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Abstract: In this paper, we consider a sparse program with symmetric cone constrained parame-
terized generalized equations (SPSCC). Such a problem is a symmetric cone analogue with vector
optimization, and we aim to provide a smoothing framework for dealing with SPSCC that includes
classical complementarity problems with the nonnegative cone, the semidefinite cone and the second-
order cone. An effective approximation is given and we focus on solving the perturbation problem.
The necessary optimality conditions, which are reformulated as a system of nonsmooth equations,
and the second-order sufficient conditions are proposed. Under mild conditions, a smoothing Newton
approach is used to solve these nonsmooth equations. Under second-order sufficient conditions,
strong BD-regularity at a solution point can be satisfied. An inverse linear program is provided and
discussed as an illustrative example, which verified the efficiency of the proposed algorithm.

Keywords: sparse program; symmetric cone constrained; perturbation problem; smoothing Newton
method; BD-regularity
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1. Introduction

There has been recent active research on sparse programs, driven by the need to find
practical solutions for optimization problems. In this paper, we focus on sparse programs
governed by symmetric cone constrained parameterized generalized equations, as depicted
in the following equation:

(P)
min f (x, y) + γ‖x‖1
s.t. 0 ∈ φ(x, y) +NΓ(x,y)(y)

(1)

where x ∈ Rn is the variable, y ∈ Rm is the parameter, and f : Rn × Rm → R, φ :
Rn×Rm → Rm are proper, level-bounded, and twice continuously differentiable mappings.

We know from [1] that the norm ‖x‖1 =
n
∑

i=1
|xi| guarantees sparsity. NC(z) represents the

normal cone of the set C ⊂ Rm at z ∈ C, Γ : Rn × Rm 7→ Rm is a set-valued mapping,
defined by

Γ(x, y) := {z ∈ Rm | g(x, y, z) ∈ K},

where g : Rn ×Rm ×Rm → Rn is twice continuously differentiable and K is a symmetric
cone, defined by

K := {u2 | u ∈ J }.

where J is an n-dimensional real Euclidean space. A = 〈J , ◦, 〈·, ·〉〉 is a Euclidean Jordan
algebra, which is described in detail in [2,3]. Let K∗ be the dual cone of K, which is defined
by K∗ = {x | 〈x, y〉 ≥ 0, ∀y ∈ K}, and K is a self-dual closed convex cone if K = K∗[4].
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For convenience, we define an auxiliary function F : Rn ×Rm ×Rm → Rm by

F(x, y, ξ) := φ(x, y) + J3g(x, y, y)Tξ, (2)

where J3g(x, y, y) is the partial Jacobian of g at (x, y, y) with respect to the third variable.
If (x̂, ŷ) is a feasible solution to problem (1) and J3g(x̂, ŷ, ŷ) attains full rank in row,

then g(x, y, y) ∈ K and J3g(x, y, y) acheives full rank in row for any feasible solution (x, y)
sufficiently close to (x̂, ŷ). Then, it follows from theorem 1.17 in [5] that

NΓ(x,y)(y) = J3gT(x, y, y)NK(g(x, y, y)).

Let G(x, y) = g(x, y, y); thus,

0 ∈ φ(x, y) +NΓ(x,y)(y)⇔
{

0 = φ(x, y) + J3gT(x, y, y)ξ

ξ ∈ NK(G(x, y))

⇔


F(x, y, ξ) = 0

G(x, y) ∈ K
−ξ ∈ K

〈ξ, G(x, y)〉 = 0

The problem (1) is equivalent to the following symmetric cone complementarity
problem:

min
x,y,ξ

f (x, y) + γ‖x‖1

s.t. F(x, y, ξ) = 0
G(x, y) ∈ K
−ξ ∈ K
〈ξ, G(x, y)〉 = 0.

(3)

Remark 1. The mathematical programs with symmetric cone complementarity constraints

min
x,y,ξ

f (x, y) + γ‖x‖1

s.t. F(x, y, ξ) = 0
G(x, y) ∈ K
H(x, y) ∈ K
〈H(x, y), G(x, y)〉 = 0

(4)

can be transformed as the above problem; just let H(x, y) = −ξ, F(x, y, ξ) = (φ(x, y), H(x, y)+ ξ)T .

From the above reformulation, it becomes evident that mathematical programs gov-
erned by generalized equations can be considered a significant subset of mathematical
programs with equilibrium constraints (MPECs) [6]. These possess applications that extend
to engineering design and economic modeling [7,8]. The main sources of MPECs arise from
bilevel programming problems and inverse problems, both of which find numerous appli-
cations [9,10]. Given the unique nature of their constraints, these problems are notoriously
challenging to handle. The research dedicated to MPECs over the past few decades has
been substantial, spanning both optimality theories and numerical methods.

Outrata [2] derives optimality conditions and provides comprehensive results on
MPECs through the use of variational analysis. Recent papers have explored specific cases
of MPECs, including NLCP, SOCCP, and SDCP, as seen in works such as [11–19]. However,
these papers mainly focus on individual cases of MECPs, with limited discussions on the
general framework of symmetric cone complementarity programming (SCCP) [20–22]. In
this paper, our focus is directed towards mathematical programs featuring symmetric cone
complementarity constraints in a general form.
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The Newton method proves to be an effective approach for solving optimization
problems and boasts a wide range of applications [23–28]. In [20], a regularized smooth-
ing method was tested for the SCCP without any objective. By employing the Chen-
Mangasarian functions, a smoothing method is presented, yielding a C-stationary point [22].
Cruz et al. explored a semi-smooth Newton method for linear complementarity problems
involving second-order cones [23]. This semi-smooth approach globally and Q-linearly
converges to the solution. Based on the concept of 2-regularity, Yu developed the smooth
Newton method for solving Nonlinear Complementarity Problems [24]. In [25], nonlinear
complementarity optimization was utilized to address phase transitions in porous media,
proposing two smooth approaches to solve compositional two-phase flow problems. Utiliz-
ing the augmented Lagrangian method, Sun introduced a semismooth Newton approach
for solving the total generalization variation problem [27]. Guo et al. devised the Newton-
Cotes open method alongside the generalized Newton technique to tackle absolute value
equations, with numerical experiments demonstrating the simplicity and effectiveness of
the method [28].

In this paper, we focus on the mathematical program with symmetric cone comple-
mentarity constraints in a general form. In addition, we hope to get the sparse solutions at
the same time, which are not discussed in previous papers. Then, optimality conditions for
SPSCC are derived. We develop the smoothing Newton method to the nonsmooth system
of equations to get the numerical solution of SPSCC. It is further shown that the method is
effective by numerical experiment.

