

Yifei Yang 🔍, Sichen Tao 🔍, Shibo Dong 🔍, Masahiro Nomura 🔍 and Zheng Tang *

Faculty of Engineering, University of Toyama, Toyama-shi 930-8555, Japan; yyf773906764@gmail.com (Y.Y.); taosc73@hotmail.com (S.T.); m01811137@gmail.com (S.D.); d2372003@ems.u-toyama.ac.jp (M.N.) * Correspondence: ztang@eng.u-toyama.ac.jp

Abstract: The spherical evolution algorithm (SE) is a unique algorithm proposed in recent years and widely applied to new energy optimization problems with notable achievements. However, the existing improvements based on SE are deemed insufficient due to the challenges arising from the multiple choices of operators and the utilization of a spherical search method. In this paper, we introduce an enhancement method that incorporates weights in individuals' dimensions that are affected by individual fitness during the iteration process, aiming to improve SE by adaptively balancing the tradeoff between exploitation and exploration during convergence. This is achieved by reducing the randomness of dimension selection and enhancing the retention of historical information in the iterative process of the algorithm. This new SE improvement algorithm is named DWSE. To evaluate the effectiveness of DWSE, in this study, we apply it to the CEC2017 standard test set, the CEC2013 large-scale global optimization test set, and 22 real-world problems from CEC2011. The experimental results substantiate the effectiveness of DWSE in achieving improvement.

Keywords: spherical evolution; evolutionary computation; weighting allocation; adaptive strategy

MSC: 68T01; 68T05; 68T20

Citation: Yang, Y.; Tao, S.; Dong, S.; Nomura, M.; Tang, Z. An Adaptive Dimension Weighting Spherical Evolution to Solve Continuous Optimization Problems. *Mathematics* 2023, *11*, 3733. https://doi.org/ 10.3390/math11173733

Academic Editors: Dhananjay R. Thiruvady, Su Nguyen and Yuan Sun

Received: 1 August 2023 Revised: 22 August 2023 Accepted: 29 August 2023 Published: 30 August 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

Optimization algorithms, as solutions designed to optimize complex real-world problems, have been a popular area of research for the past few decades [1]. These algorithms can generally be divided into two categories: metaheuristic algorithms (MHAs) and heuristic algorithms [2]. MHAs are often based on laws derived inductively from real-world phenomena, which are then transformed into algorithms. On the other hand, heuristic algorithms are traditional mathematical methods or improved versions of MHAs. Several early classical MHAs, including the genetic algorithm (GA), particle swarm optimization (PSO), the simulated annealing algorithm (SA) and differential evolution (DE), have significantly influenced the field of optimization due to their wide range of applications [3–7]. These algorithms stand firmly on their own as highly effective solutions. Additionally, metaphorical MHAs such as the artificial bee colony algorithm (ABC), ant colony optimization (ACO), and the whale optimization algorithm (WOA) add to the diversity of approaches [8–10]. Conversely, the sine cosine algorithm (SCA) and covariance matrix adaptation evolution strategy (CMA-ES) fall into the category of mathematically inspired MHAs, further broadening the spectrum of optimization techniques [11,12]. Despite their wide-ranging definitions and interpretations, most optimization algorithms are designed around two core components: the operators and strategies employed within the algorithms [13].

The operator, which denotes the formula used to update individuals, constitutes one of the fundamental cores of the algorithm. Operators usually contain individuals, step sizes, and operations that combine them [14,15]. The algorithm encompasses the selection of the previous generation of individuals and the multiplicity of search steps.

The selection of individuals significantly impacts the diversity of populations within the algorithm and the retention of historical information [16]. Meanwhile, the search step size plays a crucial role in determining the convergence speed of the algorithm [17]. The impact of strategies extends beyond the operator components, and it can be argued that the presence of strategies differentiates algorithms from purely mathematical methods [18]. The design of strategies often serves a specific purpose; for instance, the strategy change of individual division of labor in the swarm intelligence algorithm aims to conduct further exploitation in the valuable regions discovered by the algorithm, ultimately leading to better solutions [19]. Similarly, the mutation strategy in genetic algorithms broadens the search direction, preventing premature convergence to local optima [20]. However, the use of strategies entails both favorable and unfavorable effects. For instance, the greedy selection strategy may improve an individual's fitness, yet it also limits the algorithm's ability to escape local optima [21]. Irrespective of the operator design and strategy choice, the primary objective is to strike a delicate balance between exploitation and exploration during the search process [22]. Exploitation and exploration, as a set of antonyms, represent distinct facets of an algorithm's behavior, and the algorithm's state may lean more towards one aspect at any given time [23]. Exploitation emphasizes the local search ability and convergence speed of an algorithm, while exploration highlights its global search ability and capacity to jump out of local optima [24]. Achieving a balance between these two aspects is the overarching aim. Ideally, an algorithm should converge rapidly and find the global optimal solution effectively. However, this ideal scenario encounters a practical limitation due to MHAs often having to contend with NP-hard problem [25] that an algorithm cannot achieve both fast convergence and the best solution simultaneously. Nonetheless, through a thoughtful and rational design, it is possible to strike a compromise between the convergence speed and the quality of the solution. This embodies the essence of the balance between exploitation and exploration.

Algorithm improvements are often rooted in changes to operators or strategies or the fusion of two distinct algorithms [26–29]. Hybrid algorithms, which are designed to amalgamate algorithms with different tendencies, serve the purpose of striking a better balance between exploitation and exploration. These improvements typically have specific objectives, like enabling a more exploitation-oriented algorithm to break out of local optima or enhancing the local search capabilities of an exploration-oriented algorithm. Within the realm of numerous MHAs and their improved versions, the spherical evolution algorithm (SE) is popular due to its wide range of applications in engineering optimization, such as parameter estimation for photovoltaic models and optimization of wind farm layouts [30–34]. However, compared to other algorithms, SE has seen relatively few improvements. This is primarily attributed to its unique search strategy, which relies entirely on a geometric space search, and the highly stochastic nature of its search pattern, which is achieved by utilizing an operator that updates individual step sizes using Euclidean distance. One notable successful improvement of SE is the linear population size reduction-based SE algorithm (LSE) [35]. LSE effectively compensates for the higher randomness in SE, thereby bolstering its exploitation ability while maintaining exploration capabilities. By emulating the improvement strategy of LSHADE, the search pattern of LSE is somewhat altered, enabling a more focused exploitation during later iterations [36]. Another attempt at improvement is the cooperative coevolution wingsuit flying search algorithm with SE (CCWFSSE) [37]. However, it falls short of being deemed a successful hybrid algorithm due to its use of unreasonable population size settings in the experimental phase and the absence of a comparison with the original SE. A previous study introducing CSE employed a differential evolution approach using coefficients of chaotic mappings for elite individuals in SE iterations, which exhibited promising performance enhancements [38]. The results obtained in previous studies support the assertion that improving SE is a challenging task.

Weighting methods commonly employed in evolutionary computation, such as the introduction of weight to each algorithm in a hybrid algorithm, are simple yet effective techniques [39]. Some studies have explored the idea of assigning weights to individual

dimensions of the algorithm, aiming to identify the dimensions requiring the most significant changes or those necessitating minimal adjustments [40]. However, this approach presents challenges, since estimating the value of a dimension in a black-box optimization problem is inherently difficult. Prematurely fixing the value of a dimension can inadvertently lead the algorithm towards a local optimum. Therefore, weighting is often used for deterministic problems such as image classification rather than NP-hard problems. In fact, the dimension selection mechanism employed in SE is essentially a form of weight selection. SE defines the number of dimensions (DSF) updated by an individual as a random integer in the range of [6, 10], which, for a 30-dimensional problem, equates to assigning a weight ranging from 20% to 33.3% to each dimension of the individual. This stochastic weighting mechanism prevents the algorithm from prematurely converging to a local optimum, but it also compromises its exploitation capability. The primary focus of the improvement in this paper lies in modifying the original weight (DSF). Specifically, we introduce a modification by replacing the random selection approach with a more sophisticated weighted selection approach. The weight assigned to dimension selection is influenced by the quality of the solution, as well as historical information. This dimensionally weight-based improvement in SE is referred to as DWSE. To enhance the efficiency of DWSE, we incorporated a cooperative strategy by segmenting the population of SE into multiple subsets. Within each segment, individuals share the same set of weights, fostering a cooperative synergy that yields similar effects.

To evaluate the performance of DWSE, we conducted extensive evaluations utilizing three test sets sourced from the IEEE Congress on Evolutionary Computation (CEC). These sets encompass thirty single-objective continuous function optimization problems drawn from CEC2017, which encompass single-peak functions, simple multipeak functions, hybrid functions, and composite functions. Additionally, we included twenty-two real-world problems sourced from CEC2011, along with a comprehensive large-scale global optimization test set derived from CEC2013. The function expressions for these test sets are publicly accessible on the official IEEE CEC website. Furthermore, we are committed to providing the problem models, along with the corresponding open-source data. The outcomes of our experimentation unequivocally underscore the substantial enhancements achieved by DWSE, distinctly positioning it with advantages over other SE improvement algorithms.

This work aims to make the following contributions:

- For the first time in SE, we apply a weighting method to dimension selection with adaptive capability;
- DWSE has significant advantages over SE and other SE improvement algorithms for constrained single-objective optimization problems.

In Section 2, we introduce the proposed DWSE. In Section 3, experiments and analysis using DWSE based on standard test sets, real-world problems, and large-scale optimization problems are presented to validate the improvements. Finally, in Section 4, we provide a comprehensive summary of the conclusions drawn from this research paper.

2. The Proposed DWSE

2.1. Spherical Evolution

SE denotes the update unit of most MHAs in the hypercubic search (rectangular in 2D) approach as:

$$SS(C_{i,j}, D_{i,j}) = ScaleFun01_{i,j}() \cdot (ScaleFun02_{i,j}() - ScaleFun03_{i,j}()),$$

$$i = 1, 2, \cdots, popusize; j = 1, 2, \cdots, dim.$$
(1)

where *ScaleFun* is a function for adjusting the difference between *C* and *D*, *popusize* is the population size, and *dim* is the dimension of the problem. The unique innovation of SE lies in the fact that instead of the hypercubic search method used in Equation (1), it uses an

original spherical (hypersphere in the high-dimensional case) search method. Its formula can be expressed as:

$$SS(C_{i,j}, D_{i,j}) = ScaleFun_{i,j}() \cdot \|C_{i,j} - D_{i,j}\| \cdot \cos\theta,$$
(2)

$$SS(C_{i,j}, D_{i,j}) = \begin{cases} ScaleFun_{i,j}() \cdot \|C_{i,*} - D_{i,*}\|_2 \cdot \sin\theta, & j = 1, 2\\ ScaleFun_{i,j}() \cdot \|C_{i,*} - D_{i,*}\|_2 \cdot \cos\theta, & j = 1, 2 \end{cases}$$
(3)

$$SS(C_{i,j}^{k}, D_{i,j}^{k}) = \begin{cases} ScaleFun_{i,j}() \cdot \|C_{i,*} - D_{i,*}\|_{2} \cdot \prod_{k=j}^{dim-1} \sin \theta_{j}, & j = 1 \\ ScaleFun_{i,j}() \cdot \|C_{i,*} - D_{i,*}\|_{2} \cdot \prod_{k=j}^{dim-1} \sin \theta_{j} \cdot \cos \theta_{j-1}, & 1 < j < dim - 1 \\ ScaleFun_{i,j}() \cdot \|C_{i,*} - D_{i,*}\|_{2} \cdot \cos \theta_{j-1}, & j = dim \end{cases}$$
(4)

where Equation (2) is used to search for the one-dimensional case, Equation (3) is used to search for the two-dimensional case, and Equation (4) is used to search for other cases. This search has a higher degree of directional randomization than hypercube search, giving it a considerable advantage in specific, more exploratory problems.

