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Abstract: Attribute reduction is a crucial research area within concept lattices. However, the existing
works are mostly limited to either increment or decrement algorithms, rather than considering both.
Therefore, dealing with large-scale streaming attributes in both cases may be inefficient. Convolution
calculation in deep learning involves a dynamic data processing method in the form of sliding
windows. Inspired by this, we adopt slide-in and slide-out windows in convolution calculation to
update attribute reduction. Specifically, we study the attribute changing mechanism in the sliding
window mode of convolution and investigate five attribute variation cases. These cases consider the
respective intersection of slide-in and slide-out attributes, i.e., equal to, disjoint with, partially joint
with, containing, and contained by. Then, we propose an updated solution of the reduction set for
simultaneous sliding in and out of attributes. Meanwhile, we propose the CLARA-DC algorithm,
which aims to solve the problem of inefficient attribute reduction for large-scale streaming data.
Finally, through the experimental comparison on four UCI datasets, CLARA-DC achieves higher
efficiency and scalability in dealing with large-scale datasets. It can adapt to varying types and sizes
of datasets, boosting efficiency by an average of 25%.

Keywords: concept lattice; attribute reduction; convolution calculation; streaming computing

MSC: 06B15; 37K60; 82C20

1. Introduction

In the cognitive process, people extract and define what they consider to be common
features, which are called concepts. The representation of “concept” is a theory of formal
concept analysis [1,2]. The concept lattice is an effective and feasible way to visualize
data processing by visually representing concepts and hierarchical relationships through
Hasse diagrams. In essence, the concept lattice is a binary hierarchical concept structure
determined by a pair of operators, which embodies the unity of the extent and intent of
the concepts. Furthermore, the generalization–specialization and partial order relations
in the concept lattice implies the inclusion and partial inclusion of concepts, allowing for
the extraction and application of rules. Since the introduction of formal concept analysis
(FCA) in 1982, the concept lattice has been a research hotspot, including in the domains
of construction [3], reduction [4], and rule extraction [5,6]. The main purpose of attribute
reduction of a concept lattice is to eliminate redundant information and reduce the com-
plexity of the concept lattice while keeping the relevant information unchanged. Attribute
reduction on concept lattices can accelerate the discovery of knowledge, simplify the repre-
sentation of knowledge, and ultimately reduce the number of decision rules. Therefore, it
is of great theoretical and practical importance to study the attribute reduction method of
the concept lattice. This method can provide powerful tools for knowledge discovery [7–9],
data mining [10–12], information retrieval [13], semantic networks [14,15], and ontology
construction [16,17] based on concept lattice theory.
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Classical concept lattice attribute reduction algorithms are separately based on infor-
mation entropy, discernibility matrix, and positive area. However, the consumption of
time and space increases extremely rapidly with the increase of attributes. With the data
generation changing from static to dynamic, selecting a data analysis method in a static
data environment that meets the development needs can be challenging. To address this
issue, Cavallero et al. [18] fully considered the reduction philosophy given in rough set
theory and thus proposed a novel method of reducing attributes in fuzzy formal concept
analysis. Min [19] presented the concept of soft contexts reduction and described how to
extract the reduction from a given consistent set. To tackle the above-mentioned problems,
Lin et al. [20] utilized a new framework for knowledge reduction in formal fuzzy contexts
and developed a discernible Boolean matrix in formal fuzzy contexts by preserving extents
of meet-irreducible elements via an order-class matrix. All these achievements illustrate
that attribute reduction in concept lattices should be integrated with dynamism.

The integration of concept lattices and deep learning has been a topic of interest in the
deep learning community. By combining concept lattices and neural networks, researchers
aim to improve the accuracy of predictions and classifications. Shen et al. [21] presented
a concept lattice-based neural network model. They use attribute reduction of concept
lattices to extract key elements, which are then used as input for a BP neural network.
Ren et al. [22] introduced an attribute reduction algorithm of concept lattices to choose
attribute parameters that have good relativity to forecasting load as the input parameters of
the forecasting model of neural network. This ensured the rationality of input parameters.
The amalgamation of concept lattices and neural networks has further implications in the
realm of data analysis. A novel algorithm, PIRA [23], leveraged dendritical neural networks
to compute concept lattices, tackling the exponential complexity associated with cluster
enumeration in formal concept analysis. Concept lattice theory has also been employed
to tackle key challenges in neural network architecture. In order to overcome difficulties
such as overfitting and poor interpretability, Kuznetsov et al. [24] proposed an approach
to constructing neural networks based on concept lattices and on lattices coming from
monotone Galois connections. Moreover, the utility of concept lattice theory is further
seen in fields like stability prediction of rock surroundings in roadways. Liu et al. [25]
employed concept lattice theory to create a prediction model with a Symmetric Alpha
Stable Distribution Probability Neural Network, successfully navigating the uncertainties
of multiple factors affecting roadway surrounding rock stability. Recently, concept lattices
have been used to optimize graph neural networks (GNNs). Shao et al. [26] proposed a new
GNN framework to improve classification accuracy by integrating concept lattice theory
into the message passing of GNNs. Taken together, the research points to a promising future
for the marriage of deep learning and concept lattices, heralding potential improvements
in network efficiency, forecasting accuracy, data analysis, and classification performance.
This integration motivates new possibilities and avenues for exploration in the field of
artificial intelligence.

Convolutional neural networks (CNNs) have achieved satisfying performance in com-
puter vision [27] and natural language processing applications [28,29] as CNN models can
highly exploit the stationary and combinatorial attributes of certain types of data. Moreover,
the grid nature of graphs enables the convolutional layers in CNNs to utilize hierarchical
patterns to extract high-level features of graphs, resulting in a powerful representation [30].
However, the non-Euclidean nature of the graph is inappropriate for convolution and
filtering of the graph learnt from images. To address the irregular shape of the spatial
neighborhood, Bruna et al. [31] integrated the idea of convolution with graph computa-
tion, making a breakthrough from the spectral space and proposing a spectral network on
graphs. Kipf and Welling [32] simplified Chebyshev networks by using only first-order
reductions of the convolution kernel and introducing some variations to the symbols, which
resulted in the creation of graph convolution networks (GCNs) [33–35]. GCNs are highly
expressive in learning graph representations and have achieved excellent performance in a
wide range of tasks and applications. Based on the above studies, we introduce the idea
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of convolution for large-scale attribute reduction, using a divide-and-conquer approach.
Moreover, the process of CNN convolution is essentially a data preprocessing driven by
divide-and-conquer, which generates the effectiveness of both data knowledge and data
dimensionality reduction.

