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Abstract: The mathematical modeling of the stability problem of nanocomposite cylindrical shells is
one of the applications of partial differential equations (PDEs). In this study, the stability behavior of
inhomogeneous nanocomposite cylindrical shells (INH-NCCSs), under combined axial compression
and hydrostatic pressure in the thermal environment, is investigated by means of the first-order
shear deformation theory (FSDT). The nanocomposite material is modeled as homogeneous and
heterogeneous and is based on a carbon nanotube (CNT)-reinforced polymer with the linear variation
of the mechanical properties throughout the thickness. In the heterogeneous case, the mechanical
properties are modeled as the linear function of the thickness coordinate. The basic equations are
derived as partial differential equations and solved in a closed form, using the Galerkin procedure,
to determine the critical combined loads for the selected structure in thermal environments. To test
the reliability of the proposed formulation, comparisons with the results obtained by finite element
and numerical methods in the literature are accompanied by a systematic study aimed at testing the
sensitivity of the design response to the loading parameters, CNT models, and thermal environment.

Keywords: nanocomposites; inhomogeneity; stability; cylindrical shell; thermal effect; critical
combined load

MSC: 74E10; 74E05; 74H55; 74K25; 74F05; 74G10

1. Introduction

Cylindrical shells play a key role in many high-tech fields, including aerospace, rocket
and space technology, shipbuilding and automotive, nuclear reactors, and chemical en-
gineering. Structural elements used in these areas should always renew themselves and
new products of modern technology should be used. In this context, polymer-based
nanocomposites (NCs) are increasingly attracting the attention of engineers and designers
for stability and optimization problems. Structural elements formed from polymer-based
nanocomposites have outstanding physical and chemical properties as well as superior
mechanical properties such as lightness, corrosion resistance, and high specific strength.

The operating conditions in the application areas of cylindrical shells expose them
to the simultaneous action of different loads such as compression forces and external
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pressures. Research attempts of buckling response for homogeneous composite cylindrical
shells subjected to combined loading are relatively old. Some of the most important ones
among these studies are references [1–7] and they contain many studies in their own period.

The formation of high-resolution microscopes led to the discovery of CNTs during
the production of fullerenes by arc discharge evaporation in 1991 [8]. It is well known
that carbon nanotubes, which have a cylindrical structure made of a graphene sheet, have
outstanding mechanical properties such as high tensile strength and high elastic modulus.
These properties are the reason why carbon nanotubes are considered as an ideal filling
material for composites used in aerospace structural elements. Besides the outstanding
electrical and thermal properties of CNTs, their mechanical properties have always attracted
the attention of researchers and numerous studies have been carried out [9–12]. Sometime
after CNTs were created, it became known that it was more advantageous to use them
as a reinforcing element in addition to as a separate structural element. Developments in
modern technology enabled the creation of polymer-, metal-, and ceramic-based CNTs-
reinforced materials starting from 2005, and these materials began to take their place
in the literature as nanocomposite materials [13–17]. Through a combination of many
unique properties and exceptional design possibilities, polymer nanocomposites have
proven themselves as high-performance materials of the twenty-first century and have the
potential to be used in a wide variety of advanced technologies such as spacecrafts, rockets,
submarines, automobiles, and others [18–22].

Due to their exceptional load-bearing capacity, nanocomposite cylindrical shells are
used in various environments and are subjected to combined loads in operation. This makes
it necessary to perform stability analyses of nanocomposite cylindrical shells subjected to
combined loads during design.

After formulating the buckling problem of functionally graded nanocomposite cylindri-
cal shells under separate external pressures in thermal environments in Shen’s study [23,24],
the buckling problem of nanocomposite cylindrical shells under combined loads was inves-
tigated by Shen and Xiang [25] using boundary layer theory and a singular perturbation
procedure. In the literature, in most studies devoted to solving the problem of buckling of
nanocomposite circular shells, separate action loads were considered, and the number of
studies is limited due to the difficulties of mathematically modeling the combined loads
and solving their problems [26–44].

As can be seen from the literature review, the modeling of buckling behavior of
structural elements, consisting of traditional and new generation homogeneous and inho-
mogeneous composites in thermal environments, is generally in the form of PDEs, and
analytical solutions are limited in comparison to numerical solutions. However, analytical
solutions can help to formulate problems in numerical simulations correctly and to check
results, as they provide a better understanding of the subject qualitatively. One of the most
dangerous and unpredictable buckling problems of inhomogeneous nanocomposite cylin-
drical shells subjected to various static loads is under combined loads and their solution
poses serious challenges due to the extreme operating conditions of modern structural
members and the high safety and reliability demands placed on them. Besides the inhomo-
geneous nature of nanocomposites, another challenge is the mathematical modeling of the
thermal environment effect and the incorporation of cylindrical shells under the combined
loads into the stability equations. All these difficulties complicate the formulation of the
problem, the formation of basic relationships, the modeling of governing equations in the
framework of advanced theories, and the analytical solution. These difficulties, which
require interdisciplinary knowledge, are among the reasons why the buckling behavior
of cylindrical shells made of inhomogeneous nanocomposites and subjected to combined
loads in thermal environments has not been sufficiently investigated in the framework of
FSDT until now. The aim of this study is to deal with the subject in detail. A systematic
study is being conducted to evaluate the sensitivity of the buckling response of nanocom-
posite cylindrical shells under combined loads within FSDT on the geometry, distribution,
and volume fraction of CNTs used as reinforcement, which may be of great interest for de-
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sign purposes. In addition, the results obtained in the framework of FSDT were interpreted
in comparison with the results obtained in the framework of the Kirchhoff–Love theory
(KLT), and the importance of transverse shear strain influences with and without thermal
environments is revealed.

The structure of the article is as follows: In Section 2, the mathematical modeling of
the mechanical properties of nanocomposites in thermal environments is presented and the
basic equations are derived, in Section 3 the solution method is presented, the parametric
analysis is included in Section 4, and conclusions are discussed in Section 5.

2. Mathematical Modeling of the Problem
2.1. Basic Relationships

The notes on the inhomogeneous nanocomposite cylindrical shell and its geometry,
subjected to the combined effect of axial compressive load and hydrostatic pressure, are
drawn in Figure 1. Geometric parameters such as the length, radius, and thickness of the
INH-NCCSs are denoted by a, r, and t, respectively. Suppose the displacements in the
x, y, and z directions are u, v, and w, respectively. ψ1 and ψ2 refer to the rotations of the
mid-surface normal about the y and x axes, respectively. Let Ψ be the Airy stress function
with the forces Nij(i, j = 1, 2) defined by [1,2]

(N11, N22, N12) = t
[

∂2

∂y2 ,
∂2

∂x2 , − ∂2

∂x∂y

]
Ψ. (1)

The inhomogeneous nanocomposite cylindrical shell subjected to the compressive
axial load and external pressures [1,45,46]:

N110 = −Nax − 0.5P1r, N220 = −P2r, N120 = 0. (2)

where Nij0(i, j = 1, 2) are the membrane forces for the condition with zero initial moments,
Nax is the axial compressive load, and Pj(j = 1, 2) indicate the uniform external pressures. If
the external pressures in Figure 1 consider only the lateral pressure, it is Nax = 0, P1 = 0 and
P2 = PL, whereas for the hydrostatic pressure, it is assumed that Nax = 0 and P1 = P2 = PH .

