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Abstract: The design of linear Support Vector Machine (SVM) classification techniques is generally
a Multi-objective Optimization Problem (MOP). These classification techniques require finding
appropriate trade-offs between two objectives, such as the amount of misclassified training data
(classification error) and the number of non-zero elements of the separator hyperplane. In this article,
we review several linear SVM classification models in the form of multi-objective optimization. We
put particular emphasis on applying sparse optimization (in terms of minimization of the number
of non-zero elements of the separator hyperplane) to Feature Selection (FS) for multi-objective
optimization linear SVM. Our primary purpose is to demonstrate the advantages of considering
linear SVM classification techniques as MOPs. In multi-objective cases, we can obtain a set of Pareto
optimal solutions instead of one optimal solution in single-objective cases. The results of these linear
SVMs are reported on some classification datasets. The test problems are specifically designed to
challenge the number of non-zero components of the normal vector of the separator hyperplane. We
used these datasets for multi-objective and single-objective models.

Keywords: support vector machine; feature selection; sparse optimization; multi-objective optimization
problems; multi-objective machine learning
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1. Introduction

In most machine learning problems, several objectives are aggregated as one objective
function. Therefore, the design of machine learning systems can generally be considered a
Multi-objective Optimization Problem (MOP) [1]. In the multi-objective optimization form
of classification problem, appropriate trade-offs must be found between several objective
functions, for example, between model complexity and accuracy, sensitivity and specificity,
the sum of distances of misclassified points to the separating hyperplanes and the distance
between the two bounding planes that generate the separating plane or the number of mis-
classified training data and the number of non-zero elements of separating hyperplane [1,2].
In various research, it has been shown that multi-objective machine learning algorithms are
more powerful in improving generalization and knowledge extraction ability compared
to single-objective learning, especially in topics such as Feature Selection, sparsity, and
clustering [1,3].

Optimization algorithms, when there are a large number of variables or constraints,
could account for most of the computation time. So far, various sparse matrices that
arise in optimization have been investigated [4]. In many fields of linear systems, such
as engineering problems, science, and signal and image processing, a search for sparse
solutions is required. Mathematical optimization plays an essential role in the development
of numerical algorithms for searching the sparsity in solutions [5].
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Support vector machines (SVMs) use a hyperplane to separate samples into one of
two classes. It is mentioned in [6] that it is convenient to combine the SVM problem with a
set theory for set-based particle swarm optimization (SBPSO) to be used to find the optimal
separator hyperplane. This method is called SBPSO-SVM [6].

In many MOPs, conflicting objective functions must be optimized [7,8]. These prob-
lems are used when the optimal decision to adopt two or more objectives is interdependent,
for example, in economics, logistics, and many engineering and scientific problems [6]. In
this case, the optimization problem has no single solution representing the optimal solution
for all objectives simultaneously [9–11]. In MOPs, a solution with the most appropriate
trade-off between objectives is found in which no objective is improved without wors-
ening at least one other objective [12,13]. This solution is known as the Pareto optimal
solution [14]. The set of all Pareto optimal solutions is known as the Pareto set or Pareto
frontier [15,16].

Although single-objective machine learning problems have been well studied [17–23],
there are fewer studies on multi-objective machine learning problems. Multi-objective
machine learning is an approach to determining an appropriate trade-off between generally
conflicting objectives [24–26]. In multi-objective machine learning approaches, the main
advantage is that you can obtain a deeper insight into the learning problem by analyzing
the produced Pareto frontier [27–41]. In some multi-objective approaches, two objectives
are simultaneously considered: minimizing the classification error and the norm of the
weight vectors [42].

This article presents multi-objective classification problems to obtain Pareto-optimal
solutions (Pareto frontier). In these multi-objective optimization problems, one objective
is used to minimize the classification error, and another objective is used to minimize the
number of non-zero elements of the separator hyperplane.

The rest of the article is organized as follows. In Section 2, some basic concepts and
notations, including binary classification, support vector machine classification methods,
sparse optimization, and multi-objective optimization problems, are given. In Section 3,
multi-objective reformulation of support vector machine models is presented. The results
of several numerical experiments are presented in Section 4. Conclusions are devoted to
Section 5.

2. Basic Concepts and Notations

To make a more accessible understanding of this article, some basic concepts and
notations are presented in this section. First, we briefly describe binary classification, and
then we will focus on Support Vector Machines classification methods and some models
for sparse optimization. Some concepts of multi-objective optimization problems will also
be discussed.