SE also provides seven operators based on spherical evolution and recommends a fourth operator. All operators in SE can be represented as follows:

(1) SE/current-to-best/1

$$X_{i,j}^{t+1} = X_{i,j}^{t} + SS_m(X_{i,j}^t, X_{g,j}^t) + SS_m(X_{r1,j}^t, X_{r2,j}^t),$$
(5)

(2) SE/best/1

(3)

(5)

$$X_{i,j}^{t+1} = X_{g,j}^t + SS_m(X_{r1,j}^t, X_{r2,j}^t),$$
(6)

SE/best/2

$$X_{i,j}^{t+1} = X_{g,j}^{t} + SS_m(X_{r1,j}^t, X_{r2,j}^t) + SS_m(X_{r3,j}^t, X_{r4,j}^t),$$
(7)

$$X_{i,j}^{t+1} = X_{r1,j}^t + SS_m(X_{r2,j}^t, X_{r3,j}^t),$$
(8)

$$X_{i,j}^{t+1} = X_{r1,j}^t + SS_m(X_{r2,j}^t, X_{r3,j}^t) + SS_m(X_{r3,j}^t, X_{r4,j}^t),$$
(9)

(6) SE/current/1

SE/rand/2

$$X_{i,j}^{t+1} = X_{i,j}^t + SS_m(X_{r2,j}^t, X_{r3,j}^t),$$
(10)

(7) SE/current/2

$$X_{i,j}^{t+1} = X_{i,j}^t + SS_m(X_{r2,j}^t, X_{r3,j}^t) + SS_m(X_{r4,j}^t, X_{r5,j}^t).$$
(11)

2.2. Weight-Based Dimension Selection Method

As mentioned in the background, determining the weights of each dimension at each moment in a black-box optimization problem poses a challenge. To address this issue, DWSE uses an iterative method of weight grouping to obtain new weights. The population of individuals is equally divided into 10 segments, with each segment assigned a set of weights, initially set at 0.5. This weight represents the number of dimensions that can be selected for updating in the current individual, as opposed to SE's random selection process. In DWSE, the number of dimensions to be selected for updating in an individual is calculated as $DSF = dim \times W$, where DSF denotes the number of dimensions, dim represents the total number of dimensions of an individual, and W corresponds to the weight of the following individual. The method employed for selecting which specific dimensions require updating adheres to the SE approach. Among all the dimensions of an

individual, the *DSF* dimensions that necessitate updating are selected evenly. The *k* value used to calibrate and select the dimensions (*DSF*) is then randomly chosen from [1, *dim*].

In the weight updating process of DWSE, a combination of a greedy strategy and a standard normal distribution significantly influences the weight assignment. Specifically, during SE iterations, individuals that have been successfully updated are preserved and assigned corresponding weights. Conversely, the remaining individuals retain only the weights from their previous generation. The total weights are subsequently updated uniformly based on the standard normal distribution. Among the ten individuals, those that have not undergone updating are recorded as 0, while those that have been updated are assigned a value reflecting their progress in adaptation. The update value is calculated as val = fitold - fit, where fit and fitold represent the current fitness and the fitness of the previous generation, respectively. Subsequently, the values of the ten individuals undergo normalization, which determines the extent of weight adjustment required. Note that the reason for choosing a normal distribution is its property of ensuring equal probability distributions for increments and decrements, with decreasing values as the center distance increases.

$$W = \sum_{i=1}^{10} \frac{W \cdot val_i}{fitold_i},\tag{12}$$

In the context of this weight retention approach, when the majority of individuals in the group achieve successful iterations, the value of *W* will be larger, causing the algorithm to exhibit a stronger bias towards local search. Conversely, if the majority of individuals are not retained, the value of *W* will be smaller, leading to a bias in the algorithm towards updating fewer dimensions. Following the completion of the weight retention process, the weights are updated based on a standard normal distribution, expressed as follows:

$$W = \frac{1}{0.1\sqrt{2\pi}} exp\left(-\frac{(R-W)^2}{0.02}\right).$$
 (13)

where *R* represents a random number within the range of 0 to 1. Equations (12) and (13) demonstrate the process of updating weights for a set of individuals. As DWSE is divided into ten groups of individuals, and the aforementioned process must be repeated ten times. Figure 1 shows the difference between DWSE and SE in terms of strategy. The weighting strategy of DWSE in the figure has an additional layer of feedback process compared to SE, which is obviously more favorable to the evolutionary process of the algorithm.

Figure 1. DWSE vs. SE in terms of strategy.

2.3. Step Size Update Method Based on Success History Information

In SE, the step size (also referred to as the scaling factor) is determined by a random number constrained by the population size, which may not provide sufficient guidance for achieving rapid convergence in continuous optimization. In DWSE, the update strategy for the step size involves utilizing the previous generation's step size (*SF*) under the successfully updated *W* as the midpoint, which is then randomly adjusted within a specific range. A probability distribution approximating a function of the Cauchy distribution is a more desirable outcome based on the need for a smaller floating range of variation. The update formula for the step size can be expressed as follows:

$$SF_i = SF_i + 0.1 \cdot \tan[\pi \cdot (R - 0.5)].$$
 (14)

where *R* is a random number from to 0 to 1. Compared to SE, which depends entirely on random numbers, the step size of DWSE retains some historical information, which facilitates the precise exploitation process of the algorithm. Figure 2 shows the float range of *SF*. *SF* does not vary in float beyond ± 0.2 in most cases, which moderates the step size variation of the algorithm and helps to maintain fast convergence.

Figure 2. Distribution map of float range for SF.

2.4. Algorithm

Pseudocode Algorithm 1 shows the specific implementation of DWSE. *W* and *SF* are entered as a 1×10 matrix with an initial value of 0.5 for ease of calculation. The output is the best result obtained in the last iteration.

Algorithm 1: DWSE.

1 Input: N, dim, W, SF, FES; 2 Initialization; $\{X_1, X_2, ..., X_N\}, nFES = 0, fitold = fit;$ 3 while $nFES \leq FES$ do 4 for i = 1 to N do 5 $g = \lfloor \frac{i-1}{10} + 1 \rfloor;$ 6 $W_i \leftarrow W_g;$ 7 $DSF_i \leftarrow$ get the dimension number by $DSF_i = dim \times W_i$; 8 $SS_{i,j} \leftarrow$ calculate the updated value by Equations (2)–(4); 9 $X_i \leftarrow$ get the new individual by Equation (8); 10 $fit(X_i) \leftarrow calculate fit(X_i);$ 11 if $fit(X_i) < fit_i$ then 12 $fit_i \leftarrow fit(X_i);$ 13 end 14 $nFES \leftarrow nFES + 1;$ 15 $val_i \leftarrow$ update the value by val = fitold - fit;16 17 end for g = 1 to 10 do 18 $W_{g} \leftarrow$ update by Equations (12) and (13); 19 end 20 $SF \leftarrow$ update the step size by Equation (14); 21 *fitold* \leftarrow *fit* update the *fitold*; 22 23 end 24 Output: The best obtained solution

3. Experimental Results and Discussion

For the experimental part, the number of evaluations was set to $10,000 \times dim$ for the CEC2011 and CEC2017 problems and $3000 \times dim$ for the CEC2013 LSGO problems. The population size of all SE improvement algorithms including DWSE was set to 100. In the tables, mean and std represent the average value and standard deviation, respectively, and data marked in bold represent the best mean. W/T/L is the result of the comparison of win/tie/loss under the Wilcoxon rank-sum test at p = 0.05 (In general, the threshold for determining significant differences is 5%). After std, +/ = /- represents the win/tie/loss relationship under that problem. *Rank* denotes results based on Friedman mean rankings, and bolded font denotes the best mean under the problem. All results are based on repeated runs in MATLAB (51 times for CEC2017 and CEC2011; 30 for at CEC2013 LSGO) on a device with an i7-9700 CPU and 36GB RAM.

3.1. Experimental Results and Analysis in CEC2017

Tables 1 and 2 present the experimental results of SEs in CEC2017, encompassing results under four problem dimensions: 10, 30, 50, and 100. The results reveal that DWSE holds a significant advantage over all other SE improvement algorithms; this advantage is particularly pronounced when dealing with smaller problem dimensions. The dimension weighting mechanism of DWSE allows for a much more effective exploitation, surpassing other SE algorithms in terms of local search capabilities. Even in higher dimensions, DWSE maintains a competitive edge, despite a slight decline in performance. This is attributed to the impact of dimensional weights under grouping, which accentuates the disparity in operator weights among different groups, preserving sufficient randomness.

Table 1. Experimental	results in	CEC2017.
-----------------------	------------	----------

