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Abstract: The spherical evolution algorithm (SE) is a unique algorithm proposed in recent years
and widely applied to new energy optimization problems with notable achievements. However,
the existing improvements based on SE are deemed insufficient due to the challenges arising from
the multiple choices of operators and the utilization of a spherical search method. In this paper,
we introduce an enhancement method that incorporates weights in individuals’ dimensions that
are affected by individual fitness during the iteration process, aiming to improve SE by adaptively
balancing the tradeoff between exploitation and exploration during convergence. This is achieved by
reducing the randomness of dimension selection and enhancing the retention of historical information
in the iterative process of the algorithm. This new SE improvement algorithm is named DWSE. To
evaluate the effectiveness of DWSE, in this study, we apply it to the CEC2017 standard test set, the
CEC2013 large-scale global optimization test set, and 22 real-world problems from CEC2011. The
experimental results substantiate the effectiveness of DWSE in achieving improvement.

Keywords: spherical evolution; evolutionary computation; weighting allocation; adaptive strategy

MSC: 68T01; 68T05; 68T20

1. Introduction

Optimization algorithms, as solutions designed to optimize complex real-world prob-
lems, have been a popular area of research for the past few decades [1]. These algorithms
can generally be divided into two categories: metaheuristic algorithms (MHAs) and heuris-
tic algorithms [2]. MHAs are often based on laws derived inductively from real-world
phenomena, which are then transformed into algorithms. On the other hand, heuristic algo-
rithms are traditional mathematical methods or improved versions of MHAs. Several early
classical MHAs, including the genetic algorithm (GA), particle swarm optimization (PSO),
the simulated annealing algorithm (SA) and differential evolution (DE), have significantly
influenced the field of optimization due to their wide range of applications [3–7]. These
algorithms stand firmly on their own as highly effective solutions. Additionally, metaphori-
cal MHAs such as the artificial bee colony algorithm (ABC), ant colony optimization (ACO),
and the whale optimization algorithm (WOA) add to the diversity of approaches [8–10].
Conversely, the sine cosine algorithm (SCA) and covariance matrix adaptation evolu-
tion strategy (CMA-ES) fall into the category of mathematically inspired MHAs, further
broadening the spectrum of optimization techniques [11,12]. Despite their wide-ranging
definitions and interpretations, most optimization algorithms are designed around two
core components: the operators and strategies employed within the algorithms [13].

The operator, which denotes the formula used to update individuals, constitutes
one of the fundamental cores of the algorithm. Operators usually contain individuals,
step sizes, and operations that combine them [14,15]. The algorithm encompasses the
selection of the previous generation of individuals and the multiplicity of search steps.
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The selection of individuals significantly impacts the diversity of populations within the
algorithm and the retention of historical information [16]. Meanwhile, the search step
size plays a crucial role in determining the convergence speed of the algorithm [17]. The
impact of strategies extends beyond the operator components, and it can be argued that
the presence of strategies differentiates algorithms from purely mathematical methods [18].
The design of strategies often serves a specific purpose; for instance, the strategy change of
individual division of labor in the swarm intelligence algorithm aims to conduct further
exploitation in the valuable regions discovered by the algorithm, ultimately leading to
better solutions [19]. Similarly, the mutation strategy in genetic algorithms broadens the
search direction, preventing premature convergence to local optima [20]. However, the
use of strategies entails both favorable and unfavorable effects. For instance, the greedy
selection strategy may improve an individual’s fitness, yet it also limits the algorithm’s
ability to escape local optima [21]. Irrespective of the operator design and strategy choice,
the primary objective is to strike a delicate balance between exploitation and exploration
during the search process [22]. Exploitation and exploration, as a set of antonyms, represent
distinct facets of an algorithm’s behavior, and the algorithm’s state may lean more towards
one aspect at any given time [23]. Exploitation emphasizes the local search ability and
convergence speed of an algorithm, while exploration highlights its global search ability
and capacity to jump out of local optima [24]. Achieving a balance between these two
aspects is the overarching aim. Ideally, an algorithm should converge rapidly and find
the global optimal solution effectively. However, this ideal scenario encounters a practical
limitation due to MHAs often having to contend with NP-hard problem [25] that an
algorithm cannot achieve both fast convergence and the best solution simultaneously.
Nonetheless, through a thoughtful and rational design, it is possible to strike a compromise
between the convergence speed and the quality of the solution. This embodies the essence
of the balance between exploitation and exploration.

Algorithm improvements are often rooted in changes to operators or strategies or
the fusion of two distinct algorithms [26–29]. Hybrid algorithms, which are designed to
amalgamate algorithms with different tendencies, serve the purpose of striking a better
balance between exploitation and exploration. These improvements typically have specific
objectives, like enabling a more exploitation-oriented algorithm to break out of local optima
or enhancing the local search capabilities of an exploration-oriented algorithm. Within the
realm of numerous MHAs and their improved versions, the spherical evolution algorithm
(SE) is popular due to its wide range of applications in engineering optimization, such as
parameter estimation for photovoltaic models and optimization of wind farm layouts [30–34].
However, compared to other algorithms, SE has seen relatively few improvements. This
is primarily attributed to its unique search strategy, which relies entirely on a geometric
space search, and the highly stochastic nature of its search pattern, which is achieved by
utilizing an operator that updates individual step sizes using Euclidean distance. One
notable successful improvement of SE is the linear population size reduction-based SE
algorithm (LSE) [35]. LSE effectively compensates for the higher randomness in SE, thereby
bolstering its exploitation ability while maintaining exploration capabilities. By emulating
the improvement strategy of LSHADE, the search pattern of LSE is somewhat altered,
enabling a more focused exploitation during later iterations [36]. Another attempt at
improvement is the cooperative coevolution wingsuit flying search algorithm with SE
(CCWFSSE) [37]. However, it falls short of being deemed a successful hybrid algorithm
due to its use of unreasonable population size settings in the experimental phase and the
absence of a comparison with the original SE. A previous study introducing CSE employed
a differential evolution approach using coefficients of chaotic mappings for elite individuals
in SE iterations, which exhibited promising performance enhancements [38]. The results
obtained in previous studies support the assertion that improving SE is a challenging task.

Weighting methods commonly employed in evolutionary computation, such as the
introduction of weight to each algorithm in a hybrid algorithm, are simple yet effective
techniques [39]. Some studies have explored the idea of assigning weights to individual
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dimensions of the algorithm, aiming to identify the dimensions requiring the most signif-
icant changes or those necessitating minimal adjustments [40]. However, this approach
presents challenges, since estimating the value of a dimension in a black-box optimization
problem is inherently difficult. Prematurely fixing the value of a dimension can inadver-
tently lead the algorithm towards a local optimum. Therefore, weighting is often used for
deterministic problems such as image classification rather than NP-hard problems. In fact,
the dimension selection mechanism employed in SE is essentially a form of weight selection.
SE defines the number of dimensions (DSF) updated by an individual as a random integer
in the range of [6, 10], which, for a 30-dimensional problem, equates to assigning a weight
ranging from 20% to 33.3% to each dimension of the individual. This stochastic weighting
mechanism prevents the algorithm from prematurely converging to a local optimum, but it
also compromises its exploitation capability. The primary focus of the improvement in this
paper lies in modifying the original weight (DSF). Specifically, we introduce a modification
by replacing the random selection approach with a more sophisticated weighted selection
approach. The weight assigned to dimension selection is influenced by the quality of the
solution, as well as historical information. This dimensionally weight-based improvement
in SE is referred to as DWSE. To enhance the efficiency of DWSE, we incorporated a coop-
erative strategy by segmenting the population of SE into multiple subsets. Within each
segment, individuals share the same set of weights, fostering a cooperative synergy that
yields similar effects.

