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Abstract: In this paper, we study the surfaces of osculating circles, which are the sets of all osculating
circles at all points of regular curves. Since the surfaces of osculating circles may be singular, it is
necessary to investigate the singular points of these surfaces. However, traditional methods and
tools for analyzing singular properties have certain limitations. To solve this problem, we define the
framed surfaces of osculating circles in the Euclidean 3-space. Then, we discuss the types of singular
points using the theory of framed surfaces and show that generic singular points of the surfaces
consist of cuspidal edges and cuspidal cross-caps.
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1. Introduction

Surfaces in the Euclidean 3-space constructed or defined by curves are classical subjects
in differential geometry [1]. Canal surfaces, ruled surfaces, surfaces of revolution and
translation surfaces are all attractive objects applied extensively in geometric modeling
and engineering. People tend to focus on the regular part and pay little attention to the
singular points. However, singular points are essential in real life, such as the edges of some
objects. In the cross-subject method, the singularity theory of surfaces has a wide range of
applications such as physical optics, computer-aided geometric design and kinematics [2,3].
Therefore, it is necessary to explore the singular properties of surfaces.

The classification of singularities has a vital position in the singularity theory [4]. It has
become an interesting area for many geometers. In 1985, Mond carried out a detailed study
on the singularity classification of the mapping from the Euclidean plane to the Euclidean
3-space [5]. After Mond’s classification, many geometers made great contributions to the
singularity theory of surfaces in different spaces [6–8]. The decision theorem of singular
points and geometric properties of fronts were investigated via flat surfaces in hyperbolic
3-space [9] and maximal surfaces in Lorentz-Minkowski 3-space [10]. For the classification
of singular points of surfaces, it is common to use the unfolding theory of functions. Subse-
quently, Fukunaga and Takahashi explored another method to study singular surfaces [11].
They defined a smooth surface with a moving frame as the framed surface and gave criteria
for singular points of the framed surface. Using this powerful tool, some researchers have
studied the singular properties of different singular surfaces in recent years [12–15].

In this paper, we investigate a new class of surfaces called the surfaces of osculating
circles, which are the sets of osculating circles at all points of regular curves. In [16],
the authors studied the geometric properties of regular surfaces of osculating circles and
gave a classification of these surfaces under some conditions on their curvature. However,
surfaces of osculating circles may be singular. If singular points exist on these surfaces, we
cannot define the normal vector fields at singular points. Therefore, we define the framed
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surfaces of osculating circles and obtain the geometric features of singular points. Then, we
analyze the types of singular points that appear on the surfaces of osculating circles.

As far as we know, no one has ever considered the singular part of the surfaces of
osculating circles. Based on this motivation, we analyze the singular properties of these
surfaces to differentiate from previous research and provide a wider perspective for future
work. The brief organization of the present paper is as follows. We review the notion of
the surfaces of osculating circles in the Euclidean 3-space and discuss singular points of
these surfaces in Section 3. In Section 4, we define the framed surfaces of osculating circles
and calculate the basic invariants and curvature. We also present the main classification
theorem of singular points of this paper (Theorem 1) in this section. Finally, we show
several singular surfaces of osculating circles as examples in Section 5, which have cuspidal
edges and cuspidal cross-caps.

All maps and manifolds we consider here are differentiable of class C∞.

2. Preliminaries

Let R3 be the Euclidean 3-space with the inner product a · b, where a, b ∈ R3. We
define the unit sphere in R3 by S2 =

{
a ∈ R3 | ‖a‖ = 1

}
, where ‖a‖ is the norm of a. We

denote ∆ =
{
(a, b) ∈ S2 × S2 | a · b = 0

}
. Let γ : I → R3 be a curve, and the arc–length is

s(t) =
∫ t

t0
‖γ′(v)‖dv. The tangent vector with respect to s is γ′(s) = dγ(s)/ds and ‖γ′(s)‖ =

‖dγ(s)/ds‖ = 1. We define three unit vectors as T(s) = γ′(s), N(s) = γ′′(s)/‖γ′′(s)‖
and B(s) = T(s) × N(s), where “×” denotes the vector product of two vectors. Then,
the Frenet-Serret formula is as follows:

{T ′(s), N ′(s), B′(s)} = {κ(s)N(s),−κ(s)T(s) + τ(s)B(s),−τ(s)N(s)},

where κ(s) is the curvature function and τ(s) is the torsion function.
We review the theory of framed surfaces (cf. [11]). The framed surface is a great

generalization of regular surfaces and frontals, at least locally.

