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Abstract: Forest pests and diseases have been seriously threatening ecological security. Effective
prevention and control of such threats can extend the growth cycle of forest trees and increase the
amount of forest carbon sink, which makes a contribution to achieving China’s goal of “emission
peak and carbon neutrality”. In this paper, based on the insect-vector populations (this refers to
Monochamus alternatus, which is the main vector in Asia) in pine wilt disease, we establish a two-
dimensional delay differential equation model to investigate disease control and the impact of time
delay on the effectiveness of it. Then, we analyze the existence and stability of the equilibrium of
the system and the existence of Hopf bifurcation, derive the normal form of Hopf bifurcation by
using a multiple time scales method, and conduct numerical simulations with realistic parameters to
verify the correctness of the theoretical analysis. Eventually, according to theoretical analysis and
numerical simulations, some specific suggestions are put forward for prevention and control of pine
wilt disease.

Keywords: pine wilt disease; time delay; stability; normal form of Hopf bifurcation
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1. Introduction

The world has long been confronted with hazads of climate change caused by global
warming. China is taking pragmatic actions facing the challenges brought by climate
change. At the general debate of the 75th Session of the United Nations General Assembly
on 22 September 2020, President Xi Jinping announced that China would scale up its NDCs
(Nationally Determined Contributions) by adopting more vigorous policies and measures,
strive to peak CO2 emissions before 2030, and achieve carbon neutrality before 2060.

Forests’ annual carbon sequestration accounts for about 2/3rd of the whole terrestrial
system, which is the main body of the terrestrial ecosystem. According to the China
Forest Resources Report, by 2018, China’s forest coverage rate was 22.96%, forest area was
220 million hm2, forest stock volume was 17.56 billion m3, and total carbon storage was
91.86 billion tons. From 1990 to 2020, China’s forest carbon sink capacity witnessed an
escalation from 185.5 GtCO2 to 321.4 GtCO2. A vigorous increase of forest carbon sink has
become a top priority to achieve the carbon peaking and carbon neutrality goals. Effective
control of forest pests and diseases can prolong the growth cycle of trees and increase the
forest carbon sink, which is of great significance for the realization of China’s “30·60” goal.

Pine wilt disease (PWD) is a devastating forest disease caused by pine wood nematode
(PWN). The PWD is a multipartite system involving intimate relationships between the
pathogen, PWN, Bursaphelenchus xylophilus (Steiner & Buhrer) Nickle, its vectors, and
symbiotic microorganisms [1]. It is mainly transmitted by Monochamus alternatus (M.
alternatus) in Asia [1], which spreads rapidly and kills trees quickly. Through consulting
relevant data, PWN is thought to have originated in North America [2], then gradually
invaded other countries, such as Japan [3], Korea [4], China [5], Mexico [6], and Spain [7].
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How to effectively control the occurrence and spread of PWD has become the focus and
frontier topic of researchers. Ecologists have made remarkable progress in many aspects.
Kim et al. [8] used recombinant BxPrx as an antigen to generate a novel antibody that
can be used to quickly and accurately determine PWD. Ding et al. [9] improved the
genome sequence of PWN and explained the interaction between PWD and pine trees.
Palomares-Rius et al. [10] determined a gene set affected by genomic variation finding that
the level of genomic diversity of PWN was related to its phenotypic variability, including
variations in pathogenicity and ecological traits. Presently, global strategies for PWD
prevention and control encompass chemical control, physical control, biological control and
biomimetic technology, with avermectin (AVM) as a predominant insecticidal agent [11].
Lee et al. [12] conducted comparative analyses on 16 avermectin benzoate formulations
against PWD to support disease control. Alvarez et al. [13] engineered diverse trap designs
assessing their efficacy in maximizing the attraction and retention of live insects through
field experiments and comparative modeling. Mannaa et al. [14] found that treatment with
resistance-induced chemical inducers MeSA and ASM significantly reduced the severity of
PWD, providing new ideas for its prevention and treatment.

While ecologists have largely concentrated on the biological structure, distribution
and control factors of PWN, attention to the dynamic characteristics of PWD transmission
system remains scant. In recent years, mathematicians have established various models
to predict the occurrence trend of PWD. Shi and Song [15] investigated the dynamical
behavior of PWD by incorporating a standard incidence rate and the threshold value of the
relative basic reproductive number R0 which determined the spread of infection has been
worked out. Ozair [16] discussed the global stability of PWD by considering the nonlinear
incidence rate with the horizontal transmission in the model. Khan et al. [17] introduced
a mathematical model that described the dynamics of PWD by presenting the stability
analysis of the disease-free and endemic equilibria base on basic reproduction number
R0, and an optimal control strategy was formulated by adding control variables related
to time to the model. Subsequent work by Khan et al. [18] continued this line of inquiry
by exploring the effect of asymptomatic carriers of PWD and further elaborating on the
optimal control strategies in 2020.

As we know from the literature, most of the literature studied the occurrence of PWD
in its natural state or the effects of prevention and control on PWD infectivity, with limited
examination of time-delay in the control process. Therefore, it is feasible to propose a
model that can comprehensively show intensity and time-delay of disease control. Based
on the infectious disease model, we divide M. alternatus into susceptible M. alternatus (not
carrying PWN) and infected M. alternatus (carrying PWN). After the outbreak of PWD in a
forest area, we usually take measures to protect pine trees and kill M. alternatus. However,
given the extensive adaptability of PWN and the rapid spread of PWD, there is a certain
time delay of the control to take effect (that is, the infection rate of M. alternatus begins
to decline). We use delay differential equations to describe the dynamic changes in the
insect-vector populations system more truly and accurately. Delay differential equations
are used to describe the development systems that depend on both the current state and
the past state and have been widely used in many fields. In the study of the bifurcation
phenomenon, it is very important to derive the bifurcation normal form of differential
equations. Nayfeh [19] proposed the method of multiple time scales (MTS) to solve the
problem of nonlinear vibration and gave the calculation process of Hopf bifurcation normal
form of delay differential equations by MTS in 2008 [20]. Later, many scholars studied
the stability and bifurcation theory of various differential equations [21–23]. Based on this
background, we establish a two-dimensional differential equation model with time delay
to discuss the stability and bifurcation phenomenon of PWD infection-control system to
predict the occurrence of PWD, and provide theoretical support for the prevention and
control of PWD.

The rest of the content is arranged as follows. In Section 2, we first build a differential
equation model with time delay based on the epidemic model among the medium insects.
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In Section 3, we analyze the existence and stability of equilibrium and the existence of Hopf
bifurcation for the model with time delay. In Section 4, we derive the normal form of the
Hopf bifurcation by using MTS and analyze the stability of the periodic solution of the
Hopf bifurcation. In Section 5, we discuss and analyze the unknown parameters in the
model and then present numerical simulations to verify the correctness of the theoretical
analysis. Finally, the conclusion is drawn in Section 6.

