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Abstract: In this paper, we consider a discrete-time optimal control problem related to the model of
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1. Introduction and Preliminaries

The analysis of the existence and the structure of approximate optimal solutions for
variational problems, optimal control problems and dynamic games on unbounded do-
mains has been a rapidly growing area of research [1–10] which has various applications in
engineering [2,6], in models of economic growth [2,11–15], in model predictive control [16]
and in the theory of thermodynamic equilibrium for materials [17,18]. Discrete-time op-
timal control problems were considered in [1,19–21], finite-dimensional continuous-time
problems were analyzed in [2,6,22,23] and infinite-dimensional optimal control was studied
in [2,24–28], while solutions of dynamic games were discussed in [29–32].

In this paper, we study the existence of good programs and optimal programs, which
are the Stiglitz production programs, for optimal control problems over infinite horizons
related to a model of an economy originally formulated by Robinson [33], Solow [34] and
Srinivasan [35] (henceforth, the RSS model). This model was studied in the late nineteen-
sixties and early nineteen-seventies in [33,36–40] and it was revisited by Khan and Mitra [41].
This seminal paper became a starting point for recent research on the RSS model. Many
results of the RSS model are collected in [8].

It should be mentioned that Khan and Mitra [41] assumed that the function which
represents the preferences of the planner is concave. This is a usual assumption in the
theory of economic growth. In particular, Khan and Mitra [41] showed the existence of
good and optimal programs, which are Stigliltz production programs. In the current paper,
we will extend some of their results to problems without convexity assumptions.

We assume that R1 (R1
+) is the collection of all real (non-negative) numbers and that

Rn is a finite-dimensional Euclidean space ordered by a non-negative orthant
Rn
+ = {u ∈ Rn : uj ≥ 0, j = 1, . . . , n}. For every pair of vectors u, v ∈ Rn, let the inner

product uv = ∑n
j=1 ujvj, and u >> v, u > v, u ≥ v have their usual meaning. Let e(i),

i = 1, . . . , n, be the ith unit vector in Rn, and e be an element of Rn
+, all of whose coordinates

are unity. For every point u ∈ Rn, let ‖u‖ denote the Euclidean norm of u.
Let a = (a1, . . . , an) >> 0, b = (b1, . . . , bn) >> 0 and let d ∈ (0, 1].
In this paper, we study an economy which produces a finite number n of alternative

types of machines. For every i = 1, . . . , n, one unit of machine of type i requires ai > 0 units
of labor to construct it, and together with one unit of labor, each unit of it can produce bi > 0
units of a single consumption good. Therefore, the vectors a, b represent the production
possibilities of the economy.
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We assume that all machines depreciate at a rate of d ∈ (0, 1]. For every integer
t ≥ 0, let x(t) = (x1(t), . . . , xn(t)) ≥ 0 denote the amounts of the n types of machines
which are available in time-period t, and let z(t + 1) = (z1(t + 1), . . . , zn(t + 1)) ≥ 0 be
the gross investments in the n types of machines during period t + 1. Thus, z(t + 1) =
(x(t + 1)− x(t)) + dx(t). Let y(t) = (y1(t), . . . , yn(t)) be the amounts of the n types of
machines used for the production of the consumption good, by(t), during period t + 1.
We assume that the total labor force of the economy is unity. Evidently, gross investment,
z(t + 1), requires az(t + 1) units of labor in period t and y(t) requires ey(t) units of labor in
period t. Therefore, the equation az(t+ 1)+ ey(t) ≤ 1 is true. For a more detailed discussion
of the model, see [8,41]. We now give a formal description of this technological structure.