2.1. Binary Classification

Data mining algorithms predict to which category of the target variables each case
belongs. This activity is called binary classification [43]. The goal of binary classification is
to assign a new object to one of two classes from certain sets of classes based on the feature
values of this object [44,45].

Suppose that we have two classes of individuals in the form of two finite sets
A,B ⊆ Rn, such that A ∩ B = ∅. In binary classification, we want to classify an in-
put vector x ∈ Rn as a member of the class denoted by A or that by B. For binary
classification, the training set is defined as follows [46,47]:

T =
{(

xi, yi
)∣∣∣xi ∈ Rn, yi ∈ {±1} and i = 1, . . . , m

}
(1)
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with the two classesA andB labelled by +1 and−1, respectively. The function f : Rn → {±1} ,
is in the following form that determines the class membership of a given vector x [46,47]:

f (x) =
{
+1, i f x ∈ A
−1, i f x ∈ B (2)

Assume that there are two finite point sets A and B in Rn that consist of m and k
points, respectively. They are associated with the matrices A ∈ Rm×n and B ∈ Rk×n, where
each point set is represented as a row of the corresponding matrix. In the SVM method, we
want to construct the separating hyperplane P as follows [46,47]:

P =
{

x
∣∣∣ x ∈ Rn, xTw = γ

}
(3)

with normal vector w ∈ Rn [46,47].
The separating plane P determines two open halfspaces as follows:

• P1 =
{

x
∣∣ x ∈ Rn, xTw > γ

}
,

• P2 =
{

x
∣∣ x ∈ Rn, xTw < γ

}
.

P1 is intended to have most of the points belonging to A and P2 is intended to have
most of the points belonging to B.

Therefore, we want to satisfy the following inequalities to the possible extent, where e
is a vector of ones by the appropriate dimension:

Aw > eγ, Bw < eγ (4)

The problem can be equivalently stated as follows [46,47]:

Aw > eγ + e, Bw < eγ− e (5)

As we will see next, using Feature Selection in SVM means suppressing as many of
the components of vector w as possible [46,47].

2.2. Support Vector Machine Classification Methods

In the Support Vector Machine (SVM) classification methods, in addition to minimizing
the error function, we also want to maximize the distance between the two bounding planes
(referred to as the separation margin) that generate the separating hyperplane [48,49]. The
standard formulation of SVM is the following, where variables yi and zl represent the
classification error associated with the points of A and B, respectively:

Min C
(m1

∑
i=1

yi+
m2
∑

l=1
zl

)
+ ‖w‖2

2

s.t − aT
i w + γ + 1 ≤ yi, i = 1, . . . , m1

bT
l w− γ + 1 ≤ zl , l = 1, . . . , m2

yi ≥ 0, zl ≥ 0

(6)

Positive parameter C defines the trade-off between the two objectives: minimizing the
classification error and maximizing the separation margin [50,51].

Since in feature selection, the goal is suppressing as many elements of w as possible,
replaced l2-norm with l1-norm and a feature selection term introduced as the following
form [52,53]:

Min C
(m1

∑
i=1

yi+
m2
∑

l=1
zl

)
+ ‖w‖1

s.t − aT
i w + γ + 1 ≤ yi, i = 1, . . . , m1

bT
l w− γ + 1 ≤ zl , l = 1, . . . , m2

yi ≥ 0, zl ≥ 0

(7)
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2.3. Sparse Optimization

In sparse SVM, in addition to maintaining satisfactory classification accuracy, the goal
is to control the number of non-zero components of the normal vector to the separating
hyperplane [54]. Therefore, the following two objectives should be minimized [46]:

• Classification error (the number of misclassified training data).
• The number of non-zero elements of the normal vector of the separator hyperplane

(vector w).

Feature selection in SVM as a special case of sparse optimization states the following
problem [46,54,55]:

Min C
(m1

∑
i=1

yi+
m2
∑

l=1
zl

)
+ ‖w‖0

s.t − aT
i w + γ + 1 ≤ yi, i = 1, . . . , m1

bT
l w− γ + 1 ≤ zl , l = 1, . . . , m2

yi ≥ 0, zl ≥ 0

(8)

where ‖.‖0 is the l0-pseudo-norm, which counts the number of non-zero components
of any vector. The l0-pseudo-norm is a nonconvex discontinuous function, so problems
with this norm lead to cardinality-constrained problems that are hard to solve (NP-hard
problems) [43,44]. In many applications, the l0-pseudo-norm is replaced by the l1-norm
(and l2-norm), model (7) (and model (6)), which is more tractable [46,47].