The organization of this paper is as follows. Section 2 is devoted to proposing the
perturbation problem, which is a good approximation of the primal problem. In Section 3,
the optimal conditions including the first-order necessary optimality conditions and the
second-order sufficient conditions are given. The smoothing method is constructed in
Section 4 to solve the perturbation problem. Finally, an illustrative example of the inverse
linear program is provided and discussed in Section 5.

2. Perturbation Approach

For Problem (P), notice that ‖x‖1 =
n
∑

i=1

√
x2

i . However, ‖x‖1 is non-differentiable at

xi = 0. Therefore, we approximate ‖x‖1 by
n
∑

i=1

√
x2

i + ε2 for a small ε ∈ (0, δ), where δ > 0,

and obviously we have

lim
ε↘0

n

∑
i=1

√
x2

i + ε2 = ‖x‖1.

For a given ε ∈ (0, δ), we approximate Problem (P) by

(Pε)

min f̂ (x, y, ε) = f (x, y) +
n
∑

i=1
γ
√

x2
i + ε2

s.t. F(x, y, ξ) = 0
G(x, y) ∈ K
−ξ ∈ K
〈ξ, G(x, y)〉 = 0

(5)

Next, we will show that this perturbation approach is effective, which means the
solution of problem (P) can be obtained by solving a set of perturbation problems (Pε). We
denote Ω0 as the feasible set of problem (Pε), and we define f̄ (x, y, ε) by

f̄ (x, y, ε) =

{
f̂ (x, y, ε) (x, y) ∈ Ω0,
+∞ otherwise.
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Let us introduce some notations:

κ(0) = inf{ f (x, y) + γ‖x‖1| (x, y) ∈ Ω0}

κ(ε) = inf
{

f (x, y) +
n
∑

i=1
γ
√

x2
i + ε2| (x, y) ∈ Ω0

}
S(0) = Arg min{ f (x, y) + γ‖x‖1| (x, y) ∈ Ω0}

S(ε) = Arg min
{

f (x, y) +
n
∑

i=1
γ
√

x2
i + ε2| (x, y) ∈ Ω0

} (6)

Lemma 1. f̄ (x, y, ε) is locally uniformly level-bounded in (x, y) with respect to ε.

Proof. Let ε belong to a bounded set Σ ⊆ R+; then for any given 0 ≤ α1 ≤ α, since f (x, y)

is level-bounded and the set {
n
∑

i=1
γ
√

x2
i + ε2 ≤ α1} is bounded, it follows that

{(x, y, ε)| f̄ (x, y) ≤ α}
⊆ {(x, y)| f̄ (x, y, ε) ≤ α} × Σ ∩Ω0

⊆ {{(x, y)|
n

∑
i=1

γ
√

x2
i + ε2 ≤ α1} ∩ {(x, y)| f (x, y) ≤ α− α1}} × Σ ∩Ω0

⊆ B.

(7)

where B is a bounded set in Rn ×Rm ×Rn. We complete the proof.

To measure the distance between solution sets, let us give the measurement [29]

D(A, B) = sup
x∈A

dist(x, B)

where A, B ⊂ Rd are set, and dist(x, B) = infx′∈B ‖x− x′‖2.

Theorem 1. Suppose that Ω is a compact set. Then, lim
ε↘0

D(S(ε), S(0)) = 0 and lim
ε↘0

κ(ε) = κ(0).

Proof. Obviously, we have that f̄ (·, ·, ε) is continuous to f̄ (·, ·, 0) as ε ↘ 0; then f̄ (·, ·, ε)
are lower semi-continuous and proper. From the above Lemmas, f̄ (x, y, ε) is level-bounded
in (x, y) locally uniformly in ε. By theorem 7.33 in [30], it is easy to get κ(ε)→ κ(0) and

lim sup
ε↘0

S(ε) ⊂ S(0). (8)

Solution sets S(ε) and S(0) are both uniformly compact, since they are included in Ω,
which is a compact set. Moreover, using the results of example 4.13 in [30], it can be known
that Equation (8) means limε↘0 D(S(ε), S(0)) = 0. Therefore, we conclude the proof.

The above Theorem 1 shows that this perturbation approach is effective when ε is
close enough to 0. Solving problem (Pε) will yield a good approximate solution to the
original problem.

3. Optimal Conditions for Perturbation Problem

In this section, we consider the perturbation problem for a given ε > 0. Let us define
the natural residual function (NR-function) ΦNR : Rn ×Rn → Rn by

ΦNR(G(x, y), ξ) := −ξ −ΠK(ξ − G(x, y)). (9)

From Proposition 6 in [3], we have

G(x, y)−ΠK(G(x, y) + ξ) = 0
⇔ G(x, y) ∈ K,−ξ ∈ K, 〈ξ, G(x, y)〉 = 0.
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Remark 2. In fact, since K is a closed, convex cone, we know x = ΠK(x)−ΠK∗(−x). So

G(x, y) + ξ = ΠK(G(x, y) + ξ)−ΠK∗(−G(x, y)− ξ).

If G(x, y)−ΠK(G(x, y) + ξ) = 0, then

−ξ = ΠK∗(−G(x, y)− ξ) = ΠK(−G(x, y)− ξ) ∈ K.

In addition, 〈ξ, G(x, y)〉 = 〈−Π∗K(−G(x, y)− ξ), ΠK(G(x, y) + ξ)〉. The above relation-
ship holds.

Since
−ξ = ΠK(−ξ − G(x, y))⇔ (−ξ − G(x, y),−ξ) ∈ gphΠK.

Let Ω = {0m} × gphΠK and define the function Ψ : Rn ×Rm ×Rn → Rm ×Rn ×Rn,

Ψ(x, y, ξ) :=

 F(x, y, ξ)
−ξ − G(x, y)

−ξ

 (10)

Then problem (Pε) is equivalent to the following problem:

min f̂ (x, y, ε)
s.t. Ψ(x, y, ξ) ∈ Ω.

(11)

Before giving the optimal conditions, the following assumptions are given.

Assumption 1. The component-wise strict complementarity condition holds, i.e.,

−ξ∗ + G(x∗, y∗) ∈ intK.

Assumption 2. The basic constraint qualification holds.

Assumption 3. The following matrix is row full rank.[
Jx,yF(x∗, y∗, ξ∗)
J G(x∗, y∗)

]
. (12)

It is easy to see that if Assumptions 1 and 2 hold, then Assumption 3 holds.
In the following, we give the optimality conditions for the perturbation problem Pε by

the formulation (11).