2. Mathematical Modeling

After the outbreak of PWD in an area, we take control measures (such as nematicide
injection and vaccination) to protect pine trees. The transmission of PWN is not reliant upon
direct contact between M. alternatus, but hinges on the process of infected M. alternatus
transmitting PWN to healthy pine trees during feeding and oviposition. Newly formed
adult M. alternatus remain within the pupation chamber prior to emergence, where they
become infected by PWN from deceased host tree wood, then they carry PWN to continue
to infect other healthy pine trees after emergence. Upon implementation of nematicide
injection or vaccination, the quantity of PWN in pine trees diminishes, leading to a concomi-
tant decline in infection rate. Therefore, taking control measures on trees can effectively
reduce the infection rate of M. alternatus. Moreover, measures such as insecticidal spraying
insecticides can kill M. alternatus, which also reduces the rate of infection. However, the
transmission speed of PWN is very fast when the forest is in the outbreak period of PWD,
so in the early stage of control, the transmission efficiency of PWN may be higher than that
of control. Consequently, there is a time delay between taking control measures and the
beginning of the decline in the infection rate of M. alternatus, so there is a certain time delay
in the effective of prevention and control. Since not every time infected M. alternatus can
“feed” PWN, we introduce an infection coefficient. We suppose that the infection coefficient
of PWD is reduced to β after adopting control measures. Other influencing factors in the
infection-control system are analyzed below.

It is assumed that M. alternatus are divided into susceptible M. alternatus S(t) which
did not carry PWN and infected M. alternatus I(t) which did carry PWN at a certain
time in a PWD epidemic area. For the input of M. alternatus, the born M. alternatus and
the dead M. alternatus are mainly considered. Because the resources are limited, it is
more realistic for us to use the logistic function to describe the growth rate of the M.
alternatus. We assume the natural mortality of susceptible and infected M. alternatus as d1,
d2, respectively. In the process of the spread of PWD, prevention and control can increase
the mortality rate of M. alternatus, thereby inhibiting the spread of the disease. With the
progress of control, the mortality rate of M. alternatus will tend to be saturated. Therefore,
the number of M. alternatus killed by artificial control grows following nonlinear logistic
growth, and the mortality rate of M. alternatus is related to the intensity of control, with the
increase of control efforts, the mortality rate also increases nonlinearly, so we use k1α to
describe its linear part and k2α to describe its nonlinear part, where k1α represents control
measures efficiency of PWD. Adding the nonlinear part better reflects the saturation effect
of artificial prevention and control, which is more consistent with reality. To better study
the impact of prevention and control on PWD infection-control system, we present the
variable relationships shown in Figure 1.

According to Figure 1, we can construct the following delayed differential equation
model: 

dS
dt

= B(1− S(t)
K

)S(t)− d1S(t)− βS(t)I(t− τ)− k1αS(t) + k2αS2(t),

dI
dt

= βS(t)I(t− τ)− d2 I(t)− k1αI(t) + k2αI2(t),
(1)

where S(t) and I(t) are the variables; B, d1, d2, k1, k2, β, α and K are the positive constants;
and τ is the time delay of disease control to take effect. The specific descriptions are given
in Table 1.
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Figure 1. Variable relation of the infection-control system.

Table 1. Descriptions of parameters in the model (1).

Symbol Description Unit

S Amount of susceptible M. alternatus 104 head
I Amount of infected M. alternatus 104 head
B Natural birth rate of M. alternatus % (year)
d1 Natural mortality of susceptible M. alternatus % (year)
d2 Natural mortality of infected M. alternatus % (year)
k1 Linear coefficient related to mortality caused by control -
k2 Nonlinear coefficient related to mortality caused by control -
β Infection coefficient -
α Intensity of prevention and control against M. alternatus %
K Environmental capacity -
τ Time delay of disease control to take effect year
t Time year

For convenience, we denote that n1 = B− d1− k1α, n2 = k2α− B
K , n3 = d2 + k1α; then,

model (1) becomes: 
dS
dt

= n1S(t) + n2S2(t)− βS(t)I(t− τ),

dI
dt

= βS(t)I(t− τ)− n3 I(t) + k2αI2(t).
(2)

Due to the wide distribution and strong concealment of M. alternatus, we believe
that the number of births of susceptible M. alternatus is always greater than the number
of deaths, that is, n1 > 0, which is also consistent with the data we found in the later
parameter analysis. Moreover, we believe that the intensity of prevention and control
against M. alternatus will be change within 0∼1, that is, the maximum value of α is 100%.

Then, we prove that the solution of system (2) is nonnegative under positive initial
conditions.

The initial condition of system (2) is ϕ = (ϕs(θ), ϕI(θ)) ∈ C
(
[−τ, 0], R2

+0
)
, θ ∈ [−τ, 0],

where ϕs(θ) ≥ 0, ϕI(θ) ≥ 0, C
(
[−τ, 0], R2

+0
)

is a continuous function mapping from [−τ, 0]
to R2

+0 in Banach space, for system (2), R2
+0 = {(S(t), I(t))|S(t) ≥ 0, I(t) ≥ 0}.

Theorem 1. If ϕs(θ) ≥ 0, ϕI(θ) ≥ 0, θ ∈ [−τ, 0], then the solution of system (2) S(t), I(t) is
nonnegative for t ≥ 0.

Proof. Assume that the system (2) in the nonnegative initial function ϕs(θ) ≥ 0, θ ∈ [−τ, 0],
the solution S(t) is not nonnegative when t ≥ 0, then there must be the first time t1 > 0,
such that S(t1) = 0, S′(t1) < 0. According to the first equation of system (2), we can obtain
S′(t1) = 0, contradicting with S′(t1) < 0 at this time.
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Similarly, assuming that the solution of system (2) I(t) is not nonnegative when t ≥ 0
in the case of nonnegative initial function ϕI(θ) ≥ 0, θ ∈ [−τ, 0], then there must be a first
time t2 > 0, such that I(t2) = 0, I(t2 − τ) > 0, I′(t2) < 0, according to the second equation
of system (2): I′(t2) = βSI(t2 − τ), note the parameter β > 0, so I′(t2) > 0, contradicting
with I′(t2) < 0 at this time.

In summary, when t ≥ 0, the solutions S(t) and I(t) of system (2) are still nonnegative
for nonnegative initial functions.

3. Stability Analysis of Equilibrium and Existence of Hopf Bifurcation

In this section, we will discuss the stability of equilibria and the existence of Hopf
bifurcation for system (2).

3.1. Existence of Equilibrium Point

Firstly, we give the following assumptions:

(H1) n2 < 0,

(H2)


(d2 + k1α)(β2 + k2αn2)− k2α(n1β + n2n3)

β(β2 + k2αn2)
> 0,

n1β + n2n3

β2 + k2αn2
> 0.

System (2) always has a zero equilibrium E1 = (S(1), I(1)) = (0, 0) and a boundary
equilibrium E2 = (S(2), I(2)) = (0, n3

k2α ), since n3 > 0, k2α > 0. When (H1) holds, system (2)
has a disease-free equilibrium:

E3 = (S(3), I(3)) = (−n1

n2
, 0).

