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Abstract: In research of a better description for information uncertainty, Z-numbers, which are related
to both the objective information and the subjective criticism, were first conceptualized by Zadeh.
Because of its neologism, there have been multitudinous attempts toward continuation and expansion
of the prototype. In this paper, we mainly study varieties of theoretical preparations for classical
Z-numbers and derive the maximum expected linear programming model of Z-numbers, which
are constructed on the basis of reliability conversion factors and proliferation on applications due
to their simplicity. Firstly, by means of transforming Z-numbers into LR fuzzy intervals through
their reliability variable, the credibility distribution and inverse distribution of converted Z-numbers
are stated precisely. Then, the operational law of independent variables and its expected value
can be derived via credibility distribution. The maximum expected Z-number linear programming
model is determined on the basis of previous theoretical preparations, and it transforms from a
classical Z-number chance-constrained model into a crisp one. Finally, with the aim of improving the
programming method, its application in pragmatic practice with the realistic examples of a supplier
section and optimal portfolio problems are enumerated to interpret the effectiveness of our model.

Keywords: Z-numbers; linear programming; expected value; maximum expected model

MSC: 90-05; 90C70; 53B12

1. Introduction
1.1. Motivation

Linear programming, as the basis of operational decision-making problems, is exten-
sively included in production, supplier selection, portfolio selection and logistics. Though
it is a major branch of operational research, there are miscellaneous uncertainties that exist
in the practical world that are hard to express using exact real numbers, leading to infor-
mation errors in programming applications. In this respect, Zadeh proposed Z-number
theory [1], which contributed to the calculation of numbers. This style of fuzzy number is
an official resume of the dependability or faith in the message communicated by simple
natural language statements. Compared with explicit real numbers, Z-numbers, which
are defined by constraint and reliability, are more qualified to depict reality. Although the
fuzzy number indicates the overall affiliation of its support points, given a natural language
statement, the Z-number uses two membership values to quantify the language variable.
This gives us ideas about the establishment of linear programming models through Z fuzzy
numbers, which utilize the ability to describe uncertain phenomena from fuzzy numbers to
ameliorate the shortage of basic linear programming models.

1.2. Literature Review

Z-numbers, proposed by Zadeh [1] in 2011, were created to summarize the reliability
and confidence of information from natural language that occurred in certain situations

Mathematics 2023, 11, 3750. https://doi.org/10.3390/math11173750 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11173750
https://doi.org/10.3390/math11173750
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0002-7547-7455
https://doi.org/10.3390/math11173750
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11173750?type=check_update&version=2


Mathematics 2023, 11, 3750 2 of 24

and to maximize their use in daily decision-making modeling, e.g., in economics, risk
assessment, prediction and even bio-medicine. Kang et al. [2] introduced the element for
processing Z-numbers as operands first, and they suggest converting the Z-numbers of
sentences which occur in the fields of modeling, management and decision-making into
their fuzzy number equivalents to be the first step for operations based on Z-numbers.

In the first decade, the basic achievement of the development of Z-numbers was
concluded by Banerjee et al. [3] in 2022, which included mathematics, natural language
processing (NLP) and computing with words (CWW), decision-making and trust models. In
their seminal paper, the authors not only proposed the definition and arithmetic rules of Z-
numbers, but also outlined the applications of Z-numbers in decision analysis, data mining
and control theory, among other fields, and illustrated the existing problems associated
with the practical application with Z-numbers.

In order to confirm the statement that humans use a discrete set of linguistic terms
to describe real-world phenomena, Aliev et al. [4] studied the arithmetic of discrete Z-
numbers first, and then extended it to the computation of continuous Z-numbers, which
are expected to solve the practical problems when faced with the imprecise or partially
reliable information [5]. Moreover, Aliev et al. [6] defined the operational procedure on
addition, multiplication, division, sorting, square and function limits of Z-numbers which
came from a method of formalizing Z-number arithmetic operators in terms of horizontal
membership function. Jiang et al. [7] proposed an approach to evaluate generalized fuzzy
numbers using the notions of centroid, ambiguity and their extensions, which have been
widely used in the ranking of Z-numbers. Kang et al. [8] stated the total utility measure of
a Z-number as a function of its constraints and reliability parameters, which is common in
all styles of membership functions and probability distributions; these are considered to be
better facilities for defuzzification and Z-number ordering in multi-criteria circumstances.

To deal with the linear programming problems on Z-numbers, Aliev et al. [9] suggested
an innovated differential evolution method, in which both the variables and parameters
are expressed by Z-numbers that exempt uncertain factors from reality. By using the
discrete Z-number arithmetic operations in [4], the linear programming model was solved.
Although fuzzy-LP and Z-LP are similar in their theoretical solutions, Z-LP techniques are
synchronized with the real world. Hasankhani et al. [10] proposed a ranking method for
Z-numbers for certain linear programming problems that are filled with Z-numbers. This
model could be easily applied for all types of constraints, regardless of magnitude. Rao
et al. [11] recommended the green supplier selection using the ranking method based on
the possibility degree of Z-numbers. Using the example of green supplier selection decision,
compared with the existing methods, the implementation, applicability and feasibility of
programming models were analyzed.

When it comes to the application of decision-making problems, Z-numbers, which
provide a better description of natural language and realistic situations, play the role of
parameters in each practical problem. For instance, Kang et al. [12] extended their algorithm
as it was depicted in [2] to derive an estimated solution for multiple-criteria decision making
on Z-numbers. Within the framework of proposals, the form of Z-number is taken by the
values of the condition weights and selective conditions. Bakar and Gegov [13] proposed
an innovated multi-level method for the ranking of Z-numbers established by two steps,
which extends the classical converted method of Z-numbers to the standardized generalized
fuzzy numbers. Then, prolonging their ranking method, Khalif and Gegov [14] theorized a
hybrid fuzzy multi-criteria decision model based on the intuitionistic vector centroid, which
promoted the development of its defuzzization. Aliev et al. [15] proposed a method of
information decision making based on numerical direct computation. The expected utility
paradigm it used has the potential to be used in the benchmark decision problems. Liu
et al. [16] used former data and expert opinions to construct the Z-numbers after statistics,
which solves the disadvantages of traditional fuzzy numbers when dealing with uncertain
activity information.



Mathematics 2023, 11, 3750 3 of 24

Despite its widespread applications, there are still several challenges that remain in Z-
number theory. Zadeh [1] has said that “Problems involving computation with Z-numbers
is easy to state but far from easy to solve”. One of the main challenges is the lack of a robust
aggregation operator for Z-numbers. More importantly, the complexity of computation
based on Z-number theory remains a demanding prompted problem. Although numerous
studies on linear programming exist, Z-number based linear programming lacks deep
exploration involving complex calculations or niche applications, and thus it has a long
way to go.

1.3. Contribution

We make great contributions to derive the credibility measure, operational law, ex-
pected value of Z-number and prolong Z-number linear programming problems by estab-
lishing classical operational research models, all of which are based on the approach of
transforming Z-numbers into LR fuzzy intervals in this paper.

In order to further study the application of linear programming development, we
conducted extensive research on the Z-number application. We found that although
previous studies had focused on the best decision-making projects and had even been put
into use on the portfolio selection, their methods of using the utility functions were too
complex and unintelligible to settle the classical linear programming problems. Meanwhile,
the great attention paid to the field of investment and supply restricts the application and
development of classical Z-number linear programming models. Few linear programming
models were developed after the proposal of Z-numbers. Of those that were created, most
of them combined intelligent algorithms, e.g., the genetic algorithm, which increase the
difficulty of calculation substantially.

