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Abstract: Future Internet of Things (IoT) will be a connected network of sensors enabling applica-
tions such as industrial automation and autonomous driving. To manage such a large number of
applications, efficient computing techniques using fog nodes will be required. A major challenge in
such IoT networks is to manage the resource allocation of fog computing nodes considering security
and system efficiency. A secure selection of fog nodes will be needed for forwarding the tasks without
interception by the eavesdropper and minimizing the task delay. However, challenges such as the
secure selection of fog nodes for forwarding the tasks without interception by the eavesdropper and
minimizing the task delay are critical in IoT-based fog computing. In this paper, an efficient technique
is proposed that solves the formulated problem of allocation of the tasks to the fog node resources
using a stable matching algorithm. The proposed technique develops preference profiles for both
IoT and fog nodes based on factors such as delay and secrecy rate. Finally, Gale–Shapley matching
is used for task offloading. Detailed simulation results show that the performance of the proposed
technique is significantly higher than the recent techniques in the literature.

Keywords: Internet of Things; resource allocation; task offloading; security

MSC: 94C15; 05D15; 91B68

1. Introduction

The Internet of Things (IoT) connects physical devices with the Internet and enables
applications in the areas of telecommunications, industrial automation, agriculture, and
health care [1–8]. Fog computing is one of the basic requirements of next-generation
IoT applications which provides computing capabilities near to the end devices. As IoT
involves monitoring a large amount of data and developing insights, efficient data storage
and task computation techniques in fog computing are needed [9,10].

IoT nodes send their application-related tasks to different fog nodes which execute
them on their behalf. The result is then sent back to the IoT nodes or a centralized decision-
making server. Task offloading in IoT faces challenges such as security and efficient
resource allocation. The task offloading transmission from the IoT nodes to the fog servers
is susceptible to many attacks such as eavesdropping, jamming, data integrity, etc. [11–13].
A secure offloading approach considers security of the links as an important criteria to
maximize the security of transmissions [14–18]. This is achieved by using techniques such
as traditional cryptography and physical layer security (PLS) [19,20]. Similarly, resource
allocation of fog nodes is a vital part of the task offloading process [21]. It is important to
use the best fog computing nodes such that the system efficiency is maximized. This means
maximizing energy efficiency and minimizing the task computational delay.

In this paper, an efficient task offloading technique is developed that minimizes the
task delay and maximizes the secrecy rate. The problem is formulated as an optimization
problem which is an NP-hard to solve problem. The problem is solved by using a graph

Mathematics 2023, 11, 3798. https://doi.org/10.3390/math11173798 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11173798
https://doi.org/10.3390/math11173798
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1772-2782
https://orcid.org/0000-0001-5816-097X
https://doi.org/10.3390/math11173798
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11173798?type=check_update&version=1


Mathematics 2023, 11, 3798 2 of 15

theory-based stable matching algorithm. IoT and fog node preference profiles are developed
by using factors such as secrecy rate and energy. The Gale–Shapley stable matching
algorithm is used for one-one matching of tasks with the fog node computational free
spaces. An IoT and fog computing simulation model is developed in MATLABand the
simulation results are presented. Detailed performance analysis clearly indicates that the
technique proposed for offloading has significantly improved results in comparison to
other related techniques in terms of computational delay and secrecy rate.

The paper organization is given in the following. In Section 2, the literature review
is presented. In Section 3, the system model and problem formulation are presented. In
Section 4, the proposed task offloading technique is discussed. In Section 5, the performance
of the proposed work is presented. In Section 6, future challenges and opportunities are
presented. In Section 7, the conclusions are presented.

2. Related Works

The concept of task offloading has been investigated in many areas of wireless commu-
nications such as IoT, vehicular networks, and mobile networks. A brief review of recent
work in this area is presented in Table 1.

Table 1. Literature review.

