
Citation: Liu, L.; Gao, J.; Beasley, G.;

Jung, S.-H. LASSO and Elastic Net

Tend to Over-Select Features.

Mathematics 2023, 11, 3738. https://

doi.org/10.3390/math11173738

Academic Editor: Tihomir

Dovramadjiev

Received: 1 August 2023

Revised: 27 August 2023

Accepted: 28 August 2023

Published: 30 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

LASSO and Elastic Net Tend to Over-Select Features
Lu Liu 1, Junheng Gao 1, Georgia Beasley 2,3 and Sin-Ho Jung 1,*

1 Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA;
lu.liu1@duke.edu (L.L.); junheng.gao@duke.edu (J.G.)

2 Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA;
georgia.beasley@duke.edu

3 Duke Cancer Institute, Durham, NC 27710, USA
* Correspondence: sinho.jung@duke.edu

Abstract: Machine learning methods have been a standard approach to select features that are
associated with an outcome and to build a prediction model when the number of candidate features is
large. LASSO is one of the most popular approaches to this end. The LASSO approach selects features
with large regression estimates, rather than based on statistical significance, that are associated with
the outcome by imposing an L1-norm penalty to overcome the high dimensionality of the candidate
features. As a result, LASSO may select insignificant features while possibly missing significant
ones. Furthermore, from our experience, LASSO has been found to select too many features. By
selecting features that are not associated with the outcome, we may have to spend more cost to
collect and manage them in the future use of a fitted prediction model. Using the combination of
L1- and L2-norm penalties, elastic net (EN) tends to select even more features than LASSO. The
overly selected features that are not associated with the outcome act like white noise, so that the
fitted prediction model may lose prediction accuracy. In this paper, we propose to use standard
regression methods, without any penalizing approach, combined with a stepwise variable selection
procedure to overcome these issues. Unlike LASSO and EN, this method selects features based
on statistical significance. Through extensive simulations, we show that this maximum likelihood
estimation-based method selects a very small number of features while maintaining a high prediction
power, whereas LASSO and EN make a large number of false selections to result in loss of prediction
accuracy. Contrary to LASSO and EN, the regression methods combined with a stepwise variable
selection method is a standard statistical method, so that any biostatistician can use it to analyze
high-dimensional data, even without advanced bioinformatics knowledge.
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MSC: 62J99

1. Introduction

Big data usually have a large number of features, also called predictors or covariates,
that are potentially associated with an outcome, so that they require new analysis meth-
ods [1]. Such big data are called high-dimensional data. Machine learning (ML) methods
have been widely used to build prediction models from high-dimensional data, in place
of traditional statistical methods. However, it still needs more investigations to recognize
their superiority over the standard statistical methods for the analysis of clinical big data.
In this paper, we assume that only a small number of candidate features are associated
with the outcome.

Least absolute shrinkage and selection operator (LASSO: [2]) has been popularly
used for prediction model fitting since it can be used for any types of regression models
depending on the type of outcome variable. There are some issues with LASSO. LASSO
tends to over-select features, so that the selected features with insignificant or no association
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with the outcome will play the role of noise in the fitted prediction model and lower the
prediction accuracy. If a fitted prediction model includes a large number of features, it often
incurs additional cost. For example, suppose that we want to develop a model to predict
patients’ outcomes based on gene expression data. At the development stage, we usually
use commercial microarray chips with thousands of genes. Once a prediction model is
fitted, we usually develop customized chips including only the genes selected for the fitted
prediction model to increase the assay accuracy and lower the price of chips [3]. If the
number of selected genes is too large, the decrease in price of the customized chips and
the increase in assay accuracy can be minimal while sacrificing prediction performance
due to falsely selected genes. As another example, suppose that we want to develop a
model to predict the shopping behavior of customers using big data for a retailer (e.g.,
https://www.sprintzeal.com). Once a prediction model is fitted, the retailer using the fitted
model will have to keep collecting the features included in the fitted model and manage
them to increase the sales volume. In this case, if the number of selected features is too
large, these activities can be unnecessarily costly. As in the microarray example, falsely
selected features will also result in the loss of prediction accuracy.

Using the L1-norm penalty, LASSO selects features based on the size of regression
coefficients, rather than their statistical significance associated with the outcome variable.
We standardize feature observations in an effort to make the distributions of features similar
and to make the variable selection based on the size of regression coefficients as similar as
that based on the statistical significance [4]. However, no known standardization method
removes this issue completely, especially when the features have different variable types.
For example, if some features are continuous and some are binary, then it is impossible to
make the distributions the same by any standardization or transformation, so that the fitted
prediction model can include insignificant features while missing some significant ones.
Elastic net (EN: [5]) uses a combination of L1-norm and L2-norm penalties, which is less
strict than the L1-norm penalty, so that it has more serious problems in these issues.