Definition 1 ([11]). We say (ψ, ψ1, ψ2): U → R3×∆ is a framed surface if ψs(s, u) ·ψ1(s, u) =
0 and ψu(s, u) ·ψ1(s, u) = 0 for all (s, u) ∈ U, where ψs(s, u) = (∂ψ/∂s)(s, u) and ψu(s, u) =
(∂ψ/∂u)(s, u). We say ψ : U → R3 is a framed base surface if there exists (ψ1, ψ2): U → ∆ such
that (ψ, ψ1, ψ2) is a framed surface.

Definition 2 ([11]). We define (ψ, ψ1): U → R3 × S2 is a Legendre surface if ψs(s, u) ·
ψ1(s, u) = 0 and ψu(s, u) · ψ1(s, u) = 0 for all (s, u) ∈ U. A Legendre surface (ψ, ψ1) is
called a Legendre immersion if (ψ, ψ1) is an immersion. We define ψ : U → R3 as a frontal (re-
spectively, a front) if there exists ψ1 : U → S2 such that (ψ, ψ1) is a Legendre surface (respectively,
a Legendre immersion).

We denote ψ3(s, u) = ψ1(s, u)× ψ2(s, u); then, we can construct the moving frame
along ψ(s, u) as {ψ1(s, u), ψ2(s, u), ψ3(s, u)}. Thus, we have:(

ψs
ψu

)
=

(
a1 b1
a2 b2

)(
ψ2
ψ3

)
, (1)

 ψ1s
ψ2s
ψ3s

 =

 0 e1 f1
−e1 0 g1
− f1 −g1 0

 ψ1
ψ2
ψ3

,

 ψ1u
ψ2u
ψ3u

 =

 0 e2 f2
−e2 0 g2
− f2 −g2 0

 ψ1
ψ2
ψ3

, (2)

where ai, bi, ei, fi, gi (i = 1, 2) are called basic invariants of (ψ, ψ1, ψ2). By the integrabil-
ity conditions, we have a1e2 + b1 f2 = a2e1 + b2 f1 [11]. We define the curvature CF =
(JF, KF, HF) of a framed surface (ψ, ψ1, ψ2) by
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JF = det
(

a1 b1
a2 b2

)
, KF = det

(
e1 f1
e2 f2

)
,

HF = −1
2

(
det
(

a1 f1
a2 f2

)
− det

(
b1 e1
b2 e2

))
.

According to the above definition, p is a regular point of ψ if and only if JF(p) 6= 0. If
ψ : U → R3 is a regular surface, the first and second fundamental invariants are given by

E = a2
1 + b2

1, F = a1b1 + a2b2, G = a2
2 + b2

2,

L = −a1e1 − b1 f1, M = −a1e2 + b1 f2, N = −a2e2 − b2 f2.
(3)

The Gauss curvature and mean curvature of the framed surface (ψ, ψ1, ψ2) are
expressed as

K =
KF
JF

, H =
HF
JF

.

We use the following definition and proposition in our paper.

Definition 3 ([6]). A non-degenerate singular point p is the k-th kind if η(i−1)λ(p) = 0 for all
i ∈ {1, ..., k} and η(k)λ(p) 6= 0, where η(i) denotes the i-th order directional derivative by η.

Proposition 1 ([11]). Assume that (ψ, ψ1, ψ2) : U → R3 × ∆ is a framed surface and p ∈ U.
Then (ψ, ψ1) is a Legendre immersion around p if and only if CF(p) 6= 0.

For more details, see [7,11].