In contrast with previous studies, this paper is an extension and development of the
maximum expected Z-number linear programming models and innovates a simpler and
more accessible method for realistic programming research problems in the real world.
Firstly, the credibility distribution of a classical Z fuzzy number is deduced, which correlates
the classical Z-number into a calculable status. Secondly, according to operational law and
the expected value of regular LR fuzzy intervals, the identity of classical Z-numbers is
defined creatively based on their credibility distributions and inverse functions. Finally,
in order to extend the realistic application, we establish the classical maximum expected
Z-number linear programming model as a paradigm, and list two familiar applications,
including supplier selection and investment portfolio, to express the widespread use of
this model.

1.4. Structure

The rest of this article is organized as follows. The Z-number theoretical preparation
is explained in Section 2 where the converting methods are retrospected first, then the defi-
nitions of credibility distribution, operational law and the expected value of Z-numbers are
concluded on the basis of some definitions and concepts of LR fuzzy intervals. In Section 3,
the maximum expected Z-number programming model is derived. After calculating the
expected value and credibility distribution of Z-numbers, their chance-constrained model
and crisp equivalent model are constructed as described below. Additionally, for a better
explanation of the model’s establishment, two conventional examples are described in
Section 4. An optimal decision is made in the supplier selection problem with the constraint
of credibility distribution, while the optimal portfolio problem provides the best investment
program. Finally, the conclusion is presented in Section 5.

2. Z-Number Theoretical Preparation

Although the algorithm of Z-numbers has developed to a great extent, the expected
value and credibility of Z-numbers are hard to figure out, due to the fuzzification. According
to the identity of Z-numbers, inspired by the expected value and credibility measure of
classical LR fuzzy numbers, there are new definitions of independence based on them.
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As for the following establishment linear programming model, the theoretical prepa-
ration of Z-numbers is necessary. In this section, it provides the derivation of credibility
distribution, operational law and the expected value of Z-numbers through weighted
methodology, all of which construct the basis for the maximum expected Z-number pro-
gramming model. We choose the trapezoidal shaped membership of the constrain A of
Z-numbers as a paradigm, owing to its most typical wide spread and easy derivation.

2.1. Methodology

Since Zadeh [1] proposed Z-numbers as an ordered pair of fuzzy numbers (A, B),
where A manifests a restriction limit for the variable and B stands for the reliability, which
has the ability to indicate both subjective and objective values. In this case, the general
concept is given as follows.

Definition 1 (Zadeh [1]). Z-number is represented by a couple of ordered arrays. Let them be A
and B, written as Z = (A, B), where A and B can be either numbers or natural languages. Starting
with the uncertain variable Ψ, X stands for the fuzzy restriction of the real-valued function, and
R(x) stands for the possible value of Ψ, which is depicted as

R(x) : Ψ is X → Pos(Ψ = u) is µX(u).

Zadeh [17] proposed a fuzzy number in 1965 which is defined in Definition A1 of
Appendix A, setting a precedent for the study of the fuzzy field and creating more pos-
sibilities for operational research. In order to describe this kind of LR fuzzy interval, the
definition of regular LR fuzzy interval was first introduced by Liu et al. [18] in Definition A2
of Appendix A. Compared with complicated Z-numbers, LR fuzzy intervals are qualified
with many computational properties that have already been put into wider practice, whose
definition is indicated in Definition A3 of Appendix A.

Z-number is a fuzzy number of intricate type, which does not offer simplicity during
calculation. In the previous study, most of the achievements were based on the complex
integral operations or ranking. Therefore, in order to simplify this, we use the convert-
ing methodology from Kang et al. [2], who proposed a converting method in 2012 that
transforms a Z-number into a classical fuzzy number.

The basic idea of a converting method is simply illustrated in the following three steps:
first, the reliability B of a Z-number is used to calculate an exact value as the converting
factor contributing to the defuzzification of this Z-number; next, we multiply this exact
converting factor to the constraint limit A by weight. In the end, the final result comes from
the converted LR fuzzy interval by the rule of approximate invariant of fuzzy expectation.

Step 1: According to Definition 1, we define a Z-number expressed as Z = (A, B),
from which A and B are classical fuzzy numbers or intervals. We transform the reliability
part B into an exact converting factor using the gravity method with following formula:

β =

∫
xµB(x)dx∫
µB(x)dx

. (1)

Step 2: Afterwards, the value β of gravitational center of reliability B is used as the
weight of constraint limit A. Thus, the weighted value of the Z-number is conveyed by

Zβ =
{
(x, µAβ) | µAβ(x) = βµA(x), x ∈ [0, 1]

}
.

Step 3: Convert the Z-number with the weighted qualification to a classical fuzzy
interval Zβ which can be shown through the equation

Zβ =

{〈
x, µZβ(x)

〉
|µZβ(x) = µA(

x√
β
), x ∈ [0, 1]

}
. (2)
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2.2. Credibility Distribution of Z-Number

As the effective identity of self-duality for credibility, it carries incomplete information
for variables. It is worthwhile to study the credibility distribution of fuzzy numbers.

If ξ is regulated to be a fuzzy variable with membership function µ and r in the real
number field, the possibility [19] and necessity [20] of the fuzzy variable ξ ≤ t are described
as follows:

Pos{ξ ≤ t} = sup
x≤t

µ(x), Nec{ξ ≤ t} = 1− sup
x>t

µ(x).

Whereas, due to the limitation of self-duality of ambiguous events in decision-making
systems, it is not appropriate to describe the fuzzy variable only through the measurement
of possibility or necessity. Faced with this difficulty, the credibility measure of such fuzzy
event {ξ ≤ t} has been defined by Liu and Liu [21] as

Cr{ξ ≤ t} = 1
2
(Pos{ξ ≤ t}+ Nec{ξ ≤ t}).

Liu and Liu also proved the identity of increase and self-duality with regard to the
credibility measure in [21] which is

Cr{ξ ≤ t} = 1
2
(1 + sup

x≤t
µ(x)− sup

x>t
µ(x)). (3)

Aiming at the description of a fuzzy variable, as the vector of synsemantic information,
the credibility distribution of a certain variable is defined.

Definition 2 (Liu [22]). As for the fuzzy variable ξ, its credibility distribution is stated by

Ξ(x) = Cr{φ ∈ Φ | ξ(φ) ≤ x},

where Ξ(x) : R → [0, 1] is the credibility distribution, when the solution reference of the fuzzy
variable ξ is less than or equal to x.

Liu [22] had already revealed the non-decrease identity of the credibility distribution
Ξ on the field of R that Ξ(−∞) = 0 and Ξ(+∞) = 1.

And for the LR fuzzy interval ξ̃ = (t1, t2, a, b)LR with the membership function µ
in Definition A3, according to Definition 2, through concise calculation, its credibility
distribution can be derived as

Ξ(x) =


0.5L( t1−x

a ), if x < t1

0.5, if t1 ≤ x ≤ t2

1− 0.5R( x−t2
b ), if x > t2.

(4)

The inverse credibility distribution Ξ−1 is easy to derive from the function 4 shown
above, which is expressed as follows.

Definition 3 (Zhao et al. [23]). Let ξ be an LR fuzzy interval whose multi-valued function
Φ : [0, 1] 7→ R is named to be the inverse credibility distribution of ξ on the condition of

Cr
{

ξ̃ ≤ fϕ

}
= ϕ̄, ϕ ∈ [0, 1],

from which fϕ ∈ {r|r = Φ(ϕ)} and ϕ̄ = sup{ε|Φ(ε) = Φ(ϕ)}.

For the sake of simplicity, Φ(ϕ) is indicated by Ξ−1(ϕ), which is different from the
inverse function of Ξ(ϕ).
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Moreover, as for the LR fuzzy interval, Zhao et al. [23] had already derived the inverse
credibility distribution described as follows.