The use of k-norms has attracted much attention in recent years, which has led to several
ways to deal with the cardinality-constrained problem with l0-pseudo-norm [48,55,56].

In the next, at first, we define the k-norm, and then we introduce two models to ensure
sparsity using the k-norm.

Definition 1 (k-norm) [54,57]. The sum of k largest component of the vector X is called the k-norm
of vector X:

‖x‖[k] = |xi1|+ |xi2|+ . . . + |xik| where, |xi1| ≥ |xi2| ≥ . . . ≥ |xin| (9)

The k-norm is intermediate between‖.‖1and‖.‖∞and it is a polyhedral norm. This norm enjoys
the following fundamental property linking‖x‖[k]to‖x‖0 1 ≤ k ≤ n:

‖x‖0 ≤ k ⇔ ‖x‖1 − ‖x‖[k] = 0 (10)

The following problem based on k-norm proposed to sparse optimization for Feature
Selection in the SVM model in [54]:

Min C
(m1

∑
i=1

yi+
m2
∑

l=1
zl

)
+ eT(u + v) + σ

(
eT(w+ + w−)− (u− v)T(w+ − w−)

)
s.t− aT

i (w
+ − w−) + γ + 1 ≤ yi, i = 1, . . . , m1

bT
l (w

+ − w−)− γ + 1 ≤ zl , l = 1, . . . , m2
yi ≥ 0, zl ≥ 0, w+, w− ≥ 0, 0 ≤ u, v ≤ e

(11)

where w = w+ − w−, w+, w− ≥ 0. As mentioned in [54], (u− v) is the subdifferential of
‖w‖[k] at point 0 and (u + v)Te = k. This model is called SVM0.

Additionally, based on k-norm the following problem proposed in [58–60] for Sparse
Optimization:

Min C
(m1

∑
i=1

yi+
m2
∑

l=1
zl

)
− 1
‖w‖1

n
∑

k=1
‖w‖[k]

s.t− aT
i w + γ + 1 ≤ yi, i = 1, . . . , m1

bT
l w− γ + 1 ≤ zl , l = 1, . . . , m2

yi ≥ 0, zl ≥ 0

(12)

This model is called BM-SVM.
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2.4. Multi-Objective Optimization Problem

A Multi-objective optimization problem (MOP) is given as follows [61]:

Minimize f (x) =
(

f1(x), · · · , fp(x)
)

s.t : x ∈ X
(13)

where X ⊆ Rn is the set of constraint, and fk : Rn → R, k = 1, · · · , p , are the continuous
objective functions. If at least two objective functions are conflicting in (13) then no single
x ∈ X would generally minimize every fk at the same time. Therefore, it is necessary to
some new notions introduce for optimality in MOP [61].

Definition 2 (Dominance Vector). The vector f
(
x1)dominates vector f

(
x2), and we sayx1 dominatesx2,

if and only if fk
(
x1) ≤ fk

(
x2)for allk = 1, · · · , pand for at least onei ∈ {1, · · · , p}this inequality

be established in the strict formfi
(
x1) < fi

(
x2) [61].

Definition 3 (Pareto Optimality and Pareto frontier). Supposed thatx̂ ∈ Xbe a feasible solution of
MOP (13). This feasible solution is called Pareto optimal if there is no otherx ∈ Xsuch thatx dominatesx̂.
The set of all Pareto optimal solutions is called the Pareto set or Pareto frontier [61].

In the ε-constraint method, one of the objective functions is optimized, while the rest
of the objective functions are considered in the form of constraints. Several versions of the
ε-constraint method have been proposed to try to improve its performance [62].

Several methods have been proposed to construct the Pareto frontier of MOPs, but
in this article, we will use the modified algorithm introduced in [63,64] based on the
ε-constraint method.

In [63,64], a modified algorithm based on the ε-constraint method is proposed, which
systematically generates Pareto optimal solutions.