As an alternative to LASSO and EN, we investigate the use of a standard (un-penalized)
regression method combined with a stepwise variable selection procedure to develop a
prediction model from high-dimensional data. While the penalized ML methods provide 0-
shrinkage estimators, even for a reduced model [6], regression methods equipped with the
stepwise variable selection procedure provide the standard maximum likelihood estimators.
Furthermore, unlike LASSO and EN, the standard regression methods provide the statistical
significance of the regression coefficients for the features included in fitted prediction
models with standardization of feature distributions.

There have been numerous items in the literature comparing the performance between
logistic regression and some ML methods and claiming that the latter do not have bet-
ter prediction performance than the former [7–13]. Most of these findings, however, are
anecdotal in the sense that their conclusions are based on real-data analyses, without any
systematic simulation studies. While these publications are limited to classification prob-
lems using binary outcomes, Kattan [14] compared the performance of ML methods for
survival outcomes with that of Cox’s regression method [15] using three urological data
sets. For all of the real data sets, the numbers of cases are large, but those of features are
not so big that they are not high-dimensional data. Although this type of data may have a
big size due to the large number of cases, we do not have any difficulty in analyzing them
using a standard regression method. Limited to real-data analyses only, these studies do
not provide systemic evaluation of machine learning methods for high-dimensional data.

There have been some publications comparing stepwise selection and LASSO, and our
paper extends their findings. Hastie et al. [16] conducted extensive simulations to compare
the prediction accuracy of forward stepwise variable selection and LASSO for standard
linear regression with a continuous outcome. There are some studies that use real data
sets to compare the prediction performance of stepwise variable selection procedure,
LASSO and EN [17,18]. Our paper conducts extensive simulations and real-data analysis
to compare both variable selection and prediction performance for high-dimensional data.

https://www.sprintzeal.com
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While the above studies consider prediction performance only, we also investigate over-
selection issue in regression models for binary and time-to-event outcomes. The previous
studies used stepwise procedure, selecting the final model based on model fitting criteria
such as R-square or AIC/BIC, while ours is based on p-values to control the significance
level of selected features.

In this paper, we compare the variable selection performance of LASSO and EN with
the standard statistical regression methods combined with a stepwise variable selection
procedure. We conduct extensive simulations for binary outcomes using logistic regression
and survival outcomes using the Cox regression model. The performance of the prediction
methods are evaluated by mean true selections and mean total selections from training
sets and measures of association between fitted prediction model and observed outcome
for both training and validation sets. We demonstrate these comparisons using a real
data set. Through these numerical studies, We find that LASSO and EN tend to over-
select features, while prediction accuracy is no better than that of the standard regression
methods equipped with stepwise variable selection, which selects a much smaller number
of features.

2. Materials and Methods

We compare the performance of the stepwise method, LASSO, and EN using simu-
lations and analysis of real data by Farrow et al. [19]. We briefly review these prediction
methods and the parameters to measure their performance.

The traditional generalized linear model for binary outcomes is logistic regression with
stepwise variable selection (L-SVS) and that for time-to-event outcomes is Cox regression
with stepwise variable selection (C-SVS). Suppose that there are n subjects, and we observe
an outcome variable y and m features (x1, . . . , xm) from each subject. The resulting data
will look like {yi, (x1i, . . . , xmi), i = 1, . . . , n}. For high-dimensional data, m is much bigger
than n, while the number of features that are truly associated with the outcome, denoted as
m1, is often small. We will consider a hold-out method to partition the whole data set into
training and a validation sets.

2.1. Statistical Models

For k� n, let Z = (z1̃, . . . , zk̃)
T denote a subset of the features that are possibly related

with an outcome variable, and β = (β1̃, . . . , βk̃)
T their regression coefficients.

2.1.1. Logistic Regression

The logistic regression method is popularly used to associate a binary outcome y
taking 0 or 1 with features [20]. For P(y = 1) ≡ pβ0,β(Z), a logistic regression model is
given as

log
pβ0,β(Z)

1− pβ0,β(Z)
= β0 + βTZ

where β0 is the intercept term. For given Zi, yi’s are independent Bernoulli random
variables with success probabilities, pβ0,β(Z), regression coefficients (β̂0, β̂1̃, . . . , β̂k̃) are
estimated by maximizing the log-likelihood

`1(β0, β) =
n

∑
i=1

[yi log pβ0,β(Zi) + (1− yi) log{1− pβ0,β(Zi)}]

with respect to (β0, β1̃, . . . , βk̃).

2.1.2. Cox’s Proportional Hazards Model (PHM)

The Cox’s PHM is commonly used to relate a survival outcome with covariates.
For subject i(= 1, . . . , n), let yi denote the minimum of survival time and censoring time,
and δi the event indicator, taking 1 if yi is the survival time and 0 if yi is the censoring
time. A data set will be summarized as {(yi, δi), (z1i, . . . , zmi), i = 1, . . . , n}. The basic
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assumption for survival data is that, for each subject, censoring time is independent of
survival time given covariates. Using a Cox’s PHM, we assume that the hazard function,
hi(t), of subject i’s survival time is expressed as

hi(t) = h0(t)eβT Zi

at time t, where h0(t) denotes the baseline hazard. By Cox [15], the regression coefficients
are estimated by maximizing the partial log-likelihood function

`2(β) =
n

∑
i=1

δi

{
Zi −

∑n
j=1 I(yj ≥ yi)Zj exp(βTZj)

∑n
j=1 I(yj ≥ yi) exp(βTZj)

}
where I(·) is the indicator function.