Theorem 1 (Zhao et al. [23]). Let ξ̃ = (t1, t2, a, b)LR be a regular LR fuzzy interval whose inverse
credibility distribution can be written by

Ξ−1(ϕ) =


t1 − aL−1(2ϕ), if 0 ≤ ϕ < 0.5
[t1, t2], if ϕ = 0.5
t2 − bR−1(2− 2ϕ), if 0.5 < ϕ ≤ 1.

(5)

According to the former information on the credibility distribution of the LR fuzzy
interval, based on the converting method in Section 2.1, it is valuable to define the credibility
distribution and its inverse function, which is as follows.

Definition 4. Let ζ = (A, B) be a Z-number with the converted factor β from reliability B. Thus,
the converted Z-number, named ζβ, satisfies the property of the LR fuzzy interval. Since then, the
possibility, necessity and credibility measure of fuzzy event A for ζ can be expressed as

Pos{A} = sup
α∈A

µζβ(α),

Nec{A} = 1− sup
α∈Ac

µζβ(α),

Cr{A} = 1
2
(Pos{A}+ Nec{A}).

Definition 4 is easily derived from the self-duality and monotonousness of converted
Z fuzzy interval.

As the inverse credibility measure is the key to the calculation of expected values
on Z-numbers, we learned from Definition 1 that the inverse credibility distribution of a
converted Z-number is deduced as follows.

Definition 5. Let Ξ(x) be the credibility distribution of the converted Z fuzzy interval Zβ whose
domain is regulated to be DΞ. Then, the inverse credibility distribution of Zβ is deduced as

Ξ−1(t) =


sup{x|Ξ(x) = 0}, if t = 0
{x|Ξ(x) = t}, if 0 < t < 1 and t ∈ DΞ

inf{x|Ξ(x) ≥ t}, if 0 < t < 1 and t /∈ DΞ

inf{x|Ξ(x) = 1}, if t = 1.

Example 1. For a Z-number Z = (A, B), let A be (a1, a2, a3, a4) and B be (b1, b2, b3), the
credibility distribution and inverse distribution of Zβ (see Figure 1) can be described as:

ΞZβ =



0, if u ≤
√

βa1
u−
√

βa1

2(
√

βa2−
√

βa1)
, if

√
βa1 < u ≤

√
βa2

1
2 , if

√
βa2 < u ≤

√
βa3

u+
√

βa4−2
√

βa3

2(
√

βa4−
√

βa3)
, if

√
βa3 < u ≤

√
βa4

1, if u >
√

βa4,

(6)

Ξ−1
Zβ =


2(
√

βa2 −
√

βa1)t +
√

βa1, if t ∈
[
0, 1

2

)
[
√

βa2,
√

βa3], if t = 1
2

2(
√

βa4 −
√

βa3)t + 2
√

βa3 −
√

βa4, if t ∈
(

1
2 , 1
]
.

(7)
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(a) (b)

Figure 1. Credibility distribution function and its inverse function. (a) Credibility distribution.
(b) Inverse credibility distribution.

Remark 1. From the derivation of the inverse credibility distribution on Z-numbers, differences
between the converted inverse functions and regular LR fuzzy interval inverse functions can
be observed simply. There are coefficients of parameters added after conversion, which can be
expressed as

Ξ−1
Zβ =

√
βΞ−1

A .

Example 2. Let Z = (A, B) = ((a1, a2, a3, a4)(b1, b2, b3)) be a potential Z fuzzy interval, and
after calculating the converting factor β which was calculated by the membership of reliability µB
from Equation (1), it is easy for us to transform the Z-number given into the converted one written
as Zβ = (

√
βa2,

√
βa3,

√
βa2 −

√
βa1,

√
βa4 −

√
βa3, )LR which satisfies the shaping functions

that L(x) = R(x) = max
{

0, 1− x2}. Therefore, it can be transformed into the form of a regular
LR fuzzy interval, expressed as (

√
βa2,

√
βa3,

√
βa2 −

√
βa1,

√
βa4 −

√
βa3)LR. Then, it has

the membership function (see Figure 2) that

µAβ(x) =



1− (
√

βa2−x)2

(
√

βa2−
√

βa1)2 , if
√

βa1 ≤ x <
√

βa2

1, if
√

βa2 ≤ x <
√

βa3

1− (x−
√

βa3)
2

(
√

βa4−
√

βa3)2 , if
√

βa3 ≤ x <
√

βa4

0, otherwise.

Depending on Definition 4, the credibility distribution (see Figure 3a) and its corresponding
inverse function (see Figure 3b) could be described as

ΞAβ =



0, if x <
√

βa1

0.5− (
√

βa2−x)2

2(
√

βa2−
√

βa1)2 , if
√

βa1 ≤ x <
√

βa2

0.5, if
√

βa2 ≤ x <
√

βa3

0.5 +
(x−
√

βa3)
2

(
√

βa4−
√

βa3)2 , if
√

βa3 ≤ x <
√

βa4

1, if x >
√

βa4,

Ξ−1
Aβ =


√

βa2 − (
√

βa2 −
√

βa1)
√

1− 2ϕ, if 0 ≤ ϕ < 0.5
[
√

βa2,
√

βa3], if ϕ = 0.5√
βa3 − (

√
βa4 −

√
βa3)

√
2ϕ− 1, if 0.5 < ϕ ≤ 1.
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Figure 2. Membership function in Example 2.

(a) (b)

Figure 3. Credibility distribution function and its inverse function in Example 2. (a) Credibility
distribution in Example 2. (b) Inverse credibility distribution in Example 2.

2.3. Operational Law of Z-Number

The operational law is one of the most fundamental properties as well as Z-numbers,
and it can not only help with the calculation of credibility in Definition 4, but also directly
influences the establishment of following models. Because of the premise of its application,
the definition of independence is introduced first.

The definition of monotone functions is given first, which is introduced explicitly by
Liu et al. [24].

Definition 6 (Liu et al. [24]). The function f (x1, x2, · · · , xn) is referred to as monotone in the
field of real numbers, on the condition that it increases in terms of x1, x2, · · · , xk and decreases in
terms of xk+1, xk+2, · · · , xn, that

f (x1, x2, · · · , xk, xk+1, · · · , xn) ≥ f (y1, y2, · · · , yk, yk+1, · · · , yn)

holds for any xi ≥ yi with i = 1, 2, · · · , k and xi ≤ yi with i = k + 1, k + 2, · · · , n. Moreover,
while the function f (x1, x2, · · · , xn) meets the circumstance

f (x1, x2, · · · , xk, xk+1, · · · , xn) > f (y1, y2, · · · , yk, yk+1, · · · , yn), (8)

with any xi > yi for i = 1, 2, · · · , k and xi < yi for i = k + 1, k + 2 · · · , n. As a result, it is
strictly monotonic.

First, the definition of operational law for LR fuzzy interval is given by Zhao et al. [23],
which has established the theoretical basis for the derivation of the Z-number operational
law.
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Theorem 2 (Zhao et al. [23]). The variables δ1, δ2, · · · , δn are set to be a series of independent
regular LR fuzzy intervals whose credibility distributions are Ξ1, Ξ2, · · · , Ξn, separately. The
function f (x1, x2, · · · , xm) is said to be strictly increasing in x1, x2, · · · , xm, and strictly decreasing
in xm+1, xm+2, · · · , xn. In this case,

δ = f (δ1, δ2, · · · , δm, δm+1, · · · , δn)

is an LR fuzzy interval whose inverse credibility distribution is

Φ−1(τ) = f (Ξ−1
1 (τ), · · · , Ξ−1

m (τ), Ξ−1
m+1(1− τ)), · · · , Ξ−1

n (1− τ)).