The dynamic convolution calculation is an important theoretical foundation for CNNs
and GCNs. The main characteristic, as shown in Figure 1, is the two-dimensionality sliding-
based calculation. Related studies [36,37] show that the CNN model is a combination of
convolution calculations on different layers, whereas the GCN model is a combination of
convolutional and graph calculations. Although Chen et al. [38] investigated the attribute
reduction method for large-scale formal decision contexts and verified the effectiveness of
the proposed algorithms, there are few studies on dynamic attribute reduction. Exploring
the dynamic attribute reduction of concept lattices from the perspective of convolution
calculation is challenging.

⊗

Figure 1. Schematic diagram of the convolution calculation mode.

The aforementioned analyses cover FCA, concept lattice attribute reduction, and
the current research status of CNN. We have identified the following challenges: Firstly,
existing concept lattice attribute reduction algorithms are mainly applicable to incremental
or decremental algorithms. However, simultaneous increments and decrements have not
been adequately researched. Secondly, although CNN is being increasingly integrated
with other fields, the research combining CNNs with concept lattices is still preliminary.
Finally, a majority of neural networks merely employ the concept lattice as a deep learning
data processing instrument, without genuine efforts to amalgamate the two. Based on
the aforementioned challenges, we propose the dynamic convolution-based reduction
calculation of concept lattice attributes. The primary contributions are as follows:

(1) This paper introduces, for the first time, the use of CNN in FCA to the attribute
change mechanism of the convolutional area in the convolution calculation model. This
approach not only expands the research scope of CNN but also accelerates the research
progress of FCA. Specifically, The paper presents a valuable investigation of FCA in the
context of CNN.

(2) This paper introduces a concept lattice attribute reduction algorithm based on
dynamic convolution. The algorithm focuses on the convolution calculation model and the
changing attributes of the dynamic information system in the form of attributes immigration
and emigration. The proposed algorithm proves a significant improvement through the
metrics of “Sig.” and “Sig. (2-tailed)” of independent samples test.

The remainder of this paper is structured as follows. Section 2 provides an overview
of the relevant theories and technologies. Section 3 introduces our concept lattice modeling
for convolution calculation and discusses attribute reduction reasoning and calculation.
Section 4 presents the experimental results, analysis and discussions. Finally, in Section 5,
we summarize the paper.
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2. Preliminary

We review essential concepts of FCA here. Suppose (G, M, I) is a formal context,
where G is an object set, M is an attribute set, and I ⊆ G×M is a binary relation between
G and M. If an object g and an attribute m have the relation I, i.e., (g, m) ∈ I, then it
corresponds to the value 1 in the formal context. Otherwise, it corresponds to the value 0
in the formal context.

We firstly introduce the basic operator ∗ [1] in FCA. For X ⊆ G,

X∗ = {m|m ∈ M, ∀g ∈ X, (g, m) ∈ I},

is the set of attributes that are with the relation I for all objects in X. For B ⊆ M,

B∗ = {g|g ∈ G, ∀m ∈ B, (g, m) ∈ I},

is the set of objects that have relation I with all attributes in B.

Definition 1 ([2]). A pair (X, B) is called a formal concept or concept if X∗ = B and B∗ = X. Set
X is the extent of (X, B), and set B is the intent of (X, B). The relation between X∗ and B∗ is called
a Galois connection.

Property 1 ([2]). Let (X1, B1) and (X2, B2) be two formal concepts, then we have:

1. X1 ⊆ X2 ⇒ X2
∗ ⊆ X1

∗,
2. B1 ⊆ B2 ⇒ B2

∗ ⊆ B1
∗,

3. X1 ⊆ X∗∗,
4. B1 ⊆ B∗∗,
5. X∗1 = X∗∗∗1 ,
6. B∗1 = B∗∗∗1 ,
7. X1 ⊆ B∗1 ⇔ B1 ⊆ X∗1 ,
8. (X1 ∪ X2)

∗ = X1
∗ ∩ X2

∗,
9. X1 ⊆ B∗1 ⇔ B1 ⊆ X∗1 ,
10. (B1 ∪ B2)

∗ = B1
∗ ∩ B2

∗,
11. (X1 ∩ X2)

∗ = X1
∗ ∪ X2

∗,
12. (B1 ∩ B2)

∗ = B1
∗ ∪ B2

∗.

Definition 2 ([2]). Let K = (G, M, I) be a formal context, X ⊆ G, B ⊆ M. Denote the set of all
concepts in context K as L(K). The partial order relation on L(K) is:

(X1, B1) ≤ (X2, B2)⇔ X1 ⊆ X2 ⇔ B1 ⊇ B2,

Denote L(K) = (L(K),≤), as a complete lattice and is called the concept lattice of K. The
supremum and infimum of the two concepts are:

(X1, B1) ∧ (X2, B2) =
(
X1 ∩ X2, (B1 ∪ B2)

∗∗),
(X1, B1) ∨ (X2, B2) =

(
(X1 ∪ X2)

∗∗, B1 ∩ B2
)
.

Before introducing the reduction of concept lattices, we define the isomorphism of
lattices as a foreshadowing.

Definition 3 ([39]). Suppose that K1 = (G1, M1, I1) and K2 = (G2, M2, I2) are two formal
contexts, and L(K1) with L(K2) as their corresponding concept lattices, respectively. For any
(X1, B1) ∈ L(K1), if there exists (X2, B2) ∈ L(K2) such that X2 = X1, then we conclude that
L(K1) is finer than L(K2), denoted as L(K1) ≤ L(K2).
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If the formal contexts K1 = (G1, M1, I1) and K2 = (G2, M2, I2) further satisfy
L(K1) ≥ L(K2) on the premise of L(K1) ≤ L(K2), L(K1) is isomorphic to L(K2), denoted
as L(K1) ∼= L(K2).

By the definition of isomorphism, we can further deduce the definitions of consistent
set and reduction set of the concept lattice. Denote K = (G, M, I) as the formal context. If
the subset R of attribute set M satisfies IR = I ∩ (G× R), then K′ = (G, R, IR) is identified
as the attribute sub-context of formal context K = (G, M, I).

Definition 4 ([39]). Let K = (G, M, I) be a formal context, and R ⊆ M. If L(G, M, I) ∼=
L(G, R, IR), then R is said to be the consistent set of L(G, M, I); further, if any D ⊂ R, L(G, M, I) ∼=
L(G, D, ID) is not established, then R is said to be the reduction set of L(G, M, I).