To evaluate the performance of DWSE, we conducted extensive evaluations utilizing
three test sets sourced from the IEEE Congress on Evolutionary Computation (CEC). These
sets encompass thirty single-objective continuous function optimization problems drawn
from CEC2017, which encompass single-peak functions, simple multipeak functions, hy-
brid functions, and composite functions. Additionally, we included twenty-two real-world
problems sourced from CEC2011, along with a comprehensive large-scale global optimiza-
tion test set derived from CEC2013. The function expressions for these test sets are publicly
accessible on the official IEEE CEC website. Furthermore, we are committed to providing
the problem models, along with the corresponding open-source data. The outcomes of
our experimentation unequivocally underscore the substantial enhancements achieved by
DWSE, distinctly positioning it with advantages over other SE improvement algorithms.

This work aims to make the following contributions:

• For the first time in SE, we apply a weighting method to dimension selection with
adaptive capability;

• DWSE has significant advantages over SE and other SE improvement algorithms for
constrained single-objective optimization problems.

In Section 2, we introduce the proposed DWSE. In Section 3, experiments and analysis
using DWSE based on standard test sets, real-world problems, and large-scale optimization
problems are presented to validate the improvements. Finally, in Section 4, we provide a
comprehensive summary of the conclusions drawn from this research paper.

2. The Proposed DWSE
2.1. Spherical Evolution

SE denotes the update unit of most MHAs in the hypercubic search (rectangular in
2D) approach as:

SS(Ci,j, Di,j) = ScaleFun01i,j() · (ScaleFun02i,j()− ScaleFun03i,j()),

i = 1, 2, · · · , popusize; j = 1, 2, · · · , dim.
(1)

where ScaleFun is a function for adjusting the difference between C and D, popusize is the
population size, and dim is the dimension of the problem. The unique innovation of SE lies
in the fact that instead of the hypercubic search method used in Equation (1), it uses an



Mathematics 2023, 11, 3733 4 of 17

original spherical (hypersphere in the high-dimensional case) search method. Its formula
can be expressed as:

SS(Ci,j, Di,j) = ScaleFuni,j() · ‖Ci,j − Di,j‖· cos θ, (2)

SS(Ci,j, Di,j) =

{
ScaleFuni,j() · ‖Ci,∗ − Di,∗‖2· sin θ, j = 1, 2
ScaleFuni,j() · ‖Ci,∗ − Di,∗‖2· cos θ, j = 1, 2

(3)

SS(Ck
i,j, Dk

i,j) =


ScaleFuni,j() · ‖Ci,∗ − Di,∗‖2·∏dim−1

k=j sin θj, j = 1

ScaleFuni,j() · ‖Ci,∗ − Di,∗‖2·∏dim−1
k=j sin θj · cos θj−1, 1 < j < dim− 1

ScaleFuni,j() · ‖Ci,∗ − Di,∗‖2· cos θj−1. j = dim

(4)

where Equation (2) is used to search for the one-dimensional case, Equation (3) is used to
search for the two-dimensional case, and Equation (4) is used to search for other cases. This
search has a higher degree of directional randomization than hypercube search, giving it a
considerable advantage in specific, more exploratory problems.

SE also provides seven operators based on spherical evolution and recommends a
fourth operator. All operators in SE can be represented as follows:

(1) SE/current-to-best/1

Xt+1
i,j = Xt

i,j + SSm(Xt
i,j, Xt

g,j) + SSm(Xt
r1,j, Xt

r2,j), (5)

(2) SE/best/1
Xt+1

i,j = Xt
g,j + SSm(Xt

r1,j, Xt
r2,j), (6)

(3) SE/best/2
Xt+1

i,j = Xt
g,j + SSm(Xt

r1,j, Xt
r2,j) + SSm(Xt

r3,j, Xt
r4,j), (7)

(4) SE/rand/1
Xt+1

i,j = Xt
r1,j + SSm(Xt

r2,j, Xt
r3,j), (8)

(5) SE/rand/2
Xt+1

i,j = Xt
r1,j + SSm(Xt

r2,j, Xt
r3,j) + SSm(Xt

r3,j, Xt
r4,j), (9)

(6) SE/current/1
Xt+1

i,j = Xt
i,j + SSm(Xt

r2,j, Xt
r3,j), (10)

(7) SE/current/2

Xt+1
i,j = Xt

i,j + SSm(Xt
r2,j, Xt

r3,j) + SSm(Xt
r4,j, Xt

r5,j). (11)

2.2. Weight-Based Dimension Selection Method

As mentioned in the background, determining the weights of each dimension at each
moment in a black-box optimization problem poses a challenge. To address this issue,
DWSE uses an iterative method of weight grouping to obtain new weights. The population
of individuals is equally divided into 10 segments, with each segment assigned a set of
weights, initially set at 0.5. This weight represents the number of dimensions that can
be selected for updating in the current individual, as opposed to SE’s random selection
process. In DWSE, the number of dimensions to be selected for updating in an individual
is calculated as DSF = dim ×W, where DSF denotes the number of dimensions, dim
represents the total number of dimensions of an individual, and W corresponds to the
weight of the following individual. The method employed for selecting which specific
dimensions require updating adheres to the SE approach. Among all the dimensions of an
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individual, the DSF dimensions that necessitate updating are selected evenly. The k value
used to calibrate and select the dimensions (DSF) is then randomly chosen from [1, dim].

In the weight updating process of DWSE, a combination of a greedy strategy and a
standard normal distribution significantly influences the weight assignment. Specifically,
during SE iterations, individuals that have been successfully updated are preserved and
assigned corresponding weights. Conversely, the remaining individuals retain only the
weights from their previous generation. The total weights are subsequently updated
uniformly based on the standard normal distribution. Among the ten individuals, those
that have not undergone updating are recorded as 0, while those that have been updated
are assigned a value reflecting their progress in adaptation. The update value is calculated
as val = f itold− f it, where f it and f itold represent the current fitness and the fitness of the
previous generation, respectively. Subsequently, the values of the ten individuals undergo
normalization, which determines the extent of weight adjustment required. Note that the
reason for choosing a normal distribution is its property of ensuring equal probability
distributions for increments and decrements, with decreasing values as the center distance
increases.

W =
10

∑
i=1

W · vali
f itoldi

, (12)

In the context of this weight retention approach, when the majority of individuals in
the group achieve successful iterations, the value of W will be larger, causing the algorithm
to exhibit a stronger bias towards local search. Conversely, if the majority of individuals
are not retained, the value of W will be smaller, leading to a bias in the algorithm towards
updating fewer dimensions. Following the completion of the weight retention process, the
weights are updated based on a standard normal distribution, expressed as follows:

W =
1

0.1
√

2π
exp

(
− (R−W)2

0.02

)
. (13)

where R represents a random number within the range of 0 to 1. Equations (12) and (13)
demonstrate the process of updating weights for a set of individuals. As DWSE is divided
into ten groups of individuals, and the aforementioned process must be repeated ten times.
Figure 1 shows the difference between DWSE and SE in terms of strategy. The weighting
strategy of DWSE in the figure has an additional layer of feedback process compared to SE,
which is obviously more favorable to the evolutionary process of the algorithm.