Network Main Idea Technique Used Results

Vehicular [22]
Use of mobility
dynamic connectivity

Maximum bi-partite matching
Kuhn–Munkras algorithm Task response time

Mobile [23]
Minimize energy consumption
Minimize monetary cost

Distributed matching
Preference based on task size and revenue

Energy consumption
Monetary cost

IoT [24] Minimize task latency
Parallel offloading
many to one matching

Task latency
Resource utilization

IoT [25]
Minimize energy consumption
Reduce task outages

Task deadline
One to many matching
Ranking based on multiple criteria

Energy consumption
Task outages

Vehicular [26]
Quick task offloading
Task priorities

Knapsack algorithm
Priority based execution Task delay

IoT [27] Task latency reduction
Best preference selection
Matching algorithm Task latency

2.1. Literature Review

In [22], a task offloading technique for vehicular network is proposed that considers
vehicle mobility and dynamic network connectivity to improve the task response time.
The task offloading problem is transformed into a bi-partite graph and a stable matching
algorithm is used. The Kuhn–Munkras (KM) algorithm is used to find the maximum
stable matching for the considered scenario. The work in [23] considers a mobile edge
computing scenario intending to minimize energy consumption and monetary cost. The
joint optimization problem is converted into a graph theory problem for which a distributed
matching algorithm is proposed. The preferences of computing nodes are set based on the
task size and task computing revenue.

In [24], an IoT network is considered with the parallel offloading scenario. The goal
is to divide the tasks into multiple subtasks and transmit them to different fog nodes. A
many-to-one matching scheme is used to maximize resource utilization and reduction
of task delay. Moreover, the externalities problem is also solved to handle the dynamic
preference profiles. The results show improved task latency and resource utilization. The
work in [25] considers an IoT scenario with partial offloading of tasks to the computing
resources. The objective is to minimize the energy consumption of the nodes and also
reduce the number of unserved tasks by the fog nodes (task outages). The proposed
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algorithm uses task deadline and one-to-many matching to solve the above problem. For
preferences, a ranking is calculated based on multiple criteria.

A vehicular-network-based task offloading scenario is presented in [26]. The goal is to
achieve quick task offloading in a priority-based traffic scenario. A knapsack algorithm is
used to maximize the efficiency of computational resource allocation with high-priority
tasks. The results show that the computational delay for high-priority tasks is increased
whereas low-priority tasks are executed before their deadlines. The work in [27] considers
an IoT scenario with the goal of reducing task latency. An optimal solution using stable
matching of tasks to the computational resource at fog node is presented. The preference of
both sides considers the task computational delay. The results highlight the improvement
in task latency as compared to other techniques.

2.2. Novelty of the Proposed Work

In comparison to the previous work, the proposed technique considers security as
well as task latency for task offloading. Most of the previous techniques do not consider
the impact of eavesdroppers while offloading the tasks. While higher task latency may
be achieved by offloading the tasks to the high data rate links and fog nodes with free
computational space, it may not be a fully secure approach and may compromise task
privacy. The proposed technique considers this important aspect which is missing in the
current literature and jointly optimizes secrecy rate and total task delay.

3. System Model

This paper considers a scenario where IoT nodes are placed in an industrial envi-
ronment for data sensing and transmitting. Moreover, IoT nodes are also performing
many application-related tasks and their computational capacity is not sufficient for timely
computation of these tasks. Thus, fog computing nodes are installed in the industrial setup
to efficiently compute the tasks received from the IoT nodes.

As shown in Figure 1, the considered scenario is presented. The fog nodes have several
free computational resources which are sufficient to handle many incoming tasks at the
same time. However, all tasks cannot be handled by a single fog node, hence requiring the
intelligent offloading of tasks to the appropriate computing resources at fog nodes.

Figure 1. Considered System Model.
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In this paper, eavesdroppers are also considered in the network, which are malicious
nodes with a goal to intercept the signal and decode the data. These malicious nodes can
also launch several other networking attacks; however, the main focus of this paper is
on eavesdropping.

To compute the overall delay taken for task computation, several factors are considered.
The list of notations used in this paper is given in Table 2 Let us consider a task of size St. It
is assumed that the fog node’s capacity for computational is C f in bits/s. The total task
delay Tt can be given as follows:

Tt = Ttran + Tcomp + Tq (1)

Table 2. List of notations used in the paper.