2.1.3. Stepwise Variable Selection (SVS)

One of the challenges of high-dimensional data is that the number of candidate
features, m, is much larger than the sample size, n. So, variable selection (or dimension
reduction) is a critical procedure in prediction model building using high-dimensional data.
Popular variable selection methods for standard regression methods include the forward
stepwise procedure (also called SVS in this paper), the backward elimination procedure,
and all possible combination procedures. For high-dimensional data, however, backward
elimination and all possible combination procedures do not work because the estimation
procedure of regression models with a large number of covariates does not converge. SVS
is very useful, especially when the number of covariates that are truly associated with the
outcome is small. It starts with an empty model (or one with an intercept term only for
the logistic regression model) and in each step the most significant covariate is added to
the model if its p-value is smaller than α1, and the extraneous covariates are eliminated if
they become insignificant by adding a new variable (i.e., if their p-values are larger than
α2). This procedure continues until no more covariates are added to the current model.
Before starting an analysis using the stepwise procedure, we pre-specify the alpha levels,
α1 for insertion and α2 for deletion, usually α1 < α2. By the selection of alpha levels, we
can control the significance and number of covariates selected for a prediction model.

Some existing stepwise programs, including SAS, use penalized likelihood criteria
such as Akaike information criterion (AIC) or Bayesian information criterion (BIC) instead
of specifying the significance level. As such, by these methods, we do not know how signif-
icant the selected covariates are and we cannot control the number of selected covariates.

2.2. Machine Learning Methods
2.2.1. LASSO

LASSO [2] is a regularized regression method with an L1-norm penalty to the objective
function of traditional regression models. For binary outcomes, LASSO adds an L1-norm
penalty term to the negative log-likelihood function for a logistic regression and estimates
the regression parameters by minimizing

−`1(β0, β) + λ||β0, β||1

with respect to (β0, β, λ).
For time-to-event outcomes, LASSO adds an L1-norm penalty to the negative log-partial

likelihood function for a PHM and estimates the regression parameters by minimizing

−`2(β) + λ||β||1

with respect to (β, λ) [21]. In this paper, tuning parameter λ is selected to minimize the
regularized objective function using an internal cross-validation [2,21].
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2.2.2. Elastic Net

EN [5] is a generalized regularized model with both L1- and L2-norm regulariza-
tion terms added to an objective function. For logistic regression with binary outcomes,
the regression parameters are estimated by minimizing

−`1(β0, β) + λ1||β0, β||1 + λ2||β0, β||22

with respect to (β0, β, λ1, λ2). For Cox regression with time-to-event outcomes, regression
parameters are estimated by minimizing

−`2(β) + λ1||β||1 + λ2||β||22

with respect to (β, λ1, λ2). As in LASSO, in this paper, the tuning parameters (λ1, λ2) are
obtained by minimizing the regularized objective function using an internal cross-validation.

2.3. Performance Measurements

In our simulation studies, we evaluate the variable selection performance of prediction
methods by total selection (i.e., total number of selected covariates) and true selection
(i.e., the number of selected covariates that are truly associated with the outcome). Let β̂
denote the vector of estimated regression coefficients and Z the vector of corresponding
covariates in the current regression model. Then, r = β̂TZ represents the risk score of a
subject with covariate Z. For a data set with a binary outcome, {(yi, Zi), i = 1, . . . , n},
the precision of a fitted prediction model can be evaluated by the AUC of an ROC curve
generated by {(yi, ri), i = 1, . . . , n}, where ri = β̂TZi. A large AUC close to 1 means
good accuracy of the fitted prediction model. On the other hand, for a data set with a
survival outcome, {(yi, δi), Zi, i = 1, . . . , n}, the precision of a fitted prediction model can
be evaluated by calculating Harrell’s concordance C-index between (yi, δi) and ri = β̂TZi.
For a survival outcome, we also calculate − log10 (p-value) for the univariate Cox PHM
to regress (yi, δi) on ri. A large negative log p-value means a high accuracy of the fitted
prediction model.

All modeling and analyses are conducted using open-source R software, R Foundation
for Statistical Computing. The simulation is conducted under version 3.6.0 and the real-data
analysis is conducted under version 4.2.2. The R packages and functions we use for LASSO
is cv.glmnet from glmnet package, and that for EN is trained from the caret package. We
developed our R function to perform R-SVS selecting variables based on the significance
level of covariates.