Dimension						10					
E	DV	VSE		SE			LSE			CSE	
Fun	Mean	std	Mean	std		Mean	std		Mean	std	
F1	$4.218 imes 10^1$	$3.670 imes 10^1$	$1.110 imes 10^3$	$1.328 imes 10^3$	+	$4.245 imes 10^2$	$4.942 imes 10^2$	+	$8.967 imes 10^2$	$1.188 imes 10^3$	+
F2	$3.967 imes 10^{-1}$	$2.833 imes 10^{0}$	1.771×10^{3}	2.389×10^{3}	+	4.958×10^2	7.280×10^2	+	1.637×10^3	1.778×10^{3}	+
F3	2.525×10^3	$3.744 imes 10^3$	5.462×10^2	$2.429 imes 10^2$	+	$1.553 imes 10^2$	$1.288 imes 10^2$	+	5.122×10^2	$2.204 imes 10^2$	+
F4	$1.328 imes10^{0}$	$1.980 imes10^{-1}$	$5.624 imes 10^{0}$	$4.857 imes10^{-1}$	+	$5.269 imes 10^{0}$	$3.961 imes10^{-1}$	+	$5.450 imes10^{0}$	$5.507 imes10^{-1}$	+
F5	$4.142 imes10^{0}$	$1.177 imes 10^{0}$	$8.289 imes 10^{0}$	$1.568 imes 10^{0}$	+	$6.644 imes10^{0}$	$1.647 imes10^{0}$	+	$8.328 imes 10^{0}$	1.609×10^{0}	+
F6	$8.695 imes 10^{-9}$	$1.366 imes 10^{-8}$	$8.917 imes 10^{-15}$	$3.087 imes 10^{-14}$	_	$0.000 imes 10^0$	$0.000 imes 10^0$	_	$1.337 imes 10^{-14}$	$3.699 imes 10^{-14}$	_
F7	$1.506 imes10^1$	$1.234 imes10^{0}$	$2.103 imes10^1$	$2.329 imes 10^{0}$	+	$1.954 imes10^1$	$1.932 imes10^{0}$	+	$2.062 imes 10^1$	$1.638 imes10^{0}$	+
F8	$4.988 imes10^{0}$	$1.227 imes 10^{0}$	$8.519 imes 10^{0}$	$1.745 imes 10^{0}$	+	$7.126 imes 10^0$	$2.081 imes 10^{0}$	+	$8.822 imes 10^0$	$1.846 imes10^{0}$	+
F9	$8.917 imes 10^{-15}$	$3.834 imes 10^{-14}$	$5.338 imes 10^{-11}$	$2.878 imes 10^{-10}$	+	$6.509 imes 10^{-13}$	1.257×10^{-12}	+	$6.239 imes 10^{-12}$	$4.019 imes10^{-11}$	+
F10	$1.282 imes 10^2$	$7.429 imes10^1$	$4.277 imes 10^2$	$9.345 imes10^1$	+	$2.846 imes 10^2$	$1.233 imes10^2$	+	$4.198 imes10^2$	$1.061 imes 10^2$	+
F11	$2.879 imes 10^{0}$	$7.496 imes10^{-1}$	$3.959 imes 10^0$	$8.380 imes10^{-1}$	+	$3.121 imes 10^0$	$8.322 imes 10^{-1}$	=	$3.965 imes 10^{0}$	$8.899 imes10^{-1}$	+
F12	$1.519 imes 10^5$	1.763×10^{5}	4.230×10^{5}	2.670×10^{5}	+	2.257×10^{5}	1.336×10^{5}	+	2.952×10^{5}	1.629×10^{5}	+
F13	$1.565 imes 10^1$	$3.815 imes10^{0}$	1.241×10^3	8.272×10^2	+	9.763×10^{2}	$7.924 imes 10^2$	+	$5.160 imes 10^2$	$4.405 imes 10^2$	+
F14	$5.089 imes 10^{0}$	$2.055 imes 10^{0}$	$2.248 imes 10^1$	$1.264 imes10^1$	+	$1.757 imes 10^1$	$9.547 imes10^{0}$	+	$1.663 imes 10^1$	$6.420 imes10^{0}$	+
F15	$2.299 imes 10^{0}$	$5.755 imes 10^{-1}$	$9.037 imes10^1$	$1.066 imes 10^2$	+	$7.376 imes 10^1$	$1.015 imes 10^2$	+	$2.645 imes 10^1$	$2.058 imes 10^1$	+
F16	$1.894 imes10^{0}$	$4.586 imes 10^{-1}$	1.738×10^{0}	$2.947 imes 10^{-1}$	_	$1.344 imes10^{0}$	$2.805 imes 10^{-1}$	_	$1.698 imes 10^{0}$	$3.131 imes 10^{-1}$	_
F17	$2.534 imes10^{0}$	$1.131 imes 10^{0}$	3.822×10^{0}	$1.438 imes 10^{0}$	+	2.636×10^{0}	1.350×10^{0}	=	3.739×10^{0}	$1.198 imes10^{0}$	+
F18	$2.177 imes 10^1$	$4.223 imes 10^{0}$	$1.468 imes 10^3$	$1.087 imes 10^3$	+	$8.686 imes 10^2$	$6.500 imes 10^2$	+	$1.120 imes 10^3$	$7.433 imes 10^2$	+
F19	$1.233 imes 10^{0}$	$3.791 imes 10^{-1}$	$4.403 imes 10^1$	$6.043 imes 10^1$	+	$3.608 imes 10^1$	$6.430 imes 10^{1}$	+	3.377×10^{0}	$1.528 imes 10^{0}$	+
F20	8.325×10^{-2}	$7.361 imes 10^{-2}$	$1.111 imes 10^0$	$6.078 imes10^{-1}$	+	$5.293 imes 10^{-1}$	$4.013 imes10^{-1}$	+	$1.037 imes 10^{0}$	$4.810 imes10^{-1}$	+
F21	1.196×10^{2}	$2.666 imes 10^{1}$	1.381×10^{2}	3.990×10^{1}	+	$1.474 imes 10^2$	$4.207 imes 10^1$	+	1.368×10^{2}	3.990×10^{1}	=
F22	$9.785 imes 10^1$	$1.180 imes10^1$	1.003×10^{2}	$2.786 imes10^{-1}$	+	1.000×10^{2}	$1.198 imes10^{-1}$	_	$1.003 imes 10^2$	$2.870 imes 10^{-1}$	+
F23	$3.013 imes 10^2$	$3.556 imes 10^1$	3.069×10^{2}	$2.222 imes 10^1$	+	$3.068 imes 10^2$	$2.054 imes10^{0}$	=	$3.091 imes 10^2$	$1.528 imes10^{0}$	+
F24	1.966×10^{2}	$8.602 imes 10^1$	2.396×10^{2}	1.062×10^2	+	2.298×10^{2}	$1.012 imes 10^2$	+	$2.340 imes 10^2$	$1.048 imes 10^2$	+
F25	3.991×10^{2}	$6.383 imes 10^{0}$	4.068×10^{2}	$1.470 imes 10^1$	+	4.098×10^{2}	$1.861 imes 10^1$	+	4.073×10^{2}	$1.564 imes10^1$	+
F26	2.765×10^2	$8.146 imes10^1$	3.000×10^2	$8.533 imes 10^{-13}$	_	3.000×10^{2}	$0.000 imes 10^0$	_	3.000×10^2	$1.548 imes 10^{-12}$	-
F27	3.901×10^{2}	$1.717 imes 10^{0}$	3.916×10^{2}	$2.174 imes 10^{0}$	+	3.926×10^{2}	$2.081 imes 10^{0}$	+	3.911×10^{2}	$2.133 imes 10^{0}$	+
F28	2.672×10^{2}	$9.603 imes 10^1$	3.080×10^{2}	9.336×10^{1}	+	3.224×10^{2}	$7.773 imes 10^{1}$	+	3.160×10^{2}	$6.250 imes 10^1$	+
F29	2.503×10^{2}	$1.522 imes 10^1$	2.667×10^{2}	$9.150 imes 10^0$	+	2.636×10^{2}	7.153×10^{0}	+	2.691×10^{2}	$7.645 imes 10^0$	+
F30	$4.836 imes 10^3$	3.375×10^3	$1.460 imes 10^5$	$1.514 imes 10^5$	+	$1.166 imes 10^5$	$8.630 imes 10^3$	+	$1.468 imes 10^5$	$1.168 imes 10^5$	+
W/T/L	-/-	-/-		27/0/3		2	23/3/4			26/1/3	
Rank	1.	30		3.40		2.30			3.00		
Dimension					3	30					
	DWSF			SF			LSF			CSF	

Fun	DWSE			SE			LSE			CSE	
run	mean	std	mean	std		mean	std		mean	std	
F1	$6.474 imes 10^{-3}$	$9.240 imes10^{-3}$	1.900×10^3	$2.945 imes 10^3$	+	$1.168 imes 10^3$	$1.486 imes 10^3$	+	$7.178 imes 10^2$	$8.118 imes 10^2$	+
F2	$3.535 imes10^{12}$	$1.058 imes10^{13}$	$3.164 imes10^{13}$	$8.376 imes10^{13}$	+	$1.748 imes10^{17}$	$2.197 imes10^{17}$	+	$2.182 imes10^{17}$	$3.212 imes10^{17}$	+
F3	1.122×10^5	$1.985 imes 10^5$	$7.405 imes 10^3$	$2.810 imes 10^3$	_	5.561×10^5	$9.178 imes 10^3$	_	$5.686 imes 10^5$	$7.730 imes 10^3$	_
F4	$9.259 imes 10^1$	$1.530 imes 10^1$	$8.083 imes10^1$	$2.095 imes 10^1$	_	1.056×10^2	$8.527 imes10^{0}$	+	$1.051 imes 10^2$	$8.288 imes 10^0$	+
F5	$3.000 imes 10^1$	$4.322 imes 10^{0}$	$4.239 imes10^1$	$7.824 imes10^{0}$	+	$6.402 imes10^1$	$7.374 imes10^{0}$	+	$7.295 imes10^1$	$7.623 imes 10^{0}$	+
F6	$1.137 imes10^{-13}$	$0.000 imes 10^0$	$1.928 imes 10^{-4}$	$1.349 imes10^{-3}$	+	$1.137 imes10^{-13}$	$0.000 imes 10^0$	=	$1.605 imes10^{-13}$	$5.651 imes10^{-14}$	+
F7	$6.352 imes 10^1$	$5.150 imes 10^{0}$	$7.831 imes 10^1$	$8.042 imes10^{0}$	+	$1.040 imes 10^2$	$8.871 imes10^{0}$	+	$1.128 imes 10^2$	$9.672 imes 10^0$	+
F8	$3.588 imes 10^1$	$4.393 imes10^{0}$	$4.642 imes 10^1$	$7.819 imes10^{0}$	+	$6.973 imes 10^1$	$8.356 imes10^{0}$	+	$7.829 imes 10^1$	$7.559 imes 10^0$	+
F9	$6.001 imes10^{-1}$	$4.285 imes10^{0}$	$3.698 imes 10^{-1}$	$1.247 imes10^{0}$	+	$3.815 imes 10^{-6}$	$2.627 imes 10^{-5}$	+	$2.489 imes10^{0}$	$1.494 imes10^{0}$	+
F10	$1.880 imes 10^3$	2.390×10^{2}	$2.343 imes 10^3$	$3.183 imes 10^2$	+	$3.505 imes 10^3$	$2.874 imes 10^2$	+	3.792×10^{3}	2.180×10^{2}	+
F11	2.561×10^{1}	$1.393 imes10^1$	$2.858 imes10^1$	$2.334 imes10^1$	=	$8.127 imes10^1$	$2.121 imes 10^1$	+	$9.910 imes10^1$	$1.769 imes 10^1$	+
F12	$4.119 imes 10^5$	$4.166 imes 10^5$	$8.621 imes 10^5$	$5.536 imes 10^5$	+	$1.520 imes10^6$	$5.005 imes 10^5$	+	$1.901 imes 10^6$	5.339×10^{5}	+
F13	7.504×10^{3}	6.369×10^{3}	6.227×10^{3}	5.004×10^{3}	=	$1.978 imes 10^5$	8.759×10^{3}	+	$4.416 imes10^5$	1.733×10^{5}	+
F14	1.200×10^{3}	3.074×10^3	5.763×10^{5}	$4.374 imes 10^5$	+	3.899×10^{5}	$2.654 imes 10^5$	+	5.690×10^{3}	3.106×10^{3}	+
F15	1.923×10^{2}	$5.878 imes 10^2$	$1.483 imes10^3$	$1.364 imes10^3$	+	$5.930 imes 10^3$	$3.842 imes 10^3$	+	$5.373 imes 10^3$	3.075×10^{3}	+
F16	3.989×10^{2}	1.499×10^{2}	5.214×10^2	1.438×10^{2}	+	5.093×10^{2}	1.202×10^{2}	+	6.154×10^{2}	1.294×10^{2}	+
F17	7.037×10^{1}	2.503×10^{1}	1.020×10^{2}	7.339×10^{1}	=	$8.328 imes 10^1$	2.472×10^{1}	+	1.177×10^{2}	3.591×10^{1}	+
F18	2.120×10^{5}	1.399×10^{5}	1.705×10^{5}	9.223×10^{5}	_	2.162×10^{5}	$8.494 imes10^5$	=	$1.434 imes 10^5$	6.177×10^{5}	-
F19	5.133×10^{2}	$1.448 imes 10^3$	1.713×10^{3}	1.793×10^{3}	+	$8.625 imes 10^3$	$4.787 imes 10^3$	+	$8.048 imes 10^3$	$6.022 imes 10^3$	+
F20	1.113×10^{2}	$5.584 imes 10^1$	1.570×10^{2}	$7.121 imes 10^1$	+	$9.321 imes 10^1$	$5.164 imes 10^1$	_	1.534×10^2	5.285×10^{1}	+
F21	2.359×10^{2}	$5.198 imes10^{0}$	$2.440 imes 10^2$	$1.762 imes 10^1$	+	$2.694 imes 10^2$	$8.641 imes10^{0}$	+	2.757×10^2	$1.564 imes10^1$	+
F22	1.023×10^{2}	$6.160 imes 10^0$	1.827×10^{2}	4.172×10^{2}	+	1.143×10^{2}	$2.116 imes 10^{0}$	+	1.364×10^{2}	$1.092 imes 10^1$	+
F23	3.828×10^{2}	5.986×10^{0}	3.938×10^{2}	$8.117 imes 10^0$	+	4.149×10^{2}	$8.296 imes 10^{0}$	+	4.244×10^{2}	$7.944 imes10^{0}$	+
F24	4.557×10^{2}	$6.443 imes 10^{0}$	4.836×10^{2}	$1.233 imes 10^1$	+	5.008×10^2	$1.464 imes10^1$	+	5.154×10^{2}	$1.053 imes10^1$	+
F25	3.874×10^{2}	2.734×10^{-1}	3.871×10^{2}	$7.208 imes 10^{-1}$	_	3.872×10^{2}	2.053×10^{-1}	_	3.873×10^{2}	$1.480 imes10^{-1}$	-
F26	1.312×10^{3}	1.204×10^{2}	1.079×10^{3}	5.078×10^{2}	=	1.216×10^{3}	3.594×10^{2}	=	1.348×10^{3}	2.833×10^{2}	=
F27	5.091×10^{2}	3.647×10^{0}	5.114×10^{2}	$4.347 imes 10^{0}$	+	5.157×10^{2}	2.969×10^{0}	+	5.169×10^{2}	$3.708 imes 10^{0}$	+
F28	3.299×10^{2}	4.899×10^{1}	4.100×10^{2}	1.711×10^{1}	+	4.133×10^{2}	3.866×10^{0}	+	4.261×10^{2}	5.351×10^{0}	+
F29	4.968×10^{2}	3.597×10^{1}	5.399×10^{2}	6.938×10^{1}	+	5.529×10^{2}	4.198×10^{1}	+	5.889×10^{2}	$4.974 imes10^1$	+
F30	4.934×10^3	2.072×10^{3}	6.114×10^{3}	2.233×10^{3}	+	1.672×10^{5}	7.040×10^{3}	+	2.589×10^{5}	1.075×10^{5}	+
W/T/L	-/-	-/-	2	22/4/4		24/3/3			26/1/3		
Rank	1.	52		2.23			2.75		3.50		

