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Abstract: The semiconductor industry is a rapidly growing sector. As collection technologies for
production data continue to improve and the Internet of Things matures, production data analysis
improves, thus accelerating progress towards smart manufacturing. This not only enhances the pro-
cess quality, but also increases product lifetime and reliability. Under the assumption of exponential
distribution, the ratio of lifetime and warranty has been proposed as a lifetime performance index for
electronic products. As unknown parameters of the index, to use point estimates to assess lifetime
performance may cause misjudgment due to sampling errors. In addition, cost and time limitations
often lead to small sample sizes that can affect the results of the analysis. Type-II censored data are
widely applied in production and manufacturing engineering. Thus, this paper proposes an unbiased
and consistent estimator of lifetime performance based on type-II censored data. The 100(1 − α)%
confidence interval of the proposed index is derived based on its probability density function. Overly
small sample sizes not only make the length estimates of lifetime performance index intervals for
electronic products too long, but they also increase sampling errors, which distort the estimation and
test results. We therefore used the aforementioned interval to construct a fuzzy test model for the
assessment of product lifetime and further help manufacturers to be more prudent and precise to
evaluate the performance of product life cycles. A numerical example illustrates the applicability of
the proposed model.

Keywords: relative lifetime performance index; type II censoring data; unbiased estimator; consistent
estimator; confidence-interval-based fuzzy testing method

MSC: 62A86

1. Introduction

The semiconductor industry is involved in the wafer manufacturing, integrated circuit
(IC) design, packaging, and peripheral components necessary for end products such as
smartphones, tablet computers, and smart internet end devices [1,2]. Industry clusters
in Taiwan represent a crucial industry chain for consumer electronics worldwide [3–6].
Offering good product quality not only enhances its product lifespan and reliability, but
also bolsters user satisfaction and willingness to use it [2,7]. As the collection technologies
for production data continue to improve and the Internet of Things matures, production
data analysis improves, thus accelerating progress toward smart manufacturing. This not
only enhances the process quality, but also increases the product lifetime and reliability [8].
Furthermore, owing to the limitation of the cost and time, the estimation accuracy of the
samples in the study leads to not being significant. Thus, in order to increase its estimation
accuracy and eliminate the uncertain measurement data, confidence interval-based fuzzy
evaluation models were built up via the confidence interval of indices in the study [9,10].
In order to prevent the risk of misjudgment caused not only by sampling errors but also
by factoring in expert experiences and past data into consideration, it becomes necessary
to increase the accuracy of each case with smaller sample sizes and analyze data with
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confidence intervals. Constructing a fuzzy test model to evaluate the product lifetime is
also a way to compensate for sampling errors in small sample sizes [7,9].

As for product marketing, the term of warranty is shown to be a crucial index. Chen
and Yu [11] indicated that whether customers feel satisfied with the products and be
willing to use them lies in the good quality of the product with longer product lifetime and
its reliability. Many researchers have confirmed the convenience and efficacy of process
capability indices (PCIs) for the assessment of process quality in practice [12]. PCIs have
also been applied to the lifetime and reliability of electronic products [13]. On the basis
of some studies shown, it has been proved that ameliorating the process of quality check
is able to shun off some unnecessary cost caused by the rework and defective products.
Furthermore, it is also able to decrease energy consumption and carbon emissions [14,15]. It
is of importance to manufacture all parts of the product with high quality. In order to make
all the final products meet the quality standard, forming stringent requirements becomes
necessary [16].

Additionally, in the industrial field, on account of the limitation of cost and time,
noticing small-size samples implemented in the survey is not uncommon [17]. According
to some previous studies conducted by the experts, it has been argued that utilizing the
analyzing tool, fuzzy evaluation model, to analyze the sample with small data is able to
make the result of the survey reach its reliability and validity [9,10]. Additionally, in order
to lower the risk of misjudgment caused by sampling errors, putting interval estimates into
practice has been proved to be much more accurate compared to the point estimates [7].