3. Results
3.1. Impact of Over-Selection

First, we investigate the impact of over-selection on prediction accuracy. Since LASSO
and EN do not control the number of selections, we use the standard logistic and Cox regres-
sion methods equipped with SVS, called L-SVS and C-SVS, respectively, which can control
the number of selections by choosing different alpha levels for insertion and deletion.

We generate n = 400 samples of m = 1000 candidate predictors from a multivariate
Gaussian distribution with means 0 and variances 1, consisting of 10 independent blocks
with a block size of 100. Each block has a compound symmetry correlation structure with a
common correlation coefficient ρ = 0.1. We assume that m1 = 5 or 10 true predictors of the
m = 1000 candidate predictors are associated with the outcome.

First, we consider a binary outcome case. For subject i(= 1, . . . , n) with true predictors
z̃i = (z1̃i, . . . , zm̃1i)

T , the binary outcome yi is generated from a Bernoulli distribution with
the logistic regression model

pi = P(yi = 1) =
exp(β0 + βT z̃i)

1 + exp(β0 + βT z̃i)
,
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where β = (β1̃, . . . , βm̃1)
T is a vector of regression coefficients corresponding to the true

predictors z̃i. We consider two scenarios for choosing true predictors: the first (S1) is
to choose all m1 predictors in the first block and the second (S2) is to choose one pre-
dictor from each of the m1 different blocks. The true regression coefficients are set at
β l̃ = (−1)l+1 ∗ 0.7, l = 0, 1, . . . , m1. We use 50–50 hold out, i.e., n1 = 200 samples for
training and the remaining n2 = 200 samples for validation.

We apply L-SVS to each training set to fit a prediction model and count the total
selection and the true selection included in the fitted model. Let Z denote the vector
of predictors selected for the fitted model and β̂ the vector of corresponding regression
estimates. We estimate the AUC of the ROC curve using the fitted risk score ri = β̂TZi and
binary outcome yi using the training set and the validation set. We repeat this simulation
N = 100 times and calculate mean total selection and true selection for the training sets
and the mean AUC for the training and validation sets. Note that the AUC for a training
set measures how well the estimated prediction model fits the training data. Due to the
over-fitting, the estimated model tends to fit the training set better by including more
predictors in the model, so that the AUC from a training set does not measure the real
prediction accuracy of a fitted model [22]. Instead, the true prediction accuracy of a fitted
model will be measured by the AUC from an independent validation set. We use SVS with
various α1 levels for inclusion by keeping the α2 value for deletion twice the size of α1,
i.e., α2 = 2α1.

For m1 = 5, Figure 1a presents mean true selection (dotted line) and total selection
(solid line) from the training sets, and Figure 1b presents mean AUC for the validation sets
(dotted line) and training sets (solid line). We find that mean total and true selections quickly
increases by increasing α1 level up to 0.01, but becomes stable after that. Even though
we increase α1 over the 0.01 level, L-SVS will not select much more predictors. On the
other hand, from Figure 1b, the prediction models fit the training sets better (i.e., mean
AUC increases) by increasing α1 level, and the models select more predictors. However,
the prediction accuracy (AUC for validation sets) decreases for α1 > 0.002, probably
because of the large number of falsely selected predictors. We observe similar results under
(S1) and (S2) settings.

When m1 = 10, we observe similar results from Figure 2. The only difference is
that, with a larger number of true predictors, the proportion of false selections is smaller
(Figure 2a) than when m1 = 5 (Figure 1a), so that the prediction accuracy decreases rather
slowly than when m1 = 5 after around α1 = 0.005 (Figure 2b).

For simulations on survival outcomes, we generate covariate vectors as in the binary
outcome case. For subject i(= 1, . . . , n) with true predictors zi = (z1̃i, . . . , zm̃1i)

T , the hazard
rate of the survival time is given as

hi(t) = h0eβTzi

where β = (β1̃, . . . , βm̃1)
T is a vector of the regression coefficients for the true predictors zi.

We set β l̃ = (−1)l+1 ∗ 0.4, l = 1, 2, . . . , m1 and h0 = 0.1 under both (S1) and (S2).
We assume m1 = 5 or 10 true predictors. Censoring times are generated from a uniform
distribution, U(0, a) for 30% of censoring for a selected accrual period a. With the accrual
period a fixed, we also generate 10% of censoring from U(a, a + b) by a selected additional
follow-up period b. We apply C-SVS to each training set. Let Z denote the vector of
predictors selected by C-SVS and β̂ the vector of their regression estimates. We count
the total selections and true selections for the fitted prediction model. We fit a univariate
Cox regression of the survival outcome (yi, δi) on a covariate ri = β̂TZi using each of the
training and validation sets and calculate the p-value. We also estimate the association
between the risk score ri and the outcome (yi, δi) by Harrell’s C-index using each of the
training and validation sets. Note that large −log10 p-value and C-index from the training
set mean that the prediction model fits the training set well, while those from a validation
set mean that the fitted prediction model has a high accuracy. From N = 100 simulation
replications, we calculate the mean total and true selections from the training sets and the
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mean −log10 p-value and C-index from training and validation sets. C-SVS is performed
using various α1 values with α2 = 2α1.
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Figure 1. Simulation results of logistic regression with forward stepwise variable selection for various
α1 levels for insertion and α2 = 2α1 for deletion under (S1) and (S2), and m1 = 5 true covari-
ates. (a) Mean total selection and true selection in training sets for α1-level for inclusion (α2 = 2α1

for deletion). (b) Mean AUC in training and validation sets for α1-level for inclusion (α2 = 2α1

for deletion).