According to Definition 4, when the attribute sub-context forms an isomorphic rela-
tionship with the current formal context, the attribute sub-context can be considered as the
coordinated set of the current formal context. If any attribute is deleted, the coordination
set is no longer isomorphic to the current formal context. Consequently, this attribute
sub-context is not only the coordination set of the current formal context, but also its
reduction set.

Definition 5 ([39]). Let K = (G, M, I) be a formal context, (Xi, Bi),(Xj, Bj) ∈ L(G, M, I),
we call

DISFC
(
(Xi, Bi),

(
Xj, Bj

))
= Bi ∪ Bj − Bi ∩ Bj

as discernibility attributes set of (Xi, Bi) and (Xj, Bj). Based on this,

∧FC=(DISFC
(
(Xi, Bi),

(
Xj, Bj

))
, (Xi, Bi),

(
Xj, Bj

)
∈ L(G, M, I))

is called the discernibility matrix of the context.

According to Definition 5, we obtain the discernibility attribute matrix from the formal
context. Next, we define the distinguishing function f = ∧{∨Ei j |Eij ∈ ∧FC, Eij 6= ∅} in
formal context and transform function f into the disjunctive normal form f = (∧D1) ∨
(∧D2) ∨ . . . ∨ (∧Dn), where Di ⊆ M(t). Every ∧Dt in the disjunctive normal form is an
reduction set of the formal context. Finally, all the reduction sets Red(K) of the formal
context (G, M, I) are obtained.

Definition 6 ([40]). Let K = (G, M, I) be a formal context and Red(K) be the reduction sets of
K = (G, M, I), then

Core = ∩Red(K) =

a|a∗ 6=
⋂

∀bi∈M−a

bi
∗


RNA = ∪Red(K)−∩Red(K) = {a|a∗ = bi

∗, ∃bi ∈ M− a}

UNA = M−∪Red(K) =

a|a∗ =
⋂

∃bi∈M−a

bi
∗


where Core is the set of core attributes, RNA is the set of relative necessary attributes, and UNA is
the set of absolute unnecessary attributes.

The three types of attributes are represented in the formal context as the relationships
between their corresponding columns. The columns corresponding to absolute unnecessary
attributes can be obtained by intersecting some columns in the table. Columns correspond-
ing to relative necessary attribute are columns corresponding to the equal columns in
the table. The remaining attributes are core attributes (see Table 1). Due to f ∗ = a∗ ∩ b∗,
attribute f is an absolute unnecessary attributes. Due to a∗ = e∗, attribute a is a relative
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necessary attribute. The reduction consists of all the core attributes and some relative
necessary attributes.

Table 1. The formal context of the student and the course (G, M, I).

a b c d e f h

1 0 1 1 1 0 0 0
2 1 0 0 1 1 0 1
3 1 1 0 0 1 1 0
4 0 1 0 0 0 0 1
5 1 0 0 0 1 0 0
6 1 1 0 1 1 1 0

3. Proposed Method
3.1. Concept Lattice Modeling for Convolution Calculation

In the convolution calculation environment, the main dynamic characteristic is the
sliding window that moves toward newly generated attributes. This results in both an
increase and decrease in attributes. This section examines the mechanism of dynamic
attribute changes in convolution calculation mode by formulating the attributes that slide
into and out of the convolutional area. For simplicity, attributes that do not impact the
concept lattice are filtered out and ignored in subsequent processes.

By analyzing the dynamic characteristics of convolution calculation, we can summarize
the convolution calculation model into the following two change forms.

Form 1: Ordinary form. As shown in Figure 2, the individual convolutional regions
slide as a sliding window. In the ordinary form, the convolutional regions slide farther
apart. The new convolutional region contains only new attributes, which do not intersect
with the attributes of the previous convolutional region.

convolution area

The convolution area

The attribute to prepare for computing in 

the subsequent convolution area

convolution area

The attribute used to computing 

in the current convolution area

The attribute used to computing  

in the previous convolution area

The convolution area

The attribute to prepare for computing in 

the subsequent convolution area

The attribute used to computing 

in the current convolution area

The attribute used to computing  

in the previous convolution area

Figure 2. Conventional form convolution calculation model.

Form 2: Batch form. As shown in Figure 3, multiple convolutional regions slide a
certain distance in the same direction in the form of a sliding window. In batch form,
the attributes are divided into multiple convolutional regions, slide after the attribute
reduction, and then the attribute reduction repeats. The current calculation window in the
loop is based on the last convolutional region attribute reduction, sliding in a new batch of
attributes and sliding out a small batch of old attributes.
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The attributes initially computed in 

convolutional area 1

The attributes initially computed 

in convolutional area 2

The attributes initially computed in 

convolutional area 3 to a-1

The convolution area

The attributes initially computed 

in convolutional area a

area 1 area 2 ... area a

Attribute Reduction

Sliding

area 1 area 2 ... area a

area 1 area 2 ... area aa

Loop

Figure 3. Batch form convolution calculation model.

In the ordinary form of convolution calculation, only new attributes are present in the
convolution area, and the old attributes are absent. This is not beneficial for studying the
update of the concept lattice when attributes are incremented and decremented simulta-
neously. In the batch form, each time in the convolution area, a new batch of attributes
is added whereas a small batch of old attributes is reduced based on the attributes left in
the last adjacent convolution area. This is consistent with the dynamic characteristics of
attributes that are incremented and decremented simultaneously. In what follows, we focus
on the batch morphology for modeling concept lattice attributes in convolution calculation
mode. The pipeline is shown in Figure 4.

Start
Divide attributes into n 

convolution region

i=len(FB)*m/n

Attribute reduction for n 

convolution region

Input formal 

background FB, 

regions n, sliding ratio 

m, sliding times k

k>0？

k=k-1

Attribute reduction for n 

convolution region

End

Output the reduced 

formal background FB 

and concept lattice

Slide the convolution 

area i attributes 

respectively

Yes

No

Figure 4. Flow chart of batch form convolution calculation.

In the batch form, there are five dynamic attribute changes in the convolution area, namely:

(1) The slide-in and slide-out attributes have the same attributes.
(2) The slide-in and slide-out attributes have the different attributes.
(3) The slide-in and slide-out attributes partially intersect.



Mathematics 2023, 11, 3739 8 of 19

(4) The slide-in attributes include the slide-out attributes.
(5) The slide-out attributes contain the slide-in attributes.