When (H2) holds, system (2) has a positive equilibrium:

E4 = (S(4), I(4)) = (
d2 + k1α− k2αI(4)

β
,

n1β + n2n3

β2 + k2αn2
).

Based on the practical significance, we pay more attention to the existence and stability
of disease-free equilibrium E3 and positive equilibrium E4.

Remark 1. If n2 = k2α− B
K < 0, that is k2α < B

K . When k2, α, B are fixed, the smaller K is, the
greater possibility of the assumption (H1) is established. Therefore, when the natural conditions
of a forest area are better, that is, the environmental carrying capacity of M. alternatus is large,
the assumption (H1) may not hold, and thus, the disease-free equilibrium E3 may not exist. This
indicates that when the forest conditions are suitable for the survival of M. alternatus, the infected
M. alternatus cannot be completely eliminated, which is consistent with the actual situation.

Next, we will discuss the existence and stability of equilibrium E3, E4.

3.2. Stability and Existence of Hopf Bifurcation for E3

When (H1) holds, system (2) has a disease-free equilibrium E3. Transferring the
equilibrium E3 to the origin and linearizing the surrounding system (2), we obtain the
characteristic equation of the linearized system as follows:

(λ + n1)

(
λ + n3 +

βn1

n2
e−λτ

)
= 0. (3)
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When τ = 0, Equation (3) becomes:

(λ + n1)

(
λ +

βn1 + n2n3

n2

)
= 0. (4)

Then, We give the following hypothesis:

(H3) βn1 + n2n3 < 0.

Equation (4) has two characteristic roots λ1 = −n1, λ2 = − βn1+n2n3
n2

. Since n2 < 0,
when (H3) holds, λ1 < 0 and λ2 < 0, then E3 is locally asymptotically stable; when
βn1 + n2n3 = 0, λ2 = 0, the equilibrium E3 undergoes a fixed point bifurcation; when
βn1 + n2n3 > 0, λ1 < 0 but λ2 > 0, and thus, the equilibrium E3 is unstable at this time.

When τ > 0, we try to discuss the existence of Hopf bifurcation. We assume that
λ = iω(ω > 0) is a pure imaginary root of Equation (3). Substituting it into Equation (3)
and separating the real and imaginary parts, we obtain:

ω2 − n1n3 =
βn2

1
n2

cos(ωτ) +
βn1ω

n2
sin(ωτ),

(n1 + n3)ω =
βn2

1
n2

sin(ωτ)− βn1ω

n2
cos(ωτ).

(5)

Equation (5) derives the following results:

sin(ωτ) =
n2
(

βn1ω3 + βn3
1ω
)

β2n4
1 + β2n2

1ω2
, X0,

cos(ωτ) =
−n2

(
βn3

1n3 + βn1n3ω2)
β2n4

1 + β2n2
1ω2

, Y0.

(6)

Adding the square of the two equations in Equation (5), letting ω2 = z, we obtain:

h(z) = z2 +
n2

1n2
2 + n2

2n2
3 − β2n2

1
n2

2
z +

n2
1
(
n2

2n2
3 − β2n2

1
)

n2
2

. (7)

When (H3) holds, β2n2
1 < n2

2n2
3, Equation (7) has no positive root, the equilibrium

E3 is locally asymptotically stable for any τ > 0; when βn1 + n2n3 = 0, β2n2
1 = n2

2n2
3,

Equation (7) also only has a zero root and no pair of pure imaginary roots, and thus, the
equilibrium E3 still undergoes a fixed point bifurcation; when βn1 + n2n3 > 0, β2n2

1 > n2
2n2

3,
Equation (7) always has one positive root z0. From Equation (6), we can solve the critical
value of time delay:

τ
(j)
0 =


arccos Y0 + 2jπ

ω0
, X0 > 0,

2π− arccos Y0 + 2jπ
ω0

, X0 ≤ 0, j = 0, 1, 2, · · · ,
(8)

where X0 and Y0 are given in Equation (6).

Lemma 1. If (H1) holds and βn1 + n2n3 > 0, when τ = τ
(j)
0 (j = 0, 1, 2, · · · ), then Equation (3)

has a pair of pure imaginary roots ±iω0, and all the other roots of Equation (3) have nonzero
real parts.

Let λ = λ(τ) be the root of Equation (3), satisfying λ(τ
(j)
0 ) = iω0(j = 0, 1, 2, · · · ).

Then, we will calculate transversality condition.
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Lemma 2. If (H1) holds and βn1 + n2n3 > 0, Equation (7) has one positive root z0 and z0 = ω2
0 ,

h′(z0) > 0, where h′(z) is the derivative of h(z) with respect to z. Then, we have the following
transversality condition:

Re
(

dλ

dτ

)−1
∣∣∣∣∣
τ=τ

(j)
0

=
n2

2h′(z0)

β2n2
1
(
n2

1 + z0
) > 0.

Therefore, when (H1) holds and βn1 + n2n3 > 0, system (2) undergoes a Hopf bifur-
cation near equilibrium E3.

Theorem 2. If the parameters of system (2) meet (H1), then:

(1) When (H3) holds, the equilibrium E3 is locally asymptotically stable for any τ ≥ 0.
(2) When (H3) does not hold, if βn1 + n2n3 = 0, the equilibrium E3 undergoes a fixed point

bifurcation for any τ ≥ 0; if βn1 + n2n3 > 0, it is unstable for any τ ≥ 0 and system (2)
undergoes a Hopf bifurcation near equilibrium E3 when τ = τ

(j)
0 .

3.3. Stability and Existence of Hopf Bifurcation for E4

Next, we analyze the stability of system (2) for E4 = (S(4), I(4)). Similarly, transferring
the equilibrium E4 to the origin and linearizing the system (2) around it, we obtain the
characteristic equation of the linearized system as follows:

λ2 +
(

a1 − βS(4)e−λτ
)

λ + a2 + a3e−λτ = 0. (9)

where
a1 = n3 − 2k2αI(4) − n2S(4),
a2 = 2n2k2αS(4) I(4) − n2n3S(4),
a3 = n2β(S(4))2 + β2S(4) I(4).

When τ = 0, Equation (9) becomes:

λ2 +
(

a1 − βS(4)
)

λ + a2 + a3 = 0. (10)

We consider the following assumption obtained by Vieta theorem:

(H4)

{
βS(4) − a1 < 0,

a2 + a3 > 0.

Under the assumption (H4), all the roots of Equation (10) have negative real parts,
and the equilibrium E4 = (S(4), I(4)) is locally asymptotically stable when τ = 0.

When τ > 0, we will discuss the existence of Hopf bifurcation. We assume that
λ = iω(ω > 0) is a pure imaginary root of Equation (9). Substituting it into Equation (9)
and separating the real and imaginary parts, we obtain:{

a1ω = a3 sin(ωτ) + βS(4)ω cos(ωτ),

ω2 − a2 = a3 cos(ωτ)− βS(4)ω sin(ωτ).
(11)

Equation (11) derives the following results:

sin(ωτ) =
a1a3ω + βS(4)a2ω− βS(4)ω3

a2
3 + β2(S(4))2ω2

, X1,

cos(ωτ) =
a3ω2 − a2a3 + βS(4)a1ω2

a2
3 + β2(S(4))2ω2

, Y1.