Since the material properties of the CNT and matrix are temperature-dependent, the
effective mechanical properties and thermal expansion coefficients of the nanocomposite
will be functions of temperature and location. The effective Poisson ratio and density of the
nanocomposite are considered constant since they are weakly dependent on the tempera-
ture change and location. These assumptions allow the expression of the micromechanical
model of the effective mechanical and thermal properties of INH-NCCSs as follows [23,24]:

Y(Z,T)
11 = e1VCNYCN

11T + VmYm
T , e2

Y(Z,T)
22

= VCN

YCN
22T

+ Vm

Ym
T

, e3

G(Z,T)
12

= VCN

GCN
12T

+ Vm

Gm
T

,

G(Z,T)
13 = G(Z,T)

12 , G(Z,T)
23 = 1.2G(Z,T)

12 , ν12 = VCN
∗ νCN

12 + Vmνm, ρ = VCN
∗ ρCN + Vmρm.

(3)

and

α
(Z,T)
11 =

VCNYCN
11T αCN

11T + VmYm
T αm

T

VCNYCN
11T + VmYm

T
, α

(Z,T)
22 = (1 + νCN

12 )VCNαCN
22T + (1 + νm)Vmαm

T − ν12α
(Z,T)
11 . (4)

in which VCN
∗ is the total volume fraction that depends on the density

(
ρCN), and the mass(

mCN) of CNTs and density (ρm) of the matrix are defined by

VCN
∗ =

(
ρCN

mCNρm −
ρCN

ρm + 1
)−1

. (5)

The symbols used in Equations (3) and (4) are described as Y(Z,T)
iiT , G(Z,T)

ijT (i = 1, 2,
j = 1, 2, 3) and refer to the normal and shear elastic moduli of NCs that depend on the
nondimensional thickness coordinate and temperature (Z, T); ν12 refers to the Poisson’s
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ratio of NCs; ρ refers to the density of NCs; VCN and Vm refer to the volume fraction of
CNTs and polymer, respectively; νCN

12 and νm refer to the volume fraction of CNTs and
polymer; YCN

iiT , GCN
ijT , and Ym

T , Gm
T refer to the normal and shear elastic moduli for CNTs and

polymer; and ej(j = 1, 2, 3) refer to the efficiency parameters for CNTs and VCN + Vm = 1.
Here, αCN

11T , αCN
22T , and αm

T refer to thermal expansion coefficients of CNTs and polymer,
respectively. It also shows that Young’s modules and thermal expansion coefficients with
their upper index (Z, T) depend on the thickness coordinate and temperature, indicating
that the parameters with sub index T are dependent only on temperature.
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Figure 1. Nanocomposite cylindrical shell with different CNT models subjected to the combined load.

Except for the uniform (U) distribution of the CNT distribution in the NCs in the
thickness direction, three types of models are considered, namely the Λ-, X-, and V-models,
and these can be estimated using the following relation [23,24]:

VCN =


VCN
∗ for U,

(1 + 2Z)VCN
∗ for Λ,

4|Z|VCN
∗ for X,

(1− 2Z)VCN
∗ for V.

(6)

The shapes of uniform and inhomogeneous distributions of CNTs in the thickness
direction of the polymer matrix, defined by the relation (2), are plotted in Figure 2.
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2.2. Basic Equations

In the framework of FSDT, the constitutive relations for INH-NCCSs in the thermal
environments can be created as follows [23]:

 σxx
σyy
σxy

 =

 Y(Z,T)
11 Y(Z,T)

12 0

Y(Z,T)
21 Y(Z,T)

22 0

0 0 Y(Z,T)
66


 εxx

εyy
γxy

+

 σxxT
σyyT

0

. (7)
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and [
σxz
σyz

]
=

[
Y(Z,T)

55 0

0 Y(Z,T)
44

][
γxz
γyz

]
. (8)

where

σxxT = −
[
Y(Z,T)

11 α
(Z,T)
11 + Y(Z,T)

12 α
(Z,T)
22

]
∆T , σyyT = −

[
Y(Z,T)

21 α
(Z,T)
11 + Y(Z,T)

22 α
(Z,T)
22

]
∆T . (9)

in which σij(i, j = x, y, z), ε jj(j = x, y), and γij(i, j = x, y, z) are the stress and strain tensors
of INH-NCCSs, respectively; ∆T = T − T0 is the symbol indicating the temperature rise
from some reference temperature (T0), in which thermal strains are also absent; and the

material constants, T is the temperature and Y(Z,T)
ij , (i, j = 1, 2, 6) are defined as follows:

Y(Z,T)
11 =

Y(Z,T)
11

1−ν12ν21
, Y(Z,T)

22 =
Y(Z,T)

22
1−ν12ν21

, Y(Z,T)
12 =

ν21Y(Z,T)
11

1−ν12ν21
=

ν12Y(Z,T)
22

1−ν12ν21
= Y(Z,T)

21 ,

Y(Z,T)
44 = G(Z,T)

23 , Y(Z,T)
55 = G(Z,T)

13 , Y(Z,T)
66 = G(Z,T)

12 .

(10)

According to the assumptions of FSDT of the Ambartsumian [44], the variation of
shear stress along the thickness direction can be written as follows:

σzz = 0, σxz =
d f
dz

ψ1(x, y), σyz =
d f
dz

ψ2(x, y). (11)

where f refers to the shear stress shape function.
By combining Equations (6), (7), and (10), one obtains the following:

εxx

εyy

γxy

 =


exx − z ∂2w

∂x2 + F(Z,T)
1

∂ψ1
∂x

eyy − z ∂2w
∂y2 + F(Z,T)

2
∂ψ2
∂y

γ0xy − 2z ∂2w
∂x∂y + F(Z,T)

1
∂ψ1
∂y + F(Z,T)

2
∂ψ2
∂x

. (12)

where exx, eyy, γ0xy refer to the strain components at the mid-surface. F(Z,T)
1 and F(Z,T)

2
are defined as

F(z,T)
1 =

z∫
0

1

Y(Z,T)
55

d f
dz

dz, F(z,T)
2 =

z∫
0

1

Y(Z,T)
44

d f
dz

dz. (13)

By integrating the stresses across the shell thickness, we can obtain stress resultants as
follows [1]: (

Nij, Qi, Mij
)
=

0.5t∫
−0.5t

(
σij, σiz, zσij

)
dz, (i, j = x, y). (14)

Thermal forces and moments (NT
ii , MT

ii , i = 1, 2) caused by high temperature are
found from the following integrals [23–25]:

(NT
11, MT

11) =
0.5t∫
−0.5t

[
Y(Z,T)

11 α
(Z,T)
11 + Y(Z,T)

12 α
(Z,T)
22

]
∆T(1, z)dz,

(NT
22, MT

22) =
0.5t∫
−0.5t

[
Y(Z,T)

21 α
(Z,T)
11 + Y(Z,T)

22 α
(Z,T)
22

]
∆T(1, z)dz.

(15)
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Using Equations (7)–(9), (12), and (14) together, the stability and compatibility equa-
tions for INH-NCCSs under combined load can be expressed with four independent
parameters, Ψ, w, ψ1, ψ2, as follows:

L11 L12 L13 L14
L21 L22 L23 L24
L31 L32 L33 L34
L41 L42 L43 L44




Ψ
w
ψ1
ψ2

 =


0
0
0
0

. (16)

where Lij are differential operators, whose details are described in Appendix A.