To facilitate the discussion, we formulated the following symbolic conventions:
At time t, the formal context is denoted as K(t) = (G(t), M(t), I(t)), the concept lattice

as L(t) = (G(t), M(t), I(t)), and the reduction is denoted as R(t). Next, in the convolution
area at time t + 1, the formal context is denoted as K(t+1) = (G(t+1),M(t+1), I(t+1)), and the
concept lattice is denoted as L(t+1) = (G(t+1), M(t+1), I(t+1)), and the reduction is denoted
as R(t+1).

At the time of t + 1, the attribute of sliding into the convolution area is denoted as
M, while the attribute of sliding out of the convolution area is denoted as M. In fact, the
attribute of sliding in is M′ and the attribute of sliding out is M′. |M∩M| represents the set
cardinality of M ∩M. In the classical attribute reduction algorithm, it is generally assumed
that M′ = M and M′ = M. However, in the dynamic convolution calculation mode, we
analyze its dynamic features and summarize the results in Equations (1) and (2).

M′ =



∅, M=M
M−M∩M(t), M∩M=∅
∅, M⊆M
M−M−

(
(M−M)∩M(t)

)
, M⊇M

M− (M∩M)−
(
(M− (M ∩M)) ∩M(t)

)
, |M ∩M| < min(|M|, |M|)

(1)

M′ =


∅, M = M
M, M ∩M = ∅
M−M, M ⊆ M
∅, M ⊇ M
M− (M ∩M), |M ∩M| < min(|M|, |M|)

(2)

1. When M = M, the attributes in the slide-in convolution area are the same as those in
the slide-out convolution area. Suppose the order of attributes of the formal context
are a, b, c, a, b. Given that the convolutional area contains attributes a, b, c, and the
attributes that slide in and slide out are a, b and a, b, respectively, then M(t) = {a, b, c},
M = {a, b} and M = {a, b}. We can then reason that M′ = ∅ and M′ = ∅, which
finally yields M(t+1) = M(t) ∪M′ −M′ = {c, a, b}.

2. When M 6= M, the attributes in the slide-in convolution area have four different
representations from those in the slide-out convolution area.

(a) When M ∩ M = ∅, the attributes in the slide-in convolution area are com-
pletely different from those in the slide-out convolution area at this time.
Suppose the order of attributes of the formal context are a, b, e, d, e. Given
that the convolutional area contains attributes a, b, c, and the attributes that
slide in and slide out are a, b and d, e, respectively, then M(t) = {a, b, e},
M = {d, e} and M = {a, b}. We can then reason that M ∩ M(t) = {e},
M′ = M − M ∩ M(t) = {d} and M′ = M = {a, b}, which finally yields
M(t+1) = M(t) ∪M′ −M′ = {d, e}.

(b) When M ⊆ M, the attribute that slides out of the convolution area at this time
contains the attribute that slides into the convolution area. Therefore, com-
pared with the attributes in the convolution area at the time t, there is actually
no slide-in attribute, but a slide-out attribute M−M. Suppose the order of
attributes in the formal context is a, b, c, a, a. Given that the convolutional area
contains attributes a, b, c, and the attributes that slide in and slide out are a, a
and a, b, respectively, then M(t) = {a, b, c}, M = {a} and M = {a, b}. We
can then reason that M′ = ∅ and M′ = M−M = {b}, which finally yields
M(t+1) = M(t) ∪M′ −M′ = {c, a}.
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(c) When M ⊇ M, the attribute sliding into the convolution area at this time
contains the attribute sliding out of the convolution area. Therefore, compared
with the attributes in the convolution area at time t, there are actually no
sliding-out attributes, but rather sliding-in attributes M − M. Suppose the
order of attributes in the formal context is a, a, a, b, c, b, a. Given that the con-
volutional area contains attributes a, a, a, b, and the attributes that slide in and
slide out are c, b, a and a, a, a, respectively, then M(t) = {a, b}, M = {c, b, a},
M = {a}. We can then reason that M′ = ∅. (M−M) ∩M(t) = {b} means a
property that is present in M but not in M, and which may have originally
existed in M(t). Therefore, M−M−

(
(M−M) ∩M(t)

)
= {c}, which leads

to M(t+1) = M(t) ∪M′ −M′ = {c, b, a}.
(d) When |M ∩ M| < min(|M|, |M|), the attributes in the slide-in convolution

area partially intersect with the attributes in the slide-out convolution area.
Suppose the order of attributes of the formal context are a, b, c, d, e, d, a. Given
that the convolutional area contains attributes a, b, c, d, and the attributes that
slide in and slide out are e, d, a and a, b, c, respectively, then M(t) = {a, b, c, d},
M = {e, d, a} and M = {a, b, c}. We can then reason that M′ = M − (M ∩
M) = {b, c}. The reason for subtracting (M− (M ∩M)) ∩M(t) = {d} is to
prevent M from adding the attributes that M(t) already contains. Therefore,
M − (M ∩ M) −

(
(M− (M ∩M)) ∩M(t)

)
= {e}, which leads to

M(t+1) = M(t) ∪M′ −M′ = {e, d, a}.
Further analysis is conducted to determine whether any of the attributes that slide

into the convolutional area already exist or not in the convolutional area at time t. If some
attributes already exist in the convolution area at time t, they do not affect the result when
they slide into the convolution window. These partially overlapping attributes, represented
as M−M ∩M(t) , should be removed.

The concept lattice reduction based on the new difference matrix requires regenerating
the concept and repeatedly performing merge operations at each slide. This results in
excessive redundancy in the calculation process and disqualification for the convolution
calculation model. The concept lattice reduction algorithm based on attribute features is
a classical attribute reduction algorithm with excellent performance compared to other
algorithms. Under the requirements (a∗∗−a)∗ 6= a∗ and Ga = {b|b ∈ A, b∗ ⊂ a∗}, we
can compute core and relative necessary and absolute unnecessary attributes with a time
complexity of O(|M|2). The algorithm flow chart based on attribute characteristics is shown
in Figure 5.
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Start

Input formal 

background FB

Yes

Yes

Mark attribute    as core 

attribute

Mark attribute    as 

absolutely unnecessary

Mark attribute    as 

relatively necessary

Yes

No

i=i-1

Removing identical 

attributes from relatively 

necessary attributes

Find the concatenation of 

relatively necessary 

attributes and core attributes

Output the formal 

background FB after 

reduction

End

No

No

i len(FB)=

i 0?