Figure 1. DWSE vs. SE in terms of strategy.
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2.3. Step Size Update Method Based on Success History Information

In SE, the step size (also referred to as the scaling factor) is determined by a random
number constrained by the population size, which may not provide sufficient guidance for
achieving rapid convergence in continuous optimization. In DWSE, the update strategy
for the step size involves utilizing the previous generation’s step size (SF) under the
successfully updated W as the midpoint, which is then randomly adjusted within a specific
range. A probability distribution approximating a function of the Cauchy distribution is a
more desirable outcome based on the need for a smaller floating range of variation. The
update formula for the step size can be expressed as follows:

SFi = SFi + 0.1 · tan[π · (R− 0.5)]. (14)

where R is a random number from to 0 to 1. Compared to SE, which depends entirely
on random numbers, the step size of DWSE retains some historical information, which
facilitates the precise exploitation process of the algorithm. Figure 2 shows the float range
of SF. SF does not vary in float beyond ±0.2 in most cases, which moderates the step size
variation of the algorithm and helps to maintain fast convergence.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R

0

0.2

0.4

0.6

0.8

1

V
al

u
e

Distrubution map

Figure 2. Distribution map of float range for SF.

2.4. Algorithm

Pseudocode Algorithm 1 shows the specific implementation of DWSE. W and SF are
entered as a 1× 10 matrix with an initial value of 0.5 for ease of calculation. The output is
the best result obtained in the last iteration.
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Algorithm 1: DWSE.

1 Input: N, dim, W, SF, FES;
2 Initialization;
3 {X1, X2, . . . , XN}, nFES = 0, f itold = f it;
4 while nFES ≤ FES do
5 for i = 1 to N do
6 g = b i−1

10 + 1c;
7 Wi ←Wg;
8 DSFi ← get the dimension number by DSFi = dim×Wi;
9 SSi,j ← calculate the updated value by Equations (2)–(4);

10 Xi ← get the new individual by Equation (8);
11 f it(Xi)← calculate f it(Xi);
12 if f it(Xi) < f iti then
13 f iti ← f it(Xi);
14 end
15 nFES← nFES + 1;
16 vali ← update the value by val = f itold− f it;
17 end
18 for g = 1 to 10 do
19 Wg ← update by Equations (12) and (13);
20 end
21 SF ← update the step size by Equation (14);
22 f itold← f it update the f itold;
23 end
24 Output: The best obtained solution

3. Experimental Results and Discussion

For the experimental part, the number of evaluations was set to 10,000 × dim for the
CEC2011 and CEC2017 problems and 3000× dim for the CEC2013 LSGO problems. The
population size of all SE improvement algorithms including DWSE was set to 100. In the
tables, mean and std represent the average value and standard deviation, respectively, and
data marked in bold represent the best mean. W/T/L is the result of the comparison of
win/tie/loss under the Wilcoxon rank-sum test at p = 0.05 (In general, the threshold for
determining significant differences is 5%). After std, +/ = /− represents the win/tie/loss
relationship under that problem. Rank denotes results based on Friedman mean rankings,
and bolded font denotes the best mean under the problem. All results are based on repeated
runs in MATLAB (51 times for CEC2017 and CEC2011; 30 for at CEC2013 LSGO) on a
device with an i7-9700 CPU and 36GB RAM.

3.1. Experimental Results and Analysis in CEC2017

Tables 1 and 2 present the experimental results of SEs in CEC2017, encompassing
results under four problem dimensions: 10, 30, 50, and 100. The results reveal that DWSE
holds a significant advantage over all other SE improvement algorithms; this advantage is
particularly pronounced when dealing with smaller problem dimensions. The dimension
weighting mechanism of DWSE allows for a much more effective exploitation, surpassing
other SE algorithms in terms of local search capabilities. Even in higher dimensions, DWSE
maintains a competitive edge, despite a slight decline in performance. This is attributed
to the impact of dimensional weights under grouping, which accentuates the disparity in
operator weights among different groups, preserving sufficient randomness.
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Table 1. Experimental results in CEC2017.

Dimension 10

Fun
DWSE SE LSE CSE

Mean std Mean std Mean std Mean std

F1 4.218× 101 3.670× 101 1.110× 103 1.328× 103 + 4.245× 102 4.942× 102 + 8.967× 102 1.188× 103 +
F2 3.967× 10−1 2.833× 100 1.771× 103 2.389× 103 + 4.958× 102 7.280× 102 + 1.637× 103 1.778× 103 +
F3 2.525× 103 3.744× 103 5.462× 102 2.429× 102 + 1.553× 102 1.288× 102 + 5.122× 102 2.204× 102 +
F4 1.328× 100 1.980× 10−1 5.624× 100 4.857× 10−1 + 5.269× 100 3.961× 10−1 + 5.450× 100 5.507× 10−1 +
F5 4.142× 100 1.177× 100 8.289× 100 1.568× 100 + 6.644× 100 1.647× 100 + 8.328× 100 1.609× 100 +
F6 8.695× 10−9 1.366× 10−8 8.917× 10−15 3.087× 10−14 − 0.000× 100 0.000× 100 − 1.337× 10−14 3.699× 10−14 −
F7 1.506× 101 1.234× 100 2.103× 101 2.329× 100 + 1.954× 101 1.932× 100 + 2.062× 101 1.638× 100 +
F8 4.988× 100 1.227× 100 8.519× 100 1.745× 100 + 7.126× 100 2.081× 100 + 8.822× 100 1.846× 100 +
F9 8.917× 10−15 3.834× 10−14 5.338× 10−11 2.878× 10−10 + 6.509× 10−13 1.257× 10−12 + 6.239× 10−12 4.019× 10−11 +
F10 1.282× 102 7.429× 101 4.277× 102 9.345× 101 + 2.846× 102 1.233× 102 + 4.198× 102 1.061× 102 +
F11 2.879× 100 7.496× 10−1 3.959× 100 8.380× 10−1 + 3.121× 100 8.322× 10−1 = 3.965× 100 8.899× 10−1 +
F12 1.519× 105 1.763× 105 4.230× 105 2.670× 105 + 2.257× 105 1.336× 105 + 2.952× 105 1.629× 105 +
F13 1.565× 101 3.815× 100 1.241× 103 8.272× 102 + 9.763× 102 7.924× 102 + 5.160× 102 4.405× 102 +
F14 5.089× 100 2.055× 100 2.248× 101 1.264× 101 + 1.757× 101 9.547× 100 + 1.663× 101 6.420× 100 +
F15 2.299× 100 5.755× 10−1 9.037× 101 1.066× 102 + 7.376× 101 1.015× 102 + 2.645× 101 2.058× 101 +
F16 1.894× 100 4.586× 10−1 1.738× 100 2.947× 10−1 − 1.344× 100 2.805× 10−1 − 1.698× 100 3.131× 10−1 −
F17 2.534× 100 1.131× 100 3.822× 100 1.438× 100 + 2.636× 100 1.350× 100 = 3.739× 100 1.198× 100 +
F18 2.177× 101 4.223× 100 1.468× 103 1.087× 103 + 8.686× 102 6.500× 102 + 1.120× 103 7.433× 102 +
F19 1.233× 100 3.791× 10−1 4.403× 101 6.043× 101 + 3.608× 101 6.430× 101 + 3.377× 100 1.528× 100 +
F20 8.325× 10−2 7.361× 10−2 1.111× 100 6.078× 10−1 + 5.293× 10−1 4.013× 10−1 + 1.037× 100 4.810× 10−1 +
F21 1.196× 102 2.666× 101 1.381× 102 3.990× 101 + 1.474× 102 4.207× 101 + 1.368× 102 3.990× 101 =
F22 9.785× 101 1.180× 101 1.003× 102 2.786× 10−1 + 1.000× 102 1.198× 10−1 − 1.003× 102 2.870× 10−1 +
F23 3.013× 102 3.556× 101 3.069× 102 2.222× 101 + 3.068× 102 2.054× 100 = 3.091× 102 1.528× 100 +
F24 1.966× 102 8.602× 101 2.396× 102 1.062× 102 + 2.298× 102 1.012× 102 + 2.340× 102 1.048× 102 +
F25 3.991× 102 6.383× 100 4.068× 102 1.470× 101 + 4.098× 102 1.861× 101 + 4.073× 102 1.564× 101 +
F26 2.765× 102 8.146× 101 3.000× 102 8.533× 10−13 − 3.000× 102 0.000× 100 − 3.000× 102 1.548× 10−12 −
F27 3.901× 102 1.717× 100 3.916× 102 2.174× 100 + 3.926× 102 2.081× 100 + 3.911× 102 2.133× 100 +
F28 2.672× 102 9.603× 101 3.080× 102 9.336× 101 + 3.224× 102 7.773× 101 + 3.160× 102 6.250× 101 +
F29 2.503× 102 1.522× 101 2.667× 102 9.150× 100 + 2.636× 102 7.153× 100 + 2.691× 102 7.645× 100 +
F30 4.836× 103 3.375× 103 1.460× 105 1.514× 105 + 1.166× 105 8.630× 103 + 1.468× 105 1.168× 105 +