3. Solution Procedure

The two end edges of the cylindrical shell are simply supported, and these boundary
conditions are, mathematically, as follows [23,45,46]:

At x = 0, L w =
∂2Ψ
∂y2 = ψ2 = M11 = 0. (17)

2πr∫
0

N11dy + 2πrtσx + πr2 p = 0. (18)

where σx is the average axial compressive stress and the closed or periodicity condition is
expressed as

2πr∫
0

∂v
∂y

dy = 0. (19)

The approximation functions are searched as follows [33,47]:

Ψ = K1 sin(µ1x) sin(µ2y), w = K2 sin(µ1x) sin(µ2y),

ψ1 = K3 cos(µ1x) sin(µ2y), ψ2 = K4 sin(µ1x) cos(µ2y).
(20)

where Ki refer to unknown amplitudes, µ1 = mπ
a and µ2 = n

r , and where m and n are the lon-
gitudinal and circumferential wave numbers, respectively, contained in these parameters.

By introducing (20) into Equation (16), and also taking into account (2), then using the
Galerkin procedure we obtain the following:

Q11 −Q12 Q13 Q14
Q21 −Q22 Q23 Q24
Q31 −Q32 Q33 Q34
Q41 Q42 Q43 Q44




K1
K2
K3
K4

 =


0
0
0
0

. (21)

The Qij contained in the square matrix of (21) refer to the coefficients characterizing the
INH-NCCSs properties in the thermal environments and the combined load components
and these are defined in Appendix B.

When the expansion of the determinant of the square matrix of Equation (21), with
respect to the fourth row and the first column, is set to zero, the following equation is
obtained, which provides the analytical expressions determining the critical axial load and
critical external pressures of the INH-NCCSs in the thermal environments:

Q41Λ1 −
(

Naxµ2
1 + 0.5P1µ2

1r + P2µ2
2r
)

Λ2 + Q43Λ3 + Q44Λ4 = 0. (22)

where cofactors Λi are expressed as
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Λ1 = −

∣∣∣∣∣∣
Q12 Q13 Q14
Q22 Q23 Q24
Q32 Q33 Q34

∣∣∣∣∣∣, Λ2 =

∣∣∣∣∣∣
Q11 Q13 Q14
Q21 Q23 Q24
Q31 Q33 Q34

∣∣∣∣∣∣, Λ3 = −

∣∣∣∣∣∣
Q11 Q12 Q14
Q21 Q22 Q24
Q31 Q32 Q34

∣∣∣∣∣∣, Λ4 =

∣∣∣∣∣∣
Q11 Q12 Q13
Q21 Q22 Q23
Q31 Q32 Q33

∣∣∣∣∣∣. (23)

From Equation (22) for INH-NCCSs, we obtain the following expressions for the nondi-
mensional critical axial load (Naxcr

f sdt), as P1 = P2 = 0, for the nondimensional critical lateral

pressure (PLcr
f sdt), as Nax = P1 = 0; P2 = PL and for the nondimensional critical hydrostatic

pressure (PHcr
f sdt), as Nax = 0, P1 = P2 = PH , respectively, in the thermal environments:

Naxcr
f sdt =

Φ
tµ2

1Ym , PLcr
f sdt =

Φ
Ymµ2

2r
, PHcr

f sdt =
Φ

Ym
(
0.5µ2

1 + µ2
2
)
r

. (24)

where Φ = Q41Λ1+ Q43Λ3+Q44Λ4
Λ2

and Ym is the modulus of elasticity of the polymer at
T0 = 300 (K) (at room temperature).

For the combined axial load and lateral pressure, or combined axial load and hydro-
static pressure acting on the INH-NCCSs within FSDT in the thermal environments, the
following relation can be used [1,32,46]:

N
Naxcr

f sdt
+

PL

PLcr
f sdt

= 1 and
N

Naxcr
f sdt

+
PH

PHcr
f sdt

= 1. (25)

where
N =

Nax

Ymt
, PL =

PL
Ym , PH =

PH
Ym . (26)

Under the assumptions N = δPL and N = δPH , in Equation (25), one obtains
the following:

PLcbcr
f sdt =

 1

PLcr
f sdt

+
δ

Naxcr
f sdt

−1

and PHcbcr
f sdt =

 1

PHcr
f sdt

+
δ

Naxcr
f sdt

−1

. (27)

where δ ≥ 0 is the nondimensional load-proportional parameter.
From Equations (24) and (27), the values of critical combined loads within classical

shell theory, PLcbcr
klt and PHcbcr

klt , in the thermal environment, can be found as the influence of
transverse shear strains is neglected.

4. Results and Discussion
4.1. Initial Data

The comparison and specific numerical results for nanocomposite cylindrical shells
subjected to two kinds of combined loads are performed in this section. The effec-
tive material properties of the nanocomposite are defined as follows: PMMA, with the
abbreviated name of poly (methyl methacrylate), whose material properties are
νm = 0.34, αm

T = 45(1 + 0.0005∆T) × 10−6/K and Ym
T = (3.52− 0.0034T) × 109 (Pa) .

Here, T = T0 + ∆T in which T0 = 300 (K). At reference temperature, that is, at T0 = 300 K,
αm

T = αm = 45× 10−6/K, Ym
T = Ym = 2.5× 109 Pa.

Single-walled carbon nanotubes (SWCNTs), namely (10, 10) SWCNTs, with properties
aCN = 9.26 nm, rCN = 0.68 nm, tCN = 0.067 nm, νCN

12 = 0.175, are used as
reinforcement. The temperature-dependent material properties of (10, 10) SWCNTs are
evaluated as [48]
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YCN
11T = 6.18387− 2.86× 10−3T + 4.22867× 10−6T2 − 2.2724× 10−9T3,

YCN
22T = 7.75348− 3.58× 10−3T + 5.30057× 10−6T2 − 2.84868× 10−9T3,

GCN
12T = 1.80126 + 0.77845× 10−3T − 1.1279× 10−6T2 + 4.93484× 10−10T3,

αCN
11T = (−1.12148 + 2.289× 10−2T − 2.88155× 10−5T2 + 1.13253× 10−8T3) · 10−6/K,

αCN
22T = (5.43874− 9.95498× 10−4T + 3.13525× 10−7T2 − 3.56332× 10−12T3) · 10−6/K.

(28)

The magnitudes of material properties and thermal expansion coefficients for T = 300,
450, 600, and 750 (K) of (10, 10) SWCNTs using the above equations are presented in Table 1.

Table 1. The temperature-dependent material properties of (10, 10) SWCNTs.

Temperature
(K)

YCN
11T

(TPa)
YCN

22T
(TPa)

GCN
12T

(TPa)
αCN

11T × 10−6/K αCN
22T × 10−6/K

300 5.6451 7.0796 2.0665 3.4579 5.1682
450 5.5461 6.9563 2.3728 4.3758 5.0539
600 5.4994 6.8984 2.9283 4.6852 4.9535
750 5.4588 6.8482 3.8325 4.6152 4.8670

As is known, there are no experiments to determine the values of the efficiency
parameters of nanocomposites. For the current analysis, the CNT efficiency parameters
ei(i = 1, 2, 3) represent the Young moduli (Y11, Y22) and shear modulus (G12) determined
from the extended mixing rule of nanocomposites, as obtained from molecular dynamics
simulations by Griebel and Hamaekers [49], and Han and Elliott [50], and determined by
matching with similar values. The typical values of CNT efficiency parameters are listed in
Table 2.

Table 2. Typical values of CNT efficiency parameters.