Figure 3 reports the simulation results for m1 = 5 for a range of α1 values. From
Figure 3a, we find that the true selection is slightly higher, with 10% censoring for both
(S1) and (S2) models. For both (S1) and (S2) and both 30% and 10% censoring, mean
total and true selections increase in α1, so that −log10 p-value and C-index increase for
the training sets, as demonstrated by the solid lines in Figure 3b,c. By increasing α1,
however, the number of false selections also increases, so that −log10 p-value and C-index
decrease for the validation sets, as demonstrated by the dotted lines in Figure 3b,c. That is,
over-selection lowers the accuracy of fitted prediction models.



Mathematics 2023, 11, 3738 8 of 16

3.61

5.63

12.5

17.73

18.99

20.02 20.31

2.7

3.65

4.78
5.23 5.32 5.37 5.37

Total Selection

True Selection
5

10

15

20

0.000 0.005 0.010 0.015 0.020 0.025
Nominal type I error for inclusion

N
um

be
r 

of
 a

ve
ra

ge
 s

el
ec

tio
n

S1

4.14

6.04

12.81

16.94

18.37

19.61
19.94

3.16

3.95

5.17 5.34 5.4 5.5 5.51

Total Selection

True Selection5

10

15

20

0.000 0.005 0.010 0.015 0.020 0.025
Nominal type I error for inclusion

N
um

be
r 

of
 a

ve
ra

ge
 s

el
ec

tio
n

S2

(a)

0.78

0.84

0.94

0.98 0.98 0.98 0.98

0.65

0.67 0.67
0.66 0.66 0.66 0.66

Training Set

Validation Set

0.7

0.8

0.9

1.0

0.000 0.005 0.010 0.015 0.020 0.025
Nominal type I error for inclusion

A
U

C
 v

al
ue

S1

0.81

0.85

0.95

0.98 0.98 0.98 0.98

0.68
0.69 0.69

0.68
0.67 0.67 0.67

Training Set

Validation Set

0.7

0.8

0.9

0.000 0.005 0.010 0.015 0.020 0.025
Nominal type I error for inclusion

A
U

C
 v

al
ue

S2

(b)
Figure 2. Simulation results of logistic regression with forward stepwise variable selection for various
α1 levels for insertion and α2 = 2α1 for deletion under (S1) and (S2), and m1 = 10 true covari-
ates. (a) Mean total selection and true selection in training sets for α1-level for inclusion (α2 = 2α1

for deletion). (b) Mean AUC in training and validation sets for α1-level for inclusion (α2 = 2α1

for deletion).

Figure 4 reports the simulation results for m1 = 10. The mean total and true selections
(Figure 4a), and −log10 p-value and C-index for training sets (the solid lines of Figure 4b,c)
increase in α1 as in the case of m1 = 5. With a larger number of true predictors, however,
due to the increase in the proportion of false selections, the prediction accuracy, that
is measured by −log10 p-value and C-index in the validation sets (the dotted lines of
Figure 4b,c), decreases after a brief increase up to α1 = 0.002, except for model (S1) with
10% of censoring.
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Figure 3. Simulationresults of Cox regression with forward stepwise variable selection for various α1

levels for insertion and α2 = 2α1 for deletion under (S1) and (S2), 30% and 10% censoring, and m1 = 5
true covariates. (a) Mean total selection and true selection in training sets. (b) Mean negative log10
p-value in training and validation sets. (c) Mean Harrell’s C-index in training and validation sets.
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Figure 4. Simulation results of Cox regression with forward stepwise variable selection for various
α1 levels for insertion and α2 = 2α1 for deletion under (S1) and (S2), 30% and 10% censoring,
and m1 = 10 true covariates. (a) Mean total selection and true selection in training sets. (b) Mean
negative log10 p-value in training and validation sets. (c) Mean Harrell’s C-index in training and
validation sets.