A sequence {x(t), y(t)}∞
t=0 is called a program if, for every non-negative integer t,

(x(t), y(t)) ∈ Rn
+ × Rn

+, x(t + 1) ≥ (1− d)x(t),

0 ≤ y(t) ≤ x(t), a(x(t + 1)− (1− d)x(t)) + ey(t) ≤ 1. (1)

Let T1, T2 be integers such that 0 ≤ T1 < T2. A pair of sequences

({x(t)}T2
t=T1

, {y(t)}T2−1
t=T1

)

is called a program if x(T2) ∈ Rn
+, and for every integer t which satisfies T1 ≤ t < T2,

Equation (1) is valid. Note that, here, x(·) is the state function, while y(·) is the control function.
Let w : [0, ∞)→ [0, ∞) be a continuous strictly increasing function which represents

the preferences of the planner.
For each x0 ∈ Rn

+ and each integer T > 0, set

U(x0, T) = sup{
T−1

∑
t=0

w(by(t)) :

({x(t)}T
t=0, {y(t)}T−1

t=0 ) is a program such that x(0) = x0. (2)

In the sequel, we assume that the supremum of the empty set is −∞ and that the sum over
the empty set is zero.

Let x0, x̃0 ∈ Rn
+ and let T be a natural number. Set

U(x0, x̃0, T) = sup{
T−1

∑
t=0

w(by(t)) :

({x(t)}T
t=0, {y(t)}T−1

t=0 ) is a program such that x(0) = x0, x(T) ≥ x̃0 (3)

The following result is easily deduced from the continuity of w.

Proposition 1. For each x0 ∈ Rn
+ and each natural number T there exists a program ({x(t)}T

t=0,
{y(t)}T−1

t=0 ) such that x(0) = x0 and ∑T−1
t=0 w(by(t)) = U(x0, T).

Set

Ω = {(x, x′) ∈ Rn
+ × Rn

+ : x′ ≥ (1− d)x and a(x′ − (1− d)x) ≤ 1}. (4)

Define a set-valued mapping Λ : Ω→ Rn
+ by

Λ(x, x′) = {y ∈ Rn
+ : 0 ≤ y ≤ x and

ey ≤ 1− a(x′ − (1− d)x)}, (x, x′) ∈ Ω. (5)
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Let M0 > 0 and let T be a natural number. Set

Û(M0, T) = sup{
T−1

∑
t=0

w(by(t)) :

({x(t)}T
t=0, {y(t)}T−1

t=0 ) is a program such that x(0) ≤ M0e (6)

Evidently, Û(M0, T) is finite. The following result is easily deduced from the continuity
of w.

Proposition 2. For each M0 > 0 and each natural number T there exists a program ({x(t)}T
t=0,

{y(t)}T−1
t=0 ) such that x(0) ≤ M0e and ∑T−1

t=0 w(by(t)) = Û(M0, T).

In this paper, we use the next simple Lemma (see Lemma 5.3 of [8]).

Lemma 1. Let a number M0 > max{(aid)−1 : i = 1, . . . , n}, (x, x′) ∈ Ω and let x ≤ M0e.
Then, x′ ≤ M0e.

The study of the RSS model is a well-established area of research (see [8,9] and the
references mentioned therein). Because of its simplicity, it allows us to study problems
which cannot be solved for more complicated models. In particular, here, under certain
assumptions, we obtain good programs on which investments are made only in the best of
machines. Programs with such a property are called Stiglitz production programs. In [41],
it was shown the existence of good and optimal programs are Stiglitz production programs
in the case when the function w is concave. Here, we obtained analogous results without
concavity assumptions.

Now, we present the main results of [42], which will be used in the sequel. They are
extensions of some results [41] obtained when the function w was concave. It should be
mentioned that the main goal in the study of models of economic growth is to show the
existence of good and optimal programs. Usually, in the literature, their existence is shown
when the function w representing the preferences of the planner is concave or even strictly
concave. In this section, we present the results of our work [42], which show the existence
of good and optimal programs without concavity assumptions on w.

We begin with the following result, which allows us to define the constant µ.

Theorem 1. Let M1, M2 > (daj)
−1, j = 1, . . . , n. Then, there exist finite limits

lim
p→∞

Û(Mi, p)/p, i = 1, 2

and
lim
p→∞

Û(M1, p)/p = lim
p→∞

Û(M2, p)/p.