CNT Efficiency Parameters

VCN
∗ e1 e2 e3

0.12 0.137 1.626 0.715
0.17 0.142 1.626 1.138
0.23 0.141 1.585 1.109

The shear stress shape functions are distributed as d f
dz = 1− 4Z2 [47]. The critical

combined load values of INH-NCCSs in the thermal environments are calculated for
different shell characteristics within the KLT and FSDT.

4.2. Comparative Examples

Before the parametric analyses, the values of the critical axial/hydrostatic combined
load of the X-model INH-NCCSs within FSDT for two different load-proportional pa-
rameters are compared with the results of Shen and Xiang [25] for T = 300 (K). In the
comparison, the following geometric data are considered: t = 0.002 m, r = 0.06 m, and
a = 10

√
3rt, which are taken from the study of Shen and Xiang [25] that used higher order

shear deformation theory. The values corresponding to T = 300 (K) in Table 1 are used as
the material properties. According to Table 3, good agreement can be observed between
Shen and Xiang’s [25] estimates for the critical combined load and our results.
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Table 3. Comparative study of PLcbcr
f sdt for INH-NCCSs with the X-model with different load-

proportional parameters.

PLcbcr
fsdt (MPa) (ncr = 4) for X-Model

T = 300 (K) T = 400 (K) T = 500 (K)

δ = 750 δ = 140 δ = 750 δ = 140 δ = 750 δ = 140

VCN
∗ Shen and Xiang [25]

0.12 0.112 0.218 0.098 0.191 0.084 0.166
0.17 0.190 0.370 0.167 0.325 0.143 0.280
0.28 0.242 0.470 0.213 0.414 0.183 0.358

VCN
∗ Present study

0.12 0.110 0.222 0.097 0.196 0.084 0.169
0.17 0.187 0.379 0.165 0.333 0.142 0.286
0.28 0.240 0.486 0.211 0.427 0.182 0.368

The numerical results of the critical lateral pressure, PLcr
f sdt (in kPa), for the CNT-

reinforced PMMA-based cylindrical shell of various lengths are compared with the results
estimated by the finite element method of Hajoui et al. [26] and the two-stage singular per-
turbation technique of Shen [24] based on the higher order shear deformation theory. Other
data used in the comparison are: r/t = 30, h = 2 mm, VCN

∗ = 0.17 and T = 300 (K). Two
CNT pattern types are considered, U and X, and the numbers in parentheses indicate the
circumferential mode numbers. Despite the difference in the solution methods, it is seen in
Table 4 that the existing solutions are in good agreement with the results obtained using the
numerical method [24] and finite element method [26]. It should be noted that the number
of circumferential modes matches exactly those obtained in the comparative studies.

Table 4. Comparative study of PLcr
f sdt for PMMA-based nanocomposite cylindrical shells with different

CNT models.

PLcr
fsdt(ncr)

a Comparative Studies U X

10
√

rt
Present study 775.23 (5) 893.46 (5)

Shen [24] 776.63 (5) 927.40 (5)
Hajlaoui et al. [26] 763.46 (5) 886.32 (5)

10
√

3rt
Present study 433.18 (4) 477.97 (4)

Shen [24] 433.04 (4) 484.05 (4)
Hajlaoui et al. [26] 438.47 (4) 482.39 (4)

10
√

5rt
Present study 344.02 (4) 379.43 (4)

Shen [24] 343.81 (4) 382.59 (4)
Hajlaoui et al. [26] 346.77 (4) 381.51 (4)

4.3. Parametric Analyses

In what follows, we analyze the sensitivity of the critical combined load to inhomo-
geneous models, the volume fractions of CNT and FSDT formulation, and the change in

temperature, by considering the ratios 100%×
(

PHcbcr
INH −PHcbcr

U

PHcbcr
U

,
PHcbcr

klt −PHcbcr
f sdt

PHcbcr
klt

,
PHcbcr

T −PHcbcr
T0

PHcbcr
T0

)
.

Two of the main parameters affecting the critical combined loads are the load proportional
parameter and the temperature variation. Since the number of longitudinal waves is equal
to one, it is not included in the tables and figures. The buckling modes corresponding to the
critical combined load values in Figures 3–8 are presented in Tables 5 and 6, as well as given
in parentheses within the figures. The symbol T0 corresponds to the value T = 300 (K).
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The distribution of the nondimensional critical combined loads and the corresponding
circumferential wave numbers (ncr) of four types of polymer-based and CNT-patterned
cylindrical shells in thermal environments versus the nondimensional load-proportional
parameter (δ) within two theories are shown in Table 5 and Figures 3–6. The data used
in numerical calculations are considered as: r/t = 25, a/r = 1, t = 0.002 m, VCN

∗ = 0.12.
The magnitudes of the nondimensional critical combined load and the corresponding
circumferential wave numbers of four types of CNT-patterned cylindrical shells in thermal
environments within two theories reduce as the δ rises. The effect of shear deformations
(SDs) on the critical combined load differs with the change in temperature. At T = 300 (K),
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when the δ increases from 100 to 500, the influence of SDs on PHcbcr
f sdt values rises for the

U-model, while that influence becomes weaker as the δ rises up to 900. When the δ load-

proportional parameter rises from 100 to 500, the effect of transverse SDs on the PHcbcr
f sdt

diminishes for the V-model, while that influence changes irregularly with the rise in the δ up
to 900. As the δ load-proportional parameter increases from 100 to 500, the influence of SDs

on the PHcbcr
f sdt values diminishes in the Λ-model, while that influence reduces weakly but

continuously as the δ increases up to 900. The effect of transverse SDs on the magnitudes

of the PHcbcr
f sdt decreases continuously when it increases from 100 to 900 for the X-model.
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At T = 450 (K), as the load-proportional parameter increases from 100 to 300, the

effect of transverse SDs on the PHcbcr
f sdt increases for U-, V-, and Λ-models, while that effect

weakens and reduces continuously as δ increases up to 900. When the δ increases from 100

to 500, the influence of transverse SDs on the PHcbcr
f sdt rises as δ increases from 100 to 300,

while that effect changes irregularly as the δ increases up to 900 for the X-model.
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Table 5. Distribution of PHcbcr
f sdt and PHcbcr

klt for CNT-reinforced polymer-based cylindrical shells and
corresponding wave numbers versus the δ load-proportional parameter in thermal environments.

PHcbcr×104(ncr)

T = 300 (K)

U V Λ X

δ KLT FSDT KLT FSDT KLT FSDT KLT FSDT

100 4.303 (6) 3.792 (6) 3.677 (5) 3.367 (5) 3.388 (5) 3.116 (5) 5.599 (6) 4.612 (6)
300 2.059 (5) 1.804 (5) 1.720 (5) 1.575 (5) 1.585 (5) 1.458 (5) 2.737 (5) 2.231 (5)
500 1.344 (5) 1.177 (5) 1.109 (4) 1.020 (4) 1.030 (4) 0.951 (4) 1.786 (5) 1.456 (5)
700 0.991 (4) 0.870 (4) 0.815 (4) 0.749 (4) 0.756 (4) 0.698 (4) 1.322 (4) 1.079 (4)
900 0.783 (4) 0.688 (4) 0.644 (4) 0.592 (4) 0.598 (4) 0.552 (4) 1.044 (4) 0.853 (4)

δ T = 450 (K)