3.1. The First-Order Necessary Optimality Conditions

Theorem 2. For problem (Pε), let (x∗, y∗) be a local solution. Assume that J3gT(x∗, y∗, y∗)
attains full row in the rank at (x∗, y∗), and that the equation F(x∗, y∗, ξ) = 0 possesses the
unique solution ξ∗ ∈ Rn. If the basic constraint qualification holds at (x∗, y∗, ξ∗), then there are
u∗ ∈ Rm, v∗ ∈ Rn, w∗ ∈ Rn such that

L(x∗, y∗, ξ∗, u∗, v∗, w∗) = 0,

where L is defined by

L(x, y, ξ, u, v, w) :=


F(x, y, ξ)

ξ + ΠK(−ξ − G(x, y))
∇ f̂ (x, y) + Jx,yF(x, y, ξ)Tu−J G(x, y)Tv

J3g(x, y, y)u− v− w

 (13)

with v ∈ ∂BΠK(−ξ − G(x, y))(−w).
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Proof. From the previous analysis, it can be seen that problem (Pε) can be reformulated as
problem (11). Then (x∗, y∗, ξ∗) is a local optimal solution of problem (11). Apply the results
of theorem 6.12, 6.14 in [30], the point (x∗, y∗, ξ∗) needs to satisfy the following equation

0 ∈
[
∇ f̂ (x∗, y∗)

0

]
+NΨ−1(Ω)(x∗, y∗, ξ∗). (14)

where Ω, Ψ are given in (10) and NC denotes the normal cone of set C. Because the basic
constraint qualification holds at (x∗, y∗, ξ∗), then applying theorem 6.14 in [30], we have

0 ∈
[
∇ f̂ (x∗, y∗)

0

]
+ JΨ(x∗, y∗, ξ∗)TNΩ(Ψ(x∗, y∗, ξ∗)). (15)

So there exist u∗, v∗, w∗ such that

(v∗, w∗) ∈ NgphΠK (−ξ∗ − G(x∗, y∗),−ξ∗) (16)

and
∇ f̂ (x∗, y∗) + Jx,yF(x∗, y∗, ξ∗)Tu∗ −J G(x∗, y∗)Tv∗ = 0

J3g(x∗, y∗, y∗)u∗ − v∗ − w∗ = 0.
(17)

The proof is complete.

Based on the above theorem, the definition of the M-stationary point is provided.

Definition 1. Let (x∗, y∗) be a feasible point of problem (Pε). Assume J3gT(x∗, y∗, y∗) attains
full rank in the row, and that the equation F(x∗, y∗, ξ) = 0 has a unique solution ξ∗ ∈ Rn. In case
there exist multipliers (u∗, v∗, w∗) that fulfill (16) and (17), the term (x∗, y∗) is referred to as an
M-stationary point.

Next, some different symmetric cones are considered, respectively.

3.1.1. Case with Nonnegative Cone

Next, we show the form of this optimality condition, provided K = Rn
+. We associate

with each pair (a, b) ∈ gphΠRn
+

, the index sets

L(a) := {i ∈ {1, 2, . . . , m}|ai > 0},
I0(a) := {i ∈ {1, 2, . . . , m}|ai = 0},

I+(a) := {i ∈ {1, 2, . . . , m}|ai < 0},

represent the index of inactive inequalities, the index of strongly active inequalities and the
index of weekly active inequalities, respectively. Thus,

NgphΠRn
+
(a, b) =

m

∏
i=1
NgphΠR+

(ai, bi),

where

NgphΠR+
(ai, bi) =


bi < 0 i ∈ L
0×R i ∈ I+
{0×R}⋃{bi < 0} i ∈ I0

then (17) can be rewritten as

∇ f̂ (x∗, y∗) + Jx,yF(x∗, y∗, ξ∗)Tu∗ −J G(x∗, y∗)Tv∗ = 0
J3g(x∗, y∗, y∗)u∗ − v∗ − w∗ = 0.

(18)
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3.1.2. Case with Semidefinite Cone

In the situation where K = Sn
+, consider Z̄ ∈ Sp and let Z̄+ = ΠSp

+(Z̄). Applying
orthogonal decomposition to the symmetric matrix Z̄ yields Z̄ = P̄ΛP̄T , where Λ is a
diagonal matrix composed of eigenvalues and P̄ is formed by eigenvectors.

Hence, for the projection Z̄+, we have Z̄+ = P̄Λ+P̄T , where the diagonal matrix Λ+

has elements λi = (Λ+)ii = max{0, Λii} for i = 1, 2, . . . , p. The projection operator ΠSp
+
(·)

is directionally differentiable along any H ∈ Sp. Now we proceed to provide the specific
form of the directional derivative of ΠSp

+
(·).

According to the eigenvalue of Z, we define the following index sets respectively,

α = {i|λi > 0}, β = {i|λi = 0}, γ = {i|λi < 0}.

Rearrange eigenvalues and corresponding eigenvectors,

Λ̄ =

 Λα 0 0
0 0 0
0 0 Λγ

 , P̄ = [P̄α P̄β P̄γ] ∈ Rp×|α| ×Rp×|β| ×Rp×|γ|.

Let Θ be the symmetry matrix with the elementΘij ∈ [0, 1] if(i, j) ∈ β× β,

Θij =
max{λi ,0}+max{λj ,0}

|λi |+|λj |
otherwise.

(19)

Lemma 2. Let Θ ∈ Sp satisfy (19). Then W ∈ ∂BΠSp
+
(Z) if and only if there exists

W0 ∈ ∂BΠSP
+
(0) such that

W(H) = P


PT

α HPα PT
α HPβ Θαγ ◦ PT

α HPγ

PT
β HPα Π

S|β|+
(PT

β HPβ) 0

PT
γ HPα ◦Θγα 0 0

PT , ∀H ∈ Sp.

where “◦” is the Hadamard product, and Θαγ is composed of elements in the first |α| rows and the
last |γ| columns of the matrix Θ, and Θγα is composed of elements in the first |γ| rows and the last
|α| columns of the matrix Θ.