Define
µ = lim

p→∞
Û(M, p)/p (7)

where M > max{(dai)
−1 : i = 1, . . . , n}. By Theorem 1, the constant µ is well-defined and

it does not depend on M.

Theorem 2. Assume that M0 > (daj)
−1 : j = 1, . . . , n. Then, there exists a positive number M

such that
|Û(M0, p)− pµ| ≤ M for all integers p ≥ 1.
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Corollary 1. Let M0 > da−1
j : j = 1, . . . , n. Then, there exists a positive number M such

that for every program {x(t), y(t)}∞
t=0 which satisfies x(0) ≤ M0e and every natural number T,

the inequality
T−1

∑
t=0

[w(by(t))− µ] ≤ M

is valid.

Proposition 3. Assume that {x(t), y(t)}∞
t=0 is a program. Then, either the sequence

{∑T−1
t=0 [w(by(t))− µ]}∞

T=1 is bounded or

lim
T→∞

T−1

∑
t=0

[w(by(t))− µ] = −∞.

In this paper, we use the following notion introduced by Gale [11].
A program {x(t), y(t)}∞

t=0 is called good if there exists M ∈ R1 such that

T

∑
t=0

(w(y(t))− µ) ≥ M for all integers T ≥ 0.

A program is called bad if

lim
T→∞

T

∑
t=0

(w(y(t))− µ) = −∞.

Proposition 3 implies that every program which is not good is bad.
Set

x(t) = (2nd max{ai : i = 1, . . . , n})−1e,

y(t) = min{(2n)−1, (2nd max{ai : i = 1, . . . , n})−1}e for all integers t ≥ 0.

It is clear that {x(t), y(t)}∞
t=0 is a program. Corollary 1 implies that

µ ≥ lim
T→∞

T−1
T−1

∑
t=0

w(by(t)) > w(0).

Thus,
µ > w(0). (8)

Theorem 3. Let M0 > max{(dai)
−1 : i = 1, . . . , n}. Then, there exists M > 0 such that for

each x0 ∈ Rn
+ satisfying x0 ≤ M0e, there exists a program {x(t), y(t)}∞

t=0 such that x(0) = x0,
for each integer T1 ≥ 0 and each integer T2 > T1

|
T2−1

∑
t=T1

w(by(t))− µ(T2 − T1)| ≤ M

and that for each integer T > 0

T−1

∑
t=0

w(by(t)) = U(x(0), x(T), T). (9)

A program {x(t), y(t)}∞
t=0 is called weakly maximal if equality (9) holds for all integers

T > 0.
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Theorem 4. Let {x(t), y(t)}∞
t=0 be a weakly maximal program such that lim supt→∞ by(t) > 0.

Then, the program {x(t), y(t)}∞
t=0 is good.

Many other results on optimal control problems related to models of economic growth
are collected in [9,10].

2. The Main Results

Assume that there exists σ ∈ {1, . . . , n} such that for each i ∈ {1, . . . , n} \ {σ},

bσa−1
σ ≥ bia−1

i (10)

and
aσ ≥ ai. (11)

Under these assumptions, the machine σ is the most effective. It is natural to make
investments only in the σ-type of machine. Programs with such a property are called
Stiglitz production programs. In [41], it was shown the existence of good and optimal
programs are Stiglitz production programs in cases when the function w is concave.
Here, we obtained analogous results without concavity assumptions. Our results are
of interest and importance since most results in the theory of economic growth are obtained
under concavity assumptions on the function w.

It is clear that there exists a natural number τ ≥ 4 such that

w(b(min{(2n)−1, (2nd max{aj : j = 1, . . . , n})−1})e)

≥ max{bj : j = 1, . . . , m}(1− d)τ , (12)

(τ − 1)w(b(min{(2n)−1, (2nd max{aj : j = 1, . . . , n})−1})e)

≥
τ

∑
j=0

w(max{bj : j = 1, . . . , m}(1− d)j). (13)

Our results will follow from the following Lemma, which is proven in the next section.