(12)



Mathematics 2023, 11, 3705 8 of 21

Adding the square of the two equations in Equation (11), letting ω2 = z, we obtain:

l(z) = z2 + A1z + A2 = 0, (13)

where A1 = a2
1 − 2a2 − β2(S(4))2 and A2 = a2

2 − a2
3. Then, if A1 > 0 and A2 > 0 hold,

Equation (13) has no positive root; if A2 < 0 holds, Equation (13) has one positive root z1;
if A1 < 0 and A2 > 0 hold, Equation (13) has two positive roots z2, z3. We hypothesize
that Equation (13) has positive roots zn(n = 1, 2, 3), then ωn =

√
zn(n = 1, 2, 3). From

Equation (12), we can solve the critical value of time delay:

τ
(j)
n =


arccos Y1 + 2jπ

ωn
, X1 > 0,

2π− arccos Y1 + 2jπ
ωn

, X1 ≤ 0, n = 1, 2, 3, j = 0, 1, 2, · · · ,
(14)

where X1 and Y1 are given in Equation (12).

Lemma 3. When (H2) and (H4) hold, if A2 < 0 or A1 < 0, A2 > 0, where A1 and A2 are given
in Equation (13), when τ = τ

(j)
n (n = 1, 2, 3, j = 0, 1, 2, · · · ), then Equation (9) has a pair of pure

imaginary roots ±iωn, and all the other roots of Equation (9) have nonzero real parts.

Let λ = λ(τ) be the root of Equation (9), satisfying λ(τ
(j)
n ) = iωn(n = 1, 2, 3). Then,

we will calculate transversality condition.

Lemma 4. When (H2) and (H4) hold, if A2 < 0 or A1 < 0, A2 > 0, where A1, A2 are given
in Equation (13), and zn = ω2

n, l′(zn) 6= 0(n = 1, 2, 3), where l′(z) is the derivative of l(z) with
respect to z. Then, we have the following transversality condition:

Re
(

dλ

dτ

)−1
∣∣∣∣∣
τ=τ

(j)
n

=
l′(zn)

β2(S(4))2zn + a2
3
6= 0.

Theorem 3. When (H2) holds, system (2) has a positive equilibrium E4. When (H4) holds as well:

(1) If A1 > 0, A2 > 0 hold, Equation (13) has no positive root, the equilibrium E4 is locally
asymptotically stable for any τ ≥ 0;

(2) If A2 < 0 holds, Equation (13) has one positive roots z1, then when τ ∈ [0, τ
(0)
1 ), the

equilibrium E4 is locally asymptotically stable, and unstable when τ > τ
(0)
1 , and it undergoes

a Hopf bifurcation when τ = τ
(j)
1 , j = 0, 1, 2, · · · ;

(3) If A1 < 0, A2 > 0 hold, system (2) undergoes a Hopf bifurcation near the equilibrium E4

when τ = τ
(j)
n , n = 2, 3, j = 0, 1, 2, · · · . Then, ∃m ∈ N makes 0 < τ

(0)
3 < τ

(0)
2 < τ

(1)
3 <

τ
(1)
2 < · · · < τ

(m−1)
2 < τ

(m)
3 < τ

(m+1)
3 . When τ ∈

[
0, τ

(0)
3

)⋃ m⋃
l=1

(
τ
(l−1)
2 , τ

(l)
3

)
, the

equilibrium E4 of the system (2) is locally asymptotically stable, and when

τ ∈
m−1⋃
l=0

(
τ
(l)
3 , τ

(l)
2

)⋃(
τ
(m)
3 ,+∞

)
, the equilibrium E4 is unstable.

4. Normal Form of Hopf Bifurcation

In Section 3, we have shown that when βn1 + n2n3 < 0, the equilibrium E3 is locally
asymptotically stable for any τ ≥ 0; when βn1 + n2n3 > 0, the bifurcating periodic solution
near the equilibrium E3 is unstable by Theorem 2. Thus, we only care about the stability of
bifurcating periodic solution near the positive equilibrium E4. In order to be more realistic,
we focus on the delay between taking control measures and the beginning of control to
take effect. Therefore, we consider the time-delay τ as a bifurcation parameter and denote
the critical value τ = τc = τ

(j)
n , where τ

(j)
n is given in Equation (14). When τ = τ

(j)
n ,
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Equation (13) has a pair of pure imaginary roots λ = ±iω. Therefore, system (2) undergoes
a Hopf bifurcation near equilibrium E4. In this section, we derive the normal form of Hopf
bifurcation for the system (2) by using the multiple time scales method.

In order to normalize the delay, we first re-scale the time t by using t 7→ t/τ, then

translate the equilibrium E4 = (S(4), I(4)) = ( d2+k1α−k2αI(4)
β , n1β+n2n3

β2+k2αn2
) to the origin, so

system (2) is transformed into:
dS
dt

= τ[(n1 + 2n2S(4) − βI(4))S(t) + n2S2(t)− β(S(t) + S(4))I(t− 1)],

dI
dt

= τ[(2k2αI(4) − n3)I(t) + k2αI2(t) + βI(4)S(t) + β(S(t) + S(4))I(t− 1)].
(15)

Equation (15) can also be written as:

˙Z(t) = τN1Z(t) + τN2Z(t− 1) + τF(Z(t), Z(t− 1)), (16)

where
Z(t) = (S(t), I(t))T , Z(t− 1) = (S(t− 1), I(t− 1))T ,

and

N1 =

(
n1 + 2n2S(4) − βI(4) 0

βI(4) 2k2αI(4) − n3

)
, N2 =

(
0 −βS(4)

0 βS(4)

)
,

F(Z(t), Z(t− 1)) =

(
n2S2(t)− βS(t)I(t− 1)

k2αI2(t) + βS(t)I(t− 1)

)
.

Let h be eigenvector corresponding to eigenvalue λ = iωτ of linearized system of
Equation (16), and h∗ be the eigenvector corresponding to eigenvalue λ = −iωτ of adjoint
matrix of linearized system of Equation (16), satisfying:

〈h∗, h〉 = h∗
T

h = 1. (17)

By calculating, we have:
h = (h11, h12)

T = (1,
n2S(4)−iω
βS(4)e−iωτ

)

T

,

h∗ = d(h21, h22)
T = d(

iω− n3 + 2k2αI(4) + βS(4)eiωτ

βS(4)eiωτ
, 1)

T

,

(18)

where d = (h11h21 + h12h22)
−1

.
We suppose the solution of Equation (16) is as follows:

Z(t) = Z(T0, T1, T2, · · · ) =
+∞

∑
k=1

εkZk(T0, T1, T2 · · · ), (19)

where

Z(T0, T1, T2, · · · ) = (S(T0, T1, T2, · · · ), I(T0, T1, T2, · · · ))T ,

Zk(T0, T1, T2, · · · ) = (Sk(T0, T1, T2, · · · ), Ik(T0, T1, T2, · · · ))T .

