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Abstract: This paper is devoted to a model of epidemic progression, taking into account vaccination
and immunity waning. The model consists of a system of delay differential equations with time
delays determined by the disease duration and immunity loss. Periodic epidemic outbreaks emerge
as a result of the instability of a positive stationary solution if the basic reproduction number exceeds
some critical value. Vaccination can change epidemic dynamics, resulting in more complex aperiodic
oscillations confirmed by some data on Influenza A in Norway. Furthermore, the measures of social
distancing during the COVID-19 pandemic weakened seasonal influenza in 2021, but increased it
during the next year. Optimal control allows for the minimization of epidemic cost by vaccination.
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1. Introduction

Mathematical modeling in epidemiology is motivated by periodically emerging large-
scale epidemics, such as HIV, which appeared in the 1980s and is still ongoing [1,2]; SARS
epidemic in 2002–2003 [3,4]; H5N1 influenza in 2005 [5,6]; H1N1 in 2009 [7,8]; and Ebola
in 2014 [9,10]. The recent COVID-19 pandemic had a strong influence on public health,
economy and many other aspects of societal life.

Since the works of Kermack and McKendrick [11,12], motivated by the Spanish in-
fluenza epidemic in 1918–1919, many epidemic models have been introduced, such as multi-
compartment models [13,14], models with a nonlinear disease transmission rate [15,16],
multi-patch models [17,18], multi-group models incorporating the effect of the hetero-
geneity of the population [19], and epidemic models with vaccination and other control
measures [20,21]. The random movement of individuals in the population is considered
in spatio-temporal models in order to describe spatial distributions of susceptible and
infected individuals [22,23]. A further detailed literature review can be found in the
monographs [24,25] and review articles [26,27].

In this work, we continue to study epidemiological models based on delay differential
equations previously introduced in [28–30]. We study the dynamics of persistent epidemics
with or without vaccination and optimal control of vaccination. Assuming that recovered
individuals lose their immunity after some time and become once again susceptible, we
observe periodic outbreaks of the epidemic. Their periodicity and intensity depend on the
disease transmission rate, disease duration, and immunity duration. Vaccination reduces
the number of susceptible individuals and influences the epidemic progression. Vaccinated
individuals return to the susceptible class due to the immunity waning. Parameters of
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vaccination determine the frequency of outbreaks and the number of infected individuals.
The choosing of optimal parameters is important to control the epidemic.

Optimal control is widely used in biological modeling [31], biomedecine [32], and
compartmental epidemic models. A time-optimal control problem is studied in [33],
where various control strategies, like vaccination, culling, isolation, and transmission
limitation, were considered. In [34], a spatial structure of the epidemic system has been
included, where only two compartments have been described in a dynamical way—trees
and insects— to keep mathematical mechanics to a minimum, whereas the weed biomass is
considered to be a given quantity. In [35], the regional control for some optimal harvesting
problems connected to population dynamics has been investigated; namely, the problem
of maximizing the profit for spatially structured harvesting problems with respect to both
the harvesting effort and the selected sub-region of the whole domain where the effort
is localized. In [36], a spatially structured dynamic economic growth model has been
presented, which takes into account the level of pollution and a possible taxation based on
the amount of produced pollution, in addition to analyzing an optimal harvesting control
problem with an objective function composed of three terms, namely the intertemporal
utility of the decision maker, the space–time average of the level of pollution in the habitat,
and the disutility due to the imposition of taxation. In [37], a two-component reaction–
diffusion system has been considered to describe the spread of malaria and the dynamics
of the infected mosquitoes and of the infected humans. In [38], an outline of mathematical
epidemiology, with a particular attention to the role of spatial heterogeneity and dispersal
in the population dynamics of infectious diseases, has been presented. Also, a vaccination
strategy for influenza outbreaks has been obtained in [39] using a reaction–diffusion model.
Non-pharmacological measures such as public health education and quarantine were
investigated in [40] as time-dependent interventions to assess their contribution to COVID-
19 spreading dynamics. A COVID-19 disease transmission model with free terminal optimal
time control has been presented in [41], in which the goal is to minimize the number of
susceptible, infected, exposed, and asymptomatic compartments to remove the infection
throughout quarantine and the medication of infected individuals.

In this paper, we seek to determine the most efficient strategy for controlling the
propagation of an epidemic disease that can be defined as an optimal control problem, in
which the purpose is to reduce, over a period of time, some objective function related to
the cost of the control measurements and the size of the infected compartment.