In this algorithm at the first phase, the following single-objective optimization prob-
lems are solved for k = 1, . . . , p [60]:

Minimize fk(x)
s.t : x ∈ X

(14)

Let x∗1 , . . . , x∗p be the optimal solutions to these problems, respectively. Then, the
restricted region is defined as follows for k = 1, . . . , p [63]:

∀ x ∈ X : fk(x∗k ) ≤ fk(x) ≤
(

max
i=1, ...,p;i 6=k

{ fk(x∗i )}
)

(15)

In the second phase, the steps’ lengths ∆xj are determined in the region (15), for
j = 1, . . . , p, and then the following single-objective optimization problems are solved [63]:

Minimize fk(x)
s.t : f j(x) ≤ ∆xj, j = 1, . . . , n, j 6= k,

x ∈ X
(16)

It is proved in [63,64] that If x∗ is an optimal solution of (16), then it will be a Pareto
optimal solution of multi-objective optimization.

In the next section, we will present some of the single-objective SVM models in the
form of multi-objective optimization problems.

3. Multi-Objective Support Vector Machine

It has been shown in [1] that multi-objective machine learning methods are more
powerful compared to single-objective forms in dealing with different machine learning
topics. Additionally, a major advantage of the multi-objective machine learning approach
is that by analyzing the Pareto frontier, one can gain a deeper insight into the learning
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problem [1]. Support vector machines have been investigated in [2] in the form of multi-
objective optimization problems, and an approach to design SVM on a real-world pattern
recognition task has been made [2].

Here, we reformulate several linear SVM models as multi-objective models. Our
primary purpose is to demonstrate the advantages of considering these single-objective
models as MOP models. In multi-objective form, we can obtain a set of Pareto-optimal
solutions instead of an optimal solution in a single-objective form [58–61], and then the
decision maker can choose one of these solutions [58–60].

In this section, we will reformulate l1 (model (7)), l2 (model (6)), SVM0 (model (11)),
and BM-SVM (model (12)) models into MOPs.

The MOP reformulations of the l1-norm and l2-norm (models (6) and (7) in Section 2.2)
are as follows, respectively:

Min f 1 =
m1
∑

i=1
yi+

m2
∑

l=1
zl

Min f2 = ‖w‖1
s.t − aT

i w + γ + 1 ≤ yi, i = 1, . . . , m1
bT

l w− γ + 1 ≤ zl , l = 1, . . . , m2
yi ≥ 0, zl ≥ 0

(17)

Min f1 =
m1
∑

i=1
yi+

m2
∑

l=1
zl

Min f2 = ‖w‖2
2

s.t − aT
i w + γ + 1 ≤ yi, i = 1, . . . , m1

bT
l w− γ + 1 ≤ zl , l = 1, . . . , m2

yi ≥ 0, zl ≥ 0

(18)

The BM-SVM model (model (12) in Section 2.3) is reformulated as the following MOP:

Min f1 =
m1
∑

i=1
yi+

m2
∑

l=1
zl

Min f2 = − 1
‖w‖1

∑n
k=1‖w‖[k]

s.t − aT
i w + γ + 1 ≤ yi, i = 1, . . . , m1

bT
l w− γ + 1 ≤ zl , l = 1, . . . , m2

yi ≥ 0, zl ≥ 0

(19)

The SVM0 Model (model (11) in Section 2.3) is reformulated as the following MOP
(w = w+ − w−, w+, w− ≥ 0 and as mentioned in [54], (u− v) is the subdifferential of
‖w‖[k] at point 0 and (u + v)Te = k):

Min f1 =
m1
∑

i=1
yi+

m2
∑

l=1
zl

Min f2 = eT(u + v) + σ
(

eT(w+ + w−)− (u− v)T(w+ − w−)
)

s.t − aT
i (w

+ − w−) + γ + 1 ≤ yi, i = 1, . . . , m1
bT

l (w
+ − w−)− γ + 1 ≤ zl , l = 1, . . . , m2

yi ≥ 0, zl ≥ 0, w+, w− ≥ 0, 0 ≤ u, v ≤ e

(20)

To solve these MOPs, we can use the modified algorithm based on the ε-constraint
method, which was introduced in Section 2.4 and in [63,64].

4. Numerical Experiments

The results of models mentioned in the previous sections on some numerical ex-
periments are presented in this section. To compare the results, all these models are
solved as single-objective and multi-objective forms. To solve the test problems, we used
“GlobalSolve” in the Global Optimization package in MAPLE version 18.01. The Global
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Optimization Toolbox uses global search algorithms that systematically search the entire
feasible region for a global extremum [63]. The algorithms in the Global Optimization
toolbox are global search methods, which systematically search the entire feasible region
for a global extremum [65]. The global solver minimizes a merit function and considers a
penalty term for the constraints. In this method, the global search phase is followed by a
series of local searches to refine solutions. This solver is designed to search the specified
region for a general solution, especially in non-convex optimization problems [66].