100 3.873 (6) 3.309 (6) 3.247 (6) 2.920 (6) 3.031 (6) 2.738 (5) 5.096 (7) 4.035 (6)
300 1.882 (5) 1.595 (5) 1.531 (5) 1.373 (5) 1.423 (5) 1.280 (5) 2.542 (5) 1.975 (5)
500 1.228 (5) 1.041 (5) 0.993 (4) 0.893 (4) 0.929 (5) 0.836 (5) 1.659 (5) 1.289 (5)
700 0.910 (4) 0.773 (5) 0.729 (4) 0.656 (4) 0.683 (4) 0.616 (4) 1.232 (5) 0.960 (4)
900 0.719 (4) 0.611 (4) 0.576 (4) 0.518 (4) 0.539 (4) 0.487 (4) 0.975 (4) 0.758 (4)

δ T = 600 (K)

100 3.453 (7) 2.804 (6) 2.805 (6) 2.435 (6) 2.642 (6) 2.304 (6) 4.544 (7) 3.398 (7)
300 1.716 (5) 1.374 (5) 1.351 (5) 1.166 (5) 1.269 (5) 1.099 (5) 2.366 (5) 1.697 (5)
500 1.120 (5) 0.897 (5) 0.882 (5) 0.761 (5) 0.828 (5) 0.717 (5) 1.544 (5) 1.107 (5)
700 0.831 (5) 0.666 (5) 0.648 (4) 0.561 (4) 0.613 (4) 0.532 (4) 1.146 (5) 0.822 (5)
900 0.659 (4) 0.529 (4) 0.512 (4) 0.443 (4) 0.484 (4) 0.421 (4) 0.911 (5) 0.653 (4)

δ T = 750 (K)

100 2.941 (7) 2.195 (7) 2.351 (7) 1.908 (6) 2.253 (7) 1.828 (6) 3.887 (8) 2.602 (7)
300 1.544 (6) 1.113 (5) 1.171 (5) 0.935 (5) 1.116 (5) 0.895 (5) 2.148 (6) 1.352 (5)
500 1.013 (5) 0.726 (5) 0.764 (5) 0.610 (5) 0.728 (5) 0.584 (5) 1.430 (5) 0.883 (5)
700 0.752 (5) 0.539 (5) 0.567 (5) 0.453 (5) 0.541 (5) 0.433 (5) 1.062 (5) 0.656 (5)
900 0.598 (5) 0.429 (5) 0.448 (4) 0.359 (4) 0.430 (4) 0.345 (5) 0.844 (5) 0.521 (5)

At T = 600 (K), when the δ load-proportional parameter increases from 100 to 300,

the influence of SDs on the magnitudes of the PHcbcr
f sdt increases in the U-model, while that

influences reduces as the δ increases up to 900. When the δ increases from 100 to 500, the

influence of transverse SDs on the PHcbcr
f sdt increases for the V- and X-models, while that

effect changes irregularly as the δ increases up to 900. When the δ increases from 100 to 500,

the effect of SDs on the PHcbcr
f sdt values rises in the Λ -model, while that effect decreases as δ

increases up to 900.
At T = 750 (K), as the δ increases from 100 to 500, the effect of transverse SDs on the

PHcbcr
f sdt increases in the U-model, while that effect decreases as the δ load ratio increases up

to 900. As the δ increases from 100 to 500, the effect of transverse SDs on PHcbcr
f sdt increases for

the V-model, while that effect decreases as δ increment up to 900. When the δ increases from

100 to 300, the effect of SDs on PHcbcr
f sdt rises for the Λ -model, while that influence decreases

continuously as the δ increases up to 900. For the X-model, the effect of transverse SDs

on PHcbcr
f sdt rises continuously when it increases from 100 to 500, while that effect changes

irregularly when δ increases up to 900.
Although the increase in temperature changes according to the shape of inhomoge-

neous models on the PHcbcr
f sdt , that rises the influence of inhomogeneity on the values of the

critical combined load in all models. For example, at T = 300 (K), as the δ increases from

100 to 900, the influence of the V-, Λ-, and X-models on the PHcbcr
f sdt rises from (−11.21%)

to (−13.95%), (−17.83%) to (−19.77%), and (+21.62%) to (+23.98%), respectively, while at
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T = 750 (K), those effects increase from (−13.08%) to (−16.32%), (−16.72%) to (−19.58%),
and (+18.54%) to (+21.45%), respectively, considering the transverse shear deformations
significantly reduces the effects of the models (Figures 3 and 4).

Table 6. Distribution of critical combined loads and corresponding wave numbers of polymer-
based cylindrical shells reinforced with the CNT in the thermal environment versus the a/r within
two theories.

PHcbcr×104

T = 300 (K)

U V O X

a/r KLT FSDT KLT FSDT KLT FSDT KLT FSDT

0.50 4.131 (5) 2.397 (5) 2.958 (4) 2.001 (5) 2.923 (5) 1.978 (5) 5.977 (6) 2.839 (5)
0.75 2.033 (5) 1.576 (5) 1.566 (5) 1.317 (5) 1.491(5) 1.258 (5) 2.837 (5) 1.952 (5)
1.00 1.344 (5) 1.177 (5) 1.109 (4) 1.020 (4) 1.030 (4) 0.951 (4) 1.786 (5) 1.456 (5)
1.25 1.034 (4) 0.961(4) 0.909 (4) 0.867 (4) 0.821 (4) 0.787 (4) 1.318 (4) 1.171 (4)
1.50 0.875 (4) 0.838 (4) 0.812 (4) 0.788 (4) 0.721 (4) 0.704 (4) 1.071 (4) 0.996 (4)

a/r T = 450 (K)

0.50 3.977 (6) 2.100 (5) 2.815 (5) 1.769 (5) 2.786 (5) 1.752 (5) 5.779 (6) 2.443 (6)
0.75 1.914 (5) 1.403 (5) 1.444 (5) 1.168 (5) 1.383 (5) 1.122 (5) 2.702 (5) 1.723 (5)
1.00 1.228 (5) 1.041 (5) 0.993 (4) 0.893 (4) 0.929 (5) 0.836 (5) 1.659 (5) 1.289 (5)
1.25 0.925 (4) 0.842 (4) 0.792 (4) 0.746 (4) 0.721 (4) 0.682 (4) 1.202 (4) 1.034 (4)
1.50 0.765 (4) 0.722 (4) 0.692 (4) 0.667 (4) 0.619 (4) 0.600 (4) 0.954 (4) 0.868 (4)

a/r T = 600 (K)

0.50 3.846 (6) 1.753 (6) 2.694 (5) 1.506 (5) 2.671 (6) 1.495 (5) 5.619 (7) 1.994 (6)
0.75 1.809 (5) 1.211 (5) 1.331 (5) 1.009 (5) 1.286 (5) 0.976 (5) 2.585 (6) 1.465 (5)
1.00 1.120 (5) 0.897 (5) 0.882 (5) 0.761 (5) 0.828 (5) 0.717 (5) 1.544 (5) 1.107 (5)
1.25 0.820 (4) 0.720 (4) 0.678 (4) 0.624 (4) 0.624 (4) 0.577 (4) 1.090 (5) 0.889 (4)
1.50 0.657 (4) 0.606 (4) 0.574 (4) 0.545 (4) 0.519 (4) 0.496 (4) 0.842 (4) 0.738 (4)

a/r T = 750 (K)

0.50 3.709 (7) 1.321 (6) 2.573 (6) 1.173 (5) 2.550 (6) 1.163 (6) 5.427 (9) 1.455 (6)
0.75 1.700 (6) 0.967 (5) 1.220 (5) 0.816 (5) 1.189 (5) 0.797 (5) 2.454 (6) 1.136 (5)
1.00 1.013 (5) 0.726 (5) 0.764 (5) 0.610 (5) 0.728 (5) 0.584 (5) 1.430 (5) 0.883 (5)
1.25 0.710 (5) 0.580 (5) 0.564 (6) 0.494 (4) 0.528 (4) 0.464 (4) 0.967 (5) 0.711 (5)
1.50 0.549 (4) 0.481 (4) 0.456 (4) 0.419 (4) 0.419 (4) 0.387 (4) 0.729 (4) 0.592 (4)

