Therefore, the values 2, 3, 4, and 6 were selected for the
max_depth parameter.

4.2.2. Gamma

Next, an estimation of the optimal gamma value was attempted. Several values were
tested, including 10, 15, 20, 25, 30, 35, 40, 45, .. ., 250, 255. The RMSE and MAPE values for
each gamma value experiment can be observed in Figure 3 in graphical form.

In Figure 6, it can be observed that the MAPE and RMSE values exhibit fluctuations
and display an upward trend as the gamma value increases. Consequently, the gamma
values of 0, 45, and 70 were chosen based on these observations.

3.0
0.115

0.110
2.8

0.105

0.100
w

MAP
RMSE
N
o

0.095

0.090
2.4

0.085

0.080 22
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e
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gamma gamma
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Figure 6. The evaluation scores for the hyperparameter gamma. (a) MAPE values obtained from
hyperparameter tuning; (b) RMSE values obtained from hyperparameter tuning.
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4.2.3. Learning_Rate

Next, various values were tested for the learning_rate parameter. The tested values
included 0.001, 0.005, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, and 0.5. The RMSE and MAPE
values for each learning_rate experiment can be observed in Figure 4 in graphical form.

From Figure 7, it can be observed that after the learning_rate reaches 0.05, the MAPE
and RMSE values do not experience significant changes. Therefore, the learning_rate values
of 0.05, 0.1, and 0.15 were chosen.

20.01
0.8 -
17.51
0.6 1 15.01
w w125
% 2
= 0.4 10.01
7.5
0.2 1 5.01
2.54
S L PSP D PO S LD O D> O DO
QQQ OSSP PN S 090 ng PO S PN S PN RN
learning_rate learning_rate
(a) (b)
Figure 7. The evaluation scores for the hyperparameter learning_rate. (a) MAPE values obtained
from hyperparameter tuning; (b) RMSE values obtained from hyperparameter tuning.
4.2.4. N_Estimators
Next, different values were experimented with for the parameter n_estimators. Several
values, including 50, 70, 90, 110, 130, ..., 410, and 430, were tested. The resulting RMSE and
MAPE values for each n_estimators trial are visualized in Figure 8, depicted in the form of
a graph.
3.0
0.115 1
0.1101 -
0.105 |
w 0.100 | W 2.6
< 0.0951 =
0.090 1 2.4 1
0.085 |
0.080 2.2 1
SO 1P A OO0 AD OO DAV DS H S D D 19 D (S AD © ® O O 1O AD 1O S
NP NG PAC QR 0 '&000\’5‘@\9(} AN D AD AP (,)QQ)Q/\Q%0QQ'\QQ'\,,»QQQOQ\FQ@Q@QQQ@Q’@Q’&
n_estimators n_estimators
(@) (b)

Figure 8. The evaluation scores for the hyperparameter n_estimators. (a) MAPE values obtained
from hyperparameter tuning; (b) RMSE values obtained from hyperparameter tuning.

Figure 8 illustrates that the performance of the model is not significantly affected by
the value of n_estimators when it exceeds 20. Therefore, the values of 20, 100, and 130 are
chosen for the n_estimators parameter.
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4.2.5. Best Hyperparameter Combination

Once the values for each hyperparameter were selected, experiments were conducted
for every possible combination of hyperparameters using the grid search method. There
was a total of 108 possible combinations of hyperparameters. The process of hyperparame-
ter tuning was stopped as there were already models with better MAPE values than the
initial model. From 108 models of hyperparameter tuning results, the average MAPE value
is 13.99% and the average RMSE value is 3.5173. Subsequently, the top three models were
selected based on the smallest MAPE and RMSE values. In this study, the top three models
based on MAPE and RMSE values can be seen in Tables 3 and 4, respectively.

Table 3. Three hyperparameter combinations with the best MAPE values.

Learning_Rate Max_Depth N_Estimators Gamma MAPE (%)
0.15 2 130 0 5.982
0.1 3 130 0 6.0558
0.15 2 100 0 6.0993

Table 4. Three hyperparameter combinations with the best RMSE values.

Learning_Rate Max_Depth N_Estimators Gamma RMSE
0.1 3 130 0 1.6967

0.15 2 130 0 1.6998

0.15 2 100 0 1.7277

From Table 3, the combination of learning_rate = 0.15, max_depth = 2, n_estimators = 130,
and gamma = 0 is the best hyperparameter combination based on the MAPE value
(model A). Meanwhile, from Table 4, the combination of learning_rate = 0.1, max_depth = 3,
n_estimators = 130, and gamma = 0 is the best hyperparameter combination based on the
RMSE value (model B).

To assess the significance of the model results using improved tuning parameters
compared to the initial model, we employed Welch's f-test (one-tailed). The hypothesis
testing of the MAPE value is outlined as follows:

Ho: AveragEMAPEHyperpammeter tuned model = MAPEyitial moder’ this indimting that the Perfor'
mance of the model achieved through hyperparameter tuning is equivalent to that of the initial model.

Hy: AverageMAPEyyperparameter tuned model < MAPE itial moder: this indicating that the model’s
performance, stemming from hyperparameter tuning, surpasses that of the initial model.