We solved all single-objective models (models (6), (7), (11), and (12)) for C = 1 and
C = 10. However, only the results of C = 10 have been reported because the error of some
of these models for C = 1 was not equal to zero.

We have implemented all the multi-objective models to obtain 100 Pareto optimal
solutions. That is, the algorithm ends after 100 repetitions, and this is the stopping criterion
of the algorithm. Since the second objective functions are different in models (17) to (20),
we have used the projection of Pareto solutions in the objective function space of model (17)
to better compare the Pareto optimal solutions of these models.

Since the minimization of the number of non-zero components of the normal vector of
the separator hyperplane and the minimization of the classification error at the same time are
two goals of different SVM models, the test problems are specifically designed to challenge
the number of non-zero components of the normal vector of the separator hyperplane.

Test Problem 1. The number of samples is 14, and the number of features is 3 in this test problem.
Suppose that we have two sets as follows:

A = { [1.7, 4, 1.5], [2, 5, 1], [2.5, 3.5, 1.4], [2.8, 4, 1.2], [3, 5.5, 1.6], [2.5, 5.3, 1.3], [1.5, 1.5, 0.8]},
B = {[3.8, 8, 2], [5, 4.1, 1.9], [6, 6, 2], [4.2, 6.1, 1.8], [3.2, 6, 2], [3.5, 5.8, 2.4], [4, 6.5, 3]}.

The single-objective models all provide the correct set separator (that is, the error of all
these models is zero). The vector w returned by BM-SVM and SVM0 methods has just one
non-zero component, but l1 and l2 return a vector w where components are all non-zero.
The results of these single-objective models are depicted in Table 1 and Figure 1.

Table 1. The results of single-objective models for Test Problem 1.

Method w_1 w_2 w_3 ‖w‖1 Error Value Correctness

BM-SVM 0 0 −9.9998 9.9998 0 100.00%
SVM0 Model 0 0 −10 10 0 100.00%

l1 Model −0.7500 −0.5000 −4.0000 5.2500 0 100.00%
l2 Model −1.8265 −1.6276 −1.9541 5.4082 0 100.00%

We used the dataset for our MOP models to obtain 100 Pareto solutions. We have
considered 6 Pareto solutions out of 100 Pareto solutions obtained for each MOP for further
investigation. In Figures 2–5, we have considered a suitable viewing angle for each specific
sample (6 Pareto solutions) to have a better view of the separating hyperplanes for MOP
models. Additionally, in Tables 2–5, the results obtained for the same Pareto optimal
solutions are displayed.

In Table 2 for the l1 MOP, the value of ‖w‖1 gradually decreases in the solutions while
the error value increases.

For example, in the first and second Pareto solutions, a smaller value for the ‖w‖1
(with an error value equal to zero) has been achieved compared to the results of the single-
objective l1, presented in Table 1. In the sixth Pareto solution, one of the components of the
vector w is equal to zero, but the error has increased.

In Table 3 for the l2 MOP model, in the first and second Pareto solutions, a smaller
value for the ‖w‖1 has been achieved (with an error value equal to zero) compared to the
results of the single-objective l2 problem, presented in Table 1.
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In Table 4 for the BM-SVM MOP model, in the third Pareto solution, two components
of the vector w are non-zero (with an error value equal to zero) while compared to the
results of the single-objective model, presented in Table 1, a smaller value for the ‖w‖1 has
been achieved.
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Table 2. The results of l1 MOP model for Test Problem 1.

Pareto
Solution w_1 w_2 w_3 ‖w‖1

Error
Value Correctness

1 −0.7400 −0.4933 −3.9470 5.1803 0 100.00%
2 −0.7048 −0.4699 −3.7590 4.9336 0 100.00%
3 −0.4405 −0.2937 −2.3494 3.0835 0.8253 92.86%
4 −0.8068 −0.1502 −1.0164 1.9734 1.3569 85.72%
5 −0.7739 −0.3108 −0.0254 1.1101 2.9710 64.29%
6 −0.7405 −0.2462 0 0.9867 3.4620 50.00%
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Table 3. The results of l2 multi-objective model for Test Problem 1.