When comparing the influence of temperature on the PHcbcr
f sdt at T = 450 (K) and

T = 300 (K), if the δ rises from 100 to 900, the influence of temperature on the PHcbcr
f sdt

shows a decrease varying between 1% and 1.7%, according to the shape of patterns. When
T = 600 (K) and T0 = 300 (K) are compared, if the δ increases from 100 to 900, the tempera-

ture effect on the PHcbcr
f sdt shows a decrease of approximately 2.4% to 3.0%, depending on

the shape of models. When T = 750 (K) and T = 300 (K) are compared, if the δ increases

from 100 to 900, the temperature effect on the PHcbcr
f sdt values shows the decrease between

approximately 3.3% and 4.3%, depending on the shape of the models. The most significant
effect of temperature occurs when δ = 100 and T = 300 (K) in the X-model with (−43.58%).
A consideration of the transverse SDs significantly increases the effect of temperature on

the PHcbcr
f sdt . In some cases, the difference in effect of the temperature on the PHcbcr

f sdt within
the framework of the two theories is up to 13% (Figures 5 and 6).

The distribution of PHcbcr
f sdt , PHcbcr

klt , and corresponding circumferential wave numbers
of polymer-based cylindrical shells reinforced with the CNT in the thermal environment
versus the a/r, are shown in Table 6 and Figures 7 and 8. The data used in the numerical
calculations are considered as: r/t = 25, t = 0.002 m, VCN

∗ = 0.12, δ = 500. Increasing
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the a/r ratio significantly reduces the values of the critical combined loads based on the
KLT and FSDT, and corresponding wave numbers decrease slightly. At a small a/r, the
influence of transverse SDs on the critical combined load is quite large and is more likely to
damage the structure.

The increase in the a/r significantly reduces the effect of transverse shear deformations
on the critical combined load at the fixed value of the r/t (=25). Although the effects of SDs

on the PHcbcr
f sdt in different models decrease when the a/r rises, the model types maintain

their sensitivity. The most significant effect on the PHcbcr
f sdt of transverse SDs effect occurs in

the X-model, and the least effect occurs in the Λ- and V-models. In addition, increasing the
temperature significantly increases the SDs effect, as well as decreasing the rate of reduction
in the SDs effect, which decreases with the increase in a/r. For example, at T = 300 (K), the
effects of SDs decrease from 41.98% to 4.23%, from 32.35% to 2.96%, from 32.33% to 2.36%,
and from 52.5% to 7% in the U-, V-, Λ-, and X- models, as the a/r increases from 0.5 to
1.5, whereas at T = 750 (K), those influences reduce from 64.38% to 12.39%, from 54.41% to
8.11%, from 54.39% to 7.64%, and from 73.2% to 18.8%, respectively.

The increase in the a/r significantly reduces the effect of transverse shear deformations

on the PHcbcr
f sdt . Although the effect of SDs on the PHcbcr

f sdt for different designs decreases when
the a/r ratio increases, the pattern types maintain their sensitivity. It can be seen that the

most significant SDs effect on the PHcbcr
f sdt occurs in the X-model, and the least effect occurs

in the Λ- and V-models. In addition, increasing the temperature significantly increases the

SDs effect on the PHcbcr
f sdt , as well as decreasing the rate of reduction in the SDs effect, which

decreases with the increase in a/r. For example, at T = 300 (K), as the a/r increases from 0.5

to 1.5, the effects of SDs on the PHcbcr
f sdt decrease from 41.98% to 4.23%, from 32.35% to 2.96%,

from 32.33% to 2.36%, and from 52.5% to 7% in cylindrical shells with the U-, V-, Λ- and
X-models, respectively, whereas those effects diminish from 64.38% to 12.39%, from 54.41%
to 8.11%, from 54.39% to 7.64% and from 73.2% to 18.8%, for the U-, V-, Λ- and X-models,
respectively, at T = 750 (K).

In the FSDT framework, the pattern effects on the PHcbcr
f sdt show different behavior

compared to the KLT, along with a significant decrease. For example, at T = 300 (K) in
the FSDT framework, as the a/r increases from 0.5 to 1.5, the effect of the V-model on the
PHcbcr

f sdt decreases continuously from (−16.52%) to (−5.97%), while the effect of the Λ-model
increases from (−17.48%) to (−20.18%) and then decreases to (−16%). The influence of the
X-model increases from (+18.44%) to (+23.86%), when the a/r increases from 0.5 to 0.75,
then decreases to (+18.5%) at a/r = 1.5.

At T = 750 (K), as the a/r increases from 0.5 to 1 in the V-model, that effect increases
from (−11.2%) to (−15.98%), then weakens to (−12.89%) at a/r = 1.5%. When the a/r
increases from 0.5 to 1.25 in the Λ-model, it increases from (−11.96%) to (−20%), then de-
creases to (−19.5%) at a/r = 1.5. When the a/r increases from 0.5 to 1.5, the inhomogeneity
effect increases continuously from (+10.14%) to (+23.08%) for the X-model.

The effect of the temperature on the critical combined load is more pronounced in the
FSDT frame compared to the KLT when compared to T = 300 (K). This effect difference
is quite significant when the a/r ratio is small, the effect in FSDT is quite pronounced
compared to KLT, and the difference decreases as the a/r ratio increases (Figures 7 and 8).
On the other hand, in the KLT framework, an increase in the a/r significantly increases the
temperature effect while, in the FSDT framework, it attenuates that effect only slightly, but
also causes its erratic variation. For example, compared with the T = 750 (K) case, when the
a/r ratio increases from 0.5 to 1.5, the influences rise from (−10.21%) to (−37.26%), from
(−13.02%) to (−43.84%), from (−12.76%) to (−41.89%), and from (−9.2%) to (−31.93%)
in the shells with the U-, V-, Λ- and X-models within KLT, respectively. In the FSDT
framework, as the a/r ratio increases from 0.5 to 1.5 in the U-, V-, Λ- and X-models, although

the temperature effects change irregularly, the temperature effect on the PHcbcr
f sdt decreases

from (−44.89%) to (−42.6%) for the U-model, increases from (−41.38%) to (−46.83%) for
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the V-model, increases from (−41.2%) to (−45.03%) for the Λ- model, while for the X-model
it reduces from (−48.75%) to (−40.56%).

5. Conclusions

The buckling of INH-NCCSs under combined loads in the thermal environment has
been investigated comparatively in the framework of FSDT and KLT. The nanocomposite
cylindrical shell is exposed to the combined effect of hydrostatic pressure and axial com-
pression. The nanocomposite material consists of CNT-reinforced polymer materials. It is
assumed that the mechanical properties of inhomogeneous nanocomposites vary depend-
ing on the thickness coordinate and temperature; the basic relations are formed on this
assumption and the basic equations are derived in the framework of FSDT. The Galerkin
procedure is used to determine the critical combined load of INH-NCCSs in thermal en-
vironments and the closed-form solution is obtained. After checking the accuracy of the
proposed formulation, numerical analysis is carried out. The numerical analyses reveal the
following generalizations:

(a) The most significant SDs effect on the critical combined load occurs in the X-model,
and the least effect occurs in the Λ- and V-models.