Definition 7. The Z-number variables Z1, Z2, · · · , Zn are independent if and only if the converted
Z-numbers Zβ

1 , Zβ
2 , · · · , Zβ

n satisfy

Cr
{

Zβ
1 ∈ B1, Zβ

2 ∈ B2, · · · , Zβ
n ∈ Bn

}
= min

1≤i≤n
Cr
{

Zβ
i ∈ Bi

}
,

for any real sets B1, B2, · · · , Bn.

Example 3. In front of the two converted Z-numbers,

Zβ
1 = (

√
β1a11 ,

√
β1a12 ,

√
β1a13 ,

√
β1a14)

Zβ
2 = (

√
β2a21 ,

√
β2a22 ,

√
β2a23 ,

√
β2a24),

we define these regular LR fuzzy interval to be mutually independent if and only if they satisfy the
condition that

(
√

β1a11 ,
√

β1a12 ,
√

β1a13 ,
√

β1a14) ∩ (
√

β2a21 ,
√

β2a22 ,
√

β2a23 ,
√

β2a24) = ∅.

The figure of two independent converted Z-numbers set above is shown in Figure 4.

Figure 4. Two independent converted Z-numbers.

Theorem 3. According to the former LR fuzzy number operation law, as in the conversion method
described above, we define the Z-number operational law as follows.

Set Z1, Z2, · · · , Zn to be a series of independent Z-numbers with credibility distributions
ζ1, ζ2, · · · , ζn separately. Using the converting method from B.Kang [2], we convert each Z-number
into a battery of independent normal LR fuzzy numbers which are defined by Z′1, Z′2, · · · , Z′n, where
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the objective function f (Z′1, Z′2, · · · , Z′n) increases when it comes to Z′1, Z′2, · · · , Z′m and decreases
when it comes to Z′m+1, Z′m+2, · · · , Z′n. Moreover,

Z = f (Z1, Z2, · · · , Zm, Zm+1, · · · , Zn)

is also a Z fuzzy number whose inverse credibility distribution ϕ is

ϕ−1(τ) = f (ζ−1
1 (τ), · · · , ζ−1

m (τ), ζ−1
m+1(1− τ), · · · , ζ−1

n (1− τ)),

where ζn is the credibility distribution of Z-number Zn.

Proof. According to Kang et al. [2], we set the Z-number converting factor as β; thus, the
transforming process can be written as

Z′n =
√

βZn.

Thus, if f (Z′1, Z′2, · · · , Z′n) increases with respect to Z′1, Z′2, · · · , Z′m and decreases
with respect to Z′m+1, Z′m+2, · · · , Z′n, f (Z1, Z2, · · · , Zn) shows the same trend that rises in
Z1, Z2, · · · , Zm and drops in Zm+1, Zm+2, · · · , Zn. As Z′ = f (Z′1, Z′2, · · · , Z′m, Z′m+1, · · · , Z′n)
is a regular LR fuzzy number, with respect to the sustainability about function, Z =
f (Z1, Z2, · · · , Zm, Zm+1, · · · , Zn) remains to be a Z-number.

In addition, on the basis of former LR fuzzy interval operation law in Theorem 2, we
know that for LR fuzzy number ζ, which is calculated from the function based on several
LR fuzzy numbers ζn, its inverse credibility distribution is stipulated to be

Φ−1(t) = f (Ξ−1
1 (t), · · · , Ξ−1

m (t), Ξ−1
m+1(1− t)), · · · , Ξ−1

n (1− t)),

where Z′ holds the similar inverse credibility distribution that is described in such a
formula.

According to Kang et al. [2], the conversion of membership between Z-numbers and
LR fuzzy intervals can be written as

µ′ = βµA.

With the credibility distribution correlated to the membership, it is easy to find the
multiplying power between them, which is

Ξ =
√

βζ,

with the inverse credibility distribution

Ξ−1 =
ζ−1√

β
.

Thus, in line with the character of functions, the Z-number Z, whose credibility
distribution is stated as ϕ, satisfies the equation that

ϕ−1(t) = f (ζ−1
1 (t), · · · , ζ−1

m (t), ζ−1
m+1(1− t), · · · , ζ−1

n (1− t)).

Example 4. Set ζβ to be a converted Z-number that satisfies the property of the regular LR fuzzy
interval, which is expressed as ζβ = (0, 1, 2, 4)LR. The function f is defined as

f (α) =


α + 2, if α < 2
4, if 2 ≤ α ≤ 3
α + 1, if α > 3,
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which increases, but not strictly. Through the operational law of converted Z-numbers defined above
in Theorem 3, the result of f (ζβ) can be expressed by (3, 4, 1, 1)LR, whose credibility distribution is

ΞZβ =



0, if α < 2
α−2

2 , if 2 ≤ α < 3
0.5, if 3 ≤ α < 4
α−3

2 , if 4 ≤ α < 5
1, if α ≥ 5.

At the same time, its inverse credibility distribution makes it easy to determine that

Ξ−1
Zβ =


2t + 2, if t ∈ [0, 1

2 )

[3, 4], if t = 1
2

2t + 3, if t ∈ ( 1
2 , 1].

Both of these functions are described in Figure 5, where the credibility distributions of converted
Z-numbers and their inverse functions are depicted in Figure 5a,b.

(a) (b)

Figure 5. Credibility distribution function and its inverse function in Example 4. (a) Credibility
distribution in Example 4. (b) Inverse credibility distribution in Example 4.

2.4. Expected Value of Z-Number

As a significant numerical feature of fuzzy variables, the expected value operator
of Z-numbers is significant. However, as far as we know, the former expected value of
Z-numbers derived directly via arithmetic of Z-numbers is rarely put into use due to its
complexity and inconvenience of calculation. Additionally, there is widespread use of the
expected value of the deformed Z-number instead of the classical Z-number. In this case,
we define the expected value of Z-numbers based on the former definitions of its credibility.

As the basic definition of modeling, the expected values of a normal fuzzy number
and the LR fuzzy interval are given here.

Definition 8 (Liu and Liu [21]). Assuming δ to be a fuzzy variable whose expected value is
stated by

E[δ] =
∫ +∞

0
Cr{δ ≥ x}dx−

∫ 0

−∞
Cr{δ ≤ x}dx,

where the precondition is that both integrals should be finite at the same time.

Considering the classical fuzzy numbers, in front of the LR fuzzy intervals, the ex-
pected value can be easily derived, and this has already been calculated by Zhao [23].
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Theorem 4 (Zhao et al. [23]). If the expected value of an LR fuzzy interval δ̃ exists, then it can be
presented as follows

E[δ̃] =
∫ 1

0
Ξ−1(x)dx, (9)

where Ξ is the credibility distribution of δ̃.

Based on the former given definition of the expected value of LR fuzzy intervals,
combined with the converting method given in Section 2.1, the expected value of classical
Z-numbers is derived as follows.

Theorem 5. Let ζ be a Z-number. While its expected value exists, it can be indicated as

EZβ [ζ] =
∫ 1

0
Ξ−1

Zβ (α)dα, (10)

where Ξ−1 is the inverse credibility distribution of ζ.

Proof. The theorem is followed by the definition of expected value operator and credibility
measurement in Definition 8 that

E[ζ] =
∫ +∞

0
Cr{ζ ≤ x}dx−

∫ 0

−∞
Cr{ζ ≥ x}dx

=
∫ +∞

0
(1− Ξ(x))dx−

∫ 0

−∞
Ξ(x)dx

=
∫ 1

Ξ(0)
Ξ(α)−1dα−

∫ Ξ(0)

0
Ξ−1(α)dα.

As for the converted Z-number, the Zβ is also an LR fuzzy interval whose inverse
credibility shows the continuity. Therefore, according to Definition 4, in which the function
of inverse credibility distribution of converted Z-numbers is provided, we know that the
expected value of Zβ can be expressed in the same form with a regular LR fuzzy interval,
which is

EZβ [ξ] =
∫ 1

0
Ξ−1

Zβ (x)dx.