Symbol Meaning

St Size of task

T Set of tasks

F Set of fog node resources

C f Computational capacity of fog nodes in bits/s

Tt Total task delay

Ttran Transmission delay

Tcomp Computational delay

Tq Queuing delay

Dr Data rate

pi Transmit power of IoT node i

hi,j Channel gain for IoT node i, Fog node j link

B Channel bandwidth

N0 Noise power

Cc Computational speed of fog node in cycles/s

Bc Computational speed of fog node in bits/cycle

N Number of tasks computed in parallel by fog node

Nq Number of the given task in the queue at the fog node

Ei Energy consumed by the IoT node i

E f Energy consumed by the Fog node f

Ri,j
s Secrecy rate for IoT node i and fog node j link in presence of eavesdropper

Q Quota of fog node

ai,j Task offloading vector

Here, Ttran, Tcomp, and Tq are the transmission, computational, and queuing delays,
respectively. It is assumed that the data rate between the IoT node Ii and the fog nodes Fj is

given as Di,j
r . Then, the transmission delay Ti,j

tran for a task offloaded from IoT node i to fog
node j can be given as:

Ti,j
tran =

Si,j
t

Di,j
r

(2)

The data rate for link i, j can be given as follows:

Di,j
r = B× log2(1 +

pi × hi,j

N0
) (3)
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Here, pi represents the power of the data transmitted by the IoT node, hi,j represents
the channel gain, and N0 represents the noise. The channel gain depends on the channel
conditions on the IoT node-fog node link. It takes into account path loss as well as multi-
path fading.

The computation delay tcomp is given as follows:

tcomp =
St

C f
(4)

Here, C f is the computational capacity of fog nodes in bits/s and can be given as follows:

C f =
Cc

Bc
(5)

where Cc is the speed of computation available when using fog nodes and is given in
the number of cycles/s. Bc is the number of bits/cycle that can be computed by the fog
node. The ratio of these two parameters provides a measure of how many tasks can be
computed in one second by the fog node. Equation (4) gives the total time required to
compute the task.

Since the fog node can only compute a limited number of tasks in parallel depending
on its computational speed, let N be the number of tasks that can be computed in parallel
by the fog node and Nq be the number of tasks that are ahead of the given task at the fog
node’s queue; then, the queuing delay tq is given as follows:

tq = b
Nq

N
c × tcomp (6)

Using the above equation, the waiting time of a task in the fog node’s queue can be
given depending on the number of tasks that are ahead of the given task in the queue.
The fog node resources are divided into N number of virtual resource units for parallel
computation. The maximum parallel computation units by the fog node are called its
quota Q.

3.1. Energy Consumption Model

The energy consumed by the IoT nodes and fog nodes depends on the energy con-
sumption in the transmission of tasks, reception of the tasks, and computation of the
tasks [25]. Since the IoT node is not computing any task, its energy is given as follows:

Ei = pi × (ttran + trec) (7)

Here, pi is the transmission power of the IoT nodes, ttran and trec are the delay required
during the transmission of task and reception of the tasks.

Similarly, for the fog nodes, the energy consumption is given as follows:

Ej = pj × (ttran + trec + tcomp) (8)

Here, tcomp is the computational delay of the task. The fog node energy is dependent
on the size of the task and the computational capacity of the fog node.

3.2. Secrecy Rate

The secrecy rate for IoT node i for transmission to fog node j is defined as follows:

Ri,j
s = Di,j

r − Di,e
r (9)

Here, Di,j
r is the data rate of the link between IoT node i and fog node j whereas Di,e

r is
the data rate of the main link, the link between IoT node i and eavesdropper e. It is to be
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noted that task transmission time ttran is considered as part of (13). The higher the secrecy
rate for a link i, j, the higher the security of the transmission.

3.3. Problem Formulation

The problem addressed in this work is related to maximizing the security of the
transmitted task against eavesdroppers and minimizing the time required to compute the
task. The formulated problem can be presented as follows:

max (Rs) and min (tcomp)

C1
F

∑
f=1

ai,j = 1 (10)

C2
N

∑
j=1

aj ≤ Q (11)

C3 ∀T Ri,j
s ≥ 0 (12)

In the above problem, there are three constraints. Constraint number 1 means that a
task can only be offloaded to one fog node, i.e., the sum of task offloading vector ai,j overall
fog nodes is 1. Constraint number 2 means that a fog node can only accept tasks that are
less in number than its quota Q. Lastly, constraint number 3 means that the secrecy rate for
all offloaded tasks should be greater than 0.