The contents of the paper are as follows. First, we introduce the epidemic delay model
with vaccination. Next, we present a novel method to determine the stationary solutions
of the model without vaccination and study its stability. After that, we present numerical
simulations to analyze the effects of the parameters on the amplitude and the period of
the outbreaks for the model without vaccination. Then, we study epidemic dynamics with
vaccination and the optimal control problem. Finally, we present conclusions and further
perspectives.

2. An Epidemic Delay Model with Vaccination

We consider the following delay differential equation model based on the number of
newly infected individuals J(t):

dS(t)
dt

= −J(t) + J(t− τ1 − τ2)−U(t) + U(t− τ3), (1a)

dI(t)
dt

= J(t)− J(t− τ1), (1b)

dR(t)
dt

= J(t− τ1)− J(t− τ1 − τ2), (1c)

dV(t)
dt

= U(t)−U(t− τ3), (1d)
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where the number of newly infected

J(t) =
β

N
S(t)I(t)

is proportional to the numbers of susceptible and infected people with the disease trans-
mission rate β, and the whole population N is supposed to be constant. Here, S(t) denotes
the number of susceptible individuals; I(t), infected; R(t), recovered; and V(t), vaccinated.
There are three time delays in the model: τ1 is the disease duration, τ2 is immunity waning
for disease-acquired immunity, and τ3 indicates the vaccination immunity. The case without
immunity loss and vaccination was previously studied in [29].

The number J(t) of the newly infected at time t decreases the number of susceptible
persons in Equation (1a) and increases the number of infected in Equation (1b). The
newly infected J(t− τ1) at time t− τ1 become recovered at time t and enter, respectively,
Equations (1b) and (1c). Next, newly infected J(t− τ1 − τ2) at time t− τ1 − τ2 lose their
immunity at time t, with the corresponding terms, respectively, in Equations (1c) and (1a).
The vaccination rate U(t) and immunity loss for the vaccinated U(t− τ3) at time t− τ3
determine the right-hand side of Equation (1d), and they enter Equation (1a) with the
opposite sign.

The vaccination rate is considered in the form:

U(t) = k(t)Nsign(S(t)),

where k(t) is the control function, sign(x) = 1 for x > 0 and 0 for x = 0. Therefore, the
vaccination rate equals k(t)N in the presence of susceptible individuals and 0 otherwise.
We set

k(t) = k0H
(

γ + sin(γ0 +
2πt
T

)
)

, (2)

where H is the Heaviside function, H(x) = 1 for x > 0 and H(x) = 0 for x ≤ 0; k0
is the number of vaccinated individuals per unit of time; γ determines the duration of
vaccination,−1 ≤ γ ≤ 1; γ0 is the time shift, which determines the beginning of vaccination;
0 ≤ γ0 ≤ 2π; and T is the periodicity of vaccination campaigns.

System (1) is completed with the initial conditions:

S(t) = I(t) = R(t) = V(t) = 0, ∀t ∈ [−(τ1 + τ2 + τ3), 0), S0 = N− I0, I0 > 0, R0 = V0 = 0.

Let us recall that the total population S(t) + I(t) + R(t) + V(t) = N is supposed to
be constant.

3. Epidemic Dynamics without Vaccination
3.1. Integral Equation and Stationary Solutions

This section is devoted to the model without vaccination, i.e., k0 = 0. Any constant
values of S and I can provide a stationary solution of the system (1). However, this
stationary solution does not take into account the initial condition. In order to determine the
stationary point specific for a given initial condition, we integrate Equation (1a) from 0 to t:

S(t)− S0 = −
∫ t

0
J(s)ds +

∫ t

0
J(s− τ1 − τ2)ds =

−
∫ t

0
J(s)ds +

∫ t−τ1−τ2

0
J(s)ds = −

∫ t

t−τ1−τ2

J(s)ds.