FB[i]a =

** * *( { })a a a− 

*

aG a

* *{ | , }aG b b A b a=  

a a a

Figure 5. Flow chart of the attribute feature-based attribute reduction algorithm.

3.2. Attribute Reduction Reasoning in Convolution Calculation

We investigate the influence of slide-in and slide-out attributes on the reduction set
Red(K) with the formal context K = (G, M, I) and summarize the rules.

When adding an attribute, we compare and analyze its effect on the reduction result
with the concept lattice. First, we identify the type of attribute, i.e., a core attribute, a
relative necessary attribute, and an absolute unnecessary attribute. Then, we investigate
how each type of attribute will be affected by adding that type of attribute to the concept
lattice. Finally, we obtain Theorems 1–3.

Theorem 1. Let K = (G, M, I) be the formal context, R the reduction of K, and a the attribute to
be added. If a∗ =

⋂
∃bi∈M bi

∗, then the reduction remains the same as R.

Proof. Since a∗ =
⋂
∃bi∈M bi

∗, it is clear from Definition 6 that the added attribute a is
unnecessary. Therefore, the added unnecessary attribute has no effect on the result of the
reduction, which means the reduction remains unchanged.

Theorem 2. Let K = (G, M, I) be the formal context, R the reduction of K, and a the attribute
to be added. If there exists an attribute bi ∈ M such that a∗ = bi

∗, then the reduction R
remains unchanged.

Proof. Since bi ∈ M, a∗ = bi
∗, according to Definition 6, it is known that the added attribute

a is a relative necessary attribute. Since a∗ = bi
∗, regardless of whether bi belongs to R,
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the added relative necessary attribute a has no effect on the reduction result, and thus the
reduction remains unchanged.

Theorem 3. Let K = (G, M, I) be the formal context, R the reduction of K, and a the attribute to
be added. If a∗ 6= ⋂

∀bi∈M bi
∗, and there is no d ∈ R such that d∗ = bi

∗ ∩ a∗, there exists bi ∈ M,
then the reduction is updated to R ∪ a. Conversely, if there exists d ∈ R, such that d∗ = bi

∗ ∩ a∗,
there exists bi ∈ M, then the reduction is updated to (R− d) ∪ {a}.

Proof. Since a∗ 6= ⋂
∀bi∈M bi

∗, it follows Definition 6 that the added attribute a is the
core attribute.

If ∀d ∈ R such that d∗ = bi
∗ ∩ a∗, there exists bi ∈ M, the reduction result is updated

to R ∪ {a}.
If there exists d ∈ R, satisfying d∗ = bi

∗ ∩ a∗, there exists bi ∈ M, it means that the
addition of attribute a causes the attribute d in the previous reduction results to become an
unnecessary attribute. Therefore, d needs to be removed from R, so the reduction result is
updated to (R− d) ∪ {a}.

The process for deleting an attribute is analogous. First, we determine the attribute
type, i.e., a core attribute, a relative necessary attribute, or an absolute unnecessary attribute.
Then, we investigate whether the attribute is already present in the result. If it holds, we
remove it from the result and reanalyze whether the attributes of associated attributes have
changed after its deletion. Otherwise, we analyze whether its deletion will impact the
reduction result. Based on these changes, we summarize Theorems 4–6.

Theorem 4. Let K = (G, M, I) be the formal context, R the reduction of K, and attribute a the
attribute to be deleted. If a∗ =

⋂
∃bi∈M−a bi

∗, then the reduction remains R.

Proof. Since a∗ =
⋂
∃bi∈M−a bi

∗, it is clear from Definition 6 that the deleted attribute a is
unnecessary. Therefore, the deleted unnecessary attribute a has no effect on the reduction,
i.e., the reduction R remains unchanged.

Theorem 5. Let K = (G, M, I) be the formal context, R the reduction of K, and attribute
a the attribute to be deleted. If a∗ 6= ⋂

∀bi∈M−a bi
∗ and there is no d ∈ M − R such that

d∗ 6= ⋂
∀bi∈M−a−d bi

∗, or d∗ =
(⋂
∃bi∈M−a−d bi

∗) ∩ a∗, then the reduction is updated to R− a.
Conversely, if a∗ 6= ⋂

∀bi∈M−a bi
∗ and there exists d ∈ M− R, such that d∗ 6= ⋂

∀bi∈M−a−d bi
∗,

or d∗ =
(⋂
∃bi∈M−a−d bi

∗) ∩ a∗, then the reduction is updated to (R− a) ∪ {d}.

Proof. Since a∗ 6= ⋂
∀bi∈M−a bi

∗, it follows from Definition 6 that the deleted attribute a is
the core attribute.

If a∗ 6= ⋂
∀bi∈M−a bi

∗ and there is no d ∈ M− R, such that either d∗ 6= ⋂
∀bi∈M−a−d bi

∗

or d∗ =
(⋂
∃bi∈M−a−d bi

∗) ∩ a∗ holds, then the attribute a degenerates from core to unneces-
sary, which means the reduction is updated to R− a.

If there exists d ∈ M− R such that d∗ 6= ⋂
∀bi∈M−a−d bi

∗, it means that there is a new
core attribute d generated after removing attribute a. Therefore, the reduction is updated to
(R− a) ∪ {d}.

If there exists d ∈ M − R, such that d∗ =
(⋂
∃bi∈M−a−d bi

∗) ∩ a∗, it means that d
is originally an unnecessary attribute. After removing attribute a, d∗ 6= ⋂

∀bi∈M−a−d bi
∗,

attribute d becomes the new core attribute, therefore it is necessary to add attribute d to the
reduction result, i.e., the reduction is updated to (R− a) ∪ {d}.

Theorem 6. Let K = (G, M, I) be a formal context, R the reduction of K, and a the attribute
to be deleted. If a ∈ R, there exists bi ∈ M such that a∗ = bi

∗, then the reduction update is
(R− a) ∪ {bi}. Conversely, if a ∈ M − R, there exists bi ∈ M such that a∗ = bi

∗, then the
reduction remains the same still as R. Let R be the reduction of K, and a is the attribute to be deleted.
If a ∈ R, there exists bi ∈ M such thata∗ = bi

∗, then the reduction is updated to (R− a) ∪ {bi}.
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Conversely, if a ∈ M− R, there exists bi ∈ M such that a∗ = bi
∗, then the reduction remains

the unchanged.