On the basis of the Z-number converting method given by Kang et al. [2], we know that
the relationship of the expected value between the Z-number and regular LR-fuzzy-number
is represented as

EÃβ(x) =
√

βEÃ(x), x ∈ X. (11)

Theorem 6. Let Zβ be a converted Z-number, which also fits for the LR fuzzy interval identity and
a be a real constant. Thus, the relation can be described as

E[aZβ] = aE[Zβ].

Proof. When a > 0, learning from Definition 4, we know that the inverse credibility
distribution of aZβ is aΞ−1

Zβ (x). Then, through Theorem 5, it can be deduced that

E[aZβ] =
∫ 1

0
aΞ−1

Zβ (x)dx = a
∫ 1

0
Ξ−1

Zβ (x)dx = aE[Zβ],
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when a < 0, using the same basis, the inverse credibility distribution of aZβ is aΞ−1
Zβ (1− x);

then, we have

E[aZβ] =
∫ 1

0
aΞ−1

Zβ (1− x)dx = −a
∫ 0

1
Ξ−1

Zβ (x)dx = a
∫ 1

0
Ξ−1

Zβ (x)dx = aE[Zβ].

Theorem 7. The expected value of the Z-number is linear when the series of Z-numbers are
independent with a finite expected value. While Zβ

1 and Zβ
2 are two converted independent Z-

numbers with the identity of LR fuzzy interval, we have

E[aZβ
1 + bZβ

2 ] = aE[Zβ
1 ] + bE[Zβ

2 ].

Proof. When a > 0 and b > 0, (aZβ
1 + bZβ

2 ) is strictly increasing monotone in terms of

Zβ
1 and Zβ

2 ; thus, the inverse credibility distribution of (aZβ
1 + bZβ

2 ) is easy to obtain as
(aΞ−1

Zβ
1

(t) + bΞ−1
Zβ

2

(t)) on the basis of Definition 4. Then, ground on the definition of the

expected value in Theorem 5, we have

E[aZβ
1 + bZβ

2 ] =
∫ 1

0
(aΞ−1

Zβ
1

(t) + bΞ−1
Zβ

2

(t))dt

= aE[Zβ
1 ] + bE[Zβ

2 ].

When a > 0 and b < 0, (aZβ
1 + bZβ

2 ) is strictly increasing monotone in terms of Zβ
1 but

strictly decreasing in terms of Zβ
2 , it follows directly that

E[aZβ
1 + bZβ

2 ] =
∫ 1

0
(aΞ−1

Zβ
1

(t) + bΞ−1
Zβ

2

(1− t))dt

= aE[Zβ
1 ] + bE[Zβ

2 ].

As for the other two cases (i.e. a < 0 and b > 0, a < 0 and b < 0), it is easy to verify
that the above proof still holds.

Example 5. Let ζ be a Z-number that ζ = (2, 3, 4, 5)(0, 1, 2). Based on the converting step
proposed from Kang et al [2], the converted factor β = 1 is received; thus, ζ is easily transformed
into an LR fuzzy interval that is expressed as ζβ = (3, 4, 1, 1)LR. As we know from Theorem 4, the
expected value of the fuzzy interval can be calculated as follows.

E[ζβ] =
∫ 0.5

0
(2× 1× ϕ + 3− 1)dϕ +

∫ 1

0.5
(2× 1× ϕ + 4− 1)dϕ

=
2× 3 + 2× 4 + 1− 1

4
= 3.5.

Therefore, by means of the relationship between the classical Z-numbers and the converted
Z-numbers in Equation (11), the expected value of ζ is easy to calculate as

E[ζ] =
√

βE[ζβ] = 1× 3.5 = 3.5.
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Example 6. According to Theorem 5, the expected value of Z-number in Example 2 is

E[Zβ] =
∫ 0.5

0
(
√

βa2 − (
√

βa2 −
√

βa1)
√

1− 2ϕ)dϕ

+
∫ 1

0.5
(
√

βa3 − (
√

βa4 −
√

βa3)
√

2ϕ− 1)dϕ

=
1
3

√
βa1 +

1
2

√
βa2 +

1
3

√
βa3 +

1
2

√
βa4.

3. Maximum Expected Z-Number Programming Model

This section introduces one of the most classical linear programming models, the
maximum expected programming model. Using the converting factor and expected value
we derived before through the inverse credibility distribution and operational law of
Z-numbers, we set Z-numbers as a type of parameter, and establish the following models.

3.1. Chance-Constrained Z-Number Programming

As for dealing with the unsure programming, the chance-constrained programming
has been created using a stochastic decision model that has managed an effective achieve-
ment. Leading with the thought of random chance-constrained programming, a framework
is referred by Liu and Iwamura [25]. Then, Zhou et al. [26], regarding the classical chance-
constrained fuzzy programming, combined the chance constraints with expected objectives
to establish fuzzy chance-constrained programming and proved its validity in artificial
translation.

First, we assume ζ = (ζ1, ζ2, · · · , ζn) is an n-dimensional Z fuzzy number vector,
which can be written as ζN = ZN(AN , BN), N = 1, 2, · · · , n. Therefore, with the decision
vector x, we define f (x, ζ) as the objective function and gj(x, ζ) as the constraint functions,
where j = 1, 2, · · · , m. Learning from the basic property of fuzzy functions, it is not difficult
to determine that f (x, ζ) is also a Z-number variable. However, this means that it is hard to
minimize directly. As a result, we attempt to replace it by proposing the minimization of its
expected value E[ f (x, ζ)].

Moreover, it is notable that gj(x, ζ), as the Z fuzzy number constraint functions, are
less than or equal to zero, where j = 1, 2, · · · , m, and cannot define the crisp feasible
sets. Therefore, we need the confidence levels which are defined as α1, α2, · · · , αm for the
Z-number fuzzy constraints. Thus, the credibility of certain gj(x, ζ) is regulated as follows

Cr
{

gj(x, ζ) ≤ 0
}
≥ αj, j = 1, 2, · · · , m.

Thus, to develop a decision system with Z-parameters, a chance-constrained Z-number
programming model is proposed as followed.

min
x

E[ f (x, ζ)]

subject to :
Cr
{

gj(x, ζ) ≤ 0
}
≥ αj, j = 1, 2, · · · , m.

(12)

According to the Z-number fuzzy constraints, the fuzzy programming Model (12),
which is subjected to a battery of chance constraints, aims to achieve the minimization
decision with its expected objective E[ f (x, ξ)].

Faced with the complex decision-making environment, the simple constraints from
credibility distributions can sometimes make it difficult to satisfy the objective functions
and express the special conditions. It is worth noting that, when faced with mutually
independent Z-numbers, there are several constraints needed for extra restrictions, which
can be represented as

M[ f (x, ζ)] = (σ1x1 + σ2x2 + · · ·+ σnxn)×m,
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where i = 1, 2, · · · , n. Therefore, under certain circumstances, when the maximal risk
level is given, the extra price function of Z-numbers can play a role in restriction, which is
expressed as 

min
x

E[ f (x, ζ)]

subject to :
Cr
{

gj(x, ζ) ≤ 0
}
≥ αj, j = 1, 2, · · · , m

M[ f (x, ζ)] ≤ γ,

(13)

where γ is the total price amount.

Definition 9. As long as the vector x is satisfied with the following credibility equation

Cr
{

gj(x, ζ) ≤ 0
}
≥ αj,

with j = 1, 2, · · · , m, it is defined as a feasible solution for the target function model.