We take into account here that J(t) = 0 for t < 0. Similarly, we obtain from Equation (1b):

I(t) = I0 +
∫ t

t−τ1

J(s)ds.
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Next, we express S(t) and I(t) from the last two equalities and take their product:

J(t) =
β

N

(
S0 −

∫ t

t−τ1−τ2

J(s)ds
)(

I0 +
∫ t

t−τ1

J(s)ds
)

. (3)

Thus, we have reduced system (1) to a single integral equation.
Stationary solutions of this equation can be found from the following algebraic

equation:

Js =
β

N
(S0 − (τ1 + τ2)Js)(I0 + τ1 Js). (4)

The positive solution of this equation is given by the formula

Js =
−(N

β + (τ1 + τ2)I0 − τ1S0) +
√

∆

2τ1(τ1 + τ2)
, (5)

where
∆ = (

N
β
+ (τ1 + τ2)I0 − τ1S0))

2 + 4S0 I0τ1(τ1 + τ2).

If I0 << τ1 Js and S0 ≈ N , then we find two approximate solutions of the previous
equation:

Js = 0, Js =
N

βτ1
.
βτ1 − 1
τ1 + τ2

(6)

Hence, there exists a positive stationary solution if the basic reproduction number <0 = βτ1
is larger than 1. In this case, we can determine the stationary values of susceptible, exposed,
infected, and recovered as:

Ss =
N

βτ1
, Is =

N
β

βτ1 − 1
τ1 + τ2

, Rs = N − Ss − Is.

Let us note that Ss decreases as a function of each of the parameters β and τ1, while Is
increases (for <0 > 1). On the other hand, Ss is independent of τ2, while Is decreases and
Rs increases.

3.2. Stability of the Stationary Solution

Equation (3), linearized about the stationary solution, which is obtained by setting
J(t) = Js + εeλt and keeping the first-order terms with respect to ε, has the following form:

v(t) = −a1

∫ t

t−τ1−τ2

v(s)ds + a2

∫ t

t−τ1

v(s)ds, (7)

where

a1 =
β

N

(
I0 +

N
β

βτ1 − 1
τ1 + τ2

)
, a2 =

β

N

(
S0 −

N
βτ1

(βτ1 − 1)
)

. (8)

Set v(t) = eλt. Then, from Equation (7), we obtain:

λ = −a1(1− e−(τ1+τ2)λ) + a2(1− e−τ1λ). (9)

Clearly, λ = 0 is a solution of Equation (9). We will study the existence of solutions of this
equation with a positive real part, which determines the loss of stability of the stationary
solution. In order to simplify this analysis, we set I0 = 0, S0 = N in (8).

Lemma 1. If <0 > 1 and Js > 0, then Equation (9) does not have nontrivial positive real solutions.

Proof. Let us denote the right-hand side of Equation (9) by F(x),

F(x) = −a1(1− e−(τ1+τ2)x) + a2(1− e−τ1x). (10)
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Then,

F′(0) = −a1(τ1 + τ2) + a2τ1 =
β

N
[S0τ1 − (τ1 + τ2)(I0 + 2τ1 Js)].

If we assume that I0 << τ1 Js, then:

F′(0) =
β

N
S0τ1 −

2β

N
τ1 Js(τ1 + τ2) (11)

Note that limx→−∞F(x) = ∞, limx→∞F(x) = a2 − a1,

F′(x) = −a1(τ1 + τ2)e−(τ1+τ2)x + a2τ1e−τ1x.

Next,

F′(x) = 0 ⇒ x =
−1
τ2

ln
a2τ1

a1(τ1 + τ2)
= x0

and
F′(0) < 0 ⇔ 0 < a2τ1 < a1(τ1 + τ2) ⇔ x0 > 0.

Let us prove that 0 < F′(x) < 1 for x0 < x. We note that F′(x0) = 0, limx→∞F′(x) = 0, and

F′′(x) = a1(τ1 + τ2)
2e−(τ1+τ2)x − a2τ2

1 e−τ1x.

Since
F′′(x) = 0 ⇒ x =

−2
τ2

ln
a2τ1

a1(τ1 + τ2)
= x1(= 2x0),

then

F′(x1) =

(
a2τ1

a1(τ1 + τ2)

) 2τ1
τ2

a2τ1

(
1− a2τ1

a1(τ1 + τ2)

)
< 1.

Hence, Equation (9) does not have positive solutions for F′(0) < 0.
On the other hand,

F′(0) > 0 ⇔ a2τ1 > a1(τ1 + τ2) > 0 ⇔ x0 < 0.

Since 0 < a1(τ1 + τ2) < a2τ1 < 1, then 0 < F′(x) < 1 for [0, ∞), and Equation (9) does not
have any positive solutions. The lemma is proven.