3.1.3. Case with Second-Order Cone

If K = Qm+1 is the second-order cone. For z = (z0, z̄) ∈ Qm+1, it has the following
decomposition,

z = λ1(z)c1(z) + λ2(z)c2(z), (20)

where

λi(z) = z0 + (−1)i‖(z̄)‖, ci(z) =

{
1
2 ((−1)i z̄

‖z̄‖ ; 1), i f z̄ 6= 0,
1
2 ((−1)iω; 1), i f z̄ = 0,

i = 1, 2.

where ω ∈ Rm such that ‖ω‖ = 1.
Lemma 3. Let z ∈ Qm+1.
(1) if det(z) 6= 0, then

∂BΠQm+1(z) = {JΠQm+1(z)}.

(2) if det(z) = 0, λ2(z) 6= 0, then

∂BΠQm+1(z) =

I, I +
1
2

 − z̄z̄T

‖(z̄)‖2
z̄
‖z̄‖

z̄T

‖z̄‖ −1

.



Mathematics 2023, 11, 3719 8 of 19

(3) if det(z) = 0, λ1(z) 6= 0, then

∂BΠQm+1(z) =

0,
1
2

 z̄z̄T

‖(z̄)‖2
z̄
‖z̄‖

z̄T

‖z̄‖ 1

.

(4) if det(z) = 0, λ1(z) = λ2(z) = 0,then

∂BΠQm+1 (z) = {I, 0} ∪
{

1
2

[
2αI + (1− 2α)ωωT ω

ωT 1

]
|ω ∈ Rm, ‖ω‖ = 1, α ∈ [0, 1]

}
.

3.2. The Second-Order Sufficient Conditions

Let H : Rn ×Rm ×Rn → Rm ×Rn be defined by

H(x, y, ξ) :=
[

F(x, y, ξ)
ΠK(−ξ − G(x, y)) + ξ

]
, (21)

Then using a similar analysis as that in [31], we give the definition of the critical cone
C(x∗, y∗, ξ∗) at point (x∗, y∗) along direction d∗,

C(x∗, y∗, ξ∗) :=
{
(∆x, ∆y, ∆ξ) | ∇ f̂ (x∗, y∗)T(∆x, ∆y) ≤ 0; H′(x∗, y∗, ξ∗; ∆x, ∆y, ∆ξ) = 0

}
, (22)

where H′(x∗, y∗, ξ∗; ∆x, ∆y, ∆ξ) can be computed by

H′(x∗, y∗, ξ∗; ∆x, ∆y, ∆ξ) =

[
Jx,yF(x, y, ξ)(∆x, ∆y) + J3g(x, y, y)T∆ξ

Π′K(−ξ − G(x, y);−J G(x, y)(∆x, ∆y)− ∆ξ) + ∆ξ

]
. (23)

Before giving the second-order growth condition, we define the following second-
order conditions, which are useful to prove optimality conditions.

Definition 2. Let (x∗, y∗) be an M-stationary point of problem (Pε), and let ξ∗ be the unique solu-
tion of F(x∗, y∗, ξ∗) = 0. Assume that J3g(x, y, ξ) attains full rank in the row, and Assumption 1
holds. If

hT∇2
x,y,ξL(x∗, y∗, ξ∗, u∗, w∗)h > 0, ∀h ∈ C(x∗, y∗, ξ∗) \ {0},

where (u∗, v∗, w∗) is the corresponding multiplier vector, the Lagrangian function L is

L(x, y, ξ, u, w) := f̂ (x, y) + 〈u, F(x, y, ξ)〉 − 〈w, ΠK(−ξ − G(x, y)) + ξ〉.

Then we conclude that the second-order sufficient conditions hold at (x∗, y∗).

Theorem 3. If Assumption 1 and the second-order sufficient conditions hold at (x∗, y∗), then the
second-order growth condition holds at (x∗, y∗).

Proof. If the second-order growth condition fails to hold, there exists a feasible sequence
{(xn, yn)} → (x∗, y∗) satisfying that

f̂ (xn, yn) ≤ f̂ (x∗, y∗) + o(τ2
n),

where τn = ‖(xn − x∗, yn − y∗)‖.
When n is large enough, J3g(x, y, y) attains full rank in the row. The unique solution

ξ∗ of F(x∗, y∗, ξ∗) = 0 can be expressed as

ξn = −[J3g(xn, yn, yn)J3g(xn, yn, yn)
T ]−1J3g(xn, yn, yn)φ(xn, yn),
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and
ξ∗ = −[J3g(x∗, y∗, y∗)J3g(x∗, y∗, y∗)T ]−1J3g(x∗, y∗, y∗)φ(x∗, y∗).

Therefore, we have
{xn, yn, ξn} → {x∗, y∗, ξ∗}.

Let tn = ‖(xn − x∗, yn − y∗, ξn − ξ∗)‖, and let

(dx
n, dy

n, dξ
n) := t−1

n (xn − x∗, yn − y∗, ξn − ξ∗). (24)

Then we have tn ≥ τn, and

f̂ (xn, yn) ≤ f̂ (x∗, y∗) + o(t2
n).

Without loss of generality, we assume that (dx
n, dy

n, dξ
n)→ (dx, dy, dξ) 6= 0.

∇L(x, y, ξ, u∗, w∗) =[
∇ f̂ (x, y) + Jx,yF(x, y, ξ)Tu∗ + J G(x, y)TJΠK(−ξ − G(x, y))w∗

J3g(x, y, y)u∗ + JΠK(−ξ − G(x, y))w∗ − w∗

]
(25)

Therefore, ∇x,y,ξL(x∗, y∗, ξ∗, u∗, w∗) = 0.
Now, using the Taylor expressions, we obtain the following:

L(xn, yn, ξn, un, wn) = L(x∗, y∗, ξ∗, u∗, w∗) +
1
2

t2
n(d

x
n, dy

n, dξ
n)

T

∇2
x,y,ξL(x∗, y∗, ξ∗, u∗, w∗)(dx

n, dy
n, dξ

n) + o(t2
n). (26)

f̂ (xn, yn) = f̂ (x∗, y∗) + tn∇ f̂ (x∗, y∗)(dx
n, dy

n) + o(tn). (27)

H(xn, yn, ξn) = H(x∗, y∗, ξ∗) + tn H′(x∗, y∗, ξ∗; dx
n, dy

n, dξ
n) + o(tn). (28)

It follows from (27), when n→ ∞,

∇ f̂ (x∗, y∗)T(dx, dy) ≤ 0.