(b) The effect of temperature change on the critical combined load is more pronounced in
the FSDT frame compared to the KLT.

(c) While the increase in temperature change increases the effect of inhomogeneity on the
critical combined load values in all models, considering the transverse shear strains
significantly reduces the effects of the models.

(d) The influence of transverse SDs on the PHcbcr
f sdt changes irregularly for all models as the

nondimensional load-proportional parameter rises.
(e) The magnitudes of the nondimensional critical combined load and the corresponding

circumferential wave numbers of four types of CNT-patterned cylindrical shells
in thermal environments within two theories reduce as the nondimensional load-
proportional parameter rises.

(f) A consideration of the transverse SDs significantly rises the effect of temperature on
the critical combined load.

(g) In some cases, the difference of the influence of temperature on the critical combined
load within the framework of FSDT and KLT is up to 13%.

(h) Increasing the a/r ratio significantly reduces the values of nondimensional critical
combined loads, whereas corresponding wave numbers decrease slightly.

(i) At the small a/r, the influence of transverse SDs on the PHcbcr
f sdt is quite large and is

more likely to damage the structure.
(j) The increase in the a/r significantly reduces the influence of transverse shear strains

on the critical combined load at the fixed value of the r/t.
(k) Although the effects of SDs on the PHcbcr

f sdt for different models decrease when the a/r
rises, the model types maintain their sensitivity.

(l) Increasing the temperature significantly rises the SDs effect, as well as decreasing the
rate of reduction in the SDs effect, which decreases with the increase in a/r.

(m) The influence of the temperature is quite significant when the a/r ratio is small, the
effect within FSDT is quite prominent compared to KLT, and the difference reduces as
the a/r ratio increases.
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Symbols
a Length of cylindrical shell
ej(j = 1, 2, 3) Efficiency parameters for CNTs
exx, eyy, γ0xy Strain components at the mid-surface
f Shear stress shape function

F(z,T)
j (j = 1, 2) Parameters including shear moduli and shear shape function

Cij,, Dij, Hi1
ij , Qi1

ij Parameters depending on nanocomposite shell characteristics
Ki Unknown amplitudes
Lij Differential operators
m Longitudinal wave number
mCN Mass of the CNT
Mij, MT

ii (i = 1, 2) Moments and thermal moments, respectively
n Circumferential wave number
ncr Circumferential wave numbers corresponding to critical loads
Nij,NT

ii (i = 1, 2) Forces and thermal forces, respectively
Nij0(i = 1, 2) Membrane forces for the condition with zero initial moments
Nax Axial compressive load
Naxcr

f sdt Nondimensional critical axial load within FSDT
N Nondimensional axial compressive load
PHcbcr Critical combined load
PL, PH Nondimensional lateral and hydrostatic pressures, respectively
Pj(j = 1, 2) Uniform external pressures
PL, PH Lateral and hydrostatic pressures, respectively
PLcr

f sdt, PLcr
klt Nondimensional critical lateral pressure within FSDT and KLT

PHcr
f sdt, PHcr

klt Nondimensional critical hydrostatic pressure within FSDT
and KLT

PHcbcr
f sdt , PHcbcr

klt Nondimensional combined loads within FSDT and KLT
Qi Shear forces
r Radius of the cylindrical shell
t Thickness of the cylindrical shell
T Temperature
T0 Reference temperature in which thermal strains are absent
∆T Temperature rise
u, v, w Displacements in the x, y,z directions, respectively
U, Λ, X, V Patterns or CNT distribution in the matrix
VCN
∗ Total volume fraction

VCN , Vm Volume fraction of CNTs and polymer matrix, respectively

Y(Z,T)
iiT , G(Z,T)

ijT (i = 1, 2, j = 1, 2, 3) Normal and shear elastic moduli of nanocomposites
YCN

iiT , GCN
ijT (i = 1, 2, j = 1, 2, 3) Normal and shear elastic moduli of CNT

Y(Z,T)
ij , (i, j = 1, 2, 6) Parameter containing elastic properties

Ym
T , Gm

T Normal and shear elastic moduli of polymer matrix
x, y,z Coordinate axes
αCN

11T , αCN
22T Thermal expansion coefficients of CNTs

αm
T Thermal expansion coefficients of the polymer

δ Nondimensional load-proportional parameter
Γj (j = 3, 4) Coefficients that depend on the shear stress shape function
ε jj(j = x, y), γij(i, j = x, y, z) Strain components
Λi Cofactors
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µi Parameters depending on wave numbers and shell properties
ν12, ν21 Poisson’s ratios of nanocomposites
νCN

12 , νm Poisson’s ratios of CNTs and polymer, respectively
ρ Density of the nanocomposite
ρCN ,ρm Densities of CNT and matrix, respectively
σij(i, j = x, y, z) Stress components
σx Average axial compressive load
Φ Parameter including properties of nanocomposite cylindrical shell
Ψ Airy stress function
ψ1, ψ2 Rotations of mid-surface normal about y and x axes, respectively
Abbreviation
CNT Carbon nanotube
KLT Kirchhoff–Love theory
FSDT First-order shear deformation theory
INH-NCCSs Inhomogeneous nanocomposite cylindrical shells
NCs Nanocomposites
Pa Pascal, unit of Young’s modulus
K Kelvin
SDs Shear deformations
SWCNTs Single-walled carbon nanotubes

Appendix A

Here, Lij (i, j = 1, 2, . . . , 4) are differential operators and are defined as follows:

L11 = t
[
(D11 − D31)

∂4

∂x2∂y2 + D12
∂4

∂x4

]
, L12 = −D13

∂4

∂x4 − (D14 + D32)
∂4

∂x2∂y2 ,

L13 = D15
∂3

∂x3 + D35
∂3

∂x∂y2 − Γ3
∂

∂x , L14 = (D18 + D38)
∂3

∂x2∂y

L21 = tD21
∂4

∂y4 + t(D22 − D31)
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∂x2∂y2 , L22 = −(D32 + D23)
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∂3
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∂

∂y
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∂4
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∂4

∂x4

]
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r
∂2
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∂x4 − (C24 + C13 − C32)
∂4

∂x2∂y2 − C14
∂4

∂y4

L33 = C25
∂3

∂x3 + (C15 + C35)
∂3

∂x∂y2 , L34 = (C28 + C38)
∂3
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∂3
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L41 = t
r

∂2

∂x2 , L42 = −Nax
∂2

∂x2 −
(

P1
2

∂2

∂x2 + P2
∂2

∂y2

)
· r, L43 = Γ3

∂
∂x , L44 = Γ4

∂
∂y .