Lemma 2. If <0 > 1 and Js = 0, then Equation (9) has exactly one positive real solution. If
<0 < 1, then this equation has only negative real solutions.

Proof. For Js = 0, and assuming that I0 = 0, S0 = N, we have a1 = 0 and a2 = β. The
function F defined in the previous lemma becomes F(x) = β(1− e−τ1x). Therefore,

F′(x) = βτ1e−τ1x = <0e−τ1x > 0.

Let us note that F(0) = 0 and F′(0) = <0. Thus, Equation (9) has exactly one positive real
solution for <0 > 1. If <0 < 1, then this equation has only negative real solutions.

Theorem 1. Suppose that I0 = 0 and S0 = N in (8). If <0 > 1, then Equation (9) has a pure
imaginary solution y for any positive τ1 and τ2.

Proof. Set λ = x + iy in Equation (9). Then, we obtain:

x = a2 − a1 + a1e−(τ1+τ2)x cos((τ1 + τ2)y)− a2e−τ1x cos(τ1y), (12)

y = −a1e−(τ1+τ2)x sin((τ1 + τ2)y) + a2e−τ1x sin(τ1y). (13)
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For I0 = 0 and S0 = N in (8), we have a1 = βτ1−1
τ1+τ2

= <0−1
τ1+τ2

, a2 = 1
τ1

. Substituting x = 0 in
(12) we achieve:

a1 = a2
1− cos(τ1y)

1− cos((τ1 + τ2)y)
, y 6= 2π

τ1 + τ2
k, k ∈ Z. (14)

Hence, a1 ≥ 0. From (13), we obtain

y =
1
τ1

(
− 1− cos(τ1y)

1− cos((τ1 + τ2)y)
sin((τ1 + τ2)y) + sin(τ1y)

)
. (15)

Consider the function

f (y) =
1
τ1

(
− 1− cos(τ1y)

1− cos((τ1 + τ2)y)
sin((τ1 + τ2)y) + sin(τ1y)

)
on the interval (0, 2π

τ1+τ2
) . We have

lim
y→ 2π

τ1+τ2

f (y) = ∞, lim
y→0

f (y) = 0.

Furthermore,

f ′(y) = − sin(τ1y)
cos( τ1+τ2

2 y)

sin( τ1+τ2
2 y)

+

(
1 +

τ2

τ1

)
sin2( τ1

2 y)

sin2( τ1+τ2
2 y)

+ cos(τ1y).

It can be directly verified that 0 < f ′(0) ≈ τ2
τ1+τ2

< 1. Therefore, the equation y = f (y) has
a nonzero solution within this interval.

We note that 1− cos(τ1y) > 0 for the solution y. Indeed, otherwise, the only solution
for Equation (15) is y = 0. Hence, a1 > 0 and <0 > 1. The theorem is proved.

Summarizing the results of this section, we conclude that the stationary solution Js = 0
loses its stability for <0 > 1, and another stationary solution Js > 0 appears. Next, there
exists a critical value <0 = <c > 1 for which the oscillatory instability of the positive
stationary solution occurs. Figure 1 (left) shows zero lines of the real and imaginary parts of
the characteristic equation. They intersect in the positive half-plane, providing the existence
of a pair of complex conjugate eigenvalues with a positive real part. The right panel of this
figure illustrates the oscillations in direct numerical simulations of system (1). Note that the
period of oscillations corresponds to the imaginary part of the eigenvalues for the values of
parameters close to the stability boundary.

3.3. Numerical Simulations

In this section, we present some numerical simulations to verify the effect of disease
transmission rate β, disease duration τ1 and the period of immunity waning τ2 on the am-
plitude and the period of the outbreaks for model (1) without vaccination. Figure 2 shows
that increasing β while keeping τ1 and τ2 fixed, increases the amplitude and decreases
the period of outbreaks in the model (1) without vaccination. The amplitude becomes
larger with the increase in disease duration τ1. On the other hand, the period of outbreaks
decreases with the increase in the disease transmission rate β. Furthermore, the period
approaches the sum of disease duration and period of natural immunity for large values
of the disease transmission rate, limβ→∞ T(β, τ1, τ2) = τ1 + τ2, where T is the period of
outbreaks. On the other hand, the amplitude of outbreaks approaches the total size of the
population for large values of β.
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Figure 1. (Left): Solutions of Equations (12) (red curve) and (13) (blue curve) for the values of
parameters N = 105, β = 0.15, τ1 = 10, τ2 = 150. The intersection of these curves gives the
eigenvalues of the stationary points of the system (1). The eigenvalues with the positive real part are
λ1,2 ≈ 0.0043± 0.027i. The period of the oscillations is equal to | 2π

y | ≈ 227.26. (Right): Numerical

simulation for model (1) without vaccination for the values of the initial conditions N = 105,
S0 = N − 0.0001, I0 = 0.0001, R0 = 0 and parameters β = 0.15, τ1 = 10(<0 = 1.5), τ2 = 150.