The derivative with respect to t is transformed:

d
dt

=
∂

∂T0
+ ε

∂

∂T1
+ ε2 ∂

∂T2
+ · · · = D0 + εD1 + ε2D2 + · · · , (20)
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where Di is differential operator, and:

Di =
∂

∂Ti
(i = 0, 1, 2 · · · ).

Note that:

Zi = (Si, Ii)
T = Zi

(
t, εt, ε2t, · · ·

)
,

Zi1 = (Si, Ii)
T = Zi

(
t− 1, εt, ε2t, · · ·

)
, i = 1, 2, · · · .

Then, we obtain:

Ż(t) = εD0Z1 + ε2D1Z1 + ε3D2Z1 + ε2D0Z2 + ε3D1Z2 + ε3D0Z3 + · · · . (21)

Using a Taylor series expansion of Z(t− 1), we obtain: that

Z(t− 1) = εZ11 + ε2(Z21 − D1Z11) + ε3(Z31 − D1Z21 − D2Z11) + · · · , (22)

where Zi1 = Zi(T0 − 1, T1, T2, · · · ), i = 1, 2, 3, · · · .
As we stated, τ is the bifurcation parameter, and τ = τc + εµ, where τc = τ

(j)
n

(j = 0, 1, 2, · · · ) is the Hopf bifurcation critical value, µ is perturbation parameter, and ε
is dimensionless scale parameter. Substituting Equations (19)–(22) into Equation (16) and
balancing the coefficients before ε on both sides of the equation, the following expression is
obtained: {

D0S1 = τc[(n1 + 2n2S(4) − βI(4))S1 − βS(4) I11],

D0 I1 = τc[(2k2αI(4) − n3)I1 + βS(4) I11].
(23)

Thus, Equation (23) has the following solution form:

Z(T1, T2, T3, · · · ) = G(T1, T2, T3, · · · )eiωτcT0 h + Ḡ(T1, T2, T3, · · · )e−iωτcT0 h̄. (24)

The expression of the coefficient before ε2 is as follows:

D0S2 − τc[(n1 + 2n2S(4) − βI(4))S2 − βS(4) I21]

=− D1S1 + τc[n2S2
1 − βS1 I11 + βS(4)D1 I11] + µ[(n1 + 2n2S(4) − βI(4))S1 − βS(4) I11],

D0 I2 − τc[(2k2αI(4) − n3)I2 + βI(4)S2 + βS(4) I21]

=− D1 I1 + τc[k2αI2
1 ++βS1 I11 − βS(4)D1 I11] + µ[(2k2αI(4) − n3)I1 + βS(4) I11].

(25)

Substituting Equation (24) into the right-hand side of Equation (25), and the coefficient
vector of eiωτcT0 is denoted by m1. According to the solvability condition 〈h∗, m1〉 = 0, the
expression of ∂G

∂T1
is obtained as follows:

∂G
∂T1

= µMG, (26)

where M =
h21[(n1+2n2S(4)−βI(4))h11−βS(4)e−iωτc h12]+h22[(2k2α−n3)h12+βS(4)e−iωτc h12]

h21(h11−βS(4)τce−iωτc h12)+h22(h12+βS(4)τce−iωτc h12)
.

Since µ is a disturbance parameter, we only consider its effect on the linear part.
Therefore, we ignore the part containing µ in the higher order. We suppose the solutions of
Equation (25) are given as follows:{

S2 = η0GḠ + η1e2iωτcT0 G2 + η̄1e−2iωτcT0 Ḡ2,

I2 = ξ0GḠ + ξ1e2iωτcT0 G2 + ξ̄1e−2iωτcT0 Ḡ2,
(27)

where
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(
η0

ξ0

)
= V0

(
n3 − 2k2αI(4) − βS(4) βS(4)

βI(4) βI(4) − n1 − 2n2S(4)

)(
x0

y0

)
,(

η1

ξ1

)
= V1

(
2iω− 2k2αI(4) + n3 − βS(4)e−2iωτc βS(4)eiωτc

βI(4) 2iω− n1 − 2n2S(4) I(4)eiωτc

)(
x1

y1

)
,

(28)

where h11, h12, h21, h22 are given in Equation (18) and

x0 = 2n2h11h11 − βh12h11eiωτc − βh11h12e−iωτc ,

y0 = 2k2αh12h12 + βh12h11eiωτc + βh11h12e−iωτc ,

x1 = n2h2
11 − βh11h12e−iωτc , y1 = k2αh2

12 + βh11h12e−iωτc ,

V0 =
[(

βI(4) − n1 − 2n2S(4)
)(

n3 − 2k2αI(4) − βS(4)
)
− β2S(4) I(4)

]−1
,

V1 =
[(

2iω− n1 − 2n2S(4) I(4)eiωτc
)(

2iω− 2k2αI(4) + n3 − βS(4)e−2iωτc
)
− β2S(4) I(4)eiωτc

]−1
.

The expression of the coefficient before ε3 is:

D0S3 − τc[(n1 + 2n2S(4) − βI(4))S3 − βS3 − βS(4) I31]

=− D1S2 − D2S1 + τc[2n2S1S2 − β(S1 I21 + S2 I11 − S(4)D1 I21 − S(4)D2 I11)]

+µ[(n1 + 2n2S(4) − βI(4))S2 + n2S2
1 − βS1 I11 − βS(4)(I21 − D1 I11)],

D0 I3 − τc[(2k2αI(4) − n3)I3 + βI(4)S3 + βS3 + βS(4) I31]

=− D1 I2 − D2 I1 + τc[2k2αI1 I2 + β(S1 I21 + S2 I11 − S(4)D1 I21 − S(4)D2 I11)]

+µ[(2k2αI(4) − n3)I2 + k2αI2
1 + βI(4)S2 + βS1 I11 + βS(4)(I21 − D1 I11)].

(29)

Next, substituting solution (24) and (27) into Equation (29), and with the coefficient
vector of eiωτcT0 noted as m2, by solvability condition, we have 〈h∗, m2〉 = 0. Note that µ
is a disturbance parameter, and µ2 has little influence for small unfolding parameter, and
thus, we can ignore the µ2G, then the expression of ∂G

∂T2
can be obtained as follows:

∂G
∂T2

= HG2Ḡ, (30)

where

H = P

Q− 2τcn2η0h11

Q + 2τck2α
(

ξ0h12 + ξ1h12

)T(
h21

− h22

)
,

P =
[

h21

(
2βS(4)τce−iωτc h12 − h11

)
− h22

(
2βS(4)τce−iωτc h12 + h12

)]−1
,

Q = βτc

(
ξ0h11 + ξ1h11e−2iωτc + η0h12e−iωτc + η1h12eiωτc

)
,

where h11, h12, h21, h22 are given in Equation (18), and ξ0, η0, ξ1, η1 are given in Equation (28).
Let G 7→ G/ε, then, the deduced third-order normal form of Hopf bifurcation of

system (2) is:
Ġ = µMG + HG2Ḡ, (31)

where M is given in (26) and H is given in (30).
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Substituting G = reiθ into Equation (31), the following normal form of Hopf bifurca-
tion in polar coordinates is obtained:{

ṙ = Re(M)µr + Re(H)r3,

θ̇ = Im(M)µ + Im(H)r2.
(32)

According to the normal form of Hopf bifurcation in polar coordinates, we only need
to consider the first equation in system (32). Thus, the following theorem holds:

Theorem 4. For the system (32), when Re(M)µ
Re(H)

< 0, there is a semitrivial fixed point r =√
−Re(M)µ

Re(H)
, and system (2) has periodic solution.