3.2. Comparison of Prediction Methods

Using the simulation data sets for Figures 1 and 2, we compare the performance of
LASSO, EN, and L-SVS with (α1, α2) = (0.002, 0.004). By applying each of these prediction
methods to each training set, we estimate the same performance measures of Figures 1 and 2.
The simulation results are summarized in Table 1. Since the L1-norm penalty is stricter
than the L2-norm penalty, LASSO has smaller true selections than EN, which employs a
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combination of L1- and L2-norm penalties. Note that LASSO and EN select a large number
of predictors, while L-SVS selects only slightly over 5 predictors in total. By selecting a
large number of predictors, the two ML methods have a slightly larger true selection and
slightly better fitting (i.e., a larger AUC) than L-SVS for the training sets. For validation
sets, however, AUCs of the ML methods are no larger than that of L-SVS. We have this
kind of results because the large false selections of the ML methods act like error terms
and lower the prediction accuracy. L-SVS has better (or comparable under S2) prediction
accuracy, even with a slightly smaller number of true selections (and much smaller total
selections under S2) than LASSO and EN. Overall, we have similar simulation results
between (S1) and (S2). In conclusion, we find that good fitting (large AUC of training sets)
is not necessarily translated into high prediction accuracy (large AUC of validation sets)
because of the increased false selections. With a larger number of true predictors (m1 = 10),
the mean true selection increases, but the mean false selection increases as well, so that the
prediction accuracy is about the same as that for m1 = 5.

Table 1. Binary outcome: Simulation results (mean total selections and true selections from train-
ing sets, and mean AUC from training and validation sets) of the three prediction methods with
m1(= 5 or 10) true covariates and with S1 and S2 models. L-SVS (logistic regression with stepwise
variable selection) uses (α1, α2) = (0.002, 0.004).

(S1) (S2)

LASSO EN L-SVS LASSO EN L-SVS

(i) m1 = 5
Total Selections 31.15 74.59 5.32 28.59 56.61 5.32
True Selections 4.03 4.49 3.25 4.28 4.60 3.25
AUC-Training 0.92 0.95 0.84 0.92 0.95 0.85
AUC-Validation 0.70 0.69 0.71 0.72 0.71 0.71

(ii) m1 = 10
Total Selections 34.64 101.47 5.63 44.56 84.76 6.88
True Selections 6.73 7.92 3.60 7.76 8.19 4.31
AUC-Training 0.92 0.96 0.83 0.96 0.97 0.87
AUC-Validation 0.69 0.68 0.67 0.73 0.72 0.70

Using the simulation data for Figures 3 and 4, we compare the performance of LASSO,
EN, and C-SVS with (α1, α2) = (0.001, 0.002) for survival outcomes. Table 2 reports the
simulation results. As in the binary outcome case, the two ML methods have much larger
mean total selection and slightly larger true selection compared to C-SVS. With a lower
censoring (10%), each method has larger mean total and true selections, better model fitting
(in terms of −log10 p-value and C-index for training sets), and higher prediction accuracy
(in terms of −log10 p-value and C-index for validation sets). Between models (S1) and
(S2), with 30% of censoring, the prediction methods tend to have slightly larger mean
total and true selections, and larger negative log10 (p-value) and C-index for both training
and validation sets for model (S2). However, with 10% of censoring, these measures are
similar between (S1) and (S2). The mean total and true selections are larger with m1 = 10
than with m1 = 5. Between the two ML methods, LASSO has slightly higher prediction
accuracy (in terms of −log10 p-value and C-index for validation sets) than EN overall,
probably due to the higher over-selection of EN. In spite of the slightly lower true selection,
C-SVS has higher prediction accuracy than the two ML methods with 10% of censoring
or with m1 = 5, (S2), and 30% of censoring. Under the other simulation settings, the three
prediction methods have similar prediction accuracy.
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Table 2. Survival outcome: Simulation results (mean total selections and true selections from training
sets, and mean −log10 p-value and C-index from both training and validation sets) of the three
prediction methods with m1 = 5 or 10 true covariates with (S1) and (S2) models. C-SVS (Cox
regression with stepwise variable selection) uses (α1, α2) = (0.001, 0.002).

(S1) (S2)

LASSO EN C-SVS LASSO EN C-SVS

(i) m1 = 5 & 30% Censoring
Total Selections 16.51 24.30 4.80 19.28 25.89 5.37
True Selections 4.11 4.46 3.53 4.45 4.53 3.78
−log10 p-value (training) 22.79 26.25 17.32 25.76 28.24 19.68
−log10 p-value (validation) 9.06 8.76 9.79 10.45 10.20 10.41
C-index (training) 0.74 0.76 0.71 0.76 0.77 0.73
C-index (validation) 0.64 0.64 0.65 0.66 0.66 0.66

(ii) m1 = 5 & 10% Censoring
Total Selections 20.16 23.89 5.74 20.96 25.00 5.86
True Selections 4.61 4.82 4.44 4.78 4.82 4.43
−log10 p-value (training) 27.60 29.72 22.51 29.73 31.61 23.83
−log10 p-value (validation) 12.89 12.88 14.95 14.66 14.39 15.69
C-index (training) 0.74 0.75 0.71 0.75 0.76 0.72
C-index (validation) 0.66 0.66 0.67 0.67 0.67 0.68