(a) (b)

Figure 2. Dependence of the amplitude (a) and the period of outbreaks (b) for model (1) without
vaccination on the disease transmission rate β for the initial conditions N = 105, S0 = N − 0.0001,
I0 = 0.0001, R0 = 0, immunity waning τ2 = 150 and disease duration τ1 shown in each panel.

4. Epidemic Dynamics with Vaccination

We now study the influence of vaccination on the dynamics of epidemic progres-
sion. Figure 3 shows the dependence of these dynamics on the value of parameter k0,
characterizing the intensity of vaccination. The interaction of intrinsic oscillations with an
imposed periodicity of vaccination results in more complex dynamics. For small values
of k0, the period of oscillations is the same as without vaccination, while the amplitude
slightly oscillates. With the increase in this parameter, the oscillations become aperiodic,
the time interval between them increases, and the variation of the amplitude of oscillations
becomes more important. As such, in Figure 3b, there are modulated oscillations with an
approximately constant period; in panel (c), the amplitude stabilizes to a smaller value
with an increased period of oscillations. The next figure (d) manifests a double periodicity,
and in (e), some of the epidemic outbreaks are almost suppressed. Finally, for large k0
values, we observe periodic oscillations with an increased period, equalling twice the
period of vaccination.

The average number of infected individuals L1 = 1
n
∫ nT

0 I(t)dt decreases with the
increase in k0 (Figure 4) and stabilizes to a constant for sufficiently large values of this
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parameter. Indeed, a further increase in this parameter does not practically influence the
number of vaccinated individuals, which reaches its maximum. Parameter γ characterizes
the duration of vaccination. Under the increase in this parameter, the average number
of infected decreases. If γ is sufficiently large, the epidemic outbreaks are completely
suppressed.

(a) (b) (c)

(d) (e) (f)

Figure 3. The size of the infected compartment for model (1) with the initial conditions N = 105,
S(0) = N − 0.0001, I(0) = 0.0001, R(0) = V(0) = 0, the parameters β = 0.2, τ1 = 10, τ2 = 150,
τ3 = 180, γ = −0.3, γ0 = 4π

3 , T = 365, and the values of k0 as follows: (a) k0 = 0.0001, (b) k0 = 0.001,
(c) k0 = 0.002, (d) k0 = 0.006, (e) k0 = 0.01, (f) k0 = 0.05.

Figure 5 displays the effect of τ3 on the amplitude of the outbreaks. It shows that
increasing the duration of vaccination immunity decreases the amplitude of the outbreaks.
The interaction of intrinsic and imposed oscillations can lead to modulated oscillations.
The period of epidemic outbreaks remains approximately constant. For sufficiently large
values of τ3, the outbreaks disappear after the first one.

Figure 4. The mean value of the infected compartment given by the integral L1 = 1
n
∫ nT

0 I(t)dt as
a function of k0 for the initial conditions N = 105, S0 = N − 0.0001, I0 = 0.0001, R0 = V0 = 0 and
parameters β = 0.2, τ1 = 10, τ2 = 150, τ3 = 180, γ0 = 4π

3 , T = 365, n = 10, and the values of γ shown
in the figure.
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(a) (b) (c)

(d) (e) (f)

Figure 5. The size of the infected compartment for model (1) with the initial conditions N = 105,
S(0) = N − 0.0001, I(0) = 0.0001, R(0) = V(0) = 0, the parameters β = 0.2, τ1 = 10, τ2 = 150,
k0 = 0.003, γ = −0.3, γ0 = 4π

3 , T = 365, and the values of τ3 as follows: (a) τ3 = 210; (b) τ3 = 240;
(c) τ3 = 270; (d) τ3 = 300; (e) τ3 = 360; (f) τ3 = 420.