3. Singularities of the Surface of Osculating Circles

In this section, we retrospect the definition of the surface of osculating circles and give
the sets of singular points of the surface [16]. Moreover, we show the characters of singular
points of this surface.

Definition 4 ([16]). Let γ : I → R3 be a curve parametrized by arc–length. Suppose that the
radius of curvature is r(s) = 1/κ(s), where κ(s) is a non–zero function. The surface of osculating
circles generated by γ is defined as the parametrized surface ψ : I ×R→ R3 given by

ψ(s, u) = γ(s) + r(s)(sin u T(s) + (1− cos u)N(s)). (4)

This surface is denoted by O(γ).

In the present paper, we assume the curvature functions of all curves do not vanish in
their domains.

The set of singular points of O(γ) is given in [16], where u ∈ R. The following
proposition indicates characteristics of the singular points, where u ∈ [0, 2π).

Proposition 2 ([16]). Let γ : I → R3 be a curve and ψ = ψ(s, u) be the parametrization of
O(γ). Then, the sets of singular points of O(γ) are given by

S1 = {(s, u) ∈ I ×U| u = 0}, S2 =
{
(s, u) ∈ I ×U| r′(s) = 0, τ(s) = 0, u ∈ (0, 2π)

}
.

According to the above proposition, we can easily know that the points of S1 are
located on the generating curve γ. The characteristics of the singular points of O(γ) are
as follows.

For a map germ ψ : (U, p)→ R3, the point p is a cross-cap if ψ at p is A-equivalent to
the map germ (s, u) 7→ (s, su, u3). For more details, see [17].
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Proposition 3. Let ψ : I ×R → R3 be a surface of osculating circles generated by γ(s). Then,
cross-cap singular points do not appear on O(γ).

Proof. Taking the partial derivative of ψ(s, u), we have

∂ψ(s, u)
∂s

= (r′(s) sin u + cos u)T(s) + (r′(s)(1− cos u) + sin u)N(s)

+ r(s)τ(s)(1− cos u)B(s),

∂ψ(s, u)
∂u

= r(s)(cos uT(s) + sin uN(s)).

If p = (s0, u0) is a singular point of ψ(s, u), then ψu(s0, u0) = r(s0)ψs(s0, u0) 6= 0.
In [18], Whitney proved if there exists a local coordinate system (s, u) centered at p such that

∂ψ

∂u
(s0, u0) = 0, det

(
∂ψ

∂s
(s0, u0),

∂2ψ

∂s∂u
(s0, u0),

∂2ψ

∂u2 (s0, u0)

)
6= 0,

then the type of singular point p is a cross-cap. Therefore, cross-cap singular points do not
appear on O(γ).

4. Surfaces of Osculating Circles as Framed Base Surfaces

In this section, we define a framed surface of O(γ). Then, we investigate the singular
points of this surface using the criterion for a framed surface. For generic singular points of
a frontal from R2 to R3, we show thatO(γ) contains cuspidal edges and cuspidal cross-caps
whose normal forms are (s, u2, u3) and (s, u2, su3). Cuspidal lips, cuspidal beaks, and Chen-
Matsumoto-Mond singular points with normal forms (3s4 + 2s2u2, s3 + su2, u), (3s4 −
2s2u2, s3 − su2, u) and (s, u2, u3(s2 ± u2)), respectively, do not appear on the surface of
osculating circles.

Definition 5. Let γ(s) be a regular curve and ψ(s, u) be a surface of osculating circles generated
by γ(s). If there exists a smooth function ι : I → R3 such that 〈ψs(s, u), ψ1(s, u)〉 = 0 and
〈ψu(s, u), ψ1(s, u)〉 = 0, where ψ1(s, u) = cos ι(s)(− sin uT(s) + cos uN(s)) + sin ι(s)B(s)
and ψ2(s, u) = cos uT(s) + sin uN(s), then we have a framed surface (ψ, ψ1, ψ2) : I ×R →
R3 × ∆. We call (ψ, ψ1, ψ2) the framed surface of osculating circles and denote the framed base
surface ψ as the OFB surface for short.