Dimension						50					
Free	DV	VSE		SE			LSE			CSE	
run	Mean	std	Mean	std		Mean	std		Mean	std	
F1	$4.043 imes 10^2$	$1.135 imes 10^3$	2.086×10^3	2.360×10^{3}	+	$6.505 imes 10^3$	$6.210 imes 10^3$	+	$9.163 imes 10^3$	$6.214 imes 10^3$	-
F2	1.674×10^{25}	$6.113 imes 10^{25}$	2.050×10^{26}	5.857×10^{26}	+	$9.826 imes 10^{29}$	1.241×10^{29}	+	$1.000 imes 10^{30}$	$1.421 imes 10^{14}$	4
F3	2.363×10^{5}	$2.433 imes 10^5$	4.302×10^5	$8.548 imes 10^3$	_	$1.497 imes 10^5$	$1.849 imes 10^5$	_	1.469×10^{5}	1.706×10^{5}	-
F4	1.047×10^2	$6.048 imes 10^1$	$1.069 imes 10^2$	$3.115 imes10^1$	=	$1.308 imes 10^2$	$1.987 imes 10^1$	+	1.444×10^2	$1.385 imes 10^1$	H
F5	$6.855 imes 10^1$	$8.209 imes 10^{0}$	1.031×10^2	$1.484 imes10^1$	+	1.437×10^2	$1.424 imes 10^1$	+	1.717×10^2	1.372×10^1	+
F6	$1.142 imes 10^{-2}$	$2.440 imes10^{-2}$	$4.484 imes10^{-4}$	$2.372 imes 10^{-3}$	_	2.809×10^{-13}	$5.731 imes10^{-14}$	_	$3.299 imes 10^{-13}$	$3.414 imes10^{-14}$	-
F7	$1.265 imes 10^2$	$8.621 imes 10^{0}$	$1.622 imes 10^2$	$1.405 imes10^1$	+	$2.069 imes 10^2$	$1.411 imes 10^1$	+	2.350×10^2	$1.498 imes 10^1$	H
F8	$7.400 imes 10^1$	$7.443 imes10^{0}$	1.066×10^{2}	$1.549 imes 10^1$	+	1.442×10^2	$1.324 imes 10^1$	+	1.683×10^{2}	$1.089 imes 10^1$	+
F9	$1.373 imes10^1$	$4.203 imes10^1$	$4.606 imes 10^1$	$4.398 imes10^1$	+	$2.644 imes 10^1$	$1.613 imes 10^1$	+	$2.496 imes 10^2$	$8.526 imes 10^1$	H
F10	3.672×10^3	$3.021 imes 10^2$	$4.539 imes10^3$	$3.894 imes10^2$	+	$6.293 imes 10^3$	$4.575 imes 10^2$	+	$6.903 imes 10^3$	$3.461 imes 10^2$	H
F11	$6.151 imes 10^1$	$1.789 imes 10^1$	$6.612 imes 10^1$	$1.544 imes 10^1$	+	1.881×10^2	$5.531 imes 10^1$	+	1.641×10^2	$3.906 imes 10^1$	÷
F12	7.415×10^5	$1.014 imes10^6$	$4.938 imes10^6$	$1.997 imes10^6$	+	1.005×10^7	$2.592 imes 10^6$	+	$1.081 imes 10^7$	$3.009 imes 10^6$	÷
F13	1.963×10^{3}	$2.158 imes 10^3$	2.936×10^{3}	$1.858 imes10^3$	+	$1.607 imes 10^5$	$9.187 imes 10^3$	+	$5.314 imes 10^5$	2.681×10^5	+
F14	1.311×10^5	1.258×10^5	7.213×10^{5}	4.287×10^5	+	4.336×10^{5}	2.330×10^{5}	+	$5.014 imes 10^5$	2.858×10^{5}	-
F15	3.721×10^3	3.647×10^3	2.554×10^3	2.329×10^{3}	=	8.368×10^3	3.464×10^3	+	$9.348 imes 10^3$	4.252×10^{3}	÷
F16	9.398×10^{2}	2.287×10^2	$1.173 imes 10^3$	2.219×10^2	+	1.079×10^{3}	1.690×10^{2}	+	1.168×10^3	2.006×10^{2}	+
F17	6.126×10^2	$1.463 imes 10^2$	7.072×10^2	$1.923 imes 10^2$	+	$6.460 imes 10^2$	$1.495 imes 10^2$	=	$8.101 imes 10^2$	1.309×10^2	H
F18	$1.172 imes 10^6$	$4.891 imes10^5$	$1.556 imes10^6$	$1.075 imes10^6$	=	$1.198 imes10^6$	$6.425 imes 10^5$	=	$4.650 imes 10^5$	$2.113 imes 10^5$	-
F19	1.362×10^{5}	$6.780 imes 10^3$	5.225×10^{3}	3.837×10^3	_	1.600×10^5	4.939×10^{3}	=	1.055×10^{5}	3.853×10^{3}	-
F20	4.854×10^2	2.130×10^{2}	$5.919 imes 10^2$	1.515×10^2	+	4.689×10^{2}	1.356×10^{2}	=	5.971×10^{2}	1.422×10^{2}	+
F21	2.761×10^{2}	$7.131 imes 10^{0}$	$3.090 imes 10^2$	$1.427 imes 10^1$	+	3.504×10^2	$1.448 imes 10^1$	+	3.773×10^{2}	$1.180 imes10^1$	H
F22	$3.216 imes 10^3$	$1.915 imes 10^3$	$4.610 imes10^3$	$1.536 imes10^3$	+	$4.941 imes 10^3$	$3.040 imes 10^3$	+	$5.150 imes 10^3$	3.242×10^3	H
F23	5.067×10^{2}	$1.393 imes 10^1$	5.468×10^2	$1.651 imes 10^1$	+	5.824×10^2	$1.519 imes 10^1$	+	6.038×10^{2}	$1.313 imes 10^1$	4
F24	5.857×10^2	$1.423 imes 10^1$	$6.808 imes 10^2$	$2.514 imes10^1$	+	7.045×10^2	$1.783 imes 10^1$	+	7.315×10^2	$2.098 imes 10^1$	H
F25	5.192×10^{2}	$3.821 imes 10^1$	5.311×10^2	$1.655 imes 10^1$	=	5.417×10^2	$1.116 imes 10^1$	+	5.539×10^{2}	$9.237 imes 10^{0}$	+
F26	$1.897 imes 10^3$	1.196×10^{2}	2.225×10^{3}	3.254×10^2	+	2.555×10^{3}	1.602×10^{2}	+	2.746×10^{3}	1.968×10^{2}	+
F27	5.771×10^{2}	$1.741 imes 10^1$	5.874×10^2	$2.774 imes 10^1$	+	6.055×10^{2}	$1.489 imes 10^1$	+	6.142×10^{2}	$2.016 imes 10^1$	+
F28	5.070×10^{2}	$2.239 imes 10^{0}$	5.021×10^2	$1.613 imes 10^1$	+	5.014×10^2	$1.309 imes 10^1$	=	5.106×10^2	$1.054 imes 10^1$	4
F29	4.960×10^{2}	$7.496 imes 10^1$	6.543×10^{2}	1.264×10^2	+	6.314×10^2	$8.857 imes 10^1$	+	7.129×10^{2}	$9.568 imes 10^1$	4
F30	$8.703 imes10^5$	$1.105 imes 10^5$	$7.755 imes10^5$	$7.404 imes 10^5$	_	$8.976 imes10^5$	$7.345 imes10^5$	+	$8.459 imes 10^5$	$6.818 imes10^5$	=
W/T/L	-/-	-/-	:	22/4/4		:	23/5/2		-	24/1/5	
Rank	1.	.53		2.23			2.77			3.47	
Dimension						100					
Fun	DV	VSE		SE			LSE		CSE		
	mean	std	mean	std		mean	std		mean	std	

 Table 2. Experimental results in CEC2017.