W/T/L −/−/− 27/0/3 23/3/4 26/1/3

Rank 1.30 3.40 2.30 3.00

Dimension 30

Fun
DWSE SE LSE CSE

mean std mean std mean std mean std

F1 6.474× 10−3 9.240× 10−3 1.900× 103 2.945× 103 + 1.168× 103 1.486× 103 + 7.178× 102 8.118× 102 +
F2 3.535× 1012 1.058× 1013 3.164× 1013 8.376× 1013 + 1.748× 1017 2.197× 1017 + 2.182× 1017 3.212× 1017 +
F3 1.122× 105 1.985× 105 7.405× 103 2.810× 103 − 5.561× 105 9.178× 103 − 5.686× 105 7.730× 103 −
F4 9.259× 101 1.530× 101 8.083× 101 2.095× 101 − 1.056× 102 8.527× 100 + 1.051× 102 8.288× 100 +
F5 3.000× 101 4.322× 100 4.239× 101 7.824× 100 + 6.402× 101 7.374× 100 + 7.295× 101 7.623× 100 +
F6 1.137× 10−13 0.000× 100 1.928× 10−4 1.349× 10−3 + 1.137× 10−13 0.000× 100 = 1.605× 10−13 5.651× 10−14 +
F7 6.352× 101 5.150× 100 7.831× 101 8.042× 100 + 1.040× 102 8.871× 100 + 1.128× 102 9.672× 100 +
F8 3.588× 101 4.393× 100 4.642× 101 7.819× 100 + 6.973× 101 8.356× 100 + 7.829× 101 7.559× 100 +
F9 6.001× 10−1 4.285× 100 3.698× 10−1 1.247× 100 + 3.815× 10−6 2.627× 10−5 + 2.489× 100 1.494× 100 +
F10 1.880× 103 2.390× 102 2.343× 103 3.183× 102 + 3.505× 103 2.874× 102 + 3.792× 103 2.180× 102 +
F11 2.561× 101 1.393× 101 2.858× 101 2.334× 101 = 8.127× 101 2.121× 101 + 9.910× 101 1.769× 101 +
F12 4.119× 105 4.166× 105 8.621× 105 5.536× 105 + 1.520× 106 5.005× 105 + 1.901× 106 5.339× 105 +
F13 7.504× 103 6.369× 103 6.227× 103 5.004× 103 = 1.978× 105 8.759× 103 + 4.416× 105 1.733× 105 +
F14 1.200× 103 3.074× 103 5.763× 105 4.374× 105 + 3.899× 105 2.654× 105 + 5.690× 103 3.106× 103 +
F15 1.923× 102 5.878× 102 1.483× 103 1.364× 103 + 5.930× 103 3.842× 103 + 5.373× 103 3.075× 103 +
F16 3.989× 102 1.499× 102 5.214× 102 1.438× 102 + 5.093× 102 1.202× 102 + 6.154× 102 1.294× 102 +
F17 7.037× 101 2.503× 101 1.020× 102 7.339× 101 = 8.328× 101 2.472× 101 + 1.177× 102 3.591× 101 +
F18 2.120× 105 1.399× 105 1.705× 105 9.223× 105 − 2.162× 105 8.494× 105 = 1.434× 105 6.177× 105 −
F19 5.133× 102 1.448× 103 1.713× 103 1.793× 103 + 8.625× 103 4.787× 103 + 8.048× 103 6.022× 103 +
F20 1.113× 102 5.584× 101 1.570× 102 7.121× 101 + 9.321× 101 5.164× 101 − 1.534× 102 5.285× 101 +
F21 2.359× 102 5.198× 100 2.440× 102 1.762× 101 + 2.694× 102 8.641× 100 + 2.757× 102 1.564× 101 +
F22 1.023× 102 6.160× 100 1.827× 102 4.172× 102 + 1.143× 102 2.116× 100 + 1.364× 102 1.092× 101 +
F23 3.828× 102 5.986× 100 3.938× 102 8.117× 100 + 4.149× 102 8.296× 100 + 4.244× 102 7.944× 100 +
F24 4.557× 102 6.443× 100 4.836× 102 1.233× 101 + 5.008× 102 1.464× 101 + 5.154× 102 1.053× 101 +
F25 3.874× 102 2.734× 10−1 3.871× 102 7.208× 10−1 − 3.872× 102 2.053× 10−1 − 3.873× 102 1.480× 10−1 −
F26 1.312× 103 1.204× 102 1.079× 103 5.078× 102 = 1.216× 103 3.594× 102 = 1.348× 103 2.833× 102 =
F27 5.091× 102 3.647× 100 5.114× 102 4.347× 100 + 5.157× 102 2.969× 100 + 5.169× 102 3.708× 100 +
F28 3.299× 102 4.899× 101 4.100× 102 1.711× 101 + 4.133× 102 3.866× 100 + 4.261× 102 5.351× 100 +
F29 4.968× 102 3.597× 101 5.399× 102 6.938× 101 + 5.529× 102 4.198× 101 + 5.889× 102 4.974× 101 +
F30 4.934× 103 2.072× 103 6.114× 103 2.233× 103 + 1.672× 105 7.040× 103 + 2.589× 105 1.075× 105 +

W/T/L −/−/− 22/4/4 24/3/3 26/1/3

Rank 1.52 2.23 2.75 3.50
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Table 2. Experimental results in CEC2017.