Considering the feasibility of (xn, yn) and using (28), we have H′(x∗, y∗, ξ∗; dx
n, dy

n, dξ
n) =

0. Consequently, (dx
n, dy

n, dξ
n) ∈ C(x∗, y∗, ξ∗). Given that the second-order sufficient condi-

tions hold at (x∗, y∗), there exists β > 0 that satisfies the following inequality when n is
sufficiently large:

(dx
n, dy

n, dξ
n)

T∇2
x,y,ξL(x∗, y∗, ξ∗, u∗, w∗)(dx

n, dy
n, dξ

n) ≥ β > 0. (29)

On the other hand,

L(xn, yn, ξn, un, wn)−L(x∗, y∗, ξ∗, u∗, w∗) = f̂ (xn, yn)− f̂ (x∗, y∗) ≤ o(t2
n)→ 0.

That is a contradiction.

4. Smoothing Newton Method

In this section, we focus on solving the problem (P). Considering the metric projection
operator onto the symmetric cone K, we have

ΠK(z) =
z + |z|

2
=

r

∑
i=1

λi(z) + |λi(z)|
2

.

We define a real-valued function hµ(z) =
z+
√

z2+µ2

2 , which is continuously differentiable,
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∇hµ(z) =
1
2
+

z
2
√

z2 + µ2
, ∇2hµ(z) =

µ2

2(z2 + µ2)
3
2

.

The Löwner operator is also continuously differentiable by Theorem 2 and

lim
µ↘0

hµ(z) =
z + |z|

2
= (z)+. (30)

Since

ΠK(−ξ − G(x, y)) =
r

∑
i=1

(λi(−ξ − G(x, y))+ci(−ξ − G(x, y)),

we now introduce a smoothing approximation

Φµ(x, y, ξ) =
r

∑
i=1

hµ(λi(−ξ − G(x, y))ci(−ξ − G(x, y))

=
r

∑
i=1

λi(−ξ − G(x, y)) +
√

λi(−ξ − G(x, y))2 + µ2

2
ci(−ξ − G(x, y))

(31)

Proposition 1. For each µ 6= 0, the function Φµ is continuously differentiable on Rn ×Rm ×Rm.
Further, lim

µ↘0
Φµ(x, y, ξ) = ΠK(−ξ − G(x, y)).

Proof. For each µ 6= 0, it is easy to know that Φµ is differentiable, and

∇Φµ(x, y, ξ) =

 −J T
x G(x, y)[−∇Φµ(τ)]

−J T
y G(x, y)[−∇Φµ(τ)]

−1− [−∇Φµ(τ)]


= (∇xG,∇yG, 1)T∇Φµ(τ) + (0, 0, 1)T ,

(32)

where τ = −ξ − G(x, y), and

∇Φµ(τ) = 2 ∑[λi(τ), λj(τ)]φL(ci)L(cj) + ∑ φ′µ(λi(τ))Q(ci)

Considering (30) and the spectral decomposition, it is easy to know that

lim
µ↘0

Φµ(x, y, ξ) = ΠK(−ξ − G(x, y)).

Hence, we complete the proof.

Therefore, the smoothing Newton method can be applied to solve the nonsmooth
equation L(x, y, ξ, u, v, w) = 0 using the smoothing approximation mapping, which is
defined by

Lµ(x, y, ξ, u, v, w) :=


F(x, y, ξ)

ξ + Φµ(−ξ − G(x, y))
∇ f̂ (x, y) + Jx,yF(x, y, ξ)Tu−J G(x, y)Tv

J3g(x, y, y)u− v− w
JΦµ(x, y, ξ)(−w)− v

 (33)

where
∇Φµ(τ) = 2 ∑[λi(τ), λj(τ)]φL(ci)L(cj) + ∑ φ′µ(λi(τ))Q(ci)

and

[φ[1](τ)]ij = [τi, τj]φ =


φ(τi)−φ(τj)

τi−τj
, τi 6= τj,

φ′(τi), τi = τj.
i, j = 1, 2, . . . , r
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Let

E(ε, µ, x, y, ξ, u, v, w) =

 ε
µ

Lµ(x, y, ξ, u, v, w)

.

When µ↘ 0, L(x, y, ξ, u, v, w) = 0 if and only if E(Z) = 0, where Z = (ε, µ, x, y, ξ, u, v, w).
Define e(Z) := ‖E(Z)‖2

2 as the merit function. Denote Z̄ = (ε̄, µ̄, 0). Let the pa-
rameters ε̄ ∈ R++, µ̄ ∈ R++, γ ∈ (0, 1) such that γε̄ + γµ̄ < 1, and η be such that
η(Z) = γ min{1, e(Z)}. Let

Ω = {Z|ε ≥ η(Z)ε̄, µ ≥ η(Z)µ̄}.

Then for any Z, we have η(Z) ≤ γ < 1, which implies that every point (ε̄, µ̄, x, y, ξ, u, v, w)
is feasible.

Proposition 2.
E(Z) = 0⇔ η(Z) = 0⇔ E(Z) = η(Z)Z.

The algorithm of the smoothing Newton method [32] for our problem is presented in
the following.

Next, the convergence of Algorithm 1 needs analysis. Before that, we first provide the
following Theorem that indicates the possibility of verifying the strongly BD-regularity of
E under certain conditions.

Algorithm 1: The algorithm of smoothing Newton method for SPSCC.

step 0: Choose δ ∈ (0, 1) and σ ∈ (0, 1
2 ). Let Z0 = (ε0, µ0, x0, y0, ξ0, u0, v0, w0) be

an arbitrary point with ε0 = ε̄, µ0 = µ̄ and set k = 0.
step 1: Calculate E(Zk), If ‖E(Zk)‖2 = 0, stop, record the point Zk; Otherwise,
let ηk = η(Zk).
step 2: Obtained ∆Zk by solving the equation

E(Zk) + J E(Zk)(∆Zk) = η(Zk)Z̄. (34)

step 3: Let lk be the smallest non-negative integer such that

e(Zk + δl∆Zk) ≤ [1− 2σ(1− γε̄− γµ̄)δl ]e(Zk). (35)

step 4: Let Zk+1 = Zk + δlk ∆Zk and k = k + 1. Go to step 1.

Theorem 4. Assume J3gT(x∗, y∗, y∗) be row full rank. If the second-order sufficient conditions
hold at (x∗, y∗), then E is strongly BD-regular at (0, 0, x∗, y∗, ξ∗, u∗, v∗, w∗).