(A1)

where Γj = f (t/2)− f (−t/2), j = 3, 4 and the following definitions apply:

D11 = H1
11C11 + H1

12C21, D12 = H1
11C12 + H1

12C22, D13 = H1
11C13 + H1

12C23 + H2
11

D14 = H1
11C14 + H1

12C24 + H2
12, D15 = H1

11C15 + H1
12C25 + H1

15, D18 = H1
11C18 + H1

12C28 + H1
18,

D21 = H1
21C11 + H1

22C21, D22 = H1
21C12 + H1

22C22, D23 = H1
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22C23 + H2
21,

D24 = H1
21C14 + H1
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22, D25 = H1

21C15 + H1
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25, D28 = H1
21C18 + H1
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28,

D31 = H1
66C31, D32 = H1

66C32 + 2H2
66, D35 = H1

35 − H1
66C35, D38 = H1

38 − H1
66C38,

C11 =
H0

22
H , C12 = −H0

12
H , C13 =

H0
12 H1

21−H1
11 H0

22
H , C14 =

H0
12 H1

22−H1
12 H0

22
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H0
25 H0

12−H0
15 H0

22
H ,
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H0

28 H0
12−H0

18 H0
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H1
11 H0

21−H1
21 H0

11
H , C24 =

H1
12 H0
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22 H0

11
H ,
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15 H0
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25 H0
11
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H0
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H0
18 H0
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28 H0

11
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66
H0

66
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H0
35

H0
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H0

38
H0

66
,

H = H0
11H0

22 − H0
12H0

21.
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in which

Hi1
11 =

h/2∫
−h/2

Y(Z,T)
11 zi1dz, Hi1

12 =
h/2∫
−h/2

Y(Z,T)
12 zi1dZ =

h/2∫
−h/2

Y(Z,T)
21 zi1dz = Hi1

21, Hi1
22 =

h/2∫
−h/2

Y(Z,T)
22 zi1dz,

Hi1
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h/2∫
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h/2∫
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Y(Z,T)
11 F(z,T)
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18 =

h/2∫
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2 zi2dz,

Hi2
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2 zi2dz, i1 = 0, 1, 2; i2 = 0, 1.

(A3)

Appendix B

Qij(i, j = 1, 2, 3, 4) are given by

Q11 = t
[
(D11 − D31)µ1

2µ2
2 + D12µ1

4], Q12 = (D14 + D32)µ1
2µ2

2 + D13µ1
4, Q13 = D15µ1

3 + D35µ1µ2
2 + Λ3µ1,

Q14 = (D18 + D38)µ2µ1
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[
D21µ2

4 + (D22 − D31)µ1
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2], Q22 = (D32 + D23)µ1
2µ2

2 + D24µ2
4,

Q23 = (D25 + D35)µ1µ2
2, Q24 = D28µ2
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2µ2 + Λ4µ2,
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[
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2
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4],

Q32 = C23µ1
4 + (C24 + C13 + C32)µ1

2µ2
2 + C14µ2
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Q33 = C25µ1
3 + (C15 + C35)µ1µ2

2, Q34 = (C28 + C38)µ1
2µ2 + C18µ3
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(A4)
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39. Tomczyk, B.; Bagdasaryan, V.; Gołąbczak, M.; Litawska, A. A new combined asymptotic-tolerance model of thermoelasticity
problems for thin biperiodic cylindrical shells. Compos. Struct. 2023, 309, 116708. [CrossRef]

40. Yang, Z.; Zhao, S.; Yang, J.; Liu, A.; Fu, J. Thermomechanical in-plane dynamic instability of asymmetric restrained functionally
graded graphene reinforced composite arches via machine learning-based models. Compos. Struct. 2023, 308, 116709. [CrossRef]

41. Avey, M.; Fantuzzi, N.; Sofiyev, A.H. Thermoelastic stability of CNT patterned conical shells under thermal loading in the
framework of shear deformation theory. Mech. Adv. Mater. Struct. 2023, 30, 1828–1841. [CrossRef]

42. Chakraborty, S.; Dey, T. Thermomechanical buckling and wrinkling characteristics of softcore sandwich panels with CNT
reinforced composite face sheets. Euro. J. Mech. A-Solid. 2023, 98, 104894. [CrossRef]

43. Sofiyev, A.H.; Fantuzzi, N. Stability analysis of shear deformable inhomogeneous nanocomposite cylindrical shells under
hydrostatic pressure in thermal environment. Materials 2023, 16, 4887. [CrossRef]

https://doi.org/10.1007/s00894-022-05134-7
https://www.ncbi.nlm.nih.gov/pubmed/35543752
https://doi.org/10.3390/polym13071047
https://doi.org/10.1177/0021998311424324
https://doi.org/10.1080/03602559.2016.1163601
https://doi.org/10.1016/j.compstruct.2020.112840
https://doi.org/10.1080/14484846.2020.1733176
https://doi.org/10.1016/j.compstruct.2023.117112
https://doi.org/10.1016/j.compstruct.2011.02.011
https://doi.org/10.1016/j.compstruct.2011.04.005
https://doi.org/10.1016/j.compositesb.2013.04.034
https://doi.org/10.1016/j.tws.2019.106254
https://doi.org/10.1177/0892705718796551
https://doi.org/10.3390/nano10030419
https://doi.org/10.3390/math9050567
https://doi.org/10.3390/nano11010087
https://doi.org/10.1080/15376494.2019.1655613
https://doi.org/10.1016/j.dt.2020.12.007
https://doi.org/10.3390/math10071081
https://doi.org/10.1016/j.tws.2021.108834
https://doi.org/10.1007/s10483-022-2917-7
https://doi.org/10.1016/j.compstruct.2023.117204
https://doi.org/10.1016/j.compstruct.2023.117031
https://doi.org/10.1016/j.compstruct.2023.116708
https://doi.org/10.1016/j.compstruct.2023.116709
https://doi.org/10.1080/15376494.2022.2045653
https://doi.org/10.1016/j.euromechsol.2022.104894
https://doi.org/10.3390/ma16134887


Mathematics 2023, 11, 3781 21 of 21

44. Dong, D.T.; Phuong, N.T.; Nam, V.H.; Ly, L.N.; Tien, N.V.; Duc, V.M.; Minh, T.Q.; Hung, V.T.; Giang, N.T.H. An analytical approach
for nonlinear buckling analysis of torsionally loaded sandwich carbon nanotube reinforced cylindrical shells with auxetic Core.
Adv. Appl. Math. Mech. 2023, 15, 468–484. [CrossRef]

45. Shen, H.-S.; Noda, N. Postbuckling of FGM cylindrical shells under combined axial and radial mechanical loads in thermal
environments. Int. J. Solid. Struct. 2005, 42, 4641–4662. [CrossRef]

46. Sofiyev, A.H. Buckling analysis of FGM circular shells under combined loads and resting on the Pasternak type elastic foundation.
Mech. Res. Communic. 2010, 37, 539–544. [CrossRef]

47. Ambartsumian, S.A. Theory of Anisotropic Shells; NASA-TT-F-118; NASA: Washington, DC, USA, 1964.
48. Shen, H.-S.; Wang, H.; Yang, D.Q. Vibration of thermally postbuckled sandwich plates with nanotube reinforced composite face

sheets resting on elastic foundations. Int. J. Mech. Sci. 2017, 124–125, 253–262. [CrossRef]
49. Griebel, M.; Hamaekers, J. Molecular dynamics simulations of the elastic moduli of polymer–carbon nanotube composites.

Comput. Methods Appl. Mech. Eng. 2004, 193, 1773–1788. [CrossRef]
50. Han, Y.; Elliott, J. Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput.

Mater. Sci. 2007, 39, 315–323. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.4208/aamm.OA-2021-0201
https://doi.org/10.1016/j.ijsolstr.2005.02.005
https://doi.org/10.1016/j.mechrescom.2010.07.019
https://doi.org/10.1016/j.ijmecsci.2017.03.015
https://doi.org/10.1016/j.cma.2003.12.025
https://doi.org/10.1016/j.commatsci.2006.06.011

	Introduction 
	Mathematical Modeling of the Problem 
	Basic Relationships 
	Basic Equations 

	Solution Procedure 
	Results and Discussion 
	Initial Data 
	Comparative Examples 
	Parametric Analyses 

	Conclusions 
	Appendix A
	Appendix B
	References