Pareto
Solution w_1 w_2 w_3 ‖w‖1

Error
Value Correctness

1 −1.0146 −0.7756 −3.5230 5.3132 0 100.00%
2 −1.7660 −1.5736 −1.8893 5.2289 0 100.00%
3 −1.0196 −0.9085 −1.0908 3.0189 0.9055 92.86%
4 −0.9476 −0.7882 −0.9616 2.6974 1.0317 85.72%
5 −0.7108 −0.4092 −0.7411 1.8611 1.6263 78.57%
6 −0.6313 −0.3030 −0.3473 1.2816 2.7562 57.14%

Table 4. The results of the BM-SVM multi-objective model for Test Problem 1.

Pareto
Solution w_1 w_2 w_3 ‖w‖1

Error
Value Correctness

1 −0.7500 −0.5000 −4.0000 5.25000 0 100.00%
2 −0.0460 0 −9.7375 9.7835 0 100.00%
3 0 0 −8.5929 8.5929 0 100.00%
4 −6.5340 0 0 6.5340 0.7374 92.86%
5 0 0 −5.0000 5.0000 1.4748 85.71%
6 0 0 −4.0000 4.0000 1.6000 78.57%

Table 5. The results of the SVM0 multi-objective model for Test Problem 1.

Pareto
Solution w_1 w_2 w_3 ‖w‖1

Error
Value Correctness

1 −0.7500 −0.5000 −4.0000 5.2500 0 100.00%
2 −5.0000 0 −2.5000 7.5000 0 100.00%
3 0 0 −9.8603 9.8603 0 100.00%
4 0 0 −7.2591 7.2591 0.5481 92.86%
5 −6.5625 0 0 6.5625 1.2386 92.86%
6 0 0 −5.0000 5.0000 2.1090 78.57%

For the SVM0 MOP model, as shown in Figure 5 and Table 5, in the third Pareto
solution, two components of the vector w are non-zero (with an error value equal to zero)



Mathematics 2023, 11, 3721 11 of 18

while compared to the results of the single-objective model, presented in Table 1, a smaller
value for the ‖w‖1 has been achieved.

The projection of all Pareto solutions (in the space of Error (Vertical axis) and l1
norm (Horizontal axis)) obtained from multi-objective models (BM-SVM, SVM0, l1, l2) are
shown in Figure 6. Additionally, the run time (second) of l1, l2, BM-SVM and SVM0 multi-
objective models, respectively, are 227.906, 269.468, 901.235, and 1236.515 for obtaining
100 Pareto optimal solutions. The lowest run time was related to model l1, but as the
results of the previous tables, models BM-SVM and SVM0 have performed better in terms
of the minimum number of non-zero components of the normal vector of the separator
hyperplane.
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Test Problem 2. The number of samples is 12, and the number of features is 4 in this test problem.
Suppose that we have two sets as follows:

A = {[1.5, 4.2, 1, 2], [1.9, 4.6, 1.5, 1.5], [1.8, 4.5, 1.6, 1.9], [1.5, 4.3, 1.2, 1.8], [1.2, 4.5, 1.6, 1.6], [1.7, 4.5, 1.4, 2]}

B = {[2.2, 6, 3, 2.1], [2.6, 5, 2, 2.3], [4, 4.7, 1.7, 2.5], [3.2, 4.5, 2.1, 2.3], [3.5, 5.3, 2.5, 3.1], [2.1, 5.6, 2.5, 3.2]}

The results are shown in Table 6. The single-objective models all provide the correct set
separator (that is, the error of all these models is zero). The vector w returned by BM-SVM
and SVM0 methods has just one non-zero component, but l1 and l2 return a vector w where
all components are non-zero.

Pareto optimal solutions obtained from MOP models are depicted in Figure 7. In this
figure, the horizontal axis represents the value of l1 norm of vector w, and the vertical axis
represents the error level. To clarify the discussion, in Figure 8a, the Pareto frontier of the
BM-SVM multi-objective model is displayed in the space of the objective functions of this
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model for Test Problem 2. In Figure 8b the projection of this Pareto frontier in the space of
Error (vertical axis) and l1-norm (horizontal axis) is displayed.

Table 6. The results of single-objective models for Test Problem 2.