4. Proposed Task Offloading Technique

The key idea of the proposed task offloading technique is to allocate resources based
on factors that enhance the level of security and improve the computation of the tasks.
The proposed technique uses a graph theory-based stable matching technique to solve the
formulated problem.

4.1. Stable Matching Game

The formulated problem is converted into a stable matching game as follows:

Definition 1. Let there be two sets of agents, one for the tasks T and the other for the fog node
resources F. A matching game G(T,F) is defined that associates two agents on each side with each
other in a stable manner.

Definition 2. Each agent maintains a preference profile containing its preference towards all agents
of the other side. Let � fi

be the preference of task node i towards all fog nodes in the set F). Let �ij

be the preference of fog node j towards all IoT tasks T).

Definition 3. A matching is stable if it does not contain any blocking pair of agents. The blocking
pair means that the matching game does not pair two agents who prefer each other to be matched
but are not currently matched. In the case of blocking pair existence, a stable matching can not
be achieved.

Definition 4. A Quota Q is defined as the number of tasks that can be accepted by the fog node
such that its computational capacity is not exceeded. During the matching process, a fog node
cannot accept more tasks than its Q.

4.2. Fog Node Selection

As there are a limited number of fog nodes with finite computational capacity, and
a large number of IoT nodes with different tasks, task allocation becomes a cumbersome
process. A fog node can only accept a limited number of tasks. It is critical to note that an
IoT task cannot always be offloaded to its preferable fog node. There exists a contention
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between tasks and available computational capacity available on the fog nodes. Thus,
selecting a fog node for a particular IoT task is a challenging task.

To solve the above problem, we utilize the Gale–Shapley stable matching algorithm to
resolve contention between fog node resources and IoT tasks. The stable matching algorithm
has many advantages. It can take into account the preferences of both sides for resource
allocation, i.e., IoT nodes and fog nodes. Moreover, it provides a stable mapping of resources
to the tasks. As a result, each agent gets the best possible resources allocated to it.

A bi-partite graph is developed between the fog nodes and IoT tasks as shown in
Figure 2. On the left side of the graph, it shows the IoT tasks and on the right side of the
graph, fog nodes are presented. Each IoT node and fog node has a preference set for each
other. An edge exists between an IoT node and a fog node if both exist in the preference set
of each other. The weight of the edge depends on the preference formulation.

Figure 2. Proposed Matching-based Task Offloading (Here P1: Preference profile of IoT Task I1,
F1: Preference profile of Fog Node F1.

4.3. Preference Profile

The preference set of both IoT nodes and the fog nodes is defined as shown in Table 3.
For the IoT nodes, a utility function is proposed that takes into account the secrecy rate and
task transmission time. The secrecy rate for IoT node i for transmission to fog node j is
defined as follows:

Ri,j
s = Di,j

r − Di,e
r (13)

Table 3. Preference profile of IoT nodes and Fog nodes.

Node Preference Profile Factors Reason

IoT
Data rate between IoT node and Fog node
Secrecy rate of IoT and eavesdropper link

Reduce transmission delay
Increase security of transmission

Fog Size of Task Reduce fog node energy

Here, Di,j
r is the data rate of the link between IoT node i and fog node j whereas Di,e

r is
the data rate of the main link, the link between IoT node i and eavesdropper e. It is to be
noted that task transmission time ttran is considered as part of (13). The higher the secrecy
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rate for a link i, j, the higher the security of the transmission. This indicates that the data
rate of the main link is much higher than the link of the eavesdropper. Hence, the IoT nodes
assign higher preference to the fog nodes with higher Ri,j

s .
For the fog node, the preference profile considers the IoT task sizes and prioritizes

tasks with a lower task size. This is done to conserve the energy of the fog nodes. Hence,
the fog nodes sort the tasks in terms of their sizes for preference development.

4.4. Task Offloading Algorithm

The task offloading algorithm is shown in Algorithm 1. Initially, a centralized controller
generates a preference for each node in the set T and F. As discussed in Section 4.3,
preferences are generated based on factors highlighted in Table 3.