Dimension						100					
Fun	DV	VSE		SE			LSE			CSE	
	mean	std	mean	std		mean	std		mean	std	
F1	$1.386 imes10^3$	$2.465 imes10^3$	$5.056 imes10^3$	$5.204 imes 10^3$	+	$6.802 imes 10^3$	$6.344 imes10^3$	+	$5.597 imes10^3$	$3.139 imes10^3$	+
F2	$1.000 imes10^{30}$	$1.421 imes10^{14}$	$1.000 imes10^{30}$	$2.843 imes10^{14}$	=	$1.000 imes10^{30}$	$1.421 imes10^{14}$	=	$1.000 imes10^{30}$	$1.421 imes 10^{14}$	=
F3	$6.105 imes 10^5$	$5.046 imes 10^5$	2.386×10^{5}	2.512×10^{5}	_	$4.810 imes10^5$	$3.912 imes 10^5$	-	$4.659 imes 10^5$	3.803×10^{5}	_
F4	2.305×10^{2}	$2.780 imes10^1$	2.346×10^{2}	$2.039 imes 10^1$	=	$2.341 imes 10^2$	$1.719 imes10^1$	=	2.590×10^{2}	$2.268 imes10^1$	+
F5	$1.945 imes 10^2$	$1.950 imes 10^1$	3.265×10^{2}	$2.495 imes 10^1$	+	$4.276 imes 10^2$	$3.626 imes 10^1$	+	5.025×10^2	2.725×10^{1}	+
F6	$1.398 imes10^{0}$	$4.804 imes10^{-1}$	$6.040 imes 10^{-5}$	$2.399 imes10^{-4}$	_	$6.687 imes 10^{-13}$	$4.342 imes 10^{-14}$	-	$6.197 imes 10^{-13}$	$6.556 imes 10^{-14}$	_
F7	3.525×10^{2}	$2.983 imes10^1$	4.592×10^{2}	$3.011 imes 10^1$	+	5.630×10^{2}	$3.066 imes 10^1$	+	$6.408 imes 10^2$	$2.109 imes 10^1$	+
F8	$1.970 imes 10^2$	$1.899 imes 10^1$	3.296×10^{2}	$3.230 imes 10^1$	+	$4.223 imes 10^2$	$3.588 imes10^1$	+	$4.994 imes 10^2$	$2.330 imes 10^1$	+
F9	2.902×10^{2}	2.578×10^{2}	7.582×10^{3}	1.691×10^{3}	+	8.399×10^{3}	$2.005 imes 10^3$	+	$1.115 imes 10^5$	$2.118 imes 10^3$	+
F10	$1.015 imes 10^5$	$4.486 imes10^2$	$1.182 imes 10^5$	$6.424 imes 10^2$	+	$1.530 imes10^5$	$8.450 imes 10^2$	+	$1.699 imes 10^5$	$4.869 imes 10^2$	+
F11	5.027×10^{5}	$1.448 imes 10^5$	$4.288 imes 10^3$	1.886×10^{3}	_	$1.915 imes 10^5$	$4.900 imes 10^3$	-	$2.438 imes 10^3$	7.156×10^{2}	_
F12	$1.604 imes10^6$	$1.285 imes10^6$	2.915×10^{7}	$8.604 imes10^6$	+	$4.308 imes 10^7$	$1.073 imes 10^7$	+	3.072×10^{7}	$8.416 imes10^6$	+
F13	$3.248 imes 10^3$	2.960×10^{3}	3.671×10^{3}	2.807×10^{3}	=	$1.211 imes 10^5$	5.742×10^{3}	+	$3.241 imes 10^5$	1.199×10^{5}	+
F14	5.564×10^{6}	$1.526 imes 10^6$	$4.153 imes10^6$	1.250×10^{6}	_	$5.717 imes 10^6$	$1.935 imes10^6$	=	$6.036 imes 10^5$	2.796×10^{5}	_
F15	6.978×10^{2}	6.967×10^{2}	1.450×10^{3}	9.566×10^{2}	+	5.603×10^{3}	2.670×10^{3}	+	9.098×10^{3}	4.256×10^{3}	+
F16	2.661×10^{3}	3.263×10^{2}	3.224×10^{3}	3.807×10^{2}	+	3.015×10^{3}	3.355×10^{2}	+	3.322×10^{3}	3.274×10^{2}	+
F17	2.059×10^{3}	2.154×10^{2}	2.140×10^{3}	3.034×10^{2}	=	2.171×10^{3}	2.246×10^{2}	+	2.364×10^{3}	2.647×10^{2}	+
F18	$4.183 imes 10^{6}$	1.094×10^{6}	4.124×10^{6}	1.380×10^{6}	=	4.767×10^{6}	1.301×10^{6}	+	1.322×10^{6}	4.702×10^{5}	_
F19	9.863×10^{2}	1.149×10^{3}	2.516×10^{3}	1.624×10^{3}	+	1.568×10^{5}	6.910×10^{3}	+	1.811×10^{5}	8.100×10^{3}	+
F20	1.946×10^{3}	2.066×10^{2}	2.171×10^{3}	2.898×10^{2}	+	2.030×10^{3}	2.527×10^{2}	+	2.229×10^{3}	2.336×10^{2}	+
F21	4.445×10^{2}	2.347×10^{1}	5.747×10^{2}	2.702×10^{1}	+	6.585×10^{2}	3.247×10^{1}	+	7.260×10^{2}	2.767×10^{1}	+
F22	1.112×10^{5}	1.629×10^{3}	1.300×10^{5}	6.822×10^{2}	+	1.653×10^{5}	8.865×10^{2}	+	1.781×10^{5}	2.392×10^{3}	+
F23	6.474×10^{2}	1.381×10^{1}	7.010×10^{2}	$1.903 imes 10^{1}$	+	7.287×10^{2}	1.973×10^{1}	+	7.590×10^{2}	1.703×10^{1}	+
F24	1.094×10^{3}	2.323×10^{1}	1.195×10^{3}	2.698×10^{1}	+	1.250×10^{3}	2.505×10^{1}	+	1.307×10^{3}	$2.748 imes 10^1$	+
F25	7.755×10^{2}	5.605×10^{1}	7.588×10^{2}	$4.400 imes 10^{1}$	-	8.239×10^{2}	2.015×10^{1}	+	8.490×10^{2}	2.085×10^{1}	+
F26	5.594×10^{3}	2.638×10^{2}	6.590×10^{3}	3.466×10^{2}	+	7.256×10^{3}	2.867×10^{2}	+	7.891×10^{3}	2.720×10^{2}	+
F27	7.098×10^{2}	1.558×10^{1}	7.285×10^{2}	$2.278 imes 10^1$	+	7.524×10^{2}	$2.004 imes 10^1$	+	7.601×10^{2}	$2.112 imes 10^1$	+
F28	5.697×10^{2}	$2.632 imes 10^1$	5.763×10^{2}	$3.910 imes 10^1$	=	6.170×10^{2}	$2.876 imes 10^1$	+	6.358×10^{2}	$1.905 imes10^1$	+
F29	$2.120 imes 10^3$	2.505×10^{2}	2.662×10^{3}	2.788×10^{2}	+	$2.494 imes 10^3$	2.282×10^2	+	2.792×10^{3}	2.145×10^{2}	+
F30	7.590×10^{3}	4.762×10^{3}	8.103×10^3	2.754×10^{3}	+	1.551×10^5	3.269×10^{3}	+	1.010×10^{5}	2.087×10^{3}	+
W/T/L	-/-	_/_		19/6/5		24/3/3			24/1/5		
Rank	1.50			2.17	2.97			3.37			

Figure 3 displays a box and convergence graph of four SEs on problem 1, problem 15, and problem 30 in CEC2017, where dim = 30. Problem 1 represents a single-peak unimodal function, wherein the local optimum coincides with the global optimum, demanding a greater focus on algorithmic exploitation rather than exploration. The figure clearly illustrates that DWSE not only exhibits superior local search capabilities but also demonstrates notably better stability when dealing with the single-peak problem, outperforming the other three algorithms.

Figure 3. Box and convergence graph of SEs in CEC2017.

Problem 15 represents a hybrid function optimization problem with multiple peaks, indicating inherent unrelatedness among its dimensions. In the convergence graph, DWSE exhibits robust convergence, with a slight slowdown observed in the later stages when focusing on local search, while the other SEs show significantly slower convergence. As evidenced by the box plots, DWSE maintains similar stability performance as in problem 1 and significantly outperforms the other algorithms. The red + represent the location of the extremes in the repeat run. The presence of individual extreme values indicates a tendency to converge to a local optimum, suggesting that DWSE may have the capability to find a globally optimal solution for this problem when extreme values are not involved.

In contrast, problem 30 is a multipeak composition function problem, requiring a higher level of exploratory capability than problem 1. Even in this scenario, DWSE emerges as the top performer, as evidenced by the convergence chart. Notably, CSE, which employs chaotic differential operators, fares the worst on this problem, while LSE exhibits weaker exploration capabilities compared to SE, mainly due to its emphasis on strengthening exploitation without an increase in the initial population size ($18 \times dim$ in L-SHADE).

Considering the combined analysis of both problems, it is evident that DWSE not only enhances the local search ability of SE but also improves its capacity to explore global optima. Furthermore, the convergence process of DWSE is smooth and stable, contributing to its impressive performance.

3.2. Experimental Results and Analysis in CEC2011

Table 3 shows the experimental results in CEC2011, a test set commonly used to test the ability of algorithms to solve real-world problems. Since the global optimal solution of a real-world problem may not be a knowable value, we use the mean of the final fitness for statistics on that problem. Among these 22 real-world problems for solving the minimum, DWSE is still substantially ahead of the other algorithms.