Definition 10. If the feasible solution x̄ is satisfied with the following expected value in equation,

E[ f (x, ζ)] ≥ E[ f (x̄, ζ)],

then, x̄ is named as an optimal solution among every feasible solutions x in the target function
model.

3.2. Z-Number Crisp Equivalent Model

In the Section 3.1, ζN has already been defined as ζN = ZN(AN , BN), N = 1, 2, 3, · · · , n,
where A = (a1, a2, a3, a4; 1), B = (b1, b2, b3; 1). As a Z-number, ζN is going to represent the
decision vector in the following model. Because the classical fuzzy vector is substituted by
the Z-number ζ, we obtain a crisp equivalent configuration by using the aforementioned
fuzzy chance-constrained programming model with the following theorem.

On the grounds of theorems from Kang et al. [2], it is possible for a Z-number to be
transformed into an LR fuzzy interval using the conversion of reliability. Combined with
this information, it assumes that

KN =
{〈

x, µK̃(x)

〉
| x ∈ [0, 1]

}
,

where K = A, B represents both the restriction and reliability separately, and µÃ(x) is the
trapezoid-shaped grade of membership function, while µB̃(x) is the triangular-shaped grade
of membership function.

The crisp equivalent model is built on a basis of the transformation from Z-numbers
to normal LR-fuzzy-numbers. Therefore, the first step is to make use of the documentary-
given transportation methods and to convert the reliability of Z-numbers BN using its
converting weight, which is defined as

β =

∫
xµB̃(x)dx∫
µB̃(x)dx

.

According to the converting method from Kang et al. [2], next, unite the reliability
weights of Z-numbers to the restrictions which have been mentioned as AN , resulting in
the expression of Zβ = (a1, a2, a3, a4; β). This is the basic weighted Z-numbers, although it
is difficult to calculate. In this way, it is worthwhile to derive a fuzzy interval, modifying it
as Z̃ =

(√
β · a1,

√
β · a2,

√
β · a3,

√
β · a4; 1

)
. Thus, ξN is successful in transforming into Z̃

from a Z-number into an LR fuzzy interval.
According to Kang et al. [2], after being weighted by the credibility, the membership

function of such a Z-number is also altered by the real constant β, such that it is represented
as µZ̃ = βµÃ(x).
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Meanwhile, the shape grade of an LR fuzzy interval membership function will not
be changed under the transition, considering that the membership of AN is trapezoidal;
obviously, ζN remains.

According to the Theorem 5, the equivalent mode of the expected value of an LR fuzzy
interval is given using its inverse credibility distribution.

As the equivalent form on LR fuzzy intervals and expected value of Z-numbers
are provided, we establish the Z-number expected value, which is stated by its opposite
credibility distribution as well.

Theorem 8. Let the objective function f (x, Z1, Z2, · · · , Zn) strictly increase when it comes to
Z1, Z2, · · · , Zm, but strictly decrease when Zm+1, Zm+2, · · · , ξn. If ZN , N = 1, 2, · · · , n are a
battery of independent Z-numbers, then the expected objective function is satisfied by the following
equation

E[ f (x, Z1, Z2, · · · , Zn)]

=
1√

β

∫ 1

0
f (x, Ξ−1

1 (τ), · · · , Ξ−1
m (τ), Ξ−1

m+1(1− τ), · · · , Ξ−1
n (1− τ))dτ,

where Ξ−1
i is the inverse credibility distribution of Zi with i = 1, 2, · · · , n, and β is the converting

factor.

Proof. In line with Theorem 3, the inverse credibility distribution of f (x, Z1, Z2, · · · , Zn)
can be written as

Φ−1(x, τ) = f (x, Ξ−1
1 (τ), · · · , Ξ−1

m (τ), Ξ−1
m+1(1− τ), · · · , Ξ−1

n (1− τ)).

Furthermore, on the basis of Equation (11), it is simple to determine that

E[ f (x, Z1, · · · , Zn)] =
1√

β

∫ 1

0
Φ−1(x, τ)dτ.

Theorem 9. Assume the constraint function gj(x, Z1, Z2, · · · , Zn) increases strictly when it
comes to Z1, Z2, · · · , Zkj

and decreases strictly when it comes to Zkj+1, Zkj+2, · · · , Zn. While
Z1, Z2, · · · , Zn are a series of independent Z-numbers, its chance constraint inequality

Cr
{

gj(x, Z1, Z2, · · · , Zn) ≤ 0
}
≥ τ (14)

founds if and only if

gj(x, Ξ−1
1 (τ), · · · , Ξ−1

kj
(τ), Ξ−1

kj+1(1− τ), · · · , Ξ−1
n (1− τ)) ≤ 0,

where Ξi is a battery of the credibility distributions of Zi with i = 1, 2, · · · , n.

Proof. This theorem is the expansion of Theorem 3, from which the opposite credibility
distribution of gj(x, Z1, Z2, · · · , Zn) can be described as

ϕ−1(x, τ) = gj(x, Ξ−1
j (τ), · · · , Ξ−1

kj
(τ), Ξ−1

kj+1(1− τ), · · · , Ξ−1
n (1− τ)).

Moreover, it is obvious that Equation (14) is presented if and only if ϕ−1(x, τ) ≤ 0.

Theorem 10. Let f (x, Z1, Z2, · · · , Zn) increases strictly when it comes to Z1, Z2, · · · , Zm and
decreases strictly when it comes to Zm+1, Zm+2, · · · , Zn. Additionally, gj(x, Z1, Z2, · · · , Zm)
increases strictly when related to Z1, Z2, · · · , Zkj

and decreases strictly when related to
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Zkj+1, Zkj+2, · · · , Zn with j = 1, 2, · · · , m. While Z1, Z2, · · · , Zn are a series of independent
Z-numbers, the Z fuzzy number programming Model (12) can be solved using the same method of
crisp linear programming,

min
x

∫ 1
0 f (x, Ξ−1

1 (τ), · · · , Ξ−1
m (τ), Ξ−1

m+1(1− τ), · · · , Ξ−1
n (1− τ))dτ

subject to :
gj(x, Ξ−1

1 (τj), · · · , Ξ−1
kj

(τj), Ξ−1
kj+1(1− τj), · · · , Ξ−1

n (1− τj)) ≤ 0

j = 1, 2, · · · , m,

(15)

where Ξi are a battery of credibility distributions of Zi with i = 1, 2, · · · , n.

Proof. This theorem can be deduced using Theorems 8 and 9 directly.

In this issue, through Theorem 10, while the constraint functions gj(x, Z) with j =
1, 2, · · · , m and the objective function f (x, Z) are increasing or decreasing strictly in certain
domains and Z resists to be a series of independent Z-numbers, it is possible to translate
the fuzzy programming model depicted in Section 3.1 to such crisp Model (15). As the
compact relation between these models, there are no differences witnessed under the view
of mathematics apart from integrals. In this case, certain Z-number optimization problems
can be solved under the classical deterministic optimization configuration without the need
for special techniques or methods.

4. Example of Maximum Expected Z-Number Programming Model
4.1. Supplier Selection Problem

Additionally, we put the configuration of the Z-number programming model men-
tioned previously into application and give an example of the installing production line in
certain household appliances manufacturers. In order to gain a better understanding of the
following examples, the relevant notations are given in Table 1.

Table 1. Notations.