Product lifetime is exponentially distributed with mean λ. Tong et al. [18] proposed
the following lifetime performance index CL:

CL =
µT − L

µT
= 1− L

λ
(1)

where L denotes the minimum number of time units that the lifetime of each electronic
component is required to reach, and parameter λ is the expected value µT of the electronic
component lifetime. We assume that the lifetime of the electronic component (T) follows
an exponential distribution with the mean λ; thus, the probability density function of T is
as follows:

fT(t) =
1
λ

e−
t
λ , t > 0 (2)

As noted by Chen and Yu [19], when the mean lifetime of the electronic component
λ ≥ L, then the lifetime performance index CL ≥ 0. Clearly, the greater the lifetime perfor-
mance index CL is, the better its lifetime performance is. However, the warranty period of a
product is generally only three years (L = 3), yet only when the mean lifetime λ approaches
infinity does the lifetime performance index CL of the electronic component approach 1.
This does not fit the conventions of the industry. Chen et al. [20] therefore proposed a
relative lifetime performance index. This index is defined as follows:

βL =
µT
L

=
λ

L
(3)

As noted by Chen and Yu [19], the lifetime performance index is the ratio of λ and
L. The one-to-one relationship between both index βL and CL is βL = (1 − CL)

−1. If the
relative lifetime is X = T/L, then (1) when random variable X < 1, the lifetime of electronic
component is denoted as equal to the warranty (T < L), (2) when random variable X = 1, the
lifetime of the electronic component is denoted as equal to the warranty (T = L), (3) when
random variable X > 1, the lifetime of the electronic component is denoted as longer than
the warranty (T > L). Thus, X is the only value required for managers to assess if product
lifetime is sufficient.
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The probability density function of relative lifetime X is as follows:

fX(x) =
1

βL
exp
(
− x

βL

)
, x > 0 (4)

Relative lifetime X is an exponential distribution with mean βL. Therefore, the failure
rate is rX(x) = β−1

L and product reliability pr = SX(1) = exp
(

β−1
L

)
where SX(x) is the

survival function of relative lifetime X as follows:

SX(x) = p(X > x) = exp
(
− x

βL

)
, x > 0 (5)

As pointed out by Chen et al. [21], the unknown parameters in the index decrease
its accuracy if the point estimates are simply utilized to evaluate the data with small-
size samples [7,19,21–23]. As the results of statistical tests tend to vary with sample size,
censoring can be applied to achieve consistent results in a short time [22–26]. Type-II
censoring is widely applied in production and manufacturing data. Thus, this paper
proposes an unbiased and consistent estimator for the lifetime performance index βL based
on type-II censored data. The 100(1 − α)% confidence interval of the index βL is derived
based on its probability density function. Using this interval and the method proposed
by Chen and Yu [19], a fuzzy test model is constructed to assess whether product lifetime
performance reaches the required level. The application of the model proposed in the study
is demonstrated through a numerical example. The final section presents our conclusions.

The rest of the present paper would be arranged as follows. In Section 2, we derive
the estimator and find the confidence interval of the lifetime performance index. Section 3
presents the fuzzy test method for lifetime performance index. We employ an application
to demonstrate the efficacy of the proposed approach in Section 4. Conclusions are given in
Section 5.

2. Estimation of Ratio for Lifetime Performance Index

Incomplete data collection due to external or human factors during product develop-
ment can reduce the reliability of analysis results. Censoring type is a form of data collection
that is accurate as well as cost-effective and quick [14]. Censoring type can be divided
into three types: type-I censoring, type-II censoring, and random censoring [27]. Type-II
censoring is the most widely applied in production and manufacturing engineering [14,27].
Furthermore, type-II progressive censoring has become a common approach to the analysis
of lifetime data for highly reliable products [14,28–31].