Method w_1 w_2 w_3 w_4 ‖w‖1 Error Value Correctness

BM-SVM −10.00 0 0 0 10.00 0 100.00%
SVM0 Model −10.00 0 0 0 10.00 0 100.00%

l1 Model −1.7886 −0.4878 −0.3252 −0.4878 3.0894 0 100.00%
l2 Model −1.3223 −0.8264 −0.6612 −0.6612 3.4711 0 100.00%
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We have considered only three Pareto solutions out of the 100 Pareto optimal solutions
obtained for each MOP model that seemed more interesting for consideration. The results
are displayed in Tables 7–10.

Table 7. The results of some Pareto solutions of BM-SVM multi-objective model for the dataset of
Test Problem 2.

Pareto Solution w_1 w_2 w_3 w_4 ‖w‖1 Error Value Correctness

1 0 0 −4.8920 0 4.8920 3.4020 75.00%
2 0 0 −2.2222 0 2.2222 7.6788 66.67%
3 0 0 −5.3441 0 5.3441 18.3710 58.33%

Table 8. The results of some Pareto solutions of the SVM0 multi-objective model for the dataset of
Test Problem 2.

Pareto Solution w_1 w_2 w_3 w_4 ‖w‖1 Error Value Correctness

1 −1.6949 −2.0339 0 0 3.7288 0 100.00%
2 −7.2008 0 0 0 7.2008 0.5598 91.67%
3 0 0 −4.6410 0 4.6410 1.6795 83.33%

Table 9. The results of some Pareto solutions of l1 multi-objective model for the dataset of Test Problem 2.

Pareto Solution w_1 w_2 w_3 w_4 ‖w‖1 Error Value Correctness

1 −0.7279 ∼= 0 −0.9160 −0.4826 2.1265 1.0984 66.67%
2 −0.6897 ∼= 0 −0.8314 −0.2927 1.8138 1.8273 58.33%
3 −0.8121 ∼= 0 −0.7514 ∼= 0 1.5636 2.5273 50.00%

Table 10. The results of some Pareto solutions of l2 multi-objective model for the dataset of
Test Problem 2.

Pareto
Solution w_1 w_2 w_3 w_4 ‖w‖1 Error Value Correctness

1 −0.9504 −0.3632 −0.5770 −0.5682 2.4588 0.6000 83.33%
2 −0.6877 −0.4267 −0.6012 −0.4909 2.2065 1.2000 66.66%
3 −0.5831 −0.3852 −0.5331 −0.4354 1.9368 1.8000 58.33%

For the BM-SVM MOP model, as shown in Table 7, for all Pareto solutions that are
considered, three components of vector w is equal to zero, and in each solution, the smaller
value for ‖w‖1 has been achieved, but the errors are not equal to zero.

As shown in Table 8 for the SVM0 MOP model, in the first Pareto solution, two
components of vector w is equal to zero, and in the two other Pareto solutions, three
components of vector w is equal to zero, but the error value is non-zero.

As shown in Table 9, in the l1 MOP model, for all Pareto solutions, one component of
the vector w is equal to zero but with non-zero error.

As shown in Table 10 for the l2 MOP model, in all Pareto solutions which are consid-
ered, all components of the vector w are non-zero.

The run time (second) of l1, l2, BM-SVM and SVM0 multi-objective models, respec-
tively, are 885.031, 418.578, 133.594, and 546.472 for obtaining 100 Pareto optimal solutions.
The lowest run time was related to model BM-SVM. Additionally, as the results of the pre-
vious tables, models BM-SVM and SVM0 have performed better in terms of the minimum
number of non-zero components of the normal vector of the separator hyperplane.

Test Problem 3. The number of samples is 8, and the number of features is 5 in this test problem.
Suppose that we have two sets as follows:
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A = {[2.3, 3.5, 1, 2.7, 1], [2.8, 3.6, 1.5, 2.5, 1.1], [2, 4.9, 1.6, 2.4, 1.2], [2.5, 3.9, 1.8, 2, 1.3]},
B = {[3.1, 5.6, 3, 3.1, 2], [3.6, 4.6, 2, 3.3, 2.1], [4, 5, 1.7, 2.9, 2.2], [3.2, 4.2, 2.3, 2.5, 2.4]}

All single-objective models provide the correct separator. The vector w returned by
BM-SVM and SVM0 has just one non-zero component, but the l1 and l2 return a vector w
where components are all non-zero. The results are depicted in Table 11.

Table 11. The results of Test Problem 3 for single-objective models.