Utilizing a significance level (x = 5%), analysis reveals a p-value = 2.1764 x 1078 < 0.05,
leading to the rejection of Hy. Analogous to the performance of the model resulting from
parameter tuning based on RMSE, the p-value = 7.1873 x 10?7 < 0.05. This underscores
that the model’s performance, as a result of hyperparameter tuning, significantly surpasses
that of the initial model.

4.3. Forecasting Result

Next, we forecast the silver price using model A and model B. The forecasted silver
prices for the next 6 days can be seen in Table 5.

According to the data in Table 5, the forecasted silver prices show a mix of upward
and downward trends over the forecast period in model A. However, in model B, the silver
prices initially decrease until the third day and then steadily increase until the sixth day.
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Table 5. The six days ahead forecast results of silver price.

Date Silver Price ($) Silver Price ($)
(Model A) (Model B)
21 February 2023 21.7131 21.8824
22 February 2023 21.5283 20.8134
23 February 2023 21.9233 19.6417
24 February 2023 20.2312 20.8694
27 February 2023 21.7131 21.8824
28 February 2023 21.7131 21.8862

4.4. K-Fold Cross Validation

Next, an evaluation was conducted using 5-fold cross-validation using the model
A and model B that have been obtained. The data partitioning was performed in a non-
random manner, but instead sequentially based on the data index. The MAPE and RMSE
values from each iteration can be found in Table 6 and the ranking of the two best models
can be seen in Table 7.

Table 6. The result of 5-fold cross-validation.

Iteration Model A Model B
MAPE RMSE MAPE RMSE
1 8.64% 2.6586 7.45% 2.36
2 4.23% 0.8678 4.8% 1.0121
3 5.78% 1.1849 4.51% 0.9577
4 15.37% 3.1645 15.53% 3.1704
5 5.98% 1.6998 6.06% 1.6967
Average 8% 1.9151 7.67% 1.8394

Table 7. Ranking of the two best models.

Model Average MAPE Average RMSE
Model B 7.67% 1.8394
Model A 8% 1.9151

Model A has an average MAPE value of 8% from five iterations and an average RMSE
value of 1.9151. Model A has a difference of 2.09% in MAPE and a difference of 0.2153 in
RMSE compared to the average result of 5-fold cross-validation. Model B has an average
MAPE value of 7.67% from five iterations and an average RMSE value of 1.8394. Model
B has a difference of 1.61% in MAPE and a difference of 0.1427 in RMSE compared to the
average result of 5-fold cross-validation. From these differences, it can be concluded that
both model A and model B are capable of accurately forecasting silver prices.

4.5. Comparison with Other Models

The final models (A and B) obtained from the hyperparameter tuning results are
then compared with other machine learning models. CatBoost and random forest models
are built which belong to the ensemble learning type with the same basic concept as
XGBoost, namely building regression trees. In the process of comparing, it becomes
necessary to incorporate extra evaluation measures for a more all-encompassing inference.
Supplementary metrics such as MAE and SI are introduced. The results of the model
comparison with the evaluation metric value can be seen in Table 8.
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Table 8. Model comparison result.
Models RMSE MAPE MAE SI
Proposed model A 1.6998 0.0598 1.4051 0.0729
Proposed model B 1.6968 0.0606 1.4014 0.0728
Random forest 1.9745 0.0749 1.7288 0.0847
XGBoost (initial) 2.1600 0.0777 1.8001 0.0926
CatBoost 2.1689 0.0859 1.9776 0.0930

The results of Table 8 further convince us that XGBoost models A and B with the tuning
process are better compared to random forest and CatBoost based on those four metrics.

5. Conclusions

This study builds and optimizes an XGBoost model by conducting hyperparameter
tuning to forecast silver prices. The research explores 108 hyperparameter combinations
and identifies the top two models based on the evaluation metrics of MAPE and RMSE.
The best model based on MAPE has a MAPE value of 5.98% and an RMSE of 1.6998, with a
hyperparameter combination of learning_rate = 0.15 and max_depth = 2. The forecasted
silver prices for the next six days show a decline on the first and second days, followed
by an increase on the third day, another decline on the fourth day, and then a subsequent
rise on the fifth and sixth days. The best model based on RMSE has a MAPE value of
6.06% and an RMSE of 1.6967, with a hyperparameter combination of learning_rate = 0.1,
max_depth = 3, n_estimators = 130, and gamma = 0. The forecasted silver prices for the
next six days indicate a decrease until the third day, followed by a continuous increase
until the sixth day. Based on the model evaluation results in Table 8, the MAPE, RMSE,
MAE, and SI metrics of the proposed model perform better than other ensemble models
(CatBoost and random forest).

6. Recommendations

This study aims to optimize the XGBoost model through hyperparameter tuning,
specifically focusing on four hyperparameters. It is suggested for future research to explore
additional hyperparameters, including eta, lambda, alpha, and min_child_weight, and to
increase the number of hyperparameter variations based on research capacity. Furthermore,
incorporating data preprocessing techniques to address missing or messy data can improve
the forecasting performance [35]. Additionally, future studies can consider incorporating
additional variables such as inflation data, oil prices, or other relevant factors to enhance
the accuracy of silver price forecasting.
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