Decision Variable

xi Number of installing production lines,
i = 1, 2, · · · , n

Parameters

ai Expense of machine of the i-th type
productions, i = 1, 2, · · · , n

Si Covering area of the i-th type productions,
i = 1, 2, · · · , n

pi Production efficiency of the i-th type
productions, i = 1, 2, · · · , n

di Demand of the i-th type productions,
i = 1, 2, · · · , n

ri Margin provided by the i-th type productions,
i = 1, 2, · · · , n

αi Confidence level of the i-th type productions,
i = 1, 2, · · · , n

E(x, r) Expected Total profits, where
x = (x1, x2, · · · , xn), r = (r1, r2, · · · , rn)

We assume that the household appliance industry plans to invest in a new factory in
order to satisfy the requirement in a certain area. It is already known that this company
mainly produces three kinds of household appliances, including refrigerators, washing
machines and air conditioners. Thus, in this example, n = 3. Since each kind of household
appliance corresponds to different production lines, the company considers installing
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several lines for the basic productions, where xi is the number of installing production lines
for refrigerators, washing machines and air conditioners, i = 1, 2, 3, separately.

We set the expense of machine of the i-th category as ai, and the total amount of funds
for production planning is a. Thus, the first constraint about capital budget is

a1x1 + a2x2 + a3x3 ≤ a.

The second constraint for the factory relates to the maximum space. As the total
coverage area is limited to the establishment of industry, we set S to represent the largest
available installing space, where Si is expressed as the covering area of the i-th type
production lines. Thus, the space constraint is as follows

S1x1 + S2x2 + S3x3 ≤ S.

Owing to the malfunctions that may happen on production lines, there are uncertain-
ties about the production efficiency, and these are defined as pi, i = 1, 2, 3. And let di be
the demand for the i-th type household appliances on the i-th type production lines in this
area. The company always wishes to try every means to satisfy every requirement in the
region and avoid a vacancy. Therefore, pixi ≥ di, where i = 1, 2, 3. Similarly, in the realistic
economic activities, the demand di in the future is generally uncertain.

In this problem, we assume the variables above are all Z fuzzy numbers. Under the
background of actual enterprise research, expert interviews and simulations, pixi ≥ di do
not have precisely defined constraints. If the decision maker in the company sets αi to be
the confidence level to meet the requirements of the i-th category components, we will
obtain the chance constraints as follows

Cr{pixi ≥ di} ≥ αi, i = 1, 2, 3.

We suppose that the margin provided by each i-th category of machines is ri for
i = 1, 2, 3, and the sum of profits is r1x1 + r2x2 + r3x3 . Profits are distributed by the
enterprise based on the sales of the final products, which are generally influenced by rivals,
seasons and other uncertain factors. In this case, we define the profits as the form of Z
fuzzy number variables in the following example, with the maximum objective expected
value of the sum profits, which is written as

E[rixi + r2x2 + r3x3].

Therefore, we design an integral programming model for the investment production
problem, which is 

max E[r1x1 + r2x2 + r3x3]
subject to :

a1x1 + a2x2 + a3x3 ≤ a
S1x1 + S2x2 + S3x3 ≤ S
Cr{pixi ≥ di} ≥ αi, i = 1, 2, 3
xi are positive integers, i = 1, 2, 3

(16)

Let ri,pi and di be a series of independent regular LR fuzzy intervals whose credibility
distribution is Ξi, Υi and Φi separately, where i = 1, 2, 3. As follows, on the basis of
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Theorem 10, it is possible to convert the model from Model (16) into the following conclusive
form. 

max x1
∫ 1

0 Ξ−1
1 (τ)dτ + x2

∫ 1
0 Ξ−1

2 (τ)dτ + x3
∫ 1

0 Ξ−1
3 (τ)dτ

subject to :
a1x1 + a2x2 + a3x3 ≤ a
S1x1 + S2x2 + S3x3 ≤ S
Φ−1

i (αi)− xiΥ−1
i (1− αi) ≤ 0, i = 1, 2, 3

xi are positive integers, i = 1, 2, 3,

(17)

where the problem can be simply solved using LINGO.
On the basis of the established Model (17) and the fuzzy interval data catalogued in

Table 2, it is possible to obtain the exampled linear programming model as follows

max 48.025x1 + 114.8352x2 + 62.6179x3
subject to :

7x1 + 9x2 + 8x3 ≤ 700
9x1 + 11x2 + 10x3 ≤ 900
154.0825− 32.8589x1 ≤ 0
185.7155− 39.2883x2 ≤ 0
206.5320− 45.7178x3 ≤ 0
xi are positive integers, i = 1, 2, 3.

In this model, it is important to transform Z-numbers data into regular LR-fuzzy-
numbers first, which helps to simplify the calculation. Using the converting method given
by Kang et al. [2], we first convert each Z-parameter into LR fuzzy numbers and use them
in the regular LR fuzzy programming model in [26], easily obtaining the programming
model described above.

Table 2. Parameters and values for the procurement planning problems.

Parameter Value Parameter Value

Ξ1 Z [(4, 6, 8)(10, 12, 14, 18)] α1 0.7
Ξ2 Z [(5, 7, 9)(11, 13, 15, 17)] α2 0.7
Ξ3 Z [(7, 9.11)(12, 13, 16, 18)] α3 0.7
Υ1 N (30, 4) a1 7
Υ2 N (35, 6) a2 9
Υ3 N (40, 8) a3 8
Φ1 C(150, 5) S1 9
Φ2 C(180, 7) S2 11
Φ3 C(200, 8) S3 10

a 600 b 800

Using LINGO, the total optimal margin is 8476.8, while the final solution is

(x∗1 , x∗2 , x∗3) = (5, 69, 5).

It is notable that the conventional approaches struggle to solve this problem with both
the Z-numbers parameters and LR fuzzy intervals, but the fuzzy simulation is possible.
Since there are three types of fuzzy numbers listed, which are Z-numbers, Gaussian fuzzy
numbers and Cauchy fuzzy numbers, the multiplication has increased significantly in
the programming model. Meanwhile, Models (16) and (17) are shown, and idea about
transformation revealed that the achievement of deterministic form makes it easy for us to
solve the fuzzy programming using classical methods related to the framework of fuzzy
programming with Z-number parameters.
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4.2. Optimal Portfolio Problem

In this section, we think about the portfolio selection. A portfolio is any collection of
financial assets, like stocks and bonds, which may be executed by individuals or manage-
ments. The relevant notations are given in Table 3 which helps with clearer comprehension.

Table 3. Notations.

Decision Variable

xi Portfolios of i-th type stocks.
i = 1, 2, · · · , p

Parameters

ζi Returns of the i-th type stocks.
i = 1, 2, · · · , p

qi Current closing value for the i-th type stocks.
i = 1, 2, · · · , p

q′i Closing value in the following year of the i-th type stocks.
i = 1, 2, · · · , p

di Dividend of the i-th type stocks.
i = 1, 2, · · · , p

σi Invested amount of the i-th type stocks.
i = 1, 2, · · · , p

m Total amount of purchased stocks.
γ Sum of investment.

R(x, ζ) Total returns, where
x = (x1, x2, · · · , xp), ζ = (ζ1, ζ2, · · · , ζp)

First, we make an assumption of p stocks with their Z fuzzy number returns ζi, where
i = 1, 2, · · · , p, and each portfolio is x = (x1, x2, · · · , xp), where xi expresses the ratio
people invested in stock i on aggregate. Generally, ζi is given as (q′i + di − qi)/qi where
qi is the closing value for now, q′i is the closing value in the following year, and di is the
dividend in the following year. Interestingly, q′i and di in the future are obviously unclear
for now. If they are estimated to be fuzzy numbers, then ζi is known to be a fuzzy variable.
Moreover, when facing the portfolios x = (x1, x2, · · · , xp), the total return is

R(x, ζ) = ζ1x1 + ζ2x2 + · · ·+ ζpxp.

R(x, ζ) is also a fuzzy variable. Moreover, if the investor is willing to achieve the
maximization of total return, the following fuzzy linear programming model is proposed.

max ζ1x1 + ζ2x2 + · · ·+ ζpxp
subject to :

x1 + x2 + · · ·+ xp = 1
xi ≥ 0, i = 1, 2, · · · , p.