The proposed index must be estimated based on sample data. The lifetime T follows an
exponential distribution with mean λ, denoted as T ∼ exp(λ). The relative lifetime X = T/L
is an exponential distribution with mean βL, denoted as X ∼ exp(βL). (T1, T2, . . . , Tn) and
(X1, X2, . . . , Xn) are random samples of T and X, respectively. (Y1, Y2, . . . , Yn) is a sample
set of the type-II censored data, Yj= min

(
Xj , X(r)

)
= min

(
Tj/L, T(r)/L

)
, j = 1, 2, . . ., n,

where the number of uncensored data is denoted by r and the order statistics are denoted
by X(r) and T(r). The estimator β̂L of βL is as follows:

β̂L=
λ̂

L
=

1
r

n

∑
i=1

Yi (6)

where

λ̂ =
L
r

n

∑
i=1

Yi (7)
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If random variable W = 2rβ̂L/βL, according to Chiou and Chen [14], W follows a
chi-square distribution with 2r degrees of freedom, denoted by W~χ2

(2r). Therefore, the

expected value of the estimator β̂L is as follows:

E
[
β̂L
]
= E[W]×

(
βL
2r

)
= (2r)×

(
βL
2r

)
= βL (8)

β̂L is an unbiased estimator of the lifetime performance index βL. Its variance is
calculated as follows:

Var
[
β̂L
]
= Var[W]×

(
βL
2r

)2
= (4r)×

(
β2

L
4r2

)
=

β2
L

r
(9)

For large samples,

lim
n→∞

E
(

β̂L − βL
)2

= lim
n→∞

Var
(

β̂L
)
= lim

r→∞

β2
L

r
= 0 (10)

Based on Equations (8) and (10), β̂L is an unbiased and consistent estimator of the life-
time performance index βL. The 100(1− α)% confidence interval of the lifetime performance
index βL is derived as follows:

1− α= p
{

χ2
(2r), α/2

≤W ≤ χ2
(2r), 1−α/2

}
= p

{
χ2
(2r), α/2

≤ 2rβ̂L
βL
≤ χ2

(2r), 1−α/2

}
= p

{(
2r

χ2
(2r), 1−α/2

)
β̂L ≤ βL ≤

(
2r

χ2
(2r), α/2

)
β̂L

} (11)

where χ2
(2r), α/2 is the lower α/2 quantiles of χ2

(2r) and χ2
(2r), 1−α/2 is the lower 1 − α/2

quantiles of χ2
(2r). Therefore, the lower confidence of the lifetime performance index βL is

LβL=

(
2r

χ2
(2r), 1−α/2

)
β̂L (12)

Similarly, the upper confidence of the lifetime performance index βL is

UβL=

 2r
χ2
(2r), α/2

β̂L (13)

The length of the 100(1− α)% confidence interval of the lifetime performance index
βL is

lβL = UβL − LβL =

(
2r

χ2
(2r), α/2

− 2r
χ2
(2r), 1−α/2

)
β̂L (14)

Since β̂L is an unbiased estimator of the lifetime performance index βL, the following
defines the expected length of the 100(1− α)% confidence interval lβL:

E(lβL) =

(
2r

χ2
(2r), α/2

− 2r
χ2
(2r), 1−α/2

)
βL (15)

For fixed (1 − α) × 100% = 95%, sample n = 100, r = 10 (10) 100, and βL = 1 (1) 5, the
expected value E(lβL) is shown in Figure 1, where r = 10 (10) 100 indicates that the value
of r begins at 10 and increases by 10 each time until its value equals 100. Similarly, index
βL = 1 (1) 5 means that the value of the index βL begins at 1 and increases by 1 each time
until its value equals 5.
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Figure 1. E(lβL) curves for βL = 1 (1) 5, r = 10 (10) 100, and α = 0.05.

Given confidence level ((1 − α) × 100%) and sample size n, the smaller the mean
length of confidence interval E(lβL) is, the better estimation of the index βL under different
numbers of uncensored data r is. As noted in Figure 1, when index βL is fixed, the
mean length of the confidence interval E(lβL) is inversely proportional to the number of
uncensored data r. This means that the better the estimate of the index βL is, the more
uncensored data have been collected.