Dimension 50

Fun
DWSE SE LSE CSE

Mean std Mean std Mean std Mean std

F1 4.043× 102 1.135× 103 2.086× 103 2.360× 103 + 6.505× 103 6.210× 103 + 9.163× 103 6.214× 103 +
F2 1.674× 1025 6.113× 1025 2.050× 1026 5.857× 1026 + 9.826× 1029 1.241× 1029 + 1.000× 1030 1.421× 1014 +
F3 2.363× 105 2.433× 105 4.302× 105 8.548× 103 − 1.497× 105 1.849× 105 − 1.469× 105 1.706× 105 −
F4 1.047× 102 6.048× 101 1.069× 102 3.115× 101 = 1.308× 102 1.987× 101 + 1.444× 102 1.385× 101 +
F5 6.855× 101 8.209× 100 1.031× 102 1.484× 101 + 1.437× 102 1.424× 101 + 1.717× 102 1.372× 101 +
F6 1.142× 10−2 2.440× 10−2 4.484× 10−4 2.372× 10−3 − 2.809× 10−13 5.731× 10−14 − 3.299× 10−13 3.414× 10−14 −
F7 1.265× 102 8.621× 100 1.622× 102 1.405× 101 + 2.069× 102 1.411× 101 + 2.350× 102 1.498× 101 +
F8 7.400× 101 7.443× 100 1.066× 102 1.549× 101 + 1.442× 102 1.324× 101 + 1.683× 102 1.089× 101 +
F9 1.373× 101 4.203× 101 4.606× 101 4.398× 101 + 2.644× 101 1.613× 101 + 2.496× 102 8.526× 101 +

F10 3.672× 103 3.021× 102 4.539× 103 3.894× 102 + 6.293× 103 4.575× 102 + 6.903× 103 3.461× 102 +
F11 6.151× 101 1.789× 101 6.612× 101 1.544× 101 + 1.881× 102 5.531× 101 + 1.641× 102 3.906× 101 +
F12 7.415× 105 1.014× 106 4.938× 106 1.997× 106 + 1.005× 107 2.592× 106 + 1.081× 107 3.009× 106 +
F13 1.963× 103 2.158× 103 2.936× 103 1.858× 103 + 1.607× 105 9.187× 103 + 5.314× 105 2.681× 105 +
F14 1.311× 105 1.258× 105 7.213× 105 4.287× 105 + 4.336× 105 2.330× 105 + 5.014× 105 2.858× 105 −
F15 3.721× 103 3.647× 103 2.554× 103 2.329× 103 = 8.368× 103 3.464× 103 + 9.348× 103 4.252× 103 +
F16 9.398× 102 2.287× 102 1.173× 103 2.219× 102 + 1.079× 103 1.690× 102 + 1.168× 103 2.006× 102 +
F17 6.126× 102 1.463× 102 7.072× 102 1.923× 102 + 6.460× 102 1.495× 102 = 8.101× 102 1.309× 102 +
F18 1.172× 106 4.891× 105 1.556× 106 1.075× 106 = 1.198× 106 6.425× 105 = 4.650× 105 2.113× 105 −
F19 1.362× 105 6.780× 103 5.225× 103 3.837× 103 − 1.600× 105 4.939× 103 = 1.055× 105 3.853× 103 −
F20 4.854× 102 2.130× 102 5.919× 102 1.515× 102 + 4.689× 102 1.356× 102 = 5.971× 102 1.422× 102 +
F21 2.761× 102 7.131× 100 3.090× 102 1.427× 101 + 3.504× 102 1.448× 101 + 3.773× 102 1.180× 101 +
F22 3.216× 103 1.915× 103 4.610× 103 1.536× 103 + 4.941× 103 3.040× 103 + 5.150× 103 3.242× 103 +
F23 5.067× 102 1.393× 101 5.468× 102 1.651× 101 + 5.824× 102 1.519× 101 + 6.038× 102 1.313× 101 +
F24 5.857× 102 1.423× 101 6.808× 102 2.514× 101 + 7.045× 102 1.783× 101 + 7.315× 102 2.098× 101 +
F25 5.192× 102 3.821× 101 5.311× 102 1.655× 101 = 5.417× 102 1.116× 101 + 5.539× 102 9.237× 100 +
F26 1.897× 103 1.196× 102 2.225× 103 3.254× 102 + 2.555× 103 1.602× 102 + 2.746× 103 1.968× 102 +
F27 5.771× 102 1.741× 101 5.874× 102 2.774× 101 + 6.055× 102 1.489× 101 + 6.142× 102 2.016× 101 +
F28 5.070× 102 2.239× 100 5.021× 102 1.613× 101 + 5.014× 102 1.309× 101 = 5.106× 102 1.054× 101 +
F29 4.960× 102 7.496× 101 6.543× 102 1.264× 102 + 6.314× 102 8.857× 101 + 7.129× 102 9.568× 101 +
F30 8.703× 105 1.105× 105 7.755× 105 7.404× 105 − 8.976× 105 7.345× 105 + 8.459× 105 6.818× 105 =

W/T/L −/−/− 22/4/4 23/5/2 24/1/5

Rank 1.53 2.23 2.77 3.47

Dimension 100

Fun DWSE SE LSE CSE

mean std mean std mean std mean std

F1 1.386× 103 2.465× 103 5.056× 103 5.204× 103 + 6.802× 103 6.344× 103 + 5.597× 103 3.139× 103 +
F2 1.000× 1030 1.421× 1014 1.000× 1030 2.843× 1014 = 1.000× 1030 1.421× 1014 = 1.000× 1030 1.421× 1014 =
F3 6.105× 105 5.046× 105 2.386× 105 2.512× 105 − 4.810× 105 3.912× 105 − 4.659× 105 3.803× 105 −
F4 2.305× 102 2.780× 101 2.346× 102 2.039× 101 = 2.341× 102 1.719× 101 = 2.590× 102 2.268× 101 +
F5 1.945× 102 1.950× 101 3.265× 102 2.495× 101 + 4.276× 102 3.626× 101 + 5.025× 102 2.725× 101 +
F6 1.398× 100 4.804× 10−1 6.040× 10−5 2.399× 10−4 − 6.687× 10−13 4.342× 10−14 − 6.197× 10−13 6.556× 10−14 −
F7 3.525× 102 2.983× 101 4.592× 102 3.011× 101 + 5.630× 102 3.066× 101 + 6.408× 102 2.109× 101 +
F8 1.970× 102 1.899× 101 3.296× 102 3.230× 101 + 4.223× 102 3.588× 101 + 4.994× 102 2.330× 101 +
F9 2.902× 102 2.578× 102 7.582× 103 1.691× 103 + 8.399× 103 2.005× 103 + 1.115× 105 2.118× 103 +