Proof. Since there exists bi ∈ M, such that a∗ = bi
∗, it follows from Definition 6 that the

deleted attribute a is relative necessary.
If a ∈ R, it means that the deletion of attribute a has effects on the existing reduction

result. Since a∗ = bi
∗, then bi replaces a in R, generating a reduction with constant number,

i.e., the reduction is updated to (R− a) ∪ {bi}.
If a ∈ M− R, it means that deleting the attribute a will have no effects on the existing

reduction result, and thus the reduction remains unchanged.

3.3. Complexity Analysis

Based on the theoretical study, a concept lattice attribute reduction algorithm for
dynamic convolution is designed. Sections 3.1 and 3.2 investigate the dynamic attribute
change mechanism and related theorems concerning dynamic attribute reduction in the
convolution calculation model. The goal is to address the attribute reduction issue of the
concept lattice, characterized by both incremental and decremental attribute reduction.
Algorithm 1 proposes a concept lattice attribute reduction algorithm based on dynamic
convolution (CLARA-DC). The classical attribute reduction algorithm does not apply to
the case where attributes are incremental and decremental at the same time. It not only
ignores the connection between the slide-in and slide-out attributes but also recomputes
all attributes, and thus the time complexity is O((|M|+ |N|)2). |M| and |N| refer to the
number of initial attributes and the number of added attributes, respectively. CLARA-DC
uncovers the connection between the slide-in attributes, slide-out attributes, and the initial
attributes before the reduction through Equations (1) and (2) in Step 1 and processes them
in advance, thus avoiding unnecessary computations. Meanwhile, CLARA-DC only needs
to compare the actual slide-in attributes and the initial attributes, and the time complexity
is O((|N|+ |M|)× |N|).

3.4. Example of CLARA-DC

Table 1 shows the formal context (G, M, I) for “students and courses”, where the set
of student objects G consists of objects 1, 2, 3, 4, 5, 6; the set of attributes M consists of
seven attributes: a, b, c, d, e, f , h. If (G, M) ∈ I, then the student has the course and it is
marked as 1 in the table; if (G, M) /∈ I, i.e., the student does not have the course, then it is
marked as 1 in the table; in the convolution area at time t, it contains only attributes a, b, c,
d, e. However, as the convolution window slides, at time t + 1, attributes d, e, f , h slide into
the convolution area, while attributes a, c, d, e slide out of the convolution area.

According to Definition 1, we obtain the concept of the corresponding form of data in
the convolutional area at time t. For instance, Object 1 has attributes b, c, and d, and only
Object 1 contains all three attributes. According to Definition 1, this is shown in Table 1.

We know that (1, bcd) is a formal concept; Object 2 has attributes a, d, e, but Objects 2
and 6 also contain the attributes a, d, e. Therefore, (2, ace) is not a formal concept according
to Definition 1. All formal concepts are thus determined according to Definition 1, as shown
in Table 2.

Table 2. Formal concepts corresponding to the formal contexts in Table 1.

Label Concept Label Concept

C1 (∅, abcde) C6 (36, abe)
C2 (1, bcd) C7 (126, d)
C3 (6, abde) C8 (1346, b)
C4 (16, bd) C9 (2356, ae)
C5 (26, ade) C10 (123456, ∅)
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Algorithm 1 CLARA-DC

Input: At time t, K(t) =
(

G(t), M(t), I(t)
)

is the formal context and reduction result is R(t).

At time t + 1, the attribute M of sliding into the convolution area and the attribute M of
sliding out of the convolution area.

Output: At the time of t + 1, the reduction result R(t+1).
1: Step 1: According to Equations (1) and (2), the actual sliding-in and sliding-out at-

tributes of t + 1 are computed, namely, M′ and M′.
2: Step 2: Iterate over the actual slide-in attribute M′, denoting one of the attributes by a.

According to Theorems 1–3, Rt is updated. Define R′ = Rt.
3: Step 2.1: If a∗ =

⋂
∃bi∈M bi

∗, then R′ = R′.
4: Step 2.2: If there exists bi ∈ M, such that a∗ = bi

∗, then R′ = R′.
5: Step 2.3: If a∗ 6= ⋂

∀bi∈M bi
∗ and there are no d ∈ R(t) such that d∗ =

(⋂
∃bi∈M bi

∗)∩
a∗, then R′ = R′ ∪ {a}.

6: Step 2.4: If a∗ 6= ⋂
∀bi∈M bi

∗ and there exists d ∈ R(t) such that d∗ =
(⋂
∃bi∈M bi

∗) ∩
a∗, then

(
R(t) − d

)
∪ {a}.

7: Step 2.5: Return to step 2 and take the next attribute of M′. Until all the attributes
in M′ are added to get the new reduction R′, go to step 3.

8: Step 3: Iterate over the actual slide-out attribute M′, and denote one of the attributes
by a. According to Theorems 4–6, R′ is updated.

9: Step 3.1: If a∗ =
⋂
∃bi∈M−a bi

∗, then R′ = R′.
10: Step 3.2: If a∗ 6= ⋂

∀bi∈M−a bi
∗ and there is no d ∈ M − R′ such that d∗ 6=⋂

∀bi∈M−a−d bi
∗ or d∗ =

(⋂
∃bi∈M−a−d bi

∗) ∩ a∗, then R′ = R′ − a.
11: Step 3.3: If a∗ 6= ⋂

∀bi∈M−a bi
∗ and there exists d ∈ M − R′ such that d∗ 6=⋂

∀bi∈M−a−d bi
∗ or d∗ =

(⋂
∃bi∈M−a−d bi

∗) ∩ a∗, then R′=(R′ − a) ∪ {d}.
12: Step 3.4: There exists bi ∈ M such that a∗ = bi

∗. If a ∈ R′, then R′ = (R′ − a)∪ {bi}.
However, if a∈M−R′, then R′ = R′.

13: Step 3.5: Return to Step 3 and take the next attribute of M′, until all the attributes
in M′ are deleted.

14: Step 4: Output R(t+1).

Formal concepts have certain partial order relations, and the concept lattice corre-
sponding to the formal context at the time t is shown in Figure 6a. According to Definition 6,
in the formal context, the core attributes are b, c, d and the relative necessary attributes are
a, e. One of the attribute reductions is R = { a, b, c, d}. The concept lattice corresponding
to the time t is shown in Figure 6b.