Proof. To prove E is strongly BD-regular, we need to prove the nonsingularity of Ĥ for any
Ĥ ∈ ∂BE(0, 0, x∗, y∗, ξ∗, u∗, v∗, w∗). That means that for any vector, ∆d, Ĥ∆d = 0 implies
d = 0.
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Since ∆ε = 0, ∆µ = 0, we just need focus on H(∆x, ∆y, ∆ξ, ∆u, ∆v, ∆w) = 0, where

H =


Jx,yF J3g(x, y, y)

−Jx,yG∇Φµ 1−∇Φµ

∇2 f̂ + Jx,y{Jx,yFTu} − Jx,y{Jx,yGTv} Jξ{Jx,yFTu}
Jx,y{J3g(x, y, y)u} 0

−J GJx,y{JΠK(−ξ − G)(−w)} −Jξ{JΠK(−ξ − G)(−w)}

0 0 0
0 0 0

Jx,yFT −Jx,yGT 0
J3g(x, y, y) −1 −1

0 −1 −JΠK(−ξ − G)


Then we can obtain the following equalities:

Jx,yF(x∗, y∗, ξ∗)T(∆x, ∆y) + J3g(x∗, y∗, y∗)∆ξ = 0 (36)

−Jx,yG(x∗, y∗)∇Φ0(∆x, ∆y) + (1−∇Φ0)∆ξ = 0 (37)

[∇2 f̂ (x∗, y∗) + Jx,y{Jx,yF(x∗, y∗, ξ∗)Tu} − Jx,y{Jx,yG(x∗, y∗)Tv}](∆x, ∆y)+

Jξ{Jx,yF(x∗, y∗, ξ∗)Tu}∆ξ + Jx,yF(x∗, y∗, ξ∗)T∆u−Jx,yG(x∗, y∗)T∆v = 0 (38)

Jx,y{J3g(x∗, y∗, y∗)u}(∆x, ∆y) + J3g(x∗, y∗, y∗)∆u− ∆v− ∆w = 0 (39)

−J GJx,y{JΠK(−ξ − G(x∗, y∗))(−w)}(∆x, ∆y)−Jξ{JΠK(−ξ − G(x∗, y∗))(−w)}∆ξ

− ∆v−JΠK(−ξ − G(x∗, y∗))∆w = 0. (40)

Since L(x∗, y∗, ξ∗, u∗, v∗, w∗) = 0 and together with the equalities (36), (37), (39), we
can obtain

∇ f̂ (x∗, y∗)T(∆x, ∆y) = {J G(x∗, y∗)Tv∗ −Jx,yF(x∗, y∗, ξ∗)Tu∗}T(∆x, ∆y)
= v∗TJ G(x∗, y∗)T(∆x, ∆y) + [J3g(x∗, y∗, y∗)u∗]T∆ξ

= v∗TJ G(x∗, y∗)T(∆x, ∆y) + (v∗ + w∗)T∆ξ

= 〈−JΠK(·)w∗,J G(x∗, y∗)T(∆x, ∆y)〉+ 〈(I −JΠK(·))w∗, ∆ξ〉
= 0.

Then from the equalities (36)–(40) and the Definition of the critical cone, we know that
(∆x, ∆y, ∆ξ) ∈ C(x∗, y∗, ξ∗).

Next, multiply (∆x, ∆y) at the left and right sides of the equality (38) simultaneously,

(∆x, ∆y)T∇2 f̂ (x∗, y∗)(∆x, ∆y) + (∆x, ∆y)TJx,y{Jx,yF(x∗, y∗, ξ∗)Tu}(∆x, ∆y)

− (∆x, ∆y)TJx,y{Jx,yG(x∗, y∗)Tv∗}(∆x, ∆y) + (∆x, ∆y)TJξ{Jx,yF(x∗, y∗, ξ∗)Tu∗}∆ξ

+ (∆x, ∆y)TJx,yF(x∗, y∗, ξ∗)T∆u− (∆x, ∆y)TJx,yG(x∗, y∗)T∆v = 0 (41)

where

(∆x, ∆y)TJx,yF(x∗, y∗, ξ∗)T∆u− (∆x, ∆y)TJx,yG(x∗, y∗)T∆v
= −∆ξTJ3g(x∗, y∗, ξ∗)∆u− (∆x, ∆y)TJx,yG(x∗, y∗)T∆v
= ∆ξT{Jx,y[J3g(x∗, y∗, ξ∗)u∗](∆x, ∆y)− ∆v∆w} − (∆x, ∆y)TJx,yG(x∗, y∗)T∆v
= ∆ξTJx,y[J3g(x∗, y∗, ξ∗)u∗](∆x, ∆y)− {∆ξT(∆v + ∆w) + (∆x, ∆y)TJx,yG(x∗, y∗)T∆v}
= ∆ξTJx,y[J3g(x∗, y∗, ξ∗)u∗](∆x, ∆y)− 〈JΠK(·)∆w + ∆v, ∆ξ + Jx,yG(x∗, y∗)T(∆x, ∆y)〉
= ∆ξTJx,y[J3g(x∗, y∗, ξ∗)u∗](∆x, ∆y)− 〈J G(x∗, y∗)Jx,y[JΠK(·)(−w∗)](∆x, ∆y)+
Jξ [JΠK(·)(−w∗)]∆ξ, ∆ξ + Jx,yG(x∗, y∗)T(∆x, ∆y)〉
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Then the equality (41) can be reduced to

(∆x, ∆y)T∇2 f̂ (x∗, y∗)(∆x, ∆y) + (∆x, ∆y)TJx,y{Jx,yF(x∗, y∗, ξ∗)Tu}(∆x, ∆y)−

(∆x, ∆y)TJx,y{Jx,yG(x∗, y∗)Tv∗}(∆x, ∆y) + (∆x, ∆y)TJξ{Jx,yF(x∗, y∗, ξ∗)Tu∗}∆ξ

∆ξTJx,y[J3g(x∗, y∗, ξ∗)u∗](∆x, ∆y)− 〈J G(x∗, y∗)Jx,y[JΠK(·)(−w∗)](∆x, ∆y)+

Jξ [JΠK(·)(−w∗)]∆ξ, ∆ξ + Jx,yG(x∗, y∗)T(∆x, ∆y)〉 = 0.

That means that

(∆x, ∆y, ∆ξ)T∇2
x,y,ξL(x∗, y∗, ξ∗, u∗, w∗)(∆x, ∆y, ∆ξ) = 0, (∆x, ∆y, ∆ξ) ∈ C(x∗, y∗, ξ∗).

Since the second-order sufficient conditions hold, it is easy to get (∆x, ∆y, ∆ξ) = 0.
Therefore, we can reduce the Equation (38) to

Jx,yF(x∗, y∗, ξ∗)T∆u−Jx,yG(x∗, y∗)T∆v = 0.