F10 1.015× 105 4.486× 102 1.182× 105 6.424× 102 + 1.530× 105 8.450× 102 + 1.699× 105 4.869× 102 +
F11 5.027× 105 1.448× 105 4.288× 103 1.886× 103 − 1.915× 105 4.900× 103 − 2.438× 103 7.156× 102 −
F12 1.604× 106 1.285× 106 2.915× 107 8.604× 106 + 4.308× 107 1.073× 107 + 3.072× 107 8.416× 106 +
F13 3.248× 103 2.960× 103 3.671× 103 2.807× 103 = 1.211× 105 5.742× 103 + 3.241× 105 1.199× 105 +
F14 5.564× 106 1.526× 106 4.153× 106 1.250× 106 − 5.717× 106 1.935× 106 = 6.036× 105 2.796× 105 −
F15 6.978× 102 6.967× 102 1.450× 103 9.566× 102 + 5.603× 103 2.670× 103 + 9.098× 103 4.256× 103 +
F16 2.661× 103 3.263× 102 3.224× 103 3.807× 102 + 3.015× 103 3.355× 102 + 3.322× 103 3.274× 102 +
F17 2.059× 103 2.154× 102 2.140× 103 3.034× 102 = 2.171× 103 2.246× 102 + 2.364× 103 2.647× 102 +
F18 4.183× 106 1.094× 106 4.124× 106 1.380× 106 = 4.767× 106 1.301× 106 + 1.322× 106 4.702× 105 −
F19 9.863× 102 1.149× 103 2.516× 103 1.624× 103 + 1.568× 105 6.910× 103 + 1.811× 105 8.100× 103 +
F20 1.946× 103 2.066× 102 2.171× 103 2.898× 102 + 2.030× 103 2.527× 102 + 2.229× 103 2.336× 102 +
F21 4.445× 102 2.347× 101 5.747× 102 2.702× 101 + 6.585× 102 3.247× 101 + 7.260× 102 2.767× 101 +
F22 1.112× 105 1.629× 103 1.300× 105 6.822× 102 + 1.653× 105 8.865× 102 + 1.781× 105 2.392× 103 +
F23 6.474× 102 1.381× 101 7.010× 102 1.903× 101 + 7.287× 102 1.973× 101 + 7.590× 102 1.703× 101 +
F24 1.094× 103 2.323× 101 1.195× 103 2.698× 101 + 1.250× 103 2.505× 101 + 1.307× 103 2.748× 101 +
F25 7.755× 102 5.605× 101 7.588× 102 4.400× 101 − 8.239× 102 2.015× 101 + 8.490× 102 2.085× 101 +
F26 5.594× 103 2.638× 102 6.590× 103 3.466× 102 + 7.256× 103 2.867× 102 + 7.891× 103 2.720× 102 +
F27 7.098× 102 1.558× 101 7.285× 102 2.278× 101 + 7.524× 102 2.004× 101 + 7.601× 102 2.112× 101 +
F28 5.697× 102 2.632× 101 5.763× 102 3.910× 101 = 6.170× 102 2.876× 101 + 6.358× 102 1.905× 101 +
F29 2.120× 103 2.505× 102 2.662× 103 2.788× 102 + 2.494× 103 2.282× 102 + 2.792× 103 2.145× 102 +
F30 7.590× 103 4.762× 103 8.103× 103 2.754× 103 + 1.551× 105 3.269× 103 + 1.010× 105 2.087× 103 +

W/T/L −/−/− 19/6/5 24/3/3 24/1/5

Rank 1.50 2.17 2.97 3.37
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Figure 3 displays a box and convergence graph of four SEs on problem 1, problem 15,
and problem 30 in CEC2017, where dim = 30. Problem 1 represents a single-peak unimodal
function, wherein the local optimum coincides with the global optimum, demanding a
greater focus on algorithmic exploitation rather than exploration. The figure clearly illus-
trates that DWSE not only exhibits superior local search capabilities but also demonstrates
notably better stability when dealing with the single-peak problem, outperforming the
other three algorithms.
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Figure 3. Box and convergence graph of SEs in CEC2017.

Problem 15 represents a hybrid function optimization problem with multiple peaks,
indicating inherent unrelatedness among its dimensions. In the convergence graph, DWSE
exhibits robust convergence, with a slight slowdown observed in the later stages when
focusing on local search, while the other SEs show significantly slower convergence. As
evidenced by the box plots, DWSE maintains similar stability performance as in problem 1
and significantly outperforms the other algorithms. The red + represent the location of the
extremes in the repeat run. The presence of individual extreme values indicates a tendency
to converge to a local optimum, suggesting that DWSE may have the capability to find a
globally optimal solution for this problem when extreme values are not involved.
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In contrast, problem 30 is a multipeak composition function problem, requiring a
higher level of exploratory capability than problem 1. Even in this scenario, DWSE emerges
as the top performer, as evidenced by the convergence chart. Notably, CSE, which employs
chaotic differential operators, fares the worst on this problem, while LSE exhibits weaker
exploration capabilities compared to SE, mainly due to its emphasis on strengthening
exploitation without an increase in the initial population size (18× dim in L-SHADE).

Considering the combined analysis of both problems, it is evident that DWSE not
only enhances the local search ability of SE but also improves its capacity to explore global
optima. Furthermore, the convergence process of DWSE is smooth and stable, contributing
to its impressive performance.

3.2. Experimental Results and Analysis in CEC2011

Table 3 shows the experimental results in CEC2011, a test set commonly used to test
the ability of algorithms to solve real-world problems. Since the global optimal solution of
a real-world problem may not be a knowable value, we use the mean of the final fitness for
statistics on that problem. Among these 22 real-world problems for solving the minimum,
DWSE is still substantially ahead of the other algorithms.

Table 3. Experimental results of 22 real-world problems in CEC2011.

Fun
DWSE SE LSE CSE

Mean std Mean std Mean std Mean std

F1 5.843× 100 2.953× 100 1.031× 101 3.667× 100 + 9.370× 100 3.447× 100 + 1.065× 101 3.129× 100 +
F2 −2.616× 101 1.277× 100 −2.061× 101 1.015× 100 + −2.119× 101 9.709× 10−1 + −2.039× 101 9.685× 10−1 +
F3 1.151× 10−5 3.277× 10−19 1.151× 10−5 2.673× 10−19 − 1.151× 10−5 2.331× 10−19 − 1.151× 10−5 2.600× 10−19 −
F4 1.632× 101 3.002× 100 1.632× 101 3.098× 100 = 1.591× 101 2.988× 100 − 1.600× 101 2.942× 100 −
F5 −3.669× 101 2.448× 10−1 −3.388× 101 4.240× 10−1 + −3.419× 101 5.927× 10−1 + −3.388× 101 3.930× 10−1 +
F6 −2.913× 101 2.430× 10−1 −2.812× 101 5.762× 10−1 + −2.845× 101 4.703× 10−1 + −2.805× 101 5.357× 10−1 +
F7 1.205× 100 9.278× 10−2 1.325× 100 7.553× 10−2 + 1.298× 100 1.015× 10−1 + 1.336× 100 9.118× 10−2 +
F8 2.200× 102 0.000× 100 2.200× 102 0.000× 100 = 2.200× 102 0.000× 100 = 2.200× 102 0.000× 100 =
F9 1.351× 103 5.020× 102 2.767× 103 3.369× 102 + 2.376× 103 3.406× 102 + 2.872× 103 3.665× 102 +
F10 −1.915× 101 1.434× 100 −1.768× 101 8.702× 10−1 + −1.842× 101 9.357× 10−1 + −1.769× 101 9.081× 10−1 +
F11 5.164× 105 5.421× 102 5.807× 105 7.384× 102 + 5.657× 105 7.366× 102 + 5.819× 105 7.997× 102 +
F12 1.768× 107 1.051× 105 1.732× 107 4.691× 103 − 1.732× 107 4.902× 103 − 1.732× 107 2.350× 103 −
F13 1.545× 105 2.440× 100 1.546× 105 4.942× 100 + 1.546× 105 6.291× 100 + 1.546× 105 4.940× 100 +
F14 1.906× 105 1.084× 102 1.933× 105 1.855× 102 + 1.933× 105 1.503× 102 + 1.936× 105 1.808× 102 +
F15 3.294× 105 2.627× 101 3.297× 105 2.421× 101 + 3.297× 105 2.789× 101 + 3.296× 105 2.711× 101 +
F16 1.339× 105 1.174× 103 1.348× 105 1.765× 103 + 1.350× 105 1.280× 103 + 1.349× 105 1.944× 103 +
F17 1.916× 106 1.431× 105 1.937× 106 1.401× 105 + 1.934× 106 1.484× 105 + 1.934× 106 1.492× 105 +
F18 9.386× 105 1.486× 103 9.575× 105 6.445× 103 + 9.542× 105 5.250× 103 + 9.570× 105 5.591× 103 +
F19 1.181× 106 7.244× 105 1.207× 106 6.304× 105 + 1.186× 106 7.117× 105 = 1.206× 106 6.742× 105 +
F20 9.379× 105 1.687× 103 9.570× 105 6.184× 103 + 9.548× 105 4.625× 103 + 9.561× 105 5.929× 103 +
F21 1.561× 101 1.748× 100 1.712× 101 1.802× 100 + 1.688× 101 2.091× 100 + 1.696× 101 1.986× 100 +
F22 1.660× 101 2.335× 100 1.883× 101 2.241× 100 + 1.841× 101 2.069× 100 + 1.907× 101 1.978× 100 +