(1) If Re(M)µ < 0, then the periodic solution reduced on the center manifold is unstable.
(2) If Re(M)µ > 0, then the periodic solution reduced on the center manifold is stable.

5. Numerical Simulations

In this part, we first analyze the reasonable values of the parameters based on the
existing practical research and then we give numerical simulation based on the selected
parameters by using Matlab software (R2021a). Finally, we draw some conclusions accord-
ing to the simulation results, providing practical guidance for the prevention and control
of PWD.

5.1. Determination of Parameter Values
5.1.1. Parameter Analysis of Mortality d1, d2

Firstly, Ref. [24] provides us with the relationship between the longevity of M. alterna-
tus and the number of PWN carried, as shown in Table 2.

Table 2. Longevity and the number of PWN carried of M. alternatus.

No. Quantity of PWN Carried/Pieces Longevity of M. alternatus/d

1 131 30
2 425 42
3 4904 39
4 3031 39
5 3633 39
6 206 30
7 13,232 30
8 8324 45
9 2339 45
10 1209 42
11 1860 45
12 884 42
13 1084 42
14 3440 36
15 36 39
16 209 33
17 1759 30
18 30,754 33

Based on the data in Table 2, we remove the maximum and minimum values of the
PWN number carried by M. alternatus, and then plot the original curve and curve after
quadratic fitting by interpolation, as shown in Figure 2.

It can be seen from Figure 2 that PWN has a certain weak negative effect on the
longevity of M. alternatus. Despite this, findings from the experiments conducted by
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Jikumaru et al. [25] reveal that the quantity of nematodes carried by M. alternatus seldom
exceeds 10,000 per individual. Consequently, the effect on the lifespan of M. alternatus
attributable to the carriage of nematodes is not considered within this analysis. Therefore,
for the mortality of M. alternatus, we use data from Ref. [17], which holds that the mortalities
of susceptible and infected M. alternatus are both 0.01, so we set d1 = d2 = 0.01.

Figure 2. Relationship curve between longevity of M. alternatus and amount of PWN carried.

5.1.2. Parameter Analysis of Birth Rate B

The female of M. alternatus has strong fecundity, with more than 100 eggs per fe-
male [26]. In southern China, the larval stage of M. alternatus lasts about 240–330 days.
Most larvae overwinter from October to March and begin to hatch in mid-May, and its
hatching rate is as high as 90% [27]. We define the birth rate of M. alternatus (unit time:
year) as follows: B = C

N , N = C + N1 − N2, where C denotes the number of new born M.
alternatus (head/year), N denotes the average number of M. alternatus (head/year), N1
denotes the initial number of M. alternatus (head/year), and N2 denotes the number of dead
M. alternatus (head/year). For a certain forest, regardless of the entry of alien M. alternatus,
it is considered that the initial M. alternatus are formed by the hatching of larvae in the
previous year. It can be seen that M. alternatus have strong fecundity and low mortality
by above analysis and the given mortality rate, and thus C � N1 − N2, that is N ≈ C.
Therefore, the formula of the birth rate can be approximated as B = C

C , from which we
believe that B ≈ 1.

5.1.3. Parameter Analysis of Infection Coefficient β

The transmission of PWN by M. alternatus occurs through various activities, such
as oviposition and feeding on pine trees, so the infection coefficient β was related to the
number of infected trees in the epidemic area, the frequency with which M. alternatus carry
PWN upon emergence from dead trees, and the rate at which M. alternatus transmit PWN
through oviposition and feeding and so on. Acquiring precise values for the aforementioned
rates proves challenging, yet Ref. [28] provided approximate statistical probabilities,
specifically 0.00305 and 0.00166, respectively. For the number of infected trees in the
epidemic area, although we can take control measures to reduce this value, completely
removing diseased trees is a challenging task, and it may require cutting or burning of
all the trees immediately after PWD occurs. However, it is unrealistic for most epidemic
areas as we cannot guarantee that there are no remnants of diseased trees. According
to the data released by the National Forestry and Grassland Administration of China
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(http://www.forestry.gov.cn/search/364152 (accessed on 10 August 2023)), more than
6 million pine trees died in Chongqing, China in 2022. We assume that the burning and
crushing rate of above dead trees can reach 96%, then we can get β ≈ 6× 106× (1− 0.96)×
0.00305× 0.00166 ≈ 1.2.

5.1.4. Analysis of Other Parameters

We use k1α to represent the control measures efficiency against PWD. Evidently, as
the control intensity increases, the efficiency of these measures does not simply increase
linearly, yet exhibits an overall positive impact across the forested region. In order to
more accurately portray the nuanced characteristics of this, we choose quadratic growth of
control efficiency for system (1) expressed as k1 = α.

According to the analysis of the model in Section 1, α changes within 0∼1. When
α = 0, it means that there is no prevention and control; when α = 1, it means that the
theoretically infected beetles are completely eliminated, and obviously, this is not possible
in reality. Moreover, considering the average level of disease-affected areas, the control
measures efficiency is mainly maintained at 30∼50%, and thus, we set α ∈ [0, 0.85], which
is more reasonable. When α = 0.85, the effective control rate of PWD was about 70% which
is slightly higher; when α = 0.65, the effective control rate of PWD was about 40%, which
is more consistent with the reality.

In this system, the environmental carrying capacity is affected by disease control, and
it decreases as the control intensity increases. Moreover, in order to reflect the difference of
the initial environment and highlight the impacts of the control intensity on the system to
be consistent with the actual situation, we set K = 10(1− α) or K = 50(1− α).

k2α shows that the mortality rate of M. alternatus follows logistic growth, leading to a
saturation in the eradication of M. alternatus. The saturation rate is tied to control intensity,
in that an increase in control intensity results in an accelerated rate of saturation. In reality,
however, this change is relatively slow, so we set k2 = 0.1.

Based on the above analysis, we take three groups of parameters as follows:

group I : B = 1, d1 = d2 = 0.01, β = 1.2, α = 0.85, K = 10(1− α) = 1.5, k1 = α = 0.85,

k2 = 0.1,

group II : B = 1, d1 = d2 = 0.01, β = 1.2, α = 0.65, K = 10(1− α) = 3.5, k1 = α = 0.65,

k2 = 0.1,

group III : B = 1, d1 = d2 = 0.01, β = 1.2, α = 0.65, K = 50(1− α) = 17.5, k1 = α = 0.65,

k2 = 0.1.