Lemma 2. Assume that T2 > T1 ≥ 0 are integers, ({x(t)}T2
t=T1

, {y(t)}T2−1
t=T1

) is a program,
for each t ∈ {T1, . . . , T2 − 1},

z(t) = x(t + 1)− (1− d)x(t), (14)

y(i)(t) ∈ Rn
+, i = 1, 2,

y(2)(t) ≤ (1− d)t−T1 x(T1), (15)

y(1)(t) ≤ x(t)− (1− d)t−T1 x(T1), (16)

y(1)(t) + y(2)(t) = y(t), (17)

x̃(T1) = x(T1) (18)

and that for each t ∈ {T1, . . . , T2 − 1},

x̃i(t + 1) = (1− d)x̃i(t), i ∈ {1, . . . , n} \ {σ}, (19)

x̃σ(t + 1) = (1− d)x̃σ(t) + a−1
σ (a(x(t + 1)− (1− d)x(t)), (20)

ỹ(2)(t) = y(2)(t), ỹ(1)(t) = a−1
σ aey(1)(t)e(σ), (21)

ỹ(1)(t) + ỹ(2)(t) = ỹ(t). (22)
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Then, ({x̃(t)}T2
t=T1

, {ỹ(t)}T2−1
t=T1

) is a program and for each t ∈ {T1, . . . , T2 − 1},

ỹ(t)− y(t) = a−1
σ ay(1)(t)e(σ)− y(1)(t),

bỹ(t)− by(t) =
n

∑
i=1

(bσa−1
σ ai − bi)y

(1)
i (t) ≥ 0. (23)

Lemma 2 and Proposition 1 imply the following result.

Proposition 4. For each x0 ∈ Rn
+ and each natural number T, there exists a program ({x(t)}T

t=0,
{y(t)}T−1

t=0 ) such that x(0) = x0, ∑T−1
t=0 w(by(t)) = U(x0, T) and that for each

t ∈ {T1, . . . , T2 − 1},

x̃i(t + 1) = (1− d)x̃i(t), i ∈ {1, . . . , n} \ {σ}.

Lemma 2 and Proposition 2 imply the following result.

Proposition 5. For each M0 > 0 and each natural number T, there exists a program ({x(t)}T
t=0,

{y(t)}T−1
t=0 ) such that x(0) ≤ M0e, ∑T−1

t=0 w(by(t)) = Û(M0, T) and that for each
t ∈ {T1, . . . , T2 − 1},

x̃i(t + 1) = (1− d)x̃i(t), i ∈ {1, . . . , n} \ {σ}.

Theorem 5. Let M0 > max{(dai)
−1 : i = 1, . . . , n}. Then, there exists M > 0 such that for

each x0 ∈ Rn
+ satisfying x0 ≤ M0e, there exists a program {x(t), y(t)}∞

t=0 such that x(0) = x0,
for each integer T1 ≥ 0 and each integer T2 > T1

|
T2−1

∑
t=T1

w(by(t))− µ(T2 − T1)| ≤ M,

for each integer T > 0
T−1

∑
t=0

w(by(t)) = U(x(0), x(T), T)

and that for each integer t ≥ 0,

x̃i(t + 1) = (1− d)x̃i(t), i ∈ {1, . . . , n} \ {σ}.

Proof. By Proposition 4, for each integer k ≥ 1, there exists a program ({x(k)(t)}k
t=0,

{y(k)(t)}k−1
t=0 ) such that

x(k)(0) = x0,

k−1

∑
t=0

w(by(k)(t)) = U(x0, k)

and that for each t ∈ {0, . . . , k− 1},

x(k)i (t + 1) = (1− d)x(k)i (t), i ∈ {1, . . . , n} \ {σ}.

It was shown in the proof of Theorem 5.8 of [8] that there exists a strictly increasing
sequence of natural numbers {k j}∞

j=1 such that, for every non-negative integer t, there exists

x̂(t) = lim
j→∞

x(kj)(t), ŷ(t) = lim
j→∞

y(kj)(t)
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such that {x̂(t), ŷ(t)}∞
t=0 is a program. For each integer T1 ≥ 0 and each integer T2 > T1,

|
T2−1

∑
t=T1

w(bŷ(t))− µ(T2 − T1)| ≤ M,

where M depends only on M0 and that, for each integer T > 0,

T−1

∑
t=0

w(by(t)) = U(x(0), x(T), T).