W/T/L −/−/− 18/2/2 17/2/3 18/1/3

Rank 1.48 3.16 2.16 3.20

Figure 4 shows the box and convergence graph of SEs in CEC2011. The red + repre-
sent the location of the extremes in the repeat run. Problem 1 is a parameter estimation
for a frequency-modulated sound wave problem; DWSE shows strong convergence in
this problem. The algorithm converges progressively faster on simple single-peak-type
problems due to the adaptive weights, gaining an advantage over other algorithms. The
DWSE continues to be the most consistent in the box plot, with two extremes, but the
values in its middle segment are much closer together. Problem 2 is a spacecraft trajectory
optimization problem; DWSE continues to outperform other algorithms on this problem.
However, the stability of DWSE decreases slightly for relatively complex problems, so
repeated optimizations may become increasingly necessary. The advantages of DWSE in
terms of the speed of convergence of this problem is still evident.
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Figure 4. Box and convergence graph of SEs in CEC2011.

3.3. Experimental Results and Analysis in CEC2013 LSGO

Previous experimental results and analyses show that DWSE is much stronger than
other SEs on low-dimensional problems, but its performance decreases as the problem di-
mensions increase. Therefore, in this paper, we adopted the large-scale global optimization
problem set of CEC2013 as a test of the performance of DWSE under ultra-high dimensional
problems.

Table 4 shows the experimental results of large-scale global optimization in CEC2013.
However, in terms of results, DWSE is only better than SE and equal to LSE and CSE in
terms of wins and losses. However, considering the performance decay of DWSE with
increased dimensions, while it can still achieve a performance not weaker than that of
other SEs on problems with dimensions of 1000 or less, the improvement of DWSE can be
considered a success. Large-scale global optimization problems have consistently posed
significant challenges for evolutionary algorithms, and often, only algorithms designed for
large-scale problems can effectively optimize such cases. We utilized these problems to test
whether DWSE would be less effective than other SEs when confronted with performance
decay arising from increased problem dimensionality. However, the experimental results
were satisfactory, demonstrating DWSE’s capability to adeptly handle such scenarios.
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Table 4. Experimental results of large-scale global optimization in CEC2013.

Dimension 1000

Fun
DWSE SE LSE CSE

Mean std Mean std Mean std Mean std

F1 2.487× 107 5.540× 106 2.584× 105 1.733× 103 2.678× 103 1.596× 102 1.844× 105 3.365× 103

F2 6.953× 103 3.796× 102 4.620× 10−1 2.810× 10−1 1.135× 100 9.313× 10−1 3.787× 10−1 2.601× 10−1

F3 1.524× 101 9.607× 10−1 1.113× 10−5 6.815× 10−7 6.779× 10−7 9.492× 10−8 8.754× 10−6 9.384× 10−7

F4 5.267× 1010 1.350× 1011 3.812× 1011 8.957× 1010 3.304× 1011 9.063× 1010 2.227× 1010 7.358× 109

F5 4.035× 106 3.780× 105 1.068× 107 7.643× 105 1.010× 107 8.718× 105 9.721× 106 1.020× 106

F6 4.796× 105 4.253× 105 1.016× 106 2.706× 103 1.004× 106 2.923× 103 1.014× 106 7.361× 103

F7 2.498× 109 1.134× 109 1.653× 109 2.979× 108 1.726× 109 3.136× 108 1.678× 109 2.760× 108

F8 9.051× 1014 2.977× 1015 1.689× 1016 4.084× 1015 1.429× 1016 4.062× 1015 3.894× 1014 1.791× 1014

F9 2.147× 108 3.247× 107 7.994× 108 5.636× 107 7.470× 108 7.674× 107 7.060× 108 9.144× 107

F10 1.822× 107 4.272× 106 1.824× 107 3.103× 106 1.508× 107 4.458× 106 1.432× 107 3.205× 106

F11 1.979× 1011 3.061× 1011 1.612× 1011 5.442× 1010 1.520× 1011 4.154× 1010 1.256× 1011 4.443× 1010

F12 2.453× 106 9.784× 105 5.024× 103 1.587× 102 4.076× 103 1.482× 102 4.819× 103 1.586× 102

F13 2.973× 1010 6.118× 109 2.258× 1010 2.142× 109 2.060× 1010 2.406× 109 2.205× 1010 2.943× 109

F14 3.340× 1011 8.037× 1010 3.300× 1011 5.522× 1010 3.184× 1011 5.341× 1010 3.046× 1011 6.401× 1010

F15 2.600× 107 2.600× 106 1.459× 108 2.647× 107 1.298× 108 2.205× 107 1.198× 108 1.890× 107

W/T/L −/−/− 7/2/6 7/1/7 7/1/7

Figure 5 shows the box and convergence graph of SEs in CEC2013 LSGO. The red +
represent the location of the extremes in the repeat run. The search efficiency of DWSE
on problem 1 is much lower than that of other SEs, which may be due to the fact that
the adaptive range of the weights is so small in the ultra-high dimensionality problem
that the number of dimensions being changed each time is too large. Changing too many
dimensions on that problem may lead to slower convergence and therefore insufficient val
values, eventually leading to insufficient change of weights comprising a vicious circle. On
problem 15, at the beginning of convergence, DWSE is still inferior to the other algorithms,
again due to the weighting calculation. However, since all algorithms fall into a close local
optimum on this problem, while the other SEs lack local search capability and stagnate
altogether, DWSE’s excellent local search capability allows it to obtain the most accurate set
of solutions on the local optimum, defeating the other SEs.
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Figure 5. Box and convergence graph of SEs in CEC2013 LSGO.
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3.4. Comparison with Other MHAs in CEC2017 and CEC2011

In order to further demonstrate the improvement in the performance of DWSE, it was
compared with a selection of classic, strong, and recent algorithms on a low to medium
dimensional test set [41–46]. Table 5 shows the comparison results of DWSE with other
MHAs in CEC2017 and CEC2011. DWSE took the lead in the overall comparison results
and gained the lead in every set of problems, except for CEC2017, where it was slightly
behind DE under the 30-dimension problem. We believe this is a testament to DWSE’s
strength in performance. It should be noted that IPA, due to its design mechanism, cannot
be run on problems with a low dimension count; therefore its data are not available for
CEC2011.