	DV	VSE		SE			LSE			CSE	
Fun	Mean	std	Mean	std		Mean	std		Mean	std	
F1	$5.843 imes 10^0$	$2.953 imes 10^0$	$1.031 imes 10^1$	$3.667 imes 10^0$	+	9.370×10^{0}	$3.447 imes 10^0$	+	$1.065 imes 10^1$	3.129×10^{0}	+
F2	$-2.616 imes10^1$	$1.277 imes 10^{0}$	$-2.061 imes10^1$	$1.015 imes10^{0}$	+	$-2.119 imes10^1$	$9.709 imes 10^{-1}$	+	$-2.039 imes10^1$	$9.685 imes 10^{-1}$	+
F3	$1.151 imes 10^{-5}$	3.277×10^{-19}	1.151×10^{-5}	$2.673 imes 10^{-19}$	_	$1.151 imes 10^{-5}$	$2.331 imes 10^{-19}$	_	$1.151 imes 10^{-5}$	$2.600 imes 10^{-19}$	_
F4	$1.632 imes 10^1$	$3.002 imes 10^{0}$	$1.632 imes 10^1$	$3.098 imes 10^{0}$	=	$1.591 imes 10^1$	$2.988 imes10^{0}$	_	$1.600 imes 10^1$	$2.942 imes 10^{0}$	_
F5	-3.669×10^{1}	$2.448 imes10^{-1}$	$-3.388 imes10^1$	$4.240 imes10^{-1}$	+	$-3.419 imes10^1$	$5.927 imes10^{-1}$	+	$-3.388 imes10^1$	$3.930 imes 10^{-1}$	+
F6	$-2.913 imes10^1$	$2.430 imes10^{-1}$	$-2.812 imes10^1$	$5.762 imes 10^{-1}$	+	$-2.845 imes10^1$	$4.703 imes10^{-1}$	+	$-2.805 imes10^1$	$5.357 imes10^{-1}$	+
F7	$1.205 imes 10^{0}$	$9.278 imes 10^{-2}$	$1.325 imes 10^{0}$	$7.553 imes 10^{-2}$	+	$1.298 imes10^{0}$	$1.015 imes10^{-1}$	+	$1.336 imes10^{0}$	$9.118 imes10^{-2}$	+
F8	2.200×10^{2}	$0.000 imes 10^0$	2.200×10^{2}	$0.000 imes 10^0$	=	2.200×10^{2}	$0.000 imes 10^0$	=	2.200×10^{2}	$0.000 imes 10^0$	=
F9	1.351×10^3	5.020×10^2	2.767×10^3	3.369×10^{2}	+	2.376×10^{3}	3.406×10^2	+	2.872×10^3	3.665×10^{2}	+
F10	$-1.915 imes10^1$	$1.434 imes10^{0}$	$-1.768 imes10^1$	$8.702 imes 10^{-1}$	+	$-1.842 imes10^1$	$9.357 imes 10^{-1}$	+	$-1.769 imes10^1$	$9.081 imes10^{-1}$	+
F11	5.164×10^{5}	5.421×10^{2}	5.807×10^5	7.384×10^2	+	5.657×10^{5}	7.366×10^{2}	+	5.819×10^5	7.997×10^{2}	+
F12	1.768×10^{7}	1.051×10^5	1.732×10^{7}	4.691×10^{3}	_	1.732×10^{7}	4.902×10^{3}	_	1.732×10^{7}	2.350×10^{3}	_
F13	1.545×10^5	$2.440 imes10^{0}$	1.546×10^5	$4.942 imes 10^{0}$	+	1.546×10^5	$6.291 imes 10^{0}$	+	1.546×10^5	$4.940 imes10^{0}$	+
F14	1.906×10^{5}	1.084×10^2	$1.933 imes 10^5$	1.855×10^2	+	$1.933 imes 10^5$	1.503×10^{2}	+	1.936×10^{5}	1.808×10^2	+
F15	3.294×10^{5}	$2.627 imes 10^1$	3.297×10^{5}	$2.421 imes 10^1$	+	3.297×10^{5}	2.789×10^{1}	+	3.296×10^{5}	2.711×10^1	+
F16	1.339×10^{5}	$1.174 imes 10^3$	$1.348 imes 10^5$	1.765×10^{3}	+	1.350×10^{5}	1.280×10^3	+	1.349×10^{5}	1.944×10^3	+
F17	$1.916 imes 10^6$	1.431×10^5	$1.937 imes 10^6$	$1.401 imes 10^5$	+	$1.934 imes10^6$	$1.484 imes 10^5$	+	$1.934 imes10^6$	1.492×10^{5}	+
F18	9.386×10^{5}	$1.486 imes 10^3$	9.575×10^{5}	$6.445 imes 10^3$	+	9.542×10^5	5.250×10^3	+	9.570×10^{5}	5.591×10^3	+
F19	$1.181 imes10^6$	$7.244 imes 10^5$	$1.207 imes 10^6$	$6.304 imes10^5$	+	$1.186 imes10^6$	$7.117 imes 10^5$	=	$1.206 imes 10^6$	$6.742 imes 10^5$	+
F20	9.379×10^{5}	1.687×10^3	9.570×10^{5}	$6.184 imes 10^3$	+	9.548×10^{5}	4.625×10^{3}	+	9.561×10^{5}	5.929×10^{3}	+
F21	1.561×10^{1}	$1.748 imes 10^{0}$	1.712×10^1	$1.802 imes 10^{0}$	+	$1.688 imes 10^1$	$2.091 imes 10^{0}$	+	1.696×10^{1}	$1.986 imes 10^0$	+
F22	$1.660 imes10^1$	$2.335 imes 10^{0}$	$1.883 imes10^1$	$2.241 imes 10^{0}$	+	$1.841 imes 10^1$	$2.069 imes 10^{0}$	+	$1.907 imes 10^1$	$1.978 imes10^{0}$	+
W/T/L	-/-	-/-		18/2/2		17/2/3			18/1/3		
Rank	1.	.48		3.16		2.16			3.20		

Table 3. Experimental results of 22 real-world problems in CEC2011.

Figure 4 shows the box and convergence graph of SEs in CEC2011. The red + represent the location of the extremes in the repeat run. Problem 1 is a parameter estimation for a frequency-modulated sound wave problem; DWSE shows strong convergence in this problem. The algorithm converges progressively faster on simple single-peak-type problems due to the adaptive weights, gaining an advantage over other algorithms. The DWSE continues to be the most consistent in the box plot, with two extremes, but the values in its middle segment are much closer together. Problem 2 is a spacecraft trajectory optimization problem; DWSE continues to outperform other algorithms on this problem. However, the stability of DWSE decreases slightly for relatively complex problems, so repeated optimizations may become increasingly necessary. The advantages of DWSE in terms of the speed of convergence of this problem is still evident.

Figure 4. Box and convergence graph of SEs in CEC2011.

3.3. Experimental Results and Analysis in CEC2013 LSGO

Previous experimental results and analyses show that DWSE is much stronger than other SEs on low-dimensional problems, but its performance decreases as the problem dimensions increase. Therefore, in this paper, we adopted the large-scale global optimization problem set of CEC2013 as a test of the performance of DWSE under ultra-high dimensional problems.

Table 4 shows the experimental results of large-scale global optimization in CEC2013. However, in terms of results, DWSE is only better than SE and equal to LSE and CSE in terms of wins and losses. However, considering the performance decay of DWSE with increased dimensions, while it can still achieve a performance not weaker than that of other SEs on problems with dimensions of 1000 or less, the improvement of DWSE can be considered a success. Large-scale global optimization problems have consistently posed significant challenges for evolutionary algorithms, and often, only algorithms designed for large-scale problems can effectively optimize such cases. We utilized these problems to test whether DWSE would be less effective than other SEs when confronted with performance decay arising from increased problem dimensionality. However, the experimental results were satisfactory, demonstrating DWSE's capability to adeptly handle such scenarios.

Dimension	1000											
Fun	DV	VSE	S	E	LS	SE	C	SE				
Full	Mean	std	Mean	std	Mean	std	Mean	std				
F1	$2.487 imes 10^7$	$5.540 imes 10^6$	$2.584 imes 10^5$	$1.733 imes 10^3$	$2.678 imes 10^3$	$1.596 imes 10^2$	$1.844 imes 10^5$	3.365×10^3				
F2	$6.953 imes 10^3$	3.796×10^{2}	$4.620 imes10^{-1}$	$2.810 imes10^{-1}$	$1.135 imes 10^{0}$	$9.313 imes10^{-1}$	$3.787 imes10^{-1}$	$2.601 imes 10^{-1}$				
F3	$1.524 imes 10^1$	$9.607 imes10^{-1}$	$1.113 imes 10^{-5}$	$6.815 imes 10^{-7}$	$6.779 imes 10^{-7}$	$9.492 imes 10^{-8}$	$8.754 imes10^{-6}$	$9.384 imes10^{-7}$				
F4	$5.267 imes 10^{10}$	$1.350 imes 10^{11}$	$3.812 imes 10^{11}$	$8.957 imes10^{10}$	$3.304 imes10^{11}$	$9.063 imes 10^{10}$	$2.227 imes 10^{10}$	$7.358 imes 10^9$				
F5	$4.035 imes10^6$	$3.780 imes 10^5$	$1.068 imes10^7$	$7.643 imes 10^5$	$1.010 imes10^7$	$8.718 imes10^5$	$9.721 imes10^6$	$1.020 imes10^6$				
F6	4.796×10^{5}	4.253×10^5	$1.016 imes 10^6$	2.706×10^3	$1.004 imes 10^6$	2.923×10^3	$1.014 imes10^6$	7.361×10^3				
F7	$2.498 imes 10^9$	$1.134 imes10^9$	$1.653 imes 10^9$	$2.979 imes 10^8$	1.726×10^{9}	$3.136 imes 10^8$	$1.678 imes 10^9$	$2.760 imes 10^8$				
F8	$9.051 imes 10^{14}$	$2.977 imes10^{15}$	$1.689 imes10^{16}$	$4.084 imes10^{15}$	$1.429 imes10^{16}$	$4.062 imes 10^{15}$	$3.894 imes10^{14}$	$1.791 imes 10^{14}$				
F9	$2.147 imes10^8$	$3.247 imes 10^7$	$7.994 imes10^8$	$5.636 imes 10^7$	$7.470 imes10^8$	$7.674 imes10^7$	$7.060 imes 10^8$	$9.144 imes10^7$				
F10	$1.822 imes 10^7$	$4.272 imes 10^6$	$1.824 imes 10^7$	$3.103 imes10^6$	1.508×10^7	$4.458 imes 10^6$	$1.432 imes 10^7$	$3.205 imes 10^6$				
F11	$1.979 imes 10^{11}$	$3.061 imes 10^{11}$	$1.612 imes 10^{11}$	$5.442 imes 10^{10}$	$1.520 imes 10^{11}$	$4.154 imes10^{10}$	$1.256 imes 10^{11}$	$4.443 imes10^{10}$				
F12	$2.453 imes10^6$	$9.784 imes10^5$	5.024×10^3	$1.587 imes 10^2$	4.076×10^3	$1.482 imes 10^2$	$4.819 imes 10^3$	1.586×10^2				
F13	$2.973 imes 10^{10}$	$6.118 imes 10^9$	$2.258 imes 10^{10}$	$2.142 imes 10^9$	$2.060 imes 10^{10}$	$2.406 imes 10^9$	$2.205 imes 10^{10}$	$2.943 imes 10^9$				
F14	$3.340 imes 10^{11}$	$8.037 imes10^{10}$	$3.300 imes 10^{11}$	$5.522 imes 10^{10}$	$3.184 imes10^{11}$	$5.341 imes 10^{10}$	$3.046 imes 10^{11}$	$6.401 imes10^{10}$				
F15	$2.600 imes 10^7$	$2.600 imes 10^6$	1.459×10^8	$2.647 imes 10^7$	1.298×10^8	$2.205 imes 10^7$	1.198×10^8	$1.890 imes 10^7$				
W/T/L	-/-/-		7/2	2/6	7/1	1/7	7/1/7					

 Table 4. Experimental results of large-scale global optimization in CEC2013.