3. Fuzzy Test Method for Lifetime Performance Index

In this section, for the purpose of determining whether lifetime performance meets its
requirement, a fuzzy test method is utilized. The hypothesis is H0:βL ≥ c vs. H1:βL < c [19],
where c is the minimal value of relative lifetime performance index βL required by cus-
tomers. The following statistical testing rules are taken into consideration:

(1) If β̂L < CR , then βL < c (i.e., the null hypothesis is rejected).
(2) If β̂L ≥ CR , then βL ≥ c (i.e., the null hypothesis is not rejected).

CR is the critical value determined by

p
{

β̂L < CR
∣∣βL = c ∈ H0

}
= p

{
W <

2r CR
c

}
= α (16)

Hence, CR can be calculated as follows:

CR =
c χ2

(2r), α

2r
(17)

If we let y1, y2, . . . , yn be the observed value of Y1, Y2, . . . , Yn, then the observed value
of the estimator is

β̂L0 =
λ̂0

L
=

1
r

n

∑
i=1

yi (18)
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where

λ̂0=
L
r

n

∑
i=1

yi (19)

As noted by Buckley [32], the α-cuts of triangular fuzzy numbers β̃L0 are [19,22]

β̃L0[α] =

{ [
β̂L01(α), β̂L02(α)

]
, for 0.01 ≤ α ≤ 1[

β̂L01(0.01), β̂L02(0.01)
]
, for 0 ≤ α ≤ 0.01

(20)

where
β̂L01(α) =

2r
χ2
(2r), 1−α/2

β̂L0 (21)

and
β̂L02(α) =

2r
χ2
(2r), α/2

β̂L0 (22)

Obviously, the value of β̂L01(α) is not equal to the value of β̂L02(α) with α < 1. As

α = 1, β̂L01(1) = β̂L02(1) =
(

2r
χ2
(2r), 0.5

)
β̂L0 6= β̂L0.

Therefore, this paper let

β∗L0 =
χ2
(2r), 0.5

2r
β̂L0 (23)

Then, the α-cuts of new triangular fuzzy numbers β̃∗L0 are

β̃∗L0[α] =

{ [
β∗L01(α), β∗L02(α)

]
, for 0.01 ≤ α ≤ 1[

β∗L01(0.01), β∗L02(0.01)
]
, for 0 ≤ α ≤ 0.01

(24)

where

β∗L01(α) =
χ2
(2r), 0.5

χ2
(2r), 1−α/2

β̂L0 (25)

and

β∗L02(α) =
χ2
(2r), 0.5

χ2
(2r), α/2

β̂L0 (26)

Obviously, the value of β∗L01(α) is equal to the value of β∗L02(α) with α = 1 (β∗L01(1) =
β∗L02(1) = β̂L0) and there is a new triangular fuzzy number, denoted as β̃ ∗∗L0 = ∆(βL0, βM0, βR0),
where βM0 = β̂L0,

βL0 =
χ2
(2r), 0.5

χ2
(2r), 0.995

β̂L0 (27)

and

βR0 =
χ2
(2r), 0.5

χ2
(2r), 0.005

β̂L0 (28)

The following defines the membership function of fuzzy number β̃ ∗∗L0 :

h(x) =



0 , i f x < βL0

2
(

1− FW

(
β̂L0
x χ2

(2r), 0.5

))
, i f βL0 ≤ x < β̂L0

1 , i f x = β̂L0

2FW

(
β̂L0
x χ2

(2r), 0.5

)
, i f β̂L0 < x ≤ βR0

0 , i f θR0 < x

(29)



Mathematics 2023, 11, 3686 7 of 12

where the cumulative distribution function of random variable W is denoted by FW . Simi-
larly to fuzzy numbers β̃∗L0, the α-cuts of triangular fuzzy critical values C̃R are