(1346, )b

(16, )bd

(1, )bcd

(2356, )ae (126, )d

(36, )abe

(6, )abde

(26, )ade

( , )G 

( , )M

(a)

(1346, )b

(16, )bd

(1, )bcd

( , )abcd

(2356, )a (126, )d

(36, )ab

(6, )abd

(26, )ad

( , )G 

(b)

Figure 6. Concept lattices before and after reduction in the convolution area at time t. (a) The concept
lattice before reduction. (b) The concept lattice after reduction.
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At time t + 1, the attributes sliding into the convolution area are d, e, f , h and the
attributes sliding out of the convolution area are a, c, d, e. According to the CLARA-DC
algorithm, the update reduction R = {a, b, c, d}.

Compute the actual slide-in and slide-out attributes f , h and a, c at time t + 1 according
to the Equations (1) and (2). The attributes f , h are related to the objects (36, f ), (24, h).

The attribute f is an unnecessary absolute attribute since f ∗ = a∗ ∩ b∗. Adding the
attribute f has no effects on the reduction, and thus the result of the reduction remains
unchanged, denoted as R′ = R = {a, b, c, d}.

For attribute h, since h∗ 6= ⋂
∀bi∈M bi

∗, and there is no d ∈ R′ such that d∗ = bi
∗ ∩ h∗,

there exists bi ∈ M, and thus attribute h is a core attribute, R′ = {a, b, c, d, h}.
For attribute a, since there is a ∈ R′ and there is e ∈ M− R′to make a∗ = e∗, attribute

a is thus a relative necessary attribute. Replacing e with a in R′ means that the reduction is
updated to R′ = (R′ − a) ∪ e = {b, c, d, e, h}.

For attribute c, since c∗ 6= ⋂
∀bi∈M−c bi

∗ and there is no d ∈ M − R′, such that
d∗ 6= ⋂

∀bi∈M−a−d bi
∗ or d∗ =

(⋂
∃bi∈M−a−d bi

∗) ∩ a∗, and thus attribute c is an absolute
unnecessary attribute, then the reduction is updated to R′ = R′ − c = {b, d, e, h}

The output is R′={b, d, e, h}. The corresponding concept lattice is shown in Figure 7.

(1346, )b (126, )d (2356, )e

(16, )bd (36, )be (26, )de

(6, )bde

(24, )h

(4, )bh

, )bdeh（

(2, )deh

( , )G 

Figure 7. Concept lattice after the reduction of the convolution area at time t + 1.

4. Experimental Analysis
4.1. Settings

The efficiency of the algorithm is verified by comparing the running time of the
algorithm. Four datasets from the UCI database (http://archive.ics.uci.edu/ml/datasets,
accessed on 3 August 2022) are selected for the experiment. The basic information of these
datasets is shown in Table 3. All data are processed by binary and dummy variables. The
experimental platform is Windows 11, the CPU is Intel i5-9400F, the memory is 16 GB, the
language is Python, and the coding software is PyCharm 2022. All experimental results
are repeated five times, and the average values are reported. The time function in the time
module in Python calculates the running time of a program with an accuracy down to the
microsecond level. We use it to obtain the running time of the model for the conceptual
lattice reduction.

4.2. Results

We compare the time consumed by the CLARA-DC algorithm and the classical at-
tribute reduction algorithm proposed in the paper [39] on four datasets. Nursery, Mush-
room, Anonymous Microsoft Web Data, and Transposed Mushroom are respectively abbre-
viated as Nurs, Mush, AMWD, and T-Mush.The results are shown in Table 3.

http://archive.ics.uci.edu/ml/datasets
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Table 3. Comparisons between classical attribute reduction algorithm and CLARA-DC.

Nurs Mush AMWD T-Mush

|G| × |M| 12, 960 × 30 8124× 115 32, 710× 30 115× 8124
Concepts 154,005 233,101 129,009 233,101

Classic [39] 0.997 ms 7.718 ms 158.643 ms 17.541 s
CLARA-DC 1.002ms 5.556 ms 96.286 ms 11.437s

As shown in Table 3 and Figure 8, the proposed CLARA-DC is more efficient than the
classical reduction algorithm.The units in Figures 8a–c are milliseconds, whereas the units
in Figure 8d are seconds.

(a) Nurs (b) Mush (c) AMWD (d) T-Mush

Figure 8. Comparative experimental results.

We first examine the normality of the experimental results on different datasets from
Table A1 and find that it basically conforms to normal distribution. Therefore, we performed
the independent samples test by SPSS software to obtain the following metrics, which are
“F” and “sig.” in Levene’s test, and “t”, “df”, “Sig. (2-tailed)” and “Mean Difference” in
t-test for equality of means. In Levene’s test for equality of variances, “F” represents the
test statistic. It is the ratio of the between-groups variability to the within-groups variability.
A larger F value indicates a larger difference in variances among the groups. In t-test, “Sig.”
stands for significance, which is the p-value associated with the “F” statistic. It indicates
the probability of obtaining the observed data that variances between the compared results
are statistically equal (the null hypothesis) holds. If the p-value (Sig.) is less than the
chosen significance level (α = 0.05), we can conclude that there are significant differences
in the variances across groups. “t” is the test statistic. It measures how much the groups
differ by standardizing variability of the two groups. A larger absolute value of t indicates
a larger difference between the groups relative to the variability within the groups.“df”
stands for degrees of freedom, which is the expected number of independent pieces. In the
context of a t-test, it is typically the total sample size across all groups minus the number
of groups. “Sig. (2-tailed)” represents the p-value for a two-tailed t-test. It estimates the
probability of observing the lower and upper bound of mean value in the compared groups
are statistically equal under the t-distribution (the null hypothesis). If the p-value is less
than the chosen significance level (α = 0.05), we would reject the null hypothesis and
conclude that there is a significant difference between the means of the groups. “Mean
Difference” is the difference between the means of the two groups being compared. It
illustrates how much the groups differ in terms of their means. The sign of the mean
difference reveals the direction of this difference.

By comparing different datasets in Table 4, we find that the “Sig.” of the datasets Mush,
AMWD, and T-Mush are all less than 0.05, which means that the experimental results of the
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two algorithms on these datasets are significantly different in terms of variance. Then, we
should check the “Sig. (2-tailed)” of the line “Equal variances not assumed” and find that
they are all less than 0.05. So, we conclude that there is a significant difference between the
means of the two algorithms. Although the “Sig.” of the dataset Nurs is greater than 0.05,
according to the line “Equal variances assumed”, we find that “Sig. (2-tailed)” is much
smaller than 0.05, which demonstrates that there is still a significant difference in the mean.

Table 4. Independent samples test between classical attribute reduction algorithm and CLARA-DC.