Figure 5 shows the box and convergence graph of SEs in CEC2013 LSGO. The red + represent the location of the extremes in the repeat run. The search efficiency of DWSE on problem 1 is much lower than that of other SEs, which may be due to the fact that the adaptive range of the weights is so small in the ultra-high dimensionality problem that the number of dimensions being changed each time is too large. Changing too many dimensions on that problem may lead to slower convergence and therefore insufficient *val* values, eventually leading to insufficient change of weights comprising a vicious circle. On problem 15, at the beginning of convergence, DWSE is still inferior to the other algorithms, again due to the weighting calculation. However, since all algorithms fall into a close local optimum on this problem, while the other SEs lack local search capability and stagnate altogether, DWSE's excellent local search capability allows it to obtain the most accurate set of solutions on the local optimum, defeating the other SEs.

Figure 5. Box and convergence graph of SEs in CEC2013 LSGO.

3.4. Comparison with Other MHAs in CEC2017 and CEC2011

In order to further demonstrate the improvement in the performance of DWSE, it was compared with a selection of classic, strong, and recent algorithms on a low to medium dimensional test set [41–46]. Table 5 shows the comparison results of DWSE with other MHAs in CEC2017 and CEC2011. DWSE took the lead in the overall comparison results and gained the lead in every set of problems, except for CEC2017, where it was slightly behind DE under the 30-dimension problem. We believe this is a testament to DWSE's strength in performance. It should be noted that IPA, due to its design mechanism, cannot be run on problems with a low dimension count; therefore its data are not available for CEC2011.

	DWSE VS.	DE	GLPSO	DNLGSA	GWO	IPA	DEPSO	CSO
CEC2017	dim = 30 dim = 50 dim = 100	13/1/16 18/2/10 18/4/8	28/1/1 27/1/2 24/1/5	28/1/1 27/2/1 25/1/4	29/0/1 29/0/1 26/0/4	24/3/3 22/2/6 25/2/3	27/1/2 27/2/1 26/2/2	26/1/3 25/2/3 27/2/1
CEC2011		13/3/6	19/3/0	20/1/1	19/1/2	-/-/-	17/4/1	20/2/0
	total	62/10/40	98/6/8	100/5/7	103/1/8	71/7/12	97/9/6	98/7/7

Table 5. Comparison results of DWSE with other MHAs in CEC2017 and CEC2011.

3.5. Discussion

In the time complexity analysis, the initialization complexity of DWSE is O(popusize). The upper bound of the *DSF* operation is dependent on the problem dimension, resulting in a time complexity of O(dim) for the computation of *DSF* and *W*. The operator utilized in DWSE consumes a time complexity of O(dim). Additionally, the time complexity associated with the dimension selection process is $O(\log(dim))$. In summary, the overall time complexity of DWSE can be expressed as $O(popusize \cdot dim \cdot dim \cdot \log(dim))$. In comparison to SE, the complexity of DWSE is higher. This higher complexity is attributed to DWSE's requirement of dimension weighting, which increases its complexity by a factor of *dim* due to the additional operations conducted in the loop involving *popusize \cdot dim* computations. However, considering the performance enhancement achieved by DWSE, the slight increase in computation time is deemed acceptable.

Table 6 shows the experimental results of all SE operators in dimension 30 in CEC2017. Among these, DWSE utilizes SE/rand/1 and SE/rand/2, which exhibit nearly identical performance, displaying negligible distinctions, with notable proximity to SE/current/1 and SE/current/2. Given that SE/rand/1 is the recommended operator within the SE framework and is widely employed for real-world problem optimization, we concur with its selection.

Eun	DWSE (Rand/1) VS.	Current-to-Best/1	Best/1	Best/2	Rand/2	Current/1	Current/2
run	Mean	Mean	Mean	Mean	Mean	Mean	Mean
F1	$6.474 imes10^{-3}$	$2.953 imes10^{-1}$	$1.404 imes 10^{-3}$	$2.754 imes10^{-3}$	$6.613 imes10^{-3}$	$7.918 imes10^{-1}$	$1.735 imes 10^{0}$
F2	3.535×10^{12}	$1.486 imes 10^1$	$1.723 imes 10^{-4}$	$2.179 imes10^{-6}$	$2.208 imes 10^{12}$	4.359×10^2	$4.695 imes 10^1$
F3	1.122×10^5	1.023×10^5	1.069×10^{5}	1.112×10^5	7.933×10^{5}	$1.207 imes 10^5$	$8.139 imes 10^5$
F4	9.259×10^{1}	$6.834 imes10^1$	$8.338 imes 10^1$	$6.888 imes 10^1$	$9.417 imes10^1$	$8.355 imes 10^1$	$9.880 imes 10^1$
F5	$3.000 imes 10^1$	$5.492 imes 10^1$	$7.263 imes 10^1$	$8.557 imes10^1$	$3.673 imes 10^1$	$6.729 imes 10^1$	$7.603 imes 10^1$
F6	$1.137 imes10^{-13}$	$2.841 imes10^{-3}$	$6.338 imes10^{0}$	$1.049 imes10^1$	$1.137 imes 10^{-13}$	$3.833 imes10^{-3}$	$2.982 imes 10^{-3}$
F7	6.352×10^{1}	1.065×10^{2}	2.502×10^2	$1.438 imes 10^2$	$5.980 imes 10^1$	$8.694 imes10^1$	$9.616 imes 10^1$
F8	$3.588 imes10^1$	$7.401 imes 10^1$	$5.572 imes 10^1$	$8.855 imes 10^1$	$3.809 imes 10^1$	$5.557 imes 10^1$	$6.127 imes10^1$
F9	$6.001 imes 10^{-1}$	3.373×10^{2}	2.220×10^{3}	3.466×10^{2}	$0.000 imes 10^0$	7.615×10^2	$4.045 imes 10^2$
F10	$1.880 imes10^3$	$2.434 imes 10^3$	$2.523 imes 10^3$	1.776×10^3	$1.852 imes 10^3$	$2.124 imes 10^3$	$1.769 imes 10^3$
F11	2.561×10^{1}	$3.323 imes 10^1$	1.142×10^2	1.406×10^2	$2.137 imes 10^1$	$3.742 imes 10^1$	$2.063 imes 10^1$
F12	$4.119 imes10^5$	$6.249 imes10^5$	$8.152 imes 10^5$	$5.854 imes10^5$	$1.233 imes10^5$	$3.953 imes10^5$	$4.153 imes10^5$
F13	$7.504 imes 10^3$	6.463×10^{2}	5.960×10^{5}	2.959×10^{5}	$8.429 imes 10^3$	$4.945 imes 10^2$	6.064×10^2
F14	$1.200 imes 10^3$	$7.186 imes 10^1$	$7.406 imes 10^2$	$7.455 imes 10^1$	$7.491 imes 10^1$	$7.148 imes10^1$	$8.118 imes10^1$
F15	1.923×10^{2}	$7.142 imes10^1$	$2.915 imes 10^5$	$6.659 imes10^1$	$1.024 imes 10^2$	$6.731 imes10^1$	$1.091 imes 10^2$
F16	3.989×10^{2}	6.332×10^{2}	$1.195 imes 10^3$	$1.142 imes 10^3$	2.001×10^2	5.178×10^{2}	$4.305 imes 10^2$
F17	$7.037 imes 10^1$	$8.409 imes10^1$	6.279×10^{2}	$8.532 imes 10^1$	$7.794 imes 10^1$	$6.963 imes 10^1$	1.576×10^{2}
F18	$2.120 imes 10^5$	7.492×10^{5}	5.255×10^{5}	1.155×10^{5}	$6.630 imes 10^{5}$	$1.180 imes10^5$	$9.448 imes 10^3$
F19	5.133×10^{2}	$3.663 imes 10^{1}$	1.795×10^{2}	$6.031 imes 10^3$	4.879×10^{2}	$3.674 imes 10^1$	$4.695 imes 10^{1}$
F20	1.113×10^{2}	2.050×10^{2}	$3.010 imes 10^1$	1.608×10^{2}	$5.790 imes 10^{1}$	$8.585 imes 10^1$	$7.037 imes 10^1$
F21	2.359×10^{2}	2.670×10^{2}	$2.945 imes 10^2$	$2.267 imes 10^2$	$2.364 imes 10^2$	1.352×10^2	$2.641 imes 10^2$
F22	1.023×10^{2}	1.058×10^{2}	1.038×10^{2}	$1.000 imes 10^2$	1.169×10^{2}	$1.108 imes 10^2$	1.000×10^{2}
F23	3.828×10^{2}	3.844×10^{2}	4.164×10^{2}	$4.437 imes 10^2$	3.877×10^{2}	3.819×10^{2}	3.808×10^{2}
F24	4.557×10^{2}	5.308×10^{2}	4.994×10^{2}	4.812×10^{2}	4.564×10^{2}	2.106×10^{2}	5.319×10^{2}
F25	3.874×10^{2}	3.870×10^{2}	4.294×10^{2}	3.894×10^{2}	3.871×10^{2}	3.869×10^{2}	3.869×10^{2}
F26	1.312×10^{3}	3.077×10^{2}	1.703×10^{3}	$1.574 imes 10^3$	$1.366 imes 10^{3}$	2.458×10^{2}	2.461×10^{2}
F27	5.091×10^{2}	5.111×10^{2}	5.022×10^{2}	5.246×10^{2}	5.105×10^{2}	5.182×10^{2}	5.104×10^{2}
F28	3.299×10^{2}	3.796×10^{2}	4.401×10^{2}	4.067×10^{2}	4.070×10^{2}	3.000×10^{2}	3.030×10^{2}
F29	4.968×10^{2}	5.091×10^{2}	1.138×10^{3}	9.890×10^{2}	5.034×10^{2}	5.666×10^{2}	6.217×10^{2}
F30	$4.934 imes 10^3$	9.960×10^{3}	3.846×10^{3}	9.506×10^{3}	6.082×10^{3}	8.189×10^{3}	3.797×10^{3}
W/T/L	-/-/-	17/4/9	20/2/8	19/3/8	10/10/10	14/3/13	13/5/12

Table 6. Experimental results of operator discussion in CEC2017.

4. Conclusions

The development of optimization algorithms has a long and rich history, which has given rise to a series of intriguing and diverse algorithms in its early stages. As problems and algorithms have progressed, driven by the pursuit of better performance, algorithmic improvements have gradually converged, resulting in a phenomenon of becoming trapped in local optima. Although the developers of SE were the first to observe and propose this unique algorithm, it has also presented challenges in implementing many successful improvement experiences in this context.