Algorithm 1: Proposed Task Offloading Algorithm

1 Preference Generation
2 Generate a preference list of all IoT tasks for each fog node using equation:

3 Ri,j
s = Di,j

r − Di,e
r

4 Generate a preference list of all fog nodes for each IoT task using task sizes St
5 Stable Matching Algorithm
6 Initially assign each IoT task i in set T and fog node resource f in set F to be free
7 while any IoT task in set T is free do
8 Let f the top fog node in the preference list of i whom it has not proposed
9 if f is not engaged with any other node then

10 allocate i to be matched with f
11 end
12 else
13 if f has i at a higher preference order than its current allocation i′ then
14 allocate i to be matched with f
15 Assign i′ to be not engaged to any node
16 end
17 else
18 f does not accept the proposal of i
19 end
20 end
21 end
22 Task Offloading
23 Record the task allocation vector ai,j based on the stable matching algorithm
24 Transmit the IoT tasks i to assigned fog node f as per ai,j

The second phase of the algorithm is to apply the stable matching algorithm to solve
the formulated problem. The algorithm initially assigns each IoT task and fog node resource
to be free. The algorithm runs until each task has been assigned a stable fog node resource
match. For each free task, the algorithm proposes the top fog node in its preference list for
a possible match. If the fog node is not currently allocated, the match is completed.

In case the fog node is already matched with a task, the preference of incoming and
already matched tasks for the fog node is checked. If the incoming task has a higher
preference, then a new match is established. Otherwise, the older match is retained. The
output of the matching algorithm is a stable task allocation vector ai,j which allocates tasks
to the fog node resources.

Finally, the tasks are transmitted one by one to the allocated resources. It is to be noted
that the task incurs transmission delay to reach the fog node as well as computational delay
once it is allocated the fog node computational resources.
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5. Performance Evaluation

This section covers the performance of the task offloading technique proposed in this
paper. The work is compared with two other recent techniques, namely, the Kuhn–Munkras
matching (KMM) algorithm [22], and offloading-matching (Off-Mat) algorithm [23].

5.1. Simulation Model

The proposed technique is implemented in MATLAB and a complete IoT-based task
offloading scenario is developed. The simulation parameters are given in Table 4. The total
number of fog nodes taken is 5 and the number of IoT nodes varies from 100–300. A single
task is generated by each IoT node that needs to be offloaded to one of the fog nodes. It
is assumed that the IoT node does not compute tasks by itself. The task size is taken as
3–5 MB.

Table 4. Parameters used in the simulations.

Parameter Value

Number of Fog nodes 5

Number of IoT nodes 100–300

Task generated per IoT node 1

Task Size 3–5 MB

Computational speed of fog node 6 GHz

Link Bandwidth 10 MHz

Transmit power of IoT nodes 0.5 W

Computational power of fog nodes 0.3–0.5 W

Quota of fog nodes 20–50

The computational speed of the fog nodes is taken as 6 GHz. The link bandwidth is
taken as 10 MHz. The transmit power of IoT nodes is taken as 0.5 W. The computational
power of fog nodes is taken as 0.3–0.5 W. The quota of fog nodes is taken as 20–50.

5.2. Results

The simulation results plot metrics related to task offloading and are defined as follows:

• Total Delay: This is the time taken for the task to be transmitted to the fog node and
computed at the fog node, and any queuing delay faced by the task.

• Secrecy Rate: This is the difference between the data rates of the IoT-fog node-link
and IoT-eavesdropper link.

• Percentage of Security Outages: This is the percentage of tasks for which the data
rate of the IoT-eavesdropper link is higher than the IoT-fog node link. As a result, the
eavesdropper can capture the packet and decode it.

• Resource Utilization: This is the computational capacity of the fog node that is used
for task offloading. Some computational capacity may remain unmatched as a result
of the matching process.

• Total Energy Consumption: This is the energy consumed for the transmission and
computation of the task.

In Figure 3, the results of the total delay are shown against the number of IoT tasks.
It can be seen that the efficient matching process of the proposed technique results in a
lower delay as compared to the two other techniques. For example, as the total number of
IoT tasks reaches 200, the delay of the proposed technique is 18 ms. This is much lower
than the delay incurred by the KMM algorithm and the Off-Mat technique. While KMM
experiences a delay of around 24 ms, the Off-Mat technique has a delay of around 27 ms.
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Figure 3. Total delay of tasks vs. number of IoT tasks.