Method w_1 w_2 w_3 w_4 w_5 ‖w‖1 Error Value Correctness

BM-SVM 0 0 0 0 −8.3334 8.3334 0 100.00%
SVM0 Model 0 0 0 0 −10.00 10.00 0 100.00%

l1 Model −0.1892 −0.0946 −0.2270 −0.4541 −1.3623 2.3273 0 100.00%
l2 Model −0.6114 −0.2620 −0.4367 −0.4367 −0.9607 2.7074 0 100.00%

Pareto solutions obtained from MOP models are shown in Figure 9. We have consid-
ered only three Pareto solutions that seemed more interesting out of the 100 Pareto optimal
solutions obtained for each MOP model. The results are shown in Tables 12–15.
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For BM-SVM MOP, as shown in Table 12, for the first and second Pareto solutions,
four components of vector w are equal to zero, and the error values are zero. Additionally,
compared to the results of the single-objective model, a smaller value for the ‖w‖1 has been
achieved.
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Table 12. The results of some Pareto solutions of BM-SVM multi-objective model for the dataset of
Test Problem 3.

Pareto Solution w_1 w_2 w_3 w_4 w_5 ‖w‖1 Error Value Correctness

1 0 0 0 0 −7.1575 7.1575 0 100.00%
2 −6.7742 0 0 0 0 6.7742 0 100.00%
3 0 0 0 0 −4.0209 4.0209 0.8613 87.50%

Table 13. The results of some Pareto solutions of the SVM0 multi-objective model for the dataset of
Test Problem 3.

Pareto Solution w_1 w_2 w_3 w_4 w_5 ‖w‖1 Error Value Correctness

1 0 0 0 0 −9.9147 9.9147 0 100.00%
2 −3.5484 0 0 0 0 3.5484 0.9355 87.50%
3 0 0 0 0 −2.5000 2.5000 1.9528 75.00%

Table 14. The results of some Pareto solutions of l1 multi-objective model for the dataset of Test
Problem 3.

Pareto Solution w_1 w_2 w_3 w_4 w_5 ‖w‖1 Error Value Correctness

1 −0.6347 −0.2952 −0.0858 ∼= 0 −1.1541 2.1699 0.2064 75.00%
2 −0.6302 −0.2470 ∼= 0 −0.0039 −1.1801 2.0612 0.4369 62.50%
3 −0.3035 −0.0437 ∼= 0 ∼= 0 −1.3887 1.7359 1.0963 50.00%

Table 15. The results of some Pareto solutions of l2 multi-objective model for the dataset of Test
Problem 3.

Pareto Solution w_1 w_2 w_3 w_4 w_5 ‖w‖1 Error Value Correctness

1 −0.2549 −0.1032 −0.2135 −0.7962 −1.2810 2.6489 0 100.00%
2 −0.2120 −0.0556 −0.3538 −0.6104 −1.2298 2.4616 0 100.00%
3 −0.5363 −0.2690 −0.3751 −0.3867 −0.8051 2.3721 0.2774 87.50%

For the SVM0 MOP model, as shown in Table 13, for the first Pareto solution, four
components of vector w are equal to zero, and the error value is equal to zero, for the
second and third Pareto solutions, while the error value is non-zero, four components of
vector w are equal to zero.

For the l1 MOP model, as shown in Table 14, one component of vector w is equal to
zero, with a non-zero error.

For the l2 MOP model, as shown in, for all Pareto solutions, all components of vector
w are non-zero.

The run time (second) of l1, l2, BM-SVM, and SVM0 multi-objective models, respec-
tively, are 102.500, 134.188, 239.953, and 576.343 for obtaining 100 Pareto optimal solutions.
The lowest run time was related to l1 model. Additionally, as the results of the previous
tables, models BM-SVM and SVM0 have performed better in terms of the minimum number
of non-zero components of the normal vector of the separator hyperplane.

5. Conclusions

The design of linear Support Vector Machine (SVM) classification techniques is gen-
erally a multi-objective optimization that requires finding appropriate trade-offs between
several objectives, such as misclassified training data (classification error) and the number
of non-zero elements of the separator hyperplane. We proposed multi-objective binary
classification problems to show the advantages of considering these problems for sparse op-
timization in linear SVM classification techniques. The results of the proposed classification
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methods in single-objective and multi-objective forms are reported on several datasets. The
results showed that by using multi-objective models, we can choose a more appropriate
separating hyperplane. By using multi-objective models (especially BM-SVM and SVM0
multi-objective models), separator hyperplanes have been obtained with the minimum
possible error and, at the same time, the minimum number of non-zero components of the
normal vector.
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