It is clear that, for each integer t ≥ 0,

x̃i(t + 1) = (1− d)x̃i(t), i ∈ {1, . . . , n} \ {σ}.

Theorem 5 is proved.

Lemma 2 implies the following result.

Proposition 6. Assume that {x(t), y(t)}∞
t=0 is a program such that for each program

{x′(t), y′(t)}∞
t=0 satisfying x′(0) = x(0), the inequality

lim sup
T→∞

(
T−1

∑
t=0

w(by′(t))−
T−1

∑
t=0

w(by(t)) ≤ 0

(lim sup
T→∞

(
T−1

∑
t=0

w(by(t))−
T−1

∑
t=0

w(by′(t)) ≥ 0 resp.)

holds. Then, there exists a program {x̃(t), ỹ(t)}∞
t=0 satisfying x̃(0) = x(0) such that for each

program {x′(t), y′(t)}∞
t=0 satisfying x′(0) = x̃(0) the inequality

lim sup
T→∞

(
T−1

∑
t=0

w(by′(t))−
T−1

∑
t=0

w(bỹ(t)) ≤ 0

(lim sup
T→∞

(
T−1

∑
t=0

w(bỹ(t))−
T−1

∑
t=0

w(by′(t)) ≥ 0 resp.)

and that for each integer t ≥ 0,

x̃i(t + 1) = (1− d)x̃i(t), i ∈ {1, . . . , n} \ {σ}.

3. Proof of Lemma 2

By (14), for each t ∈ {T1, . . . , T2 − 1},

x(t + 1) = (1− d)x(t) + z(t). (24)

In view of (24), for each s ∈ {T1 + 1, . . . , T2},

x(s)− (1− d)s−T1 x(T1)

=
s−1−T1

∑
t=0

((1− d)s−T1−t−1x(T1 + t + 1)− (1− d)S−T1−tx(T1 + t))

=
s−1−T1

∑
t=0

(1− d)s−T1−t−1z(T1 + t). (25)
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For each t ∈ {T1, . . . , T2 − 1}, set

z̃(t) = x̃(t + 1)− (1− d)x̃(t). (26)

Let t ∈ {T1, . . . , T2 − 1}. By (19)–(22) and (26),

x̃(t + 1) ≥ (1− d)x̃(t), ỹ(t) ≥ 0, z̃(t) ≥ 0. (27)

In view of (26), for each s ∈ {T1 + 1, . . . , T2},

x̃(s)− (1− d)s−T1 x̃(T1)

=
s−1−T1

∑
t=0

((1− d)s−T1−t−1 x̃(T1 + t + 1)− (1− d)S−T1−t x̃(T1 + t))

=
s−1−T1

∑
t=0

(1− d)s−T1−t−1z̃(T1 + t). (28)

It follows from (19), (20) and (26) that, for each t ∈ {T1, . . . , T2 − 1},

z̃(t) = x̃(t + 1)− (1− d)x̃(t)

= a−1
σ a(x(t + 1)− (1− d)x(t))e(σ)

= a−1
σ az(t)e(σ). (29)

Equations (18), (28) and (29) imply that, for each s ∈ {T1, . . . , T2},

x̃(s) = (1− d)s−T1 x(T1)

+a−1
σ a ∑{(1− d)s−T1−i−1z(T1 + i) : i is an integer, 0 ≤ i ≤ s− 1− T1}e(σ). (30)

We show that ({x̃(t)}T2
t=T1

, {ỹ(t)}T2−1
t=T1

) is a program. Let t ∈ {T1, . . . , T2 − 1}. In view
of (19) and (20),

a(x̃(t + 1)− (1− d)x̃(t))

= aσ(x̃σ(t + 1)− (1− d)x̃σ(t))