F Sig. t df
Sig.

(2-Tailed)
Mean

Difference

Nurs Equal variances assumed 0.000 1.000 −5.976 8 <0.001 −0.005
Equal variances not assumed −5.976 7.840 <0.001 −0.005

Mush Equal variances assumed 7.673 0.024 6.920 8 <0.001 2.162
Equal variances not assumed 6.920 5.266 <0.001 2.162

AMWD Equal variances assumed 5.530 0.047 10.739 8 <0.001 62.357
Equal variances not assumed 10.739 5.635 <0.001 62.357

T-Mush Equal variances assumed 8.857 0.018 14.715 8 <0.001 6.104
Equal variances not assumed 14.715 4.341 <0.001 6.104

4.3. Discussions

CLARA-DC has a significant improvement over the classical algorithm and is able to
improve efficiency by an average of 25% over the four datasets. This is primarily due to the
CLARA-DC algorithm’s ability to analyze actual slide-in and slide-out attributes through a
convolution calculation model and update existing results after each simultaneous slide-in
and slide-out attribute. In contrast, the classical attribute reduction algorithm requires re-
computation every time, resulting in slower computational efficiency. Although the dataset
Nurs contains a large number in objects, the attribute count is small. Both the classical
attribute reduction algorithms and CLARA-DC perform an excellent job of reducing the
number of attributes since there is no noticeable difference. AMWD has the same number
of attributes and roughly three times as many objects as Nurs; however, the consumed
computation complexity roughly a hundred times larger. This is not only due to differences
within the dataset but also the fact that the time consumed increases exponentially with the
size of the dataset. We speculate that this may stem from the fact that the Nurs dataset con-
tains more relatively necessary attributes and absolutely unnecessary attributes and thus
no longer participates in the comparison computation after being reduced. By comparing
Mush and T-Mush, we believe that the influence of attributes is much larger than objects
on the same size dataset, which is in line with the time complexity of attribute reduction
increases exponentially with attributes and linearly with objects. By comparing the data on
the four datasets, it can be observed that CLARA-DC has a significant superiority on large
scale datasets.

Discarding existing reduction results and regenerating the reduction by directly up-
dating the formal context can be time-consuming and require a large convolution area for
data generation and storage. The more attributes there are, the longer attribute reduction
takes. This is particularly significant in a streaming big data environment, where reducing
huge amounts of streaming data can consume significant time and space. However, the
algorithm proposed in the paper updates based on current reduction results, significantly
reducing its time complexity. Equations (1) and (2) mentioned in Section 4 are for data
preprocessing. Compared with data preprocessing algorithms, the proposed method effec-
tively reduces experimental steps and improves algorithm efficiency. For the example in
Section 3.4, updating the reduction without preprocessing involves sliding-in attributes d,
e, f , h and sliding-out attributes a, c, d, e, respectively. This requires eight traversals of the
concept lattice. According to Equations (1) and (2) mentioned in Section 3, the slide-in and
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slide-out attributes are f , h and a, c, respectively, so the entire update process only requires
four traversals of the concept lattice. This greatly reduces the time complexity.

Although the paper innovatively combines concept lattice and CNN, we think there is
not enough depth. There are more possibilities for combining deep learning and concept
lattice to be explored. Meanwhile, additional comparative experiments of CLARA-DC
on more datasets may need to be conducted to examine the performance differences on
various datasets.

5. Conclusions

In this paper, we present a novel concept lattice attribute reduction algorithm based
on dynamic convolutional computation (CLARA-DC). The algorithm utilizes the dynamic
nature of sliding windows in convolutional computation models to incrementally and
decrementally update the concept lattice attributes. We analyzed the impacts of attribute
sliding in and out of the convolutional area on the reduction set and summarized the
corresponding theorems and rules. By modeling the five changes within the convolutional
area, the original information stored there can be leveraged more efficiently. This greatly
improves the efficiency of concept lattice reduction and accelerates concept lattice reduction
based on dynamic convolution.

We also explored the possibility of applying our method to dynamic attribute change
modeling in convolutional computation. Our research provides a novel and efficient
approach to concept lattice attribute reduction that can adapt to attribute increments
and decrements simultaneously in large-scale data stream. We conducted experimental
comparisons on four UCI datasets, and the results showed that our algorithm is statistical
superior in efficiency and scalability when processing large-scale datasets, with an average
performance improvement of 25%. It is also verified that CLARA-DC has a significant
difference and advantage in time using an independent samples test. Considering the
data size and time overhead for each dataset, it is verified that CLARA-DC has a notable
performance in dealing with streaming.

Theoretical analyses and case studies demonstrate that fast attribute reduction of
concept lattices in dynamic convolution calculation models is a feasible method for dynamic
knowledge mining. Constructing a theoretical system for dynamic knowledge discovery
based on concept lattices is important. This will allow deducing a more robust theoretical
framework when integrating concept lattices and deep learning. This paper establishes a
bridge between concept lattice theory and CNN, expanding the research scope and progress
of both in different fields and applications.

In future, we will explore the combination and possibility of the dynamic convolution-
based concept lattice attribute reduction algorithm with other deep learning models, such
as neural networks, graph convolutional networks, etc. We intend to leverage the powerful
expression ability of deep learning and the clear logical structure of concept lattices to
construct more efficient and interpretable learning models. We also try to apply the dynamic
convolution-based concept lattice attribute reduction algorithm to other fields, such as
image processing, natural language processing, knowledge discovery, etc., to study its
advantages and limitations in solving practical problems.
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Abbreviations
The following abbreviations are used in this manuscript:

CNN convolutional neural network
GNN graph neural network
GCN graph convolution network
CLARA-DC concept lattice attribute reduction algorithm based on dynamic convolution
Nurs Nursery
Mush Mushroom
AMWD Anonymous Microsoft Web Data
T-Mush Transposed Mushroom

Appendix A

Table A1. Raw results for classical attribute reduction algorithm and CLARA-DC.

Nurs (ms) Mush (ms) AMWD (ms) T-Mush (s)

Classical

0.997 7.632 146.640 17.461
0.999 7.342 168.620 16.972
0.995 7.696 173.015 18.557
0.997 7.903 156.290 18.326
0.997 8.017 148.650 16.391

CLARA-DC

1.002 6.480 90.790 11.431
1.003 5.980 98.770 11.301
1.003 5.260 97.794 11.211
1.000 4.980 103.320 11.579
1.002 5.080 90.756 11.663
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