Modeling of Influenza A Epidemics

We now compare modeling results with the data on the Influenza A epidemic in
Norway, chosen as example. Let us recall that disease duration in the case of influenza
is about one week [42]. The influenza vaccine’s effectiveness starts to wane after five or
six months [43]. The number of vaccine doses in Norway (2015–2023) is given in [44]. It
increased until 2022, then it started to decrease, as represented in Figure 6c. Modulated
aperiodic oscillations of epidemic outbreaks are well described by the model between 2015
and 2020.

Dynamics of Influenza A epidemics were perturbed in 2021 by the COVID-19 pan-
demic because of all measures adopted to restrain the propagation of the SARS-CoV-2
infection (social distancing, masks, etc.). As such, the model predicted a large epidemic
peak in 2021 (Figure 6a), but this peak is absent in the data. On the other hand, the model
predicted a small peak in 2022, while it is essentially larger in the data. The model and the
data present similar results in 2023.

In order to take into account the measures of social distancing, we consider time-
dependent disease transmission rate β(t) and set it to zero in 2021: β(t) = 1.44 for t ≤ 254,
0 for 255 ≤ t ≤ 307, and 1.54 for t ≥ 308 (time here is given in weeks, starting from 2015).
The vaccination rate is given by the function

k(t) = (at + k0)H(γ + sin(γ0 +
2πt
T

)), (16)

where the factor (at + k0) is used to describe the variation of the vaccination rate according
to the data. Note that the annual number of doses in the model is calculated with the
integral Ndoses =

∫ T
0 U(t)dt. It is re-scaled to the total population in agreement with

the data.
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(a) (b)

(c)

Figure 6. Numerical simulations of model (1) describing the confirmed cases of Influenza A in
Norway [45], for the initial conditions N = 5,379,475 ×0.03, where 5379475 is the population of
Norway and 0.03 is the percentage of covered population in the collecting data [46], S(t) = I(t) =
R(t) = V(t) = 0, t < 0, S0 = N − 0.008, I0 = 0.008, R0 = V0 = 0, and parameters τ1 = 0.8,
τ2 = 24, τ3 = 32, k(t) are given by (16), where a = 2.9× 10−5 : t ≤ 307, and a = −2.9× 10−5 : t ≥ 308,
k0 = 0.008, T = 52, γ = −0.9, γ0 = 6π

5 . Time unit is week. (a) Constant value of β, (b) variable
β taking into account COVID-19 (see the explanation in the text), (c) the number of vaccinated
individuals with the annual number of doses corresponding to the data.

The results of modeling are shown in Figure 6b. There is no epidemic outbreak in 2021
since the disease transmission rate is zero. The outbreak in 2022 has the same maximum
as in the data, but it occurs in the model slightly earlier. The time of its emergence can be
controlled by the duration of the time interval where β(t) = 0. As before, the data and
modeling present similar results in 2023. The model prediction for 2024 changes; it can
be expected that the measures adopted against the coronavirus epidemic will increase the
influenza outbreak.

It is interesting to note that the value of β slightly increases in Figure 6b after the
COVID-19 epidemic. It can be related to an increased social activity after the imposed
lockdowns.

5. Optimal Control Problem

The control function k(t) of vaccination is a T-periodic function. It is chosen in such a
way that each year, there is only one time interval when people are vaccinated (Figure 7c).
In the example of numerical simulations in Figure 7, the solution of the initial value problem
associated to (1) rapidly approaches the periodic solution (Figure 7a) with slowly increasing
amplitude of outbreaks (Figure 7b).
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(a) (b)

(c) (d)

Figure 7. Numerical simulations of system (1). (a) Oscillations of four compartments are close to
periodic with a slight increase in I(t), (b) zoom in on I(t), (c) vaccination rate, (d) cost function L
depending on (γ, γ0). Initial conditions N = 105, S(0) = N − 1, I(0) = 1, R(0) = V(0) = 0, and
parameters β = 0.2, τ1 = 10, τ2 = 150, τ3 = 180, k0 = 0.003, T = 365, n = 5, c = 10. The minimal
value min(L) = 912,940.07 is reached for (γ, γ0) = (−0.3, 4π

3 ).