(iii) m1 = 10 & 30% Censoring
Total Selections 26.68 36.83 6.57 30.35 37.73 7.85
True Selections 7.52 8.26 4.89 8.44 8.61 5.69
−log10 p-value (training) 30.12 34.26 20.61 34.18 36.50 24.90
−log10 p-value (validation) 9.89 9.87 9.07 13.07 12.87 11.48
C-index (training) 0.78 0.81 0.73 0.81 0.82 0.76
C-index (validation) 0.66 0.66 0.64 0.69 0.69 0.67

(iv) m1 = 10 & 10% Censoring
Total Selections 29.46 36.69 8.52 32.47 37.53 9.65
True Selections 8.56 8.85 6.69 9.10 9.32 7.71
−log10 p-value (training) 36.21 38.68 27.61 39.76 41.38 32.14
−log10 p-value (validation) 14.77 14.44 15.62 18.44 18.26 19.54
C-index (training) 0.78 0.79 0.74 0.80 0.80 0.76
C-index (validation) 0.67 0.67 0.68 0.70 0.70 0.70

3.3. Real-Data Analysis

Farrow et al. [19] used the Nanostring nCounter PanCancer Immune Profiling Panel
to quantify the expression level of 730 immune-related genes in sentinel lymph node (SLN)
specimens from n = 60 patients (31 positive, 29 negative) from a retrospective melanoma
cohort. Since a significant proportion of patients experience recurrence of melanoma after
surgery, early detection of poor prognosis and adjuvant therapy may eliminate residual
disease and improve the patients’ prognosis. We want to predict SLN positivity and
recurrence-free survival (RFS) using the microarray data and baseline characteristics such
as gender, age at surgery, and use of additional treatment (add_trt).

For the binary outcome of SLN positivity, we randomly partition the 60 patients into
a training set and a validation set so that the two sets have a similar number of SLN
positive and negative cases. We apply LASSO, EN, and L-SVS with (α1, α2) = (0.05, 0.1)
to the training set. Figure 5 reports the ROC curves for the training set and validation
set. Due to over-fitting, all three methods have large AUCs for the training set. For the
validation set, however, EN has a smaller AUC than the other methods, while L-SVS has
the largest AUC. Table 3 presents more analysis results. While L-SVS selects only four
covariates (two of which are also selected by LASSO and three of which are also selected
by EN) as significant predictors, it has the highest prediction accuracy (AUC-validation)
among the three prediction methods. LASSO and EN select the same number of predictors,
but slightly different sets. The data analysis is conducted under the system x86_64-w64-
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mingw32/x64 (64-bit) using open-source R software version 4.2.2, and the computing time
of the LASSO, EN, and stepwise methods are 0.47 s, 3.74 s, and 9.44 s, respectively. It is
expected that L-SVS takes the most time since it performs hypothesis testing during each
round of variable selection.
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Figure 5. ROC curves from prediction of SLN positivity using different methods for Farrow et al. [19]
data. (a) Training set. (b) Validation set.

For the time-to-event endpoint of RFS, we randomly partition the 60 patients into
a training set and a validation set so that the two sets have a similar number of events
and censored cases. We apply EN, LASSO, and C-SVS with (α1, α2) = (0.025, 0.05) to the
training set. The analysis results are reported in Table 4. As in the analysis of SLN positivity,
C-SVS selects the smallest number of predictors, but it has the highest prediction accuracy
in terms of −log10 p-value for the validation set among the three methods and higher
prediction accuracy than EN in terms of C-index for the validation set. The prediction
models by both L-SVS and C-SVS select add_trt and three genes.
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Table 3. Analysis results of Farrow et al. data on SLN positivity.

Method # Selected AUC
Features Training Validation Selected Features

LASSO 13 1.0000 0.6619

add_trt, GE_CCL1, GE_CLEC6A,
GE_HLA_DQA1, GE_IL1RL1, GE_IL25,
GE_MAGEA12, GE_MASP1, GE_MASP2,
GE_PRAME, GE_S100B, GE_SAA1,
GE_USP9Y

Elastic Net 13 1.0000 0.6381

add_trt, GE_CCL1, GE_CLEC6A,
GE_HLA_DQA1, GE_IL1RL1, GE_IL1RL2,
GE_IL25, GE_MASP1, GE_MASP2,
GE_PRAME, GE_S100B, GE_SAA1,
GE_USP9Y

L-SVS 4 0.9833 0.6905 add_trt, GE_IL1RL1, GE_IL17F, GE_IL1RL2

Table 4. Analysis results of Farrow et al. data on recurrence-free survival.