Let ψ3(s, u) = ψ1(s, u)×ψ2(s, u). Therefore, we have

ψ3(s, u) = sin ι(s)(− sin uT(s) + cos uN(s))− cos ι(s)B(s).

From Equations (1) and (2), the basic invariants of (ψ, ψ1, ψ2) are given by

a1 = r′(s) sin u + 1, a2 = r(s),

b1 = (cos u− 1)(r′(s) sin ι(s) + r(s)τ(s) cos ι(s)), b2 = 0,

e1 = − κ(s) cos ι(s)− τ(s) sin u sin ι(s), e2 = − cos ι(s),

f1 = − (ιs(s) + τ(s) cos u), f2 = 0,

g1 = κ(s) sin ι(s)− τ(s) sin u cos ι(s), g2 = sin ι(s).

We denote W(s, u) = sin u(r(s)τ(s) sin ι(s)− r′(s) cos ι(s)). Since a1e2 + b1 f2 = a2e1 +
b2 f1, we have W(s, u) ≡ 0. The curvature CF = (JF, KF, HF) of (ψ, ψ1, ψ2) is given by
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JF = r(s)(1− cos u)(r′(s) sin ι(s) + r(s)τ(s) cos ι(s)),

KF = − cos ι(s)(ιs(s) + τ(s) cos u),

HF = −1
2

(
r(s)(ιs(s) + τ(s) cos u) + cos ι(s)(cos u− 1)(r′(s) sin ι(s) + r(s)τ(s) cos ι(s))

)
.

On the basis of the above results, we get the following propositions.

Proposition 4. Let (ψ, ψ1, ψ2) : I ×R → R3 × ∆ be a framed surface of O(γ). We denote S1
and S2 as the sets of singular points of O(γ); then, we have

(1) If p ∈ S1 ∪ S2,

(a) since JF(p) = 0, ψ(s, u) is not an immersion (a regular surface) around p;
(b) (ψ, ψ1) is a Legendre immersion around p if and only if KF(p) 6= 0 or HF(p) 6= 0.

(2) If p /∈ S1 ∪ S2,

(c) ψ(s, u) is an immersion (a regular surface) around p;
(d) (ψ, ψ1) is a Legendre immersion around p.

Proposition 5. Let ψ : I ×R→ R3 be a regular surface of osculating circles. The fundamental
invariants are expressed as

E(s, u) = (r′(s) sin u + 1)2 + (cos u− 1)2(r′(s) sin ι(s) + r(s)τ(s) cos ι(s))2,

F(s, u) = (r′(s) sin u + 1)(cos u− 1)(r′(s) sin ι(s) + r(s)τ(s) cos ι(s)),

G(s, u) = r2(s),

L(s, u) = (r′(s) sin u + 1)(κ(s) cos ι(s) + τ(s) sin u sin ι(s))

+ (ιs(s) + τ(s) cos u)(cos u− 1)(r′(s) sin ι(s) + r(s)τ(s) cos ι(s)),

M(s, u) = (r′(s) sin u + 1) cos ι(s),

N(s, u) = r(s) cos ι(s).

Proposition 6. The Gauss curvature K and the mean curvature H of the regular surface ψ(s, u) are

K(s, u) =
− cos ι(s)(ιs(s) + τ(s) cos u)

r(s)(1− cos u)(r′(s) sin ι(s) + r(s)τ(s) cos ι(s))
,

H(s, u) =
cos ι(s)
2r(s)

− ιs(s) + τ(s) cos u
2(1− cos u)(r′(s) sin ι(s) + r(s)τ(s) cos ι(s))

.

From Proposition 6, we can easily have the following results.

Corollary 1. The regular surface ψ : I ×R → R3 is developable if and only if cos ι(s)(ιs(s) +
τ(s) cos u) = 0.

Corollary 2. The regular surface ψ : I × R → R3 is minimal if and only if r(s)(ιs(s) +
τ(s) cos u)− cos ι(s)(1− cos u)(r′(s) sin ι(s) + r(s)τ(s) cos ι(s)) = 0.