We consider the cost function as an averaged cost with respect to n periods:

Ln =
1
n

∫ nT

0
(d0 I(t) + c0k(t)sign(S(t))N)dt,

where n ∈ N, d0 is the social cost per infected individual and c0 is the cost per vaccine dose
and side effects. If n→ +∞, Ln converges to the cost for one period of time, corresponding
to the periodic solution of (1). If we normalize d0, we can obtain the cost function

L =
1
n

∫ nT

0
(I(t) + ck(t)sign(S(t))N)dt, (17)

where c is a positive constant.
Our goal is to minimize L(γ, γ0), where γ ∈ [−1, 1], γ0 ∈ [0, 2π]. Figure 7d shows the

cost function depending on these parameters. Its minimum is reached inside the domain
for some particular values of γ and γ0. Figure 8 shows the cost function for different values
of the parameter c, which determines the cost of vaccination. For a small c, L decreases as a
function of γ, that is, with the increase in vaccination, and it is practically independent of
γ0, characterizing the beginning of the vaccination campaign. The minimization of L in
this case occurs for the maximal vaccination. The internal local minimum of L appears for
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larger values of c. This minimum becomes global for sufficiently large vaccination costs
(Figure 8d). In this case, the optimal vaccination strategy consists of an appropriate choice
of the intensity and timing of vaccination.

(a) (b)

(c) (d)

Figure 8. Dependence of L on γ and γ0 for different vaccination costs c and for the following initial
conditions N = 105, S(0) = N − 1, I(0) = 1, R(0) = V(0) = 0, and parameters β = 0.2, τ1 = 10,
τ2 = 150, τ3 = 180, k0 = 0.003, T = 365, n = 5. (a) c = 1; (b) c = 5; (c) c = 7; (d) c = 10.

We note that a similar approach can be used for several vaccinations per year. If
we intend to vaccinate at most twice a year, then the control to be considered has the
following form

k(t) = k0H(γ + sin(γ0 +
2πt
T

))H(γ̃ + sin(γ̃0 +
2πt
T

)), (18)

where γ, γ̃ ∈ [−1, 1], γ0, γ̃0 ∈ [0, 2π]. The structure of the control is more complicated but
still simple, and numerical tests will be conclusive. The optimal control will be a quadruple
(γ∗, γ∗0 , γ̃∗, γ̃∗0), which represents the solution of the optimal control problem that results in
the minimal cost of vaccination process. A similar approach may be used if more than two
vaccinations per year are considered.

6. Discussion

In this work, we propose an epidemiological model based on delay differential equa-
tions with three time delays, representing the disease duration, the period of natural immu-
nity, and the period of vaccine immunity. This work continues the previous studies [28–30],
taking into account vaccination and vaccination control.
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The reduction in the delay model to an integral equation allows us to study stationary
solutions of this model and their stability. A positive stationary solution appears for
the basic reproduction number larger than 1. It loses its stability and leads to periodic
oscillations if the basic reproduction number exceeds some critical value. We determine
this critical value and the period of emerging oscillations.

Numerical simulations display possible effects of the parameters on the amplitude
and the periodicity of outbreaks. For instance, an increase in the disease transmission rate
increases the amplitude and decreases the period of the outbreaks. For a large β value,
the period of outbreaks approaches the sum of disease duration and the period of natural
immunity in the model without vaccination.

Periodic vaccination changes epidemic dynamics, resulting in modulated oscillations
and influencing the period of oscillations. The vaccination rate and immunity duration
affect the outbreaks in terms of amplitude and periodicity with various patterns.

A comparison with the epidemiological data on Influenza A in Norway shows that the
model provides appropriate results in spite of the complexity of oscillations. It is interesting
to note that the COVID-19 pandemic changed the dynamics of seasonal influenza epidemics
beginning from 2021 due to the measures of social distancing. The model describes these
new dynamics if we introduce time-dependent disease transmission rates.

An optimal control of vaccination enables us to minimize the cost of the epidemic. If the
cost of vaccination is low, then the optimal cost is reached for the maximal vaccination level.
If the vaccination cost is sufficiently high, it can influence the result of optimization. The
minimum in this case can be reached for some particular choice of parameters, depending
on the timing of the vaccination campaign.

This study has some limitations. First of all, discrete delays prescribe single values to
the disease duration and immunity waning instead of some distributions. However, we
have shown in previous works that such delay models provide a good approximation for
the models with distributed delays [29]. Furthermore, we neglect exposed compartments
and assume that the population is homogeneous with a fixed size. These questions and also
some others, including different vaccination strategies, represent interesting open questions
for forthcoming works. These modeling approaches can be used for data analyses from
different countries and for different epidemics.
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