= a(x(t + 1)− (1− d)x(t)). (31)

It follows from (15), (16), (21) and (22) that

ỹ(t) = ỹ(1)(t) + ỹ(2)(t)

≤ (1− d)t−T1 x(T1) + a−1
σ a((x(t)− (1− d)t−T1 x(T1))eσ

= a−1
σ ax(t)e(σ)

+(1− d)t−T1 x(T1)− (1− d)t−T1 a−1
σ ax(T1)e(σ). (32)

By (15)–(18), (25), (30) and (32),

ỹ(t) ≤ (1− d)t−T1 x(T1)

+a−1
σ a ∑{(1− d)t−T1−i−1z(T1 + i) :

i is an integer, 0 ≤ i ≤ t− 1− T1 − 1}e(σ) = x̂(t). (33)

It follows from (1), (17), (21), (22), (30) and (31) that

a(x̃(t + 1)− (1− d)x̃(t)) + eỹ(t)
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≤ a(x(t + 1)− (1− d)x(t)) + eỹ(1)(t) + eỹ(2)(t)

≤ a(x(t + 1)− (1− d)x(t)) + ey(2)(t) + a−1
σ ay(1)(t)

≤ a(x(t + 1)− (1− d)x(t)) + ey(1)(t) + ey(2)(t) ≤ 1. (34)

By (27), (33) and (34), ({x̃(t)}T2
t=T1

, {ỹ(t)}T2−1
t=T1

) is a program. By (17), (21) and (22),
for each t ∈ {T1, . . . , T2 − 1},

ỹ(t)− y(t) = ỹ(1)(t)− y(1)(t) = a−1
σ ay(1)(t)e(σ)− y(1)(t),

bỹ(t)− by(t) =
n

∑
i=1

(bσa−1
σ ai − bi)y

(1)
i (t).

Lemma 2 is proved.

4. Optimal Programs

A program {x(t), y(t)}∞
t=0 is called optimal if, for each program {x̃(t), ỹ(t)}∞

t=0 satis-
fying x̃(0) = x(0), the inequality

lim sup
T→∞

(
T−1

∑
t=0

w(by(t))−
T−1

∑
t=0

w(bỹ(t)) ≥ 0

holds.

Theorem 6. Assume that
d < 1, (35)

bσa−1
σ > bia−1

i , i ∈ {1, . . . , n} \ {σ}, (36)

{x(t), y(t)}∞
t=0 is an optimal program and that

z(t) = x(t + 1)− (1− d)x(t), t = 0, 1, . . . .

Then, zi(t) = 0 for each integer t ≥ 0 and each i ∈ {1, . . . , n} \ {σ}.

Proof. For each integer t ≥ 0 and each i ∈ {1, . . . , n}, set

y(1)i (t) = max{xi(t)− (1− d)txi(0), yi(t)}, (37)

y(2)i (t) = yi(t)− y(1)i (t).

Since our program is optimal, it is not difficult to see that for each integer t ≥ 0 at least
one of the following relations holds:

a(x(t + 1)− (1− d)x(t)) + ey(t) = 1; (38)

y(t) = x(t). (39)

For each integer t ≥ 0, set
x̃(0) = x(0),

x̃i(t + 1) = (1− d)x̃i(t), i ∈ {1, . . . , n} \ {σ},

x̃σ(t + 1) = (1− d)x̃σ(t) + a−1
σ (a(x(t + 1)− (1− d)x(t)),

ỹ(2)(t) = y(2)(t), ỹ(1)(t) = a−1
σ aey(1)(t)e(σ),

ỹ(1)(t) + ỹ(2)(t) = ỹ(t).



Mathematics 2023, 11, 3762 10 of 14

Lemma 2 and (23) imply that {x̃(t), ỹ(t)}∞
t=0 is a program, for each integer t ≥ 0,

0 ≤ bỹ(t)− by(t) =
n

∑
i=1

(bσa−1
σ ai − bi)y

(1)
i (t)

and, by (36),
bỹ(t) = by(t)

if and only if
yi(t) = 0, i ∈ {1, . . . , n} \ {σ}.