As for fuzzy identities of Z-numbers, it is hard to perform calculations that directly
bypass genetic algorithms. Therefore, inspired by the expected value model in Model (12),
we are able to measure the investment returns from the expected value, that the function
can be depicted as

max E[ f (x, ζ1, ζ2, · · · , ζp)].

We set the price of invested amount restrictions for the p stocks, and the total amount
of funds for investment planning is γ. Because xi represents the ratio of investment, the total
amount of stocks purchased should be provided as m. Then, the total amount restriction
about portfolio is depicted as

(σ1x1 + σ2x2 + · · ·+ σpxp)×m ≤ γ.
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Additionally, Samuelson (1970) stated that almost all investors would like to choose
the portfolio with a relatively larger tendency, meaning that there are more possibilities
to acquire a larger payment than the expected value. In order to minimize the risk that
investment brought, the total investment sum is supposed to constrain the maximum
investment amount that can restrict over-capitalization to a great extent. Based on this
analysis, we establish the multi-objective credibility linear programming model.

max E[ f (x, ζ1, ζ2, · · · , ζp)]
subject to :

(σ1x1 + σ2x2 + · · ·+ σpxp)×m ≤ γ
x1 + x2 + · · ·+ xp = 1
xi ≥ 0, i = 1, 2, · · · , p,

where σi is the amount invested in each stock, m is the total amount of shares purchased
and γ is the investment sum.

In order to explain this clearly, we establish the example below using an explicit value.
First, we assume there are four stocks, and each of their Z fuzzy number returns is shown
in the following Table 4.

Table 4. Four Z-number stock returns.

Stocks Z-Number Returns

1 (−0.3, 1.8, 2.3, 3.8) (3, 5, 7)
2 (−0.4, 2.0, 2.2, 4.0) (6, 7, 8)
3 (0.3, 1.0, 1.5, 2.3) (7, 8, 9)
4 (0.1, 1.5,1.8, 3.2) (5, 7, 9)

Learning from Kang et al. [2], we use the converting factor β and refer to Theorem 5,
based on which it is simple for us to figure out the expected value for each Z-numbers from
the defined formulas of mean value in Table 4, which are listed to be combined with the
invested amounts in the following Table 5.

Table 5. Expected value and invested amount of four Z-number stock.

Stocks Expected Value Invested Amount

1 4.2485 2100
2 5.1592 3000
3 3.6062 1500
4 4.3655 2300

According to the data, we substitute the above values into the equation that has
established the maximum expected model as follows:

max 4.2485x1 + 5.1592x2 + 3.6062x3 + 4.3655x4
subject to :

(2200x1 + 3000x2 + 1800x3 + 2300x4)× 100 ≤ 200000,
x1 + x2 + x3 + x4 = 1
xi ≥ 0, i = 1, 2, 3, 4.

where we set the total investment amount γ = 200,000 experienced from the former
research, and the number of stocks purchased restricted in m = 100.

Using LINGO, the final optimal portfolio is

x1 = 0.5, x2 = 0, x3 = 0.5, x4 = 0,

with the maximum expected value of 3.9274.
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5. Conclusions

The Z-number is mainly applied based on the description of conformity between objec-
tive natural phenomenon and subjective consciousness, which affects both the vagueness
of information and the level of human belief about certain occasions. Thus, Z-numbers
hold great confidence and reliability when portraying realistic issues compared with nor-
mal fuzzy numbers. Many researchers have made great contributions to the converting
and arithmetic methods referencing Z-numbers since their introduction. However, there i
limited research on the Z-number linear programming models using this method; on the
contrary, many researchers have made efforts in intelligent algorithms-based programming
which bring great complexity to the calculation. The explicit solution problem has yet to be
resolved.

In this case, our model had successfully solve this problem and fill the gap in the
Z-number application field. We combined Z fuzzy numbers with a linear programming
model, which can easily create explicit results using our method with LINGO, instead of
using intelligent algorithms. Thus, compared with the former fuzzy model, our model can
provide an explicit solution when facing maximum expected value linear programming
models, in which a smaller error provides great benefits in industrial engineering or
decision making. Secondly, it is much easier to put into use and comprehend with fewer
calculation difficulties, leading to faster decision making and resource allocation.

This paper was split into two parts. First, we explored the Z-number theoretical
preparation using the method of transform reliability B of Z-numbers into the weight on its
restrictions A ending to be an LR fuzzy interval. Next, we discussed the Z-number linear
programming, especially for the trapezoidal Z-numbers which have been widely used in
many fields.

In order to start the work on modeling, the practical theory of Z-numbers must be
investigated. To insert the definition of credibility measure, inverse distribution function,
operational law and expected value of Z-numbers, we used the converted factor calculated
from the reliability of Z-numbers. After transforming reliability into the weight of its
restriction, it is possible to convert classical Z-numbers into LR fuzzy intervals with a
variety of wonderful identities. And then we succeeded in deriving Z-numbers based on
the properties of LR fuzzy intervals.

Meanwhile, learning from the LR fuzzy linear programming, we established one of the
most traditional linear programming models, the maximum expected model, for Z-numbers
as a paradigm, using the theoretical preparation. Since the model is maturely applied in
LR fuzzy intervals, what we focus on first and foremost is to transform Z-numbers into
classical trapezoidal LR fuzzy intervals using set converting factors which help to a great
extent in our models. Using the basic properties and measurements of Z-numbers, we
translate the model into Z-number form, which contain Z-numbers as parameters, and then
the crisp equivalent is formed. In addition, in order to explain the accessibility of these
models, we provide several explicit examples for explanation, which include a supplier
selection problem and an optimal portfolio problem. In order to solve the specific Z-number
linear programming models, we use LINGO as a tool that is much simpler than intelligent
algorithms.

This article also has some unavoidable limitations. At first, we only set the maximum
expected programming models as a paradigm; others like Maximum Regret Model and
Entropy Optimization Model were not deduced here, despite having a similar calculation
process to our models.

This will be explored by future researchers. Next, in our explicit Z-number pro-
gramming examples, trapezoidal forms of Z-numbers are put into use. Other forms like
triangular distribution or Gaussian distribution are not applied in this section owing to
the restrictions of time and energy, which need to be further investigated in future work.
Additionally, in order to express the practicability, we have presented two examples for
our expected value linear programming model, which are a supplier selection problem
and an optimal portfolio problem. However, two examples are limited when it comes to
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explaining the model clearly. If possible, in the following work, more application problems
of our model can be solved, such as risk investment.
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Appendix A

Definition A1 (Zadeh [17]). In a given domain U , the fuzzy number φ whose membership
function µA is defined as

φ =
{〈

x, µφ(x)
〉
| x ∈ Uφ

}
,

where µφ : U → [0, 1] and x → µφ(x).

Definition A2 (Liu et al. [18]). When the shape function of an LR fuzzy interval ξ, defined as
L for left and R for right, is continuous on the domains {x|0 < L(x) < 1}, combined with the
condition that it strictly decreases on the domains {x|0 < R(x) < 1}, then the LR fuzzy interval is
said to be a regular one.

Definition A3 (Dubois and Prade [27]). A fuzzy interval ξ distributed in universal real set R
is regulated to be an LR fuzzy interval on the condition of the shaping functions, where L represents
the left one and R the right one, and the numerical range is a > 0, b > 0. Thus, its membership
function is

µξ(x) =


L( t1−x

a ), if x ≤ t1

1, if t1 ≤ x ≤ t2

R( x−t2
b ), if x ≥ t2,

where t1 and t2 as real numbers are named as the lower and upper modal value of ξ, a and b are
named as the left and right scales separately. In more simpler terms, we denote the fuzzy interval ξ
as (t1, t2, a, b)LR.
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