In order to analyze the singular properties of the OFB surface and simplify the proof
process of Theorem 1, we give the following lemma to recognize whether or not the OFB
surface is a front.

Lemma 1. Let (ψ, ψ1, ψ2) : I ×U → R3 × ∆ be a framed surface of O(γ). If p is a singular
point of ψ(s, u), the OFB surface ψ(s, u) is a front near p if and only if ιs(s0) 6= 0.
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Proof. According to Proposition 4, the OFB surface ψ(s, u) is a front around p if and only if

KF(p) 6= 0 or HF(p) 6= 0. Since KF(p) = − cos ι(s0)ιs(s0) and HF(p) = −1
2

r(s0)ιs(s0), then
we have the result.

For a map germ f : (U ⊆ Rm, 0)→ (Rn, 0), p ∈ U is a singular point of f . We say p is
of co-rank α if and only if min(m, n)− rank(d fp) = α [19]. For the purpose of discussing
the types of singular points, it is necessary to calculate the co-rank of the singular points
that appear on the OFB surfaces.

Lemma 2. Let (ψ, ψ1, ψ2) : I ×R → R3 × ∆ be a framed surface of O(γ). If p = (s0, u0) is a
singular point of ψ(s, u), the OFB surface ψ(s, u) is parametrized by a co-rank one singular point
at ψ(s0, u0).

Proof. According to Proposition 2, p is a singular point of the OFB surface ψ(s, u) if and
only if r′(so) = τ(s0) = 0, where u ∈ [0, 2π). Next, we show that the type of the singular
point p is of co-rank one. By a direct calculation, we have

ψs(s0, u0) = cos u0T(s0) + sin u0N(s0),

ψu(s0, u0) = r(s0)(cos u0T(s0) + sin u0N(s0)).

Therefore, the rank of the differential of ψ(s, u) is equal to one, which means that the
co-rank of the singular point is one.

Now, we review the related definitions of non-degenerate singular points briefly. More
details are in [8,9]. Let ψ : U → R3 be a frontal of Legendre surface (ψ, ψ1). Then, there
exists a smooth function λ(s, u) on U, which is called a discriminant function, such that
λ(s, u) = det(ψs, ψu, ψ1)(s, u).

If the exterior derivative dλ does not vanish at a singular point p, we call the singular
point p non-degenerate. Parameterizing the singular point set, we have the singular curve
δ(s) satisfying δ(s0) = p. Then, we can choose a null vector field η(s) along δ(s) satisfying
dψ(η(s)) = 0, where η(s) = r(s) ∂

∂s −
∂

∂u . Using the null vector field as a tool, we can
identify the types of singular points that appear on O(γ).

Proposition 7. Let (ψ, ψ1, ψ2) : I ×R → R3 × ∆ be a framed surface of O(γ). The sin-
gular point p of ψ(s, u) is non-degenerate if and only if (1 − cos u0)(r(s0)τ

′(s0) cos ι(s0) +
r′′(s0) sin ι(s0)) 6= 0.

Proof. Since p is a singular point of ψ(s, u), we define the density function as

λ(s, u) = r(s)(1− cos u)(r(s)τ(s) cos ι(s) + r′(s) sin ι(s)).

Then λs(p) = r(s0)(1− cos u0)(r(s0)τ
′(s0) cos ι(s0) + r′′(s0) sin ι(s0)) and λu(p) = 0.

Therefore, the singular point p of ψ(s, u) is non-degenerate if and only if λs(p) 6= 0, which
completes the proof of this proposition.

Corollary 3. Let (ψ, ψ1, ψ2) : I ×R→ R3 × ∆ be a framed surface of O(γ). The singular point
p of ψ(s, u) is degenerate if and only if r(s0)τ

′(s0) cos ι(s0) + r′′(s0) sin ι(s0) = 0 or u0 = 0.

There are only the first kind singular points on the OFB surfaces, which are illustrated
by the following proposition. Especially, the OFB surfaces have neither swallowtail singular
points nor cuspidal butterfly singular points.