Under the Assumption 3 and considering Equation (39), we can conclude that (∆u, ∆v, ∆w) =
0. This completes the proof.

According to the convergent results in [32], the global convergence of Algorithm 1 can
be obtained.

Theorem 5. For each k ≥ 0, assume εk > 0, µk > 0, and J E is nonsingular. Then
(i) If Z∗ is the cluster of points {Zk} generated by Algorithm 1, then E(Z∗) = 0.
(ii) Further, if E satisfies the strong BD-regularity at Z∗, then

‖Zk+1 − Z∗‖ = o(‖Zk − Z∗‖)

and
εk+1 = o((εk))

µk+1 = o((µk)).

5. An Example

In this section, we present an illustrative example of an inverse problem. This example
demonstrates the application of sparse mathematical programs governed by symmetric
cone constrained generalized equations, where K = Rm

+.
Consider the following inverse linear programming,

(ILP)
min ‖c− c0‖1
s.t. x0 ∈ SOL(LP(c))

c ∈ Rn
(42)

where ‖ · ‖1 is defined by ‖c′‖1 = ∑n
i=1 |c′i| , for any c′ ∈ Rn. SOL(LP(c)) represents the

solution set of the classical linear problem.
Considering the classical dual theory, it is easy to know that the Problem (ILP) can be

reformulated as

min ‖c− c0‖1
s.t. c− ATλ = 0n

0m ≤ λ⊥(Ax0 − b0) ≥ 0m
(c, λ) ∈ Rn ×Rm

(43)

Letting I = {i|aT
i x0 − b0

i = 0} , we can set I = {1, 2, · · · r}, Â = (a1, a2, · · · , ar)T without
loss of generality. Because of the complementarity constraints, λ = (λ̂, 0, 0, · · · , 0). The
problem above is equivalent to
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min ‖c− c0‖1
s.t. c− ÂTλ̂ = 0n

(c, λ̂) ∈ Rn ×Rr
+

(44)

If λ̄ is the optimal solution, then c̄ = ÂTλ̄ is the optimal of the original problem. In
fact, (44) is equivalent to the above problem, so here we just solve the problem (44).

5.1. Perturbation Problem

It should be noted that the objective function of (44), |c− c0| = ∑n
i=1 |ci − c0

i |, is non-
differentiable at the points ci = c0

i for i = 1, 2, . . . , n. This leads to situations where the KKT
conditions might not hold at certain local optimal points. To address this, we construct a
smoothing function that approximates the semismooth problem.

min
n

∑
i=1

√
(ci − c0

i )
2 + ε2

s.t. c− ÂTλ̂ = 0n
(c, λ̂) ∈ Rn ×Rr

+

(45)

Let Ω = {(c, λ̂) ∈ Rn ×Rr
+|c− ÂTλ̂ = 0n}, and

f (c, λ̂, ε) =


n

∑
i=1

√
(ci − c0

i )
2 + ε2 (c, λ̂) ∈ Ω,

+∞ otherwise.

Then the perturbation problem is min f (c, λ̂, ε), and the original problem is min f (c, λ̂, 0).
The following theorem shows that the optimal value of the perturbation problem is convergent
to that of the original problem as ε↘ 0. Further, the solution set is outer semi-continuous.

Theorem 6. Let κ(ε) = inf
(c,λ̂)

f (c, λ̂, ε), S(ε) = Arg min
(c,λ̂)

f (c, λ̂, ε) then κ(ε) is continuous at 0,

and the solution mapping S(ε) is outer semi-continuous at 0.

Proof. Obviously, f (c, λ̂, ε) is continuous at ε = 0. Considering the Definition 7.39 in [30]
(the Definition of the epi-continuous), we have that f (c, λ̂, ε) is epi-continuous at ε = 0.
Then epi f (c, λ̂, ε) is a closed subset in R2m+2. Considering the Theorem 7.1 in [30], we
know that f (c, λ̂, ε) is lower semi-continuous (l.s.c.) in R2m+1. Next, we need to prove that
(c, λ̂) is uniformly level-bounded with respect to ε.

Suppose ε ∈ (0, 1). For any α > 0, choose a neighborhood V ⊂ (0, 1) of ε. It is evident
that the set of multipliers Π is both nonempty and bounded due to the optimality condition.
Let U = Ω

⋂{{(ci − c0
i )

2 ≤ ( α
n − 1), i = 1, · · · , n} ×Π} × V, and U is bounded. For any

(c, λ̂, ε) ∈ U

f (c, λ̂, ε) =
n

∑
i=1

√
(ci − c0

i )
2 + ε2 + 0 ≤

n

∑
i=1

√
(

α

n
)2 − 1 + ε2

≤
n

∑
i=1

√
(

α

n
)2 ≤ α

Then {(c, λ̂)| f (c, λ̂, ε) ≤ α} ⊆ U. So f (c, λ̂, ε) is l.s.c., and (c, λ̂) is uniformly level-
bounded with respect to ε. By Theorem 7.41 in [30], the Theorem is proved.
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5.2. Smoothing Newton Method

From the above analysis, we can solve the inverse linear programming by a series of per-
turbation problems. In the following, we consider how to solve the perturbation problem.

The Lagrange function of the problem (45) is

Lε(c, λ̂, y, z) =
n

∑
i=1

√
(ci − c0

i )
2 + ε2 + 〈y, c− ÂTλ̂〉 − 〈z, λ̂〉,

and the KKT system is 
∇cLε(c, λ̂, y, z) = 0
∇λ̂Lε(c, λ̂, y, z) = 0
c− ÂTλ̂ = 0
0 ≤ z⊥λ̂ ≥ 0

where
∇cLε(c, λ̂, y, z) = (

c1−c0
1√

(c1−c0
1)

2+ε2
+ y1, . . . , cn−c0

n√
(cn−c0

n)2+ε2
+ yn)T

∇λ̂Lε(c, λ̂, y, z) = −Ây− z.

The Fisher–Burmeister function (F-B) ϕ is defined by

ϕ(a, b) :=
√

a2 + b2 − a− b.

Obviously, ϕ(a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0. Then the KKT system can be trans-
formed to 

∇cLε(c, λ̂, y, z) = 0
∇λ̂Lε(c, λ̂, y, z) = 0
c− ÂTλ̂ = 0
ϕ(λ̂, z) = 0

where ϕ(λ̂, z) = (ϕ(λ̂1, z1), · · · ϕ(λ̂r, zr))T .
Since the F–B function is non-differentiable at zero, we select the smoothing approxi-

mation mapping,

ϕµ(a, b) :=
√

a2 + b2 + µ2 − a− b,

we have
ϕµ(a, b) = 0⇔ a ≥ 0, b ≥ 0, ab =

1
2

µ2.