The secrecy rate of all techniques is shown in Figure 4. It can be seen that the proposed
technique has a 2.8–5 bps/Hz higher secrecy rate in comparison to the KMM and Off-Mat
techniques. The higher secrecy rate of the proposed technique is due to considering security
as part of the preference profiles and using it for secure task offloading.

Figure 4. Secrecy rate vs. number of IoT tasks.
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In Figure 5, the percentage of security outages is shown. This parameter is very
critical as it is an indicator of tasks that eavesdroppers can intercept. It can be seen that the
proposed technique shows very few security outages as compared to the other techniques.
This is due to the consideration of the secrecy rate while developing the task offloading
algorithm. For the KMM and the Off-Mat algorithm, the percentage of security outages
goes up to 10–12% when the number of tasks is 300. At this point, the proposed technique
only has security outages of less than 1%.

Figure 5. Percentage of security outages vs. number of IoT tasks.

The plot in Figure 6 shows the resource utilization of the fog nodes. It can be seen that
the proposed technique shows more than 90% resource utilization for all the scenarios. As
compared to the proposed technique, the two other techniques achieve 2–10% less resource
utilization at the different numbers of IoT tasks.

The graph in Figure 7 shows the energy consumed when using the proposed technique
for the different numbers of IoT tasks. Since the proposed technique has a higher resource
utilization, it experiences slightly higher energy consumption too. Of all the techniques,
Off-Mat has lower energy consumption due to the lowest resource utilization. On the
other hand, KMM has slightly higher energy consumption as it is designed for vehicular
networks and does not select fog nodes based on energy criteria.
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Figure 6. Resource utilization vs. number of IoT tasks.

Figure 7. Total energy consumption vs. number of IoT tasks.
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5.3. Discussion

From the results, it can be seen that the proposed technique has a better delay and
security performance as compared to the two other algorithms. This is because of the
efficient preference profile design and matching algorithm of the proposed technique. As it
considers delay and secrecy rate metrics while developing the matching algorithm, both of
these key metrics are improved. The proposed technique also keeps energy consumption
to a satisfactory level, with a slight increase as compared to the two other algorithms. The
reason for slightly higher energy consumption is that the proposed technique utilizes fog
node resources more efficiently. Since higher computational resources are utilized which
would have been otherwise wasted, energy consumption is also increased.

6. Future Opportunities

Some future opportunities related to future task offloading algorithms are highlighted
in this section.

6.1. Transmit Power Optimization

The transmit power of IoT nodes is an important metric that can impact the data rate
and secrecy rate of the IoT, eavesdropper, and fog node links. A higher transmit power
can increase energy consumption; however, it can also improve task security by improving
the data rate between the desired source and destination. Hence, optimal transmit power
selection is critical for secure task offloading applications and future work is needed in
this regard.

6.2. Physical Layer Security with Jamming

Jamming is one potential technique in PLS that can reduce the amount of signal
received by the eavesdropper. Intelligent jamming techniques can substantially improve
the physical layer security by reducing the interception capability of the eavesdropper. It is
important to select which nodes will send the jamming signals and the transmit power of
the jamming nodes.

6.3. Channel Estimation

Channel estimation of the IoT-fog node-link and IoT-eavesdropper link is critical
for the design of PLS. In scenarios where accurate Channel State Information (CSI) is
not available, it is important to develop accurate estimation techniques. As the channel
estimation dictates factors such as transmit power, jamming, etc., it is important to have an
accurate CSI. Future work is also needed to quantify the security outage percentage when
CSI is not accurate.

7. Conclusions

In this paper, a secure task offloading technique for IoT nodes is presented. The
proposed technique has two objectives, minimization of the task delay and maximization
of the secrecy rate. The formulated problem is converted to a stable matching graph theory
problem and the Gale–Shapley matching algorithm is used to solve it. The preferences
for IoT and fog nodes are developed and a stable allocation of tasks to the fog nodes is
recorded. Simulation results indicate that the technique developed in the paper improves
the delay by 33% and secrecy rate of the tasks by 200% as compared to other works in the
literature. In the future, we aim to consider different types of security attacks and their
impact on task offloading.
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