The improvement method proposed in this paper involves a specialized operation based on the dimension selection of SE. Despite its non-complex nature, the effectiveness of this improvement is evident. The substantial enhancements in low- and mediumdimensional problems, coupled with the sustained performance in ultra-high-dimensional problems, bring SEs closer to approximating the global optimum. As one of the few SE improvement algorithms, we also hope that DWSE can contribute to the diversification of algorithms.

SE is an algorithm commonly employed to optimize parameter estimation problems for photovoltaic models and has proven its effectiveness in solving such problems. Our next step involves selecting this problem and utilizing the current best-performing SE, i.e., DWSE, as the foundation for further enhancements, aiming to attain even better results for real-world applications.

Author Contributions: Conceptualization, Y.Y. and S.T.; methodology, Y.Y.; software, Y.Y. and S.T.; validation, Y.Y.; formal analysis, Y.Y. and S.T.; investigation, Y.Y. and S.D.; resources, Z.T.; data curation, S.D.; M.N.; writing—original draft preparation, Y.Y.; writing—review and editing, Y.Y. and Z.T.; visualization, S.T.; supervision, Z.T.; project administration, Z.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data can be made available upon request by contacting the corresponding author's email address. The source code is publicly available at https://github.com/louiseklocky (accessed on 15 August 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References

- Abualigah, L.; Elaziz, M.A.; Khasawneh, A.M.; Alshinwan, M.; Ibrahim, R.A.; Al-Qaness, M.A.; Mirjalili, S.; Sumari, P.; Gandomi, A.H. Meta-heuristic optimization algorithms for solving real-world mechanical engineering design problems: A comprehensive survey, applications, comparative analysis, and results. *Neural Comput. Appl.* 2022, *34*, 4081–4110. [CrossRef]
- 2. Desale, S.; Rasool, A.; Andhale, S.; Rane, P. Heuristic and meta-heuristic algorithms and their relevance to the real world: A survey. *Int. J. Comput. Eng. Res. Trends* **2015**, *351*, 2349–7084.
- 3. Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: past, present, and future. *Multimed. Tools Appl.* **2021**, *80*, 8091–8126. [CrossRef] [PubMed]
- 4. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN'95-International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.
- 5. Rutenbar, R.A. Simulated annealing algorithms: An overview. IEEE Circuits Devices Mag. 1989, 5, 19–26. [CrossRef]
- Das, S.; Suganthan, P.N. Differential Evolution: A Survey of the State-of-the-Art. *IEEE Trans. Evol. Comput.* 2011, 15, 4–31. [CrossRef]
- 7. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. *J. Glob. Optim.* **1997**, *11*, 341–359. [CrossRef]
- 8. Bansal, J.C.; Sharma, H.; Jadon, S.S. Artificial bee colony algorithm: A survey. *Int. J. Adv. Intell. Paradig.* 2013, *5*, 123–159. [CrossRef]
- 9. Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [CrossRef]
- 10. Mirjalili, S.; Lewis, A. The whale optimization algorithm. *Adv. Eng. Softw.* 2016, 95, 51–67. [CrossRef]
- 11. Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [CrossRef]
- 12. Hansen, N.; Müller, S.D.; Koumoutsakos, P. Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). *Evol. Comput.* **2003**, *11*, 106365603321828970. [CrossRef] [PubMed]
- 13. Kramer, O. Evolutionary self-adaptation: A survey of operators and strategy parameters. Evol. Intell. 2010, 3, 51–65. [CrossRef]
- 14. Umbarkar, A.J.; Sheth, P.D. Crossover operators in genetic algorithms: A review. ICTACT J. Soft Comput. 2015, 6, 34–36.
- 15. Ramos-Figueroa, O.; Quiroz-Castellanos, M.; Mezura-Montes, E.; Kharel, R. Variation operators for grouping genetic algorithms: A review. *Swarm Evol. Comput.* **2021**, *60*, 100796. [CrossRef]
- 16. Zhang, J.; Sanderson, A.C. JADE: Adaptive Differential Evolution with Optional External Archive. *IEEE Trans. Evol. Comput.* **2009**, *13*, 945–958. [CrossRef]
- 17. Tanabe, R.; Fukunaga, A. Success-history based parameter adaptation for Differential Evolution. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 71–78. [CrossRef]
- 18. Yang, H.; Yu, Y.; Cheng, J.; Lei, Z.; Cai, Z.; Zhang, Z.; Gao, S. An intelligent metaphor-free spatial information sampling algorithm for balancing exploitation and exploration. *Knowl.-Based Syst.* **2022**, *250*, 109081. [CrossRef]
- 19. Chakraborty, A.; Kar, A.K. Swarm intelligence: A review of algorithms. In *Nature-Inspired Computing and Optimization: Theory and Applications;* Springer: Berlin/Heidelberg, Germany, 2017; pp. 475–494.
- 20. Schmitt, L.M. Theory of genetic algorithms. Theor. Comput. Sci. 2001, 259, 69-85. [CrossRef]
- 21. Bang-Jensen, J.; Gutin, G.; Yeo, A. When the greedy algorithm fails. Discret. Optim. 2004, 1, 121–127. [CrossRef]
- 22. Črepinšek, M.; Liu, S.H.; Mernik, M. Exploration and exploitation in evolutionary algorithms: A survey. *ACM Comput. Surv.* **2013**, 45, 1–33. [CrossRef]
- 23. Yu, Y.; Gao, S.; Wang, Y.; Todo, Y. Global optimum-based search differential evolution. *IEEE/CAA J. Autom. Sin.* 2019, *6*, 379–394. [CrossRef]
- 24. Gershman, S.J. Uncertainty and exploration. *Decision* 2019, 6, 277. [CrossRef] [PubMed]
- 25. Li, W.; Ding, Y.; Yang, Y.; Sherratt, R.S.; Park, J.H.; Wang, J. Parameterized algorithms of fundamental NP-hard problems: A survey. *Hum.-Centric Comput. Inf. Sci.* 2020, *10*, 29. [CrossRef]
- 26. Gao, S.; Yu, Y.; Wang, Y.; Wang, J.; Cheng, J.; Zhou, M. Chaotic Local Search-Based Differential Evolution Algorithms for Optimization. *IEEE Trans. Syst. Man Cybern. Syst.* 2021, 51, 3954–3967. [CrossRef]
- 27. Xu, Z.; Gao, S.; Yang, H.; Lei, Z. SCJADE: Yet Another State-of-the-Art Differential Evolution Algorithm. *IEEJ Trans. Electr. Electron. Eng.* **2021**, *16*, 644–646. [CrossRef]
- 28. Zheng, Y.J.; Zhang, B. A simplified water wave optimization algorithm. In Proceedings of the 2015 IEEE Congress on Evolutionary Computation (CEC), Sendai, Japan, 25–28 May 2015; pp. 807–813.
- Li, H.; Zhang, B.; Li, J.; Zheng, T.; Yang, H. Using sparrow search hunting mechanism to improve water wave algorithm. In Proceedings of the 2021 IEEE International Conference on Progress in Informatics and Computing (PIC), Shanghai, China, 17–19 December 2021; pp. 19–23.
- 30. Tang, D. Spherical evolution for solving continuous optimization problems. Appl. Soft Comput. 2019, 81, 105499. [CrossRef]

- 31. Weng, X.; Heidari, A.A.; Liang, G.; Chen, H.; Ma, X.; Mafarja, M.; Turabieh, H. Laplacian Nelder-Mead spherical evolution for parameter estimation of photovoltaic models. *Energy Convers. Manag.* **2021**, 243, 114223. [CrossRef]
- Zhou, W.; Wang, P.; Heidari, A.A.; Zhao, X.; Turabieh, H.; Mafarja, M.; Chen, H. Metaphor-free dynamic spherical evolution for parameter estimation of photovoltaic modules. *Energy Rep.* 2021, 7, 5175–5202. [CrossRef]
- Yang, H.; Gao, S.; Lei, Z.; Li, J.; Yu, Y.; Wang, Y. An improved spherical evolution with enhanced exploration capabilities to address wind farm layout optimization problem. *Eng. Appl. Artif. Intell.* 2023, 123, 106198. [CrossRef]
- 34. Zhao, J.; Zhang, B.; Guo, X.; Qi, L.; Li, Z. Self-Adapting Spherical Search Algorithm with Differential Evolution for Global Optimization. *Mathematics* **2022**, *10*, 4519. [CrossRef]
- Yang, H.; Gao, S.; Wang, R.L.; Todo, Y. A ladder spherical evolution search algorithm. *IEICE Trans. Inf. Syst.* 2021, 104, 461–464. [CrossRef]
- 36. Tanabe, R.; Fukunaga, A.S. Improving the search performance of SHADE using linear population size reduction. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 6–11 July 2014; pp. 1658–1665. [CrossRef]
- 37. Yang, J.; Zhang, Y.; Wang, Z.; Todo, Y.; Lu, B.; Gao, S. A cooperative coevolution wingsuit flying search algorithm with spherical evolution. *Int. J. Comput. Intell. Syst.* **2021**, *14*, 178. [CrossRef]
- 38. Yang, L.; Gao, S.; Yang, H.; Cai, Z.; Lei, Z.; Todo, Y. Adaptive chaotic spherical evolution algorithm. *Memetic Comput.* **2021**, 13, 383–411. [CrossRef]
- 39. Zhou, H.; Cheung, W.; Leung, L.C. Minimizing weighted tardiness of job-shop scheduling using a hybrid genetic algorithm. *Eur. J. Oper. Res.* **2009**, *194*, 637–649. [CrossRef]
- Bai, L.; Liang, J.; Dang, C.; Cao, F. A novel attribute weighting algorithm for clustering high-dimensional categorical data. *Pattern Recognit.* 2011, 44, 2843–2861. [CrossRef]
- Gong, Y.J.; Li, J.J.; Zhou, Y.; Li, Y.; Chung, H.S.H.; Shi, Y.H.; Zhang, J. Genetic Learning Particle Swarm Optimization. *IEEE Trans. Cybern.* 2016, 46, 2277–2290. [CrossRef] [PubMed]
- 42. Zhang, A.; Sun, G.; Ren, J.; Li, X.; Wang, Z.; Jia, X. A Dynamic Neighborhood Learning-Based Gravitational Search Algorithm. *IEEE Trans. Cybern.* **2018**, *48*, 436–447. [CrossRef]
- 43. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
- 44. Aslan, S.; Demirci, S. Immune Plasma Algorithm: A Novel Meta-Heuristic for Optimization Problems. *IEEE Access* 2020, *8*, 220227–220245. [CrossRef]
- Zhang, W.J.; Xie, X.F. DEPSO: hybrid particle swarm with differential evolution operator. In Proceedings of the SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme—System Security and Assurance (Cat. No.03CH37483), Washington, DC, USA, 8 October 2003; Volume 4, pp. 3816–3821. [CrossRef]
- 46. Yang, X.S.; Deb, S. Cuckoo Search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.