5.2. Simulation Results
5.2.1. Simulation Results under Group I

According to the analysis in Section 5.1, we choose the first group of parameters:

B = 1, d1 = d2 = 0.01, β = 1.2, α = 0.85, K = 1.5, k1 = 0.85, k2 = 0.1.

It is easy to calculate that (H1) n2 = −0.5817 < 0 and (H3) βn1 + n2n3 = −0.1051 < 0
hold, and E4 = (0.61577,−0.07556), so there is only one disease-free equilibrium
E3 = (S(3), I(3)) = (0.45989, 0) of the system (2). The equilibrium E3 is locally asymp-
totically stable for any τ ≥ 0 by Theorem 2. We choose τ = 0 for the initial values [0.48, 0.1]
and τ = 1 for the initial function ϕ(θ) = [0.48, 0.1]T , θ ∈ [−τ, 0] for the simulations. Clearly,
the equilibrium E3 is locally asymptotically stable, as shown in Figure 3.

When τ = 0, as we can see in Figure 3a, the number of infected M. alternatus will
decrease rapidly in five years, and eventually, the infection would disappear completely.
This case shows that when there is no time delay of the control to take effect, PWD will
disappear. When τ = 1, the solution is shown in Figure 3b. In this case, there is a time delay
of the control to take effect and compared with τ = 0, it takes a bit longer for equilibrium

http://www.forestry.gov.cn/search/364152
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E3 to be stable. However, eventually, there will be no infected M. alternatus, and PWD will
still disappear in this case.

Figure 3. Equilibrium E3 of system (2) is locally asymptotically stable.

Remark 2. According to the above parameter analysis, we find that when α is large, the positive
equilibrium E4 does not exist, and for any τ ≥ 0, the equilibrium E3 of the system (2) is locally
asymptotically stable, so PWD is completely eliminated, which verifies our theoretical analysis.
However, the shorter the time delay is, the faster the equilibrium will stabilize. This suggests that
with strong disease control efforts, the disease will eventually disappear regardless of the time delay
in the effective of control. However, given the difficulty and cost of disease control, greater control
intensity means greater difficulty and investment in the control process, and thus, there is the
possibility of a lack of practice in some areas. Therefore, we mainly analyze the stability of the system
when α < 65% for the general situation, and in this way, the control measures efficiency k1α is
about 40% or less, which is more consistent with the reality.

5.2.2. Simulation Results under Group II

We choose the second group of parameters given in Section 5.1:

B = 1, d1 = d2 = 0.01, β = 1.2, α = 0.65, K = 3.5, k1 = 0.65, k2 = 0.1,

where we find that (H1) n2 = −0.2207 < 0 and (H3) βn1 + n2n3 = 0.5855 > 0, so (H1)
holds and (H3) does not hold, while system (2) always has a disease-free equilibrium
E3 = (2.5712, 0), but it is unstable for any τ ≥ 0 by Theorem 2. (H2) holds still under these
condition, and thus, system (2) always has a positive equilibrium E4 = (0.33817, 0.41072).
When τ = 0, (H4) holds. As shown in Figure 4, the equilibrium E4 is always locally
asymptotically stable.

When τ > 0, calculated by Equations (13) and (14), A2 = −0.0280 < 0, τ
(0)
1 = 0.3024.

When τ ∈ [0, 0.3024), due to Theorem 3, E4 is locally asymptotically stable and when
τ ∈ (0.3024,+∞), E4 is unstable; and system (2) undergoes a Hopf bifurcation near E4
when τ = 0.3024. It can be calculated from Equations (26)–(30) that Re(M) > 0, Re(H) < 0,
and thus, system (2) displays stable and forward Hopf bifurcation periodic solution near
equilibrium E4 by Theorem 3. We choose τ = 0.05 ∈ [0, 0.3024), which is about 20 days,
and the positive equilibrium E4 of system (2) is locally asymptotically stable as shown in
Figure 5. Then, we choose τ = 0.30245 > 0.3024, which is about 110 days, and a stable
and forward Hopf bifurcation periodic solution appears near the positive equilibrium E4 of
system (2), as shown in Figure 6. The numerical simulation results are consistent with the
theoretical analysis.
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Figure 4. Equilibrium E4 of system (2) for τ = 0 is locally asymptotically stable.

Figure 5. Equilibrium E4 of system (2) for τ = 0.05 is locally asymptotically stable.

Figure 6. System (2) for τ = 0.30245 occurs stable and forward Hopf bifurcation periodic solution
near equilibrium E4.
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Remark 3. According to Figure 5, it can be seen that when the infection rate of M. alternatus
begins to decline after about 20 days (that is, the control begins to take effect in about 20 days), when
system (2) will reach a stable state, and thus, the spread of PWD is controllable at this moment,
and the number of susceptible and infected M. alternatus will tend to be a fixed value; when the
infection rate of M. alternatus begins to decline at around 110 days (that is, the control begins to
take effect in about 110 days), system (2) displays a stable Hopf bifurcation periodic solution, and
the disease will have a periodic outbreak. At this time, it is difficult for us to cure the disease, and we
need to invest in higher costs to control its spread. According to Figure 6, we find that the period of
disease outbreak is about 14 years, and therefore, prevention can be implemented proactively based
on outbreak patterns, strengthening the intensity of monitoring for forest areas before the outbreak
of PWD, and taking measures such as trunk injection of nematicides or spraying nematicides and
insecticides in advance.

Moreover, when α < 65% and B = 1, d1 = 0.01, d2 = 0.01, β = 1.2, K = 10(1− α),
k1 = α, k2 = 0.1, it is found that n2 < 0, βn1 + n2n3 > 0 in our calculations, and thus,
the system has two equilibrium E3, E4 and the disease-free equilibrium E3 is unstable by
Theorem 2. We draw the dynamic change curve of equilibrium E4 = (S(4), I(4)) under
different control intensities, as shown in Figure 7. It is easy to find that with the increase
of α, S(4) increases and I(4) decreases, which means the bigger the intensity of control, the
smaller the number of infected M. alternatus that eventually reach stability. When the value
of α is more than about 84%, infected M. alternatus will disappear, which corresponds with
the previous analysis.

Figure 7. Dynamic curve of the equilibrium E4 with the intensity of artificial control α.