Proposition 8. Let (ψ, ψ1, ψ2) : I ×R→ R3 × ∆ be a framed surface of O(γ). Singular points
of the OFB surface ψ(s, u) are all the first kind.
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Proof. Since

ηλ(p) = r2(s0)(1− cos(u0))(r(s0)τ
′(s0) cos ι(s0) + r′′(s0) sin ι(s0)) 6= 0,

by Definition 3, the singular points of ψ(s, u) are all the first kind.

The above propositions are all in preparation for the following theorem. According
to the criteria of the types of singular points on the framed surfaces (Theorem 4 in [11],
Proposition 1.3 in [9], and Theorem 1.4 in [10]), we have the following conclusions.

Theorem 1. Let ψ : I×R→ R3 be the surface of osculating circles generated by γ(s). We assume
that (ψ, ψ1, ψ2) : I ×U → R3 × ∆ is a framed surface of osculating circles and (s0, u0) ∈ S2,
where S2 = {(s, u) ∈ I ×U| r′(s) = 0, τ(s) = 0, u ∈ (0, 2π)}.
(1) If (r(s0) + s′(u0))ιs(s0) 6= 0, then ψ(s, u) is a cuspidal edge at (s0, u0) if and only if

sin ι(s0)r′′(s0) 6= 0 or sin ι(s0) = 0, r′′(s0) 6= 0, τ′(s0) 6= 0.
(2) If ιs(s0) = 0, s′(u0)(r(s0) + s′(u0))(τ

′(s0) cos u0 + ιss(s0)) 6= 0, then ψ(s, u) is a cuspidal
cross-cap at (s0, u0) if and only if sin ι(s0)r′′(s0) 6= 0 or sin ι(s0) = 0, r′′(s0) 6= 0, τ′(s0) 6= 0.

Proof. Because of

dψ(p) = (cos u0T(s0) + sin u0N(s0))ds + (r(s0)(cos u0T(s0) + sin u0N(s0)))du,

the null vector field η is defined as

η(s) = r(s)
∂

∂s
− ∂

∂u
.

Suppose (s0, u0) ∈ S2 is a non-degenerate singular point of ψ(s, u). By the definition
of the OFB surface, we have

W(s, u) = sin u(r(s)τ(s) sin ι(s)− r′(s) cos ι(s)) = 0.

Since Ws(s0, u0) = 0, then we have (s0, u0) satisfy one of the following conditions:

(A) r′′(s0) 6= 0 and cos ι(s0) =
r(s0)τ

′(s0) sin ι(s0)

r′′(s0)
, or

(B) sin ι(s0) = 0, r′′(s0) = 0 and τ′(s0) 6= 0.

For Case (A), since sin2 ι(s) + cos2 ι(s) = 1, we have sin ι(s0) 6= 0; that is,

ηλ(p) = r2(s0)(1− cos u0)(r(s0)τ
′(s0) cos ι(s0) + r′′(s0) sin ι(s0)) 6= 0.

We know (s, u) ∈ U is a singular point of ψ(s, u) if and only if λ(s, u) = 0. According
to the implicit function theorem, there exists a C∞ function s with the condition s(u0) = s0
such that the singular curve is δ = (s(u), u). By a straight calculation, we have

Φ(u) = det((ψ ◦ δ)′, ψ1 ◦ δ, dψ1(η))(u)

=
(

rτs′ sin ι sin u(1− cos u)(rτ cos ι + r′ sin ι) + r(τ cos u + ιs)((r + s′) + r′s′ sin u)
)
(u)

and

Φ′(u0) =
(

rs′(r + s′)(τ′ cos u + ιss) + rιs(s′′ + r′′(s′)2 sin u)
)
(u0).

For Case (B), by the above conditions,

ηλ(p) = r3(s0)(1− cos u0)τ
′(s0) cos ι(s0) 6= 0.

Then, we can also give the singular curve δ as δ = (s(u), u). Therefore, we have

Φ(u0) = r(s0)(r(s0) + s′(u0))ιs(s0)
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and

Φ′(u0) = r(s0)s′(u0)(r(s0) + s′(u0))(τ
′(s0) cos u0 + ιss(s0)).