Since the program {x(t), y(t)}∞
t=0 is optimal, this implies that, for each integer t ≥ 0

and each i ∈ {1, . . . , n} \ {σ},
y(1)i (t) = 0. (40)

We show that for each integer p ≥ 0 and each i ∈ {1, . . . , n} \ {σ},

zi(p) = 0.

Assume the contrary. Then, there exist integers p ≥ 0 and i ∈ {1, . . . , n} \ {σ} such
that

zi(p) > 0. (41)

We show that
x(p) = y(p).

By (35), (37), (40), (41) and the relation d < 1 for each integer t ≥ p + 1,

xi(t)− (1− d)txi(0) > 0, y(1)i (t) = 0. (42)

In view of (38), (39) and (42) for each integer t ≥ p + 1,

yi(t) = 0, a(x(t + 1)− (1− d)x(t)) + ey(t) = 1. (43)

Set
y(0)(t) = y(t), t = 0, 1, . . . ,

x(0)(t) = x(t), t = 0, 1, . . . , p,

z(0)(t) = z(t), t ∈ {0, 1, . . . , p} \ {p},

z(0)(p) = z(p)− 2−1zi(p)e(p),

x(0)(p + 1) = (1− d)x(0)(p) + z(0)(p),

x(0)(t + 1) = (1− d)x(0)(t) + z(0)(t)

for each integer t ≥ p. By the equation above, (41) and (43), {x(0)(t), y(0)(t)}∞
t=0 is an

optimal program such that

a(x(0)(p + 1)− (1− d)x(0)(p)) + ey(0)(p) ≤ 1− 2−1zi(p)ai. (44)

This implies that for each integer s ≥ 0 at least one of the following relations holds:

a(x(0)(s + 1)− (1− d)x(0)(s)) + ey(0)(s) = 1; y(0)(s) = x(0)(s).

Together with (44), this implies that

x(p) = y(p).
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We show that for each integer s > p,

z(s) = zσ(s)e(σ).

Assume the contrary. Then, there exist integers s > p and j ∈ {1, . . . , n} \ {σ} such that

zj(s) > 0. (45)

By (41), (43) and (45),

yj(t) = 0 for each integer t > s. (46)

In view of (42) and (45), choose a positive number

δ < min{xi(s), ajzj(s)}. (47)

Set
ŷ(t) = y(t), ẑ(t) = z(t), t ∈ {0, 1, . . . } \ {s}, (48)

ẑ(s) = z(s)− zj(s)e(σ), ŷ(s) = y(s) + δe(i), (49)

x̂(t + 1) = (1− d)x̂(t) + ẑ(t), t = 0, 1, . . . . (50)

Equations (47), (49) and (50) imply that

ŷi(s) = δ < xi(s) = x̂i(s), ŷ(s) ≤ x̂(s). (51)

It follows from (47) and (49) that

aẑ(s) + eŷ(s)

= az(s)− ajzj(s) + ey(s) + δ

≤ 1− ajzj(s) + δ < 1. (52)

It follows from (45), (46) and (48)–(52) that {x̂(t), ŷ(t)}∞
t=0 is a program. By (48) and

(49), for each integer T > S,

T

∑
t=0

w(bŷ(t))−
T

∑
t=0

w(by(t))

= w(bŷ(s))− w(by(s)) = w(by(s) + δbi)− w(by(s)) > 0.