Table 5. Comparison results of DWSE with other MHAs in CEC2017 and CEC2011.

DWSE VS. DE GLPSO DNLGSA GWO IPA DEPSO CSO

CEC2017
dim = 30 13/1/16 28/1/1 28/1/1 29/0/1 24/3/3 27/1/2 26/1/3
dim = 50 18/2/10 27/1/2 27/2/1 29/0/1 22/2/6 27/2/1 25/2/3

dim = 100 18/4/8 24/1/5 25/1/4 26/0/4 25/2/3 26/2/2 27/2/1

CEC2011 13/3/6 19/3/0 20/1/1 19/1/2 −/−/− 17/4/1 20/2/0

total 62/10/40 98/6/8 100/5/7 103/1/8 71/7/12 97/9/6 98/7/7

3.5. Discussion

In the time complexity analysis, the initialization complexity of DWSE is O(popusize).
The upper bound of the DSF operation is dependent on the problem dimension, resulting
in a time complexity of O(dim) for the computation of DSF and W. The operator utilized
in DWSE consumes a time complexity of O(dim). Additionally, the time complexity asso-
ciated with the dimension selection process is O(log(dim)). In summary, the overall time
complexity of DWSE can be expressed as O(popusize · dim · dim · log(dim)). In comparison
to SE, the complexity of DWSE is higher. This higher complexity is attributed to DWSE’s
requirement of dimension weighting, which increases its complexity by a factor of dim due
to the additional operations conducted in the loop involving popusize · dim computations.
However, considering the performance enhancement achieved by DWSE, the slight increase
in computation time is deemed acceptable.

Table 6 shows the experimental results of all SE operators in dimension 30 in CEC2017.
Among these, DWSE utilizes SE/rand/1 and SE/rand/2, which exhibit nearly identical
performance, displaying negligible distinctions, with notable proximity to SE/current/1
and SE/current/2. Given that SE/rand/1 is the recommended operator within the SE
framework and is widely employed for real-world problem optimization, we concur with
its selection.
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Table 6. Experimental results of operator discussion in CEC2017.

Fun
DWSE (Rand/1) VS. Current-to-Best/1 Best/1 Best/2 Rand/2 Current/1 Current/2

Mean Mean Mean Mean Mean Mean Mean

F1 6.474× 10−3 2.953× 10−1 1.404× 10−3 2.754× 10−3 6.613× 10−3 7.918× 10−1 1.735× 100

F2 3.535× 1012 1.486× 101 1.723× 10−4 2.179× 10−6 2.208× 1012 4.359× 102 4.695× 101

F3 1.122× 105 1.023× 105 1.069× 105 1.112× 105 7.933× 105 1.207× 105 8.139× 105

F4 9.259× 101 6.834× 101 8.338× 101 6.888× 101 9.417× 101 8.355× 101 9.880× 101

F5 3.000× 101 5.492× 101 7.263× 101 8.557× 101 3.673× 101 6.729× 101 7.603× 101

F6 1.137× 10−13 2.841× 10−3 6.338× 100 1.049× 101 1.137× 10−13 3.833× 10−3 2.982× 10−3

F7 6.352× 101 1.065× 102 2.502× 102 1.438× 102 5.980× 101 8.694× 101 9.616× 101

F8 3.588× 101 7.401× 101 5.572× 101 8.855× 101 3.809× 101 5.557× 101 6.127× 101

F9 6.001× 10−1 3.373× 102 2.220× 103 3.466× 102 0.000× 100 7.615× 102 4.045× 102

F10 1.880× 103 2.434× 103 2.523× 103 1.776× 103 1.852× 103 2.124× 103 1.769× 103

F11 2.561× 101 3.323× 101 1.142× 102 1.406× 102 2.137× 101 3.742× 101 2.063× 101

F12 4.119× 105 6.249× 105 8.152× 105 5.854× 105 1.233× 105 3.953× 105 4.153× 105

F13 7.504× 103 6.463× 102 5.960× 105 2.959× 105 8.429× 103 4.945× 102 6.064× 102

F14 1.200× 103 7.186× 101 7.406× 102 7.455× 101 7.491× 101 7.148× 101 8.118× 101

F15 1.923× 102 7.142× 101 2.915× 105 6.659× 101 1.024× 102 6.731× 101 1.091× 102

F16 3.989× 102 6.332× 102 1.195× 103 1.142× 103 2.001× 102 5.178× 102 4.305× 102

F17 7.037× 101 8.409× 101 6.279× 102 8.532× 101 7.794× 101 6.963× 101 1.576× 102

F18 2.120× 105 7.492× 105 5.255× 105 1.155× 105 6.630× 105 1.180× 105 9.448× 103

F19 5.133× 102 3.663× 101 1.795× 102 6.031× 103 4.879× 102 3.674× 101 4.695× 101

F20 1.113× 102 2.050× 102 3.010× 101 1.608× 102 5.790× 101 8.585× 101 7.037× 101

F21 2.359× 102 2.670× 102 2.945× 102 2.267× 102 2.364× 102 1.352× 102 2.641× 102

F22 1.023× 102 1.058× 102 1.038× 102 1.000× 102 1.169× 102 1.108× 102 1.000× 102

F23 3.828× 102 3.844× 102 4.164× 102 4.437× 102 3.877× 102 3.819× 102 3.808× 102

F24 4.557× 102 5.308× 102 4.994× 102 4.812× 102 4.564× 102 2.106× 102 5.319× 102

F25 3.874× 102 3.870× 102 4.294× 102 3.894× 102 3.871× 102 3.869× 102 3.869× 102

F26 1.312× 103 3.077× 102 1.703× 103 1.574× 103 1.366× 103 2.458× 102 2.461× 102

F27 5.091× 102 5.111× 102 5.022× 102 5.246× 102 5.105× 102 5.182× 102 5.104× 102

F28 3.299× 102 3.796× 102 4.401× 102 4.067× 102 4.070× 102 3.000× 102 3.030× 102

F29 4.968× 102 5.091× 102 1.138× 103 9.890× 102 5.034× 102 5.666× 102 6.217× 102

F30 4.934× 103 9.960× 103 3.846× 103 9.506× 103 6.082× 103 8.189× 103 3.797× 103

W/T/L −/−/− 17/4/9 20/2/8 19/3/8 10/10/10 14/3/13 13/5/12

4. Conclusions

The development of optimization algorithms has a long and rich history, which has
given rise to a series of intriguing and diverse algorithms in its early stages. As problems
and algorithms have progressed, driven by the pursuit of better performance, algorithmic
improvements have gradually converged, resulting in a phenomenon of becoming trapped
in local optima. Although the developers of SE were the first to observe and propose
this unique algorithm, it has also presented challenges in implementing many successful
improvement experiences in this context.

The improvement method proposed in this paper involves a specialized operation
based on the dimension selection of SE. Despite its non-complex nature, the effectiveness
of this improvement is evident. The substantial enhancements in low- and medium-
dimensional problems, coupled with the sustained performance in ultra-high-dimensional
problems, bring SEs closer to approximating the global optimum. As one of the few SE
improvement algorithms, we also hope that DWSE can contribute to the diversification
of algorithms.

SE is an algorithm commonly employed to optimize parameter estimation problems
for photovoltaic models and has proven its effectiveness in solving such problems. Our
next step involves selecting this problem and utilizing the current best-performing SE, i.e.,
DWSE, as the foundation for further enhancements, aiming to attain even better results for
real-world applications.
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