Thus, we complete the proof of assertions (1) and (2).

If the singular point (s0, 0) ∈ S1, then dλ(p) = 0, which means the singular point p
is degenerate. Then, the OFB surface ψ(s, u) at such a singular point (s0, 0) cannot be the
cuspidal edge, swallowtail, or cuspidal cross-cap.

Next, we consider other singular points with co-rank one. Izumiya, Saji, and Takahashi
first gave the criteria for cuspidal lips and cuspidal beaks in [20].

Proposition 9. Let ψ(s, u) be the OFB surface. For cuspidal lips and cuspidal beaks, neither of
them appears on ψ(s, u).

Proof. Let p = (s0, u0) be a degenerate singular point of ψ = ψ(s, u). By Lemma 2, we get
p is a co-rank one singular point. Hence,

λss(p) = r(s0)(1− cos u0)(r(s0)τ
′′(s0) cos ι(s0)− 2r(s0)τ

′(s0)ιs(s0) sin ι(s0)

+ r(3)(s0) sin ι(s0) + 2r′′(s0) cos ι(s0)ιs(s0)),

λsu(p) = λuu(p) = 0;

that means det(Hessλ(p)) = 0. According to Theorem 3.2 in [7], cuspidal lips and cuspidal
beaks do not appear on ψ(s, u).

If p is a co-rank one singular point of ψ : (R2, p) → (R3, p), then there exist two
linearly independent vector fields ξ0, η0 ∈ T0R2 near p such that dψ0(η0) = 0. A function
ϕ : (R2, 0)→ R is defined by ϕ = det(ξψ, ηψ, ηηψ).

Proposition 10. Let ψ(s, u) be the OFB surface. Then, Chen-Matsumoto-Mond singular points
do not appear on ψ(s, u).

Proof. Let p = (s0, u0) be a co-rank one singular point of ψ = ψ(s, u). The function ϕ is
defined as ϕ(s, u) = det(ξψ, ηψ, ηηψ)(s, u), where ξ(s) = r(s) ∂

∂u + ∂
∂s . Then, we have

ϕ(s, u) = det(ξψ, ηψ, ηηψ)(s, u)

= r3(s)(1− cos u)2(r2(s) + 1)
(

r(s)(τ(s)r′′(s) + r(s)τ3(s) cos u− r′(s)τ′(s))− 2(r′(s))2τ(s)
)

.

By a direct calculation, we have p is a critical point of ϕ. Additionally,

ϕss(p) = r4(s0)(r2(s0) + 1)(1− cos u0)
2(τ′(s0)r′′′(s0)− r′′(s0)τ

′′(s0),

ϕsu(p) = ϕuu(p) = 0.

Thus, we get det(Hessϕ(p)) = 0. According to Theorem 2.2 in [21], Chen-Matsumoto-
Mond singular points do not appear on ψ(s, u).

5. Examples

For Theorem 1, we give specific examples of the OFB surfaces and analyze the types
of singular points on the OFB surfaces. It can be seen that the surfaces of osculating circles
may have cuspidal edges and cuspidal cross-caps.

Example 1 (Figure 1). Let β : (−π
4 , 3π

4 )→ R3 be

β(s) =

(√
2

4
s− 1

4
sin(2s +

π

4
),

√
2

4
s− 1

4
cos(2s +

π

4
), sin(s +

π

4
)

)
.
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By direct calculations, we have

κ(s) =
√

2 sin(s +
π

4
), τ(s) = −1

2
cos(s +

π

4
)

and

T(s) =
(

sin(s +
π

4
) sin s, sin(s +

π

4
) cos s, cos(s +

π

4
)
)

,

N(s) =
1√

1 + sin2(s +
π

4
)

(
sin(2s +

π

4
), cos(2s +

π

4
), − sin(s +

π

4
)
)

,

B(s) =
1√

1 + sin2(s +
π

4
)

(
a(s), b(s), − sin2(s +

π

4
)
)

,

where

a(s) = sin2(s +
π

4
) cos s− cos(s +

π

4
) cos(2s +

π

4
),

b(s) = sin2(s +
π

4
) sin s + cos(s +

π

4
) sin(2s +

π

4
).