This contradicts the optimality of the program {x(t), y(t)}∞
t=0. The contradiction we

have reached proves that

z(s) = zσ(s)e(σ) for each integer s > p. (53)

Now, we show that z(t) = 0 for every integer t > p. Assume the contrary. Then, there
exists an integer s > p such that

z(s) > 0 (54)

and
z(t) = 0 for each integer t satisfying p < t < s. (55)

By (44) and (53),
z(s) = zσ(s)e(σ) > 0. (56)

Define
x̄(t) = x(t), ȳ(t) = y(t), t = 0, . . . , p, (57)

z̄(t) = z(t), t ∈ {0, . . . , p} \ {p}, (58)
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z̄(p) = z(p) + 2−1a−1
σ aizi(p)e(σ)− zi(p)e(i), (59)

x̄(p + 1) = (1− d)x̄(p) + z̄(p). (60)

By (57)–(60),
az̄(p) = az(p)− aizi(p)/2, (61)

az̄(p) + eȳ(p) ≤ 1− aizi(p)/2 (62)

and that ({x̄(t)}p+1
t=0 , {ȳ(t)}p

t=0) is a program. For each integer t satisfying p < t < s, set

z̄(t) = 0, ȳ(t) = y(t), x̄(t + 1) = (1− d)x̄(t). (63)

By (43), (49) and (61)–(63), ({x̄(t)}s
t=0, {ȳ(t)}s−1

t=0) is a program. It follows from (55),
(57)–(60) and (63) that

x̄σ(s) = (1− d)s−p−1 x̄σ(p + 1)

= (1− d)s−p−1(xσ(p)(1− d) + z̄σ(p))

= (1− d)s−p−1(xσ(p)(1− d) + zσ(p)e(σ) + 2−1a−1
σ aizi(p))

= xσ(s) + 2−1(1− d)s−p−1a−1
σ aizi(p). (64)

Choose a number δ ∈ (0, 1) such that

δ < 2−1zσ(s), δ < 4−1(1− d)s−p min{a−1
σ , a−2

σ }aizi(p). (65)

Set
z̄(s) = z(s)− δe(σ), x̄(s + 1) = (1− d)x̄(s) + z̄(s),

ȳ(s) = y(s) + aσδe(σ). (66)

By (56) and (65),
z̄(s) > 0.

In view of (64)–(66),
ȳσ(s) ≤ xσ(s) + aσδ ≤ x̄σ(s). (67)

Equations (43), (49), (66) and (67) imply that

ȳ(s) ≤ x̄(s),

az̄(s) + eȳ(s) = az(s) + ey(s) ≤ 1.

It follows from the equation above that ({x̄(t)}s+1
t=0 , {ȳ(t)}s

t=0) is a program.
By (64)–(66),

x̄σ(s + 1) = (1− d)xσ(s) + 2−1(1− d)s−pa−1
σ aizi(p)

+zσ(s)− δ ≥ xσ(s + 1).

In view of (57) and (66),

s

∑
t=0

w(bȳ(t))−
s

∑
t=0

w(by(t))

= w(by(s) + bσaσδ)− w(b(s)) > 0. (68)

For every integer t ≥ s + 1, set

z̄(t) = z(t), ȳ(t) = y(t), x̄(t + 1) = (1− d)x̄(t) + z̄(t).
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It is not difficult to see that {x̄(t), ȳ(t)}∞
t=0 is a program. By (68), for each integer T > s,

T

∑
t=0

w(bȳ(t))−
T

∑
t=0

w(by(t))

= w(by(s) + bσaσδ)− w(b(s)) > 0.

This contradicts the optimality of the program {x(t), y(t)}∞
t=0.

The contradiction we have reached implies that

z(t) = 0 for each integer t > p.

This implies that
x(t)→ 0, w(by(t))→ 0 as t→ ∞.

By (8),

lim
T→∞

T

∑
t=0

w(by(t))− µ) = −∞.

On the other hand, by Theorem 3, there exists a good program starting from the
point x(0). This contradicts the optimality of the program {x(t), y(t)}∞

t=0. The contradiction
we have reached implies that

zi(p) = 0

for each integer p ≥ 0 and each i ∈ {1, . . . , n} \ {σ}. Theorem 6 is proved.

5. Conclusions

In our paper, we study a discrete-time optimal control problem which describes the
model of Robinson, Solow and Srinivasan. We analyze this model with a non-concave utility
function which represents the preferences of the planner and establish the existence of good
programs and optimal programs which are Stiglitz production programs. Our results show
that when we construct a good program, it is enough to make investments only in the best
type of machine.
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