Remark 4. According to Figure 7, we find that the number of infected M. alternatus decreases as
the control intensity increases. Therefore, it is necessary to increase the value of α on the premise of
considering the cost. Considering some real situations in epidemic areas, eliminating all potentially
diseased trees immediately at the beginning of the outbreak is the best way to control PWD [29].
However, this is not a method to control or treat PWD before PWN infection. In addition to
removing trees, we should also take control measures against M. alternatus. Traditional chemical
control is effective, but there are some defects, such as short duration and the destruction of ecological
balance. In recent years, physical control, biological control, biomimetic technology, and other
control methods have developed rapidly. Physical and biological control are environmentally friendly
and have a long duration, but the effect is slow; using attractants to trap M. alternatus is part of
biomimetic technology, which is easy to operate and has a low cost compared with other control
methods. However, most attractants need to be improved in terms of trapping specificity, which
is worthy of further exploration by scholars. Based on the above analysis, on the premise of all
potentially diseased trees being removed as soon as possible, we recommend using chemical control
in the early stage of disease control to quickly improve the value of α to control the number of infected
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M. alternatus; in the middle and late stages of control, we can prolong the duration combined with
other control methods, which can further improve the value of α and has a preventive effect on PWD.

Then, we will compare the convergence speed of S, I. When τ = 0, we choose
α = 0.45, α = 0.55, α = 0.65, α = 0.75 for comparison based on B = 1, d1 = 0.01, d2 = 0.01,
β = 1.2, K = 10(1 − α), k1 = α, k2 = 0.1. When α = 0.45, βS(4) − a1 = 0.0078 > 0,
a2 + a3 = 0.1403 > 0, (H4) does not hold, so E4 is unstable now by Theorem 3; when
α = 0.55, βS(4) − a1 = −0.0097 < 0, a2 + a3 = 0.1821 > 0, (H4) holds this moment, so
E4 is locally asymptotically stable by Theorem 3. As we can see in Figure 8, we find that
α = 0.45, S, I do not converge, which is consistent with theoretical analysis, when α = 0.55,
S, I converge, but the convergence rate is very slow. Moreover, the convergence speed
of S, I increases as α increases from 0.55 to 0.75. When τ > 0, we still choose group II to
compare the convergence speed of S, I for different time delays τ, as shown in Figure 9. It
can be obtained that as the time delay τ increases from 0.05 to 0.15, the time required for
the system (2) to reach stability increases accordingly.

Figure 8. Comparison of convergence speed of S and I for τ = 0 under different α.

Figure 9. Comparison of convergence speed of S and I for α = 0.65 under different τ.

Remark 5. According to Figure 8, when α > 0.55, the system will eventually reach a stable state
without time delay. Moreover, with the increase of α, the time needed for the system to reach stability
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decreases correspondingly, so the difficulty of control and investment cost decrease correspondingly.
In addition, when α > 0.55, it will take a lengthy time although the system finally tends to be stable.
During this period, the disease is still unstable and causes damage to the forest. Therefore, in this
case, the control measures should get timely adjustment to improve the intensity of control, so as to
improve control efficiency to shorten this time. Combining with Figure 7, we can also illustrate the
necessity of increasing the value of α. It can be observed from Figure 9 that when the time delay
exists, the control will take effect later, and the time required for the system to reach stability will be
longer; thus, the loss will be greater. However, τ = 0 means that there is no time delay of the control
to take effect. When we take measures to protect trees such as nematicide injection, considering
the limitation of detection technology, nematicide injection may not be carried out in time. This
will cause a huge hidden danger for the spread of PWN. Therefore, the ideal situation of τ = 0 is
difficult to achieve in practice. However, we can shorten this delay in other ways. For example,
we can reduce the time delay of control to take effect by expanding the range of trees injected with
nematicide, increasing the number of injections and giving them before the emergence of larvae.

5.2.3. Simulation Results under Group III

We choose the third group of parameters given in Section 5.1:

B = 1, d1 = d2 = 0.01, β = 1.2, α = 0.65, K = 17.5, k1 = 0.65, k2 = 0.1,

under the condition of this group of parameters, n2 = 0.0079 > 0, so the disease-free
equilibrium E3 does not exist at this time. When τ = 0, βS(4) − a1 = 0.0335 > 0, a2 + a3 =
0.2291 > 0, (H4) does not hold, so E4 is unstable now by Theorem 3, as shown in Figure 10.
That is, the equilibrium E4 is unstable when the environment of PWD epidemic area is
suitable for the growth of M. alternatus. Moreover, it can be seen from Figure 10 that a large-
scale outbreak occurs about every 50 years. We should try our best to avoid this situation, so
it is important to reduce the environmental capacity of M. alternatus. Releasing competitive
or predatory natural enemies of M. alternatus can help achieve this to some extent. Although
biological control is slow to take effect, it can greatly shorten the environmental carrying
capacity of M. alternatus and, as an auxiliary measure, it is beneficial to control the spread
of PWD when it breaks out.

Figure 10. Equilibrium E4 of system (2) for τ = 0 is unstable.

6. Conclusions

This paper focuses on the dynamics of the insect-vector populations based on SI epi-
demic model. By dividing M. alternatus into susceptible and infected, we have constructed
a two-dimensional delay differential equation model considering the control intensity and
the time delay for control to take effect. After that, we have analyzed the existence and
stability of the equilibrium and the existence of Hopf bifurcation, and derived the normal
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form of Hopf bifurcation by using a multiple time scales method. Finally, by selecting
scientific parameters for numerical simulation, the results of our theoretical analysis have
been verified. Numerical analysis shows that when the intensity of control is large (obvi-
ously, if the intensity of control is large, then the environmental carrying capacity of M.
alternatus will decrease accordingly), the disease-free equilibrium E3 is always stable; when
the intensity of control is 55%∼75%, the disease-free equilibrium E3 is unstable for any
τ ≥ 0, and oppositely, the positive equilibrium E4 is stable before the critical time delay τ

(0)
1 ,

and the system will occur stable Hopf bifurcation periodic solution near equilibrium E4. If
the environmental carrying capacity of M. alternatus is large, the disease-free equilibrium
E3 does not exist and the positive equilibrium E4 cannot reach stability, which provides a
theoretical support for the prevention and control of PWD. However, in fact, there are many
difficulties in the disease control. For example, the effect of control is affected by many
factors, so it is unrealistic for the intensity of disease control α to remain constant. In the
process of modeling, we assume that the parameters are constant; in reality, the parameters
are changing over time. However, in general, the stability of our model is consistent with
the reality. Based on the stability analysis, more effective measures can be taken to reduce
the damage caused by PWD.

In addition, our numerical analysis also shows that the number of infected M. alternatus
decreases with the control intensity increasing, and the time for the system to reach stability
increases with the time delay increasing. Therefore, it is important to increase the control
intensity and shorten the time delay of control to take effect. Here, we suggest that in the
process of prevention and control, we can choose combined measures to increase control
intensity. Meanwhile, we suggest strengthening the monitoring of trees to take measures
on trees as soon as possible to shorten the time delay. Moreover, when the the system
eventually fails to reach stability, the disease outbreak shows apparent periodicity. In
this way, we can better prevent the outbreak of PWD according to some rules, which can
prolong the growth cycle of trees and reduce the loss of forest resources, and thus, improve
the carbon sink capacity of forests and accelerate the realization of the goal of “emission
peak and carbon neutrality”, so as to build a modernized country in which humanity and
nature coexist in harmony.
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