Figure 1. ψ(s, u) and cuspidal cross-caps (thick red circle).

The surface of osculating circles generated by the regular curve β is

ψ(s, u) =
(

f (s, u) + q(s, u) sin(2s +
π

4
), g(s, u) + q(s, u) cos(2s +

π

4
), h(s, u)

)
,

where

f (s, u) =
√

2
4

s− 1
4

sin(2s +
π

4
) +

√
2

2
sin u sin s,

g(s, u) =
√

2
4

s− 1
4

cos(2s +
π

4
) +

√
2

2
sin u cos s,

h(s, u) = sin(s +
π

4
) +

√
2

2
sin u cot(s +

π

4
)− q(s, u) sin(s +

π

4
),

q(s, u) =
√

2(1− cos u)

2 sin(s +
π

4
)

√
1 + sin2(s +

π

4
)

.

Then, the set of singular points of ψ(s, u) can be given by
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S =
{(π

4
, u
)∣∣∣u ∈ [0, 2π)

}
.

By Theorem 1, ψ(s, u) has cuspidal cross-cap singular points at
(π

4
, u
)

, where u 6= π

2
and

3π

2
.

Example 2 (Figure 2). Let γ(s) : (−0.8, 0.8)→ R3 be

γ(s) =
(

1
2

s2,
1
4

s4,
∫ s

0

√
1− t2 − t6dt

)
.

Then, we have the Frenet–Serret formula as follows

T(s) =
(

s, s3,
√

1− s2 − s6
)

,

N(s) =

( √
1− s2 − s6

√
1 + 9s4 − 4s6

,
3s2
√

1− s2 − s6
√

1 + 9s4 − 4s6
,
−s(1 + 3s4)√
1 + 9s4 − 4s6

)
,

B(s) =

(
s2(2s2 − 3)√
1 + 9s4 − 4s6

,
1 + 2s6

√
1 + 9s4 − 4s6

,
2s3
√

1− s2 − s6
√

1 + 9s4 − 4s6

)
.

We also have the curvature function and the torsion function

κ(s) =

√
1− s2 − s6

√
1 + 9s4 − 4s6

,

τ(s) =
2s(4s8 − 12s6 − 4s + 3)

(1 + 9s4 − 4s6)
√

1− s2 − s6
.

In this case, r(s) =

√
1 + 9s4 − 4s6
√

1− s2 − s6
6= 0 when s ∈ (−0.8, 0.8). This curve is given in [22];

we consider the surface of osculating circles generated by this curve. In order to give a clear
parameterized form of O(γ), let

f (s, u) =

√
1 + 9s4 − 4s6
√

1− s2 − s6
sin u,

g(s, u) =
∫ s

0

√
1− t2 − t6dt +

√
1 + 9s4 − 4s6 sin u +

(s + 3s5)(cos u− 1)√
1− s2 − s6

.

The surface of osculating circles generated by the regular curve γ is

ψ(s, u) =
(

1
2

s2 + s f (s, u) + (1− cos u),
1
4

s4 + s3 f (s, u) + 3s2(1− cos u), g(s, u)
)

.

Then, the set of singular points of ψ(s, u) can be given by

S = {(0, u) |u ∈ [0, 2π)}.

By Theorem 1, ψ(s, u) has cuspidal edge singular points at (0, u) .
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Figure 2. ψ(s, u) and cuspidal edges (thick red line).

6. Conclusions

In this paper, we investigated the singular properties of the surfaces of osculating
circles. By the tool of framed surfaces, we analyzed the types of singular points that appear
on surfaces and obtained the geometric conditions for these surfaces to have non-degenerate
singular points, such as cuspidal edges and cuspidal cross-caps. For other higher-order
degenerate singular points, we have not discussed their existence yet. Although this work
may be difficult, we will precisely identify the types of singular points and generalize the
same results in n-dimensional spaces in another paper.
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