It is evident that ϕµ → ϕ with µ→ 0.
Define Φε,µ : R2n+2r → R2n+2r, then the smoothing KKT system is

Φε,µ =


∇cLε(c, λ̂, y, z)
∇λ̂Lε(c, λ̂, y, z)

c− ÂTλ̂

φµ(λ̂, z)

 = 0,

where φµ(λ̂, z) = (ϕµ(λ̂1, z1), . . . , ϕµ(λ̂r, zr))T .

Remark 3. For any B ∈ ∂Φ if and only if there exists V1 ∈ ∂λ̂ ϕ, V2 ∈ ∂z ϕ,

B =


ε2D3

1 0 I 0
0 0 −Â −I
I −ÂT 0 0
0 V1 0 V2

.
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Then we have

dist(∇Φε,µ, ∂Φ) = min
B∈∂Φ

‖B− JΦ‖

= min
V1∈∂λ̂ ϕ,V2∈∂z ϕ

(‖V1 − Dλ‖2 + ‖V2 − Dz‖2)
1
2

= dist(∇ϕµ, ∂ϕ)→ 0.

Therefore, this smoothing is reasonable.

If (c̄, λ̄) ∈ Rn × Rr is a local minimizer, there exists a Lagrange multiplier (ȳ, z̄)
that satisfies the KKT system due to the first necessary optimality condition. Therefore,
Φε,µ(c̄, λ̄, ȳ, z̄) = 0. To elaborate, finding the KKT point of (44) is essentially solving the
equations Φε,µ(c, λ̂, y, z) = 0, a task that can be tackled using the Newton method. However,
this requires that the condition of the Jacobian of Φε,µ at (c̄, λ̄, ȳ, z̄)

JΦε,µ(c, λ̂, y, z) =


ε2D3

1 0 I 0
0 0 −Â −I
I −ÂT 0 0
0 Dλ 0 Dz


must be nonsingular, where

D1 = diag( 1√
(c1−c0

1)
2+ε2

, . . . , 1√
(cn−c0

n)2+ε2
),

Dλ = diag( λ1√
(z1+λ1)2+µ2

− 1, . . . , λr√
(zr+λr)2+µ2

− 1),

Dz = diag( z1√
(z1+λ1)2+µ2

− 1, . . . , zr√
(zr+λr)2+µ2

− 1).

Theorem 7. Suppose that Â attains full rank in the row for any µ 6= 0, JΦε,µ(c, λ̂, y, z) is
nonsingular, ∀(c, λ̂, y, z) ∈ Rn × Rr × Rn × Rr.

Proof. Suppose there exists h = (h1, h2, h3, h4)
T ∈ Rn × Rr × Rn × Rr satisfying

JΦε,µ(c, λ̂, y, z)h = 0, namely
ε2D3

1h1 + h3 = 0 (46)

Âh3 + h4 = 0 (47)

h1 − ÂTh2 = 0 (48)

Dλh2 − Dzh4 = 0 (49)

By left-multiplying both sides of Equation (46) with hT
1 , we obtain:

hT
1 ε2D3

1h1 + hT
1 h3 = 0 (50)

Since ε2D3
1 is positive definite, so hT

1 h3 ≤ 0. By Equation (49),

h2 = −D−1
λ Dzh4 (51)

It is evident that D−1
λ Dz is positive definite, and combining the Equation (48), we have

hT
1 h3 = hT

3 h1 = hT
3 ÂTh2 = (Âh3)

Th2 = −h4h2 = hT
4 D−1

λ Dzh4 ≥ 0,
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So hT
1 h3 = 0. Substituting that into (50), we have h1 = 0, and substituting this into (46),

h3 = 0. Let h1 = 0 in the Equation (48), since Â attains full rank in the row, so h2 = 0, and
let h2 = 0 in (49), we get h4 = 0. Therefore, h = (h1, h2, h3, h4) = 0, and JΦε,µ(c, λ̂, y, z) is
nonsingular.

Theorem 8. Supposing that Â is of full rank in the row, then the sequence {Zk} generated by the
smoothing Newton method converges to a solution Z∗ of (ILP) quadratically.

5.3. Numerical Tests

We solve the inverse linear problem using Algorithm 1. All the numerical experiments
are carried out by Matlab (R2013b), on a Lenovo computer with the configuration of Intel(R)
Core(TM)2 Quad Q9550/2.83GHz/RAM 4.00GB. The coefficients of the problems are
created randomly. We set other parameters in the algorithm as δ = 0.6, σ = 0.01, γ = 0.5.
When the residual error Tol = e(Zk) < 10−6, Algorithm 1 stops. Then the results of our
experiments are in the following table, in which Iter denotes the iteration numbers, f unc
denotes the iteration numbers of the function, and Res0, Res∗ denote the initial value and
the final value of the ‖E‖.

From Table 1 , the numerical results show the efficiency of Algorithm 1. It is evident
that the convergence of the smoothing Newton method is stable and efficient.

Table 1. Numerical tests.

r n Cputime Iter Func Res0 Res∗

5 10 0.01 s 31 45 8.63 5.23 × 10−7

5 20 0.07 s 28 40 12 9.48 × 10−7

10 20 0.1 s 25 20 20.2 8.56 × 10−7

20 50 0.3 s 36 58 68.7 4.38 × 10−7

50 100 1.1 s 35 40 224 9.40 × 10−8

100 500 90.9 s 62 144 1380 4.96 × 10−7

200 500 106.9 s 50 79 2110 9.34 × 10−8

200 1000 647.3 s 57 89 3820 3.35 × 10−7

500 1000 1373.5 s 75 168 6840 2.40 × 10−7

1000 2000 14,056.4 s 102 233 19,300 1.59 × 10−8

6. Conclusions

This paper concentrates on investigating a numerical framework for a specific type
of optimization problems characterized by symmetric cone constraints and the l1 norm.
Utilizing perturbation analysis theory, we reframe the problem as a semi-smooth optimiza-
tion problem with a complementary constraint. In this context, we employ the smooth
Newton method to tackle the resulting equations, which exhibits global convergence un-
der reasonable conditions. Our numerical experiments affirm the effectiveness of this
approach in solving Symmetric Cone Constrained Optimization Problems (SPSCC) within
the nonnegative cone. It’s worth noting that the framework proposed in this paper has the
potential to be extended to address other symmetric conic optimization problems as well.
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