Method # Selected −log10 p-Value C-Index
Features Training Validation Training Validation

LASSO 5 3.7153 1.3623 0.8848 0.6959
Elastic Net 11 3.8872 1.1965 0.9058 0.6701
C-SVS 4 3.1182 1.4518 0.9634 0.6907

Selected Features
LASSO add_trt, GE_CCL3, GE_CCL4, GE_IL17A, GE_NEFL
Elastic Net add_trt, GE_CCL3, GE_CCL4, GE_CRP, GE_CXCL1,

GE_CXCR4, GE_HLA_DRB4, GE_IL17A, GE_IL8,
GE_MAGEA12, GE_NEFL

C-SVS add_trt, GE_NEFL, GE_IFNL1, GE_MAGEC1

In order to see if each prediction method really selects significant features, we fit a
multivariate Cox regression model of RFS on the selected features using the training set of
Farrow et al. data [19] and summarize the result in Table 5. Note that add_trt and GE_NEFL
are selected by all three methods, but their significance diminishes for EN, probably because
their effects are diluted by many of the less significant features selected together. While
LASSO and EN select many insignificant features, C-SVS selects a set of significant features
only by using stepwise variable selection procedure.

Table 5. Multivariate Cox regression on recurrence-free survival using the training set of Farrow
et al. data.

LASSO Elastic Net C-SVS

Feature Coef. p-Value Feature Coef. p-Value Feature Coef. p-Value

add_trt 4.558 0.004 add_trt 3.021 0.251 add_trt 5.352 0.001
GE_CCL3 3.634 0.153 GE_CCL3 0.094 0.908 GE_NEFL −0.119 0.006
GE_CCL4 1.163 0.563 GE_CCL4 6.818 0.693 GE_IFNL1 0.146 0.003
GE_IL17A 6.268 0.073 GE_CRP −9.743 0.191 GE_MAGEC1 −0.125 0.011
GE_NEFL −4.561 0.023 GE_CXCL1 7.499 0.164

GE_CXCR4 −9.089 0.548
GE_HLA_DRB4 −1.803 0.412
GE_IL17A 5.879 0.202
GE_IL8 −1.004 0.802
GE_MAGEA12 −1.258 0.846
GE_NEFL −1.059 0.736

4. Discussion

LASSO and EN have been widely used to develop prediction models using high-
dimensional data. Recent recognition of ML methods prompts collective investment and
applications, which not only stimulate the development of clinical medicine but also induce
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potential overuse risk. Systematic reviews have been conducted to show that LASSO and
EN tend to over-select predictors for fitted prediction models. This leads to some additional
costs, as discussed in Section 1, and unfavorable prediction accuracy. As an alternative
approach, we have investigated standard regression methods combined with SVS (R-SVS)
compared with LASSO and EN. Through simulations and real-data analysis, we found
that the ML methods do over-select predictors, over-fit training sets, and, consequently,
lose prediction accuracy. In contrast, R-SVS selects much smaller number of predictors and
fitted prediction models have comparable or better accuracy than LASSO and EN.

Multiple variants of LASSO have been proposed to deal with over-selection
issue [6,23–26], but we have considered the original LASSO in this paper. It is one of
the future research topics to compare the performance of these methods. One of the major
findings of this paper is that R-SVS produces very efficient prediction models with easy
and fast computing, but without these advanced and complicated modifications.

SAS provides variable selection procedures for regression methods based on infor-
mation (such as AIC and BIC) or R-square only, so that, like LASSO and EN, they can not
control the selection of predictors. So, we developed R programs for R-SVS based on the
significance level of regression estimates. Even though standard regression methods are
not appropriate for high-dimensional data, those combined with SVS work perfectly as the
number of true predictors is much smaller than the sample size. Note that the backward
deletion method is not appropriate for high-dimensional data because it starts to fit the full
model with all candidate predictors. Since regression methods are well developed for any
type of outcomes, R-SVS can be used for any type of regression methods. Furthermore,
R-SVS is a standard statistical method, so that statisticians without deep knowledge in
bioinformatics can use it for prediction model fitting with high-dimensional data. Our R
codes for L-SVS and C-SVS are available upon request.

Some may believe that R-SVS methods require much heavier computing than LASSO
and EN. Logistic regression or Cox regression with SVS spend most of their running time
performing hypothesis testing and the p-values of covariates for inclusion or deletion.
The computation of LASSO and EN is slightly faster because they only estimate the regres-
sion coefficients without statistical testing. We find that R-SVS has much lower feature
selections than LASSO and EN, but its prediction accuracy is as high as or even higher than
the latter.

5. Conclusions

Through simulation studies, we have observed that LASSO and EN select a large
number of features with a high false selections. Furthermore, through real-data analysis,
these popular ML methods select many insignificant features. As a result, their prediction
accuracy can be compromised. In contrast, R-SVS selects much fewer features with high
true selection rate, and its prediction accuracy is as high as or even higher than the ML
methods. R-SVS selects features based on their significance level, so that all of the selected
features are statistically significant. R-SVS requires a longer computing time than the ML
methods since it estimates regression coefficients and conducts statistical tests, while the ML
methods only estimate regression coefficients. However, the difference in computing time
will be negligible for real-data analysis. In all, the stepwise regression method, a standard
statistical method, can be a viable alternative to the ML methods for prediction model
building with high-dimensional data.
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