C̃R[α] =

{
[CR1(α), CR2(α)], for 0.01 ≤ α ≤ 1
[CR1(0.01), CR2(0.01)], for 0 ≤ α ≤ 0.01

(30)

where

CR1(α) =
χ2
(2r), 0.5

χ2
(2r), 1−α/2

CR (31)

and

CR2(α) =
χ2
(2r), 0.5

χ2
(2r), α/2

CR (32)

Obviously, the value of CR1(α) is equal to the value of CR2(α) with α = 1 (CR1(1)
= CR2(1) = CR) and the new triangular fuzzy number is C̃0 = ∆(CLR, CMR, CRR), where
CMR = CR,

CLR =
χ2
(2r), 0.5

χ2
(2r), 0.995

CR (33)

and

CRR =
χ2
(2r), 0.5

χ2
(2r), 0.005

CR (34)

The following defines the membership function of fuzzy C̃R:

g(x) =



0 , i f x < CLR

2
(

1− FW

(
CR
x χ2

(2r), 0.5

))
, i f CLR ≤ x < CR

1 , i f x = CR

2FW

(
CR
x χ2

(2r), 0.5

)
, i f CR < x ≤ CRR

0 , i f CRR < x

(35)

As noted, the cumulative distribution function of random variable W is denoted by
FW . Membership functions h(x) and g(x) are presented in Figure 2:
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Based on Chen and Yu [19], this paper let set BT be the area under the graph of g(x).
That is,

BT = { (x, α)|CR1(α) ≤ x ≤ CR2(α), 0 ≤ α ≤ 1} (36)

As noted by Chen and Chang [13] and Chen and Yu [19], it is difficult to use integration
to calculate the area of a set BT . The approach, trapezoidal rule, is implemented in the
study in order to build up the area of the block BT . The procedures are following: (1) we
classify the block BT , n = 100, into several equal horizontal blocks. (2) Each section of the
blocks would be calculated through the approximate trapezoid area. Then, (3) the sum
of the areas for these 100 horizontal blocks is calculated. For this reason, i = [100 × α] is
considered. Then, i = 0, 1, 2, . . ., 100 for 0 ≤ α ≤ 1, where [100 × α] represents the largest
integer less than or equal to 100 × α. Similarly, α = i × 0.01, i = 0, 1, 2, . . ., 100. These
101 horizontal lines are cut BT into 100 trapezoidal blocks. Then, the following denotes the
ith block:

BTi= { (x, α)|CR1(0.01× i) ≤ x ≤ CR2(0.01× i), 0.01× (i− 1) ≤ α ≤ 0.01× i}, i = 1, . . . , 100 (37)

The following definition for the length of ith horizontal line di as follows:

di =

(
χ2
(2r), 0.5

χ2
(2r), 0.005×i

−
χ2
(2r), 0.5

χ2
(2r), 1−0.005×i

)
CR = 1, 2, . . . , 100 (38)

Obviously, d0 = d1 and d100 = 0, so the area BT is

BT =
100

∑
i=1

(0.01)×
(

di−1 + di
2

)
= 0.01

(
d1

2
+

99

∑
i=1

di

)
(39)

If BR denotes the area under graph g(x) to the right of x = β̂L0, then

BR=
{
(x, α)|β̂L0 ≤ x ≤ CR2(α), 0 ≤ α ≤ a

}
(40)

where α = a such that CR2(a) = β̂L0. Similarly BT , k = [100 × a]. Then, for 0 ≤ α ≤ a, where
[100 × a] represents the largest integer less than or equal to 100 × a. Obviously, a = 0.01 × k
and α = i × 0.01, (i = 0, 1, 2, . . ., k) horizontal lines cut BR into k trapezoidal blocks. Then,
the ith block can be expressed as follows:

BRi =
{
(x, α)|β̂L0 ≤ x ≤ CR2(0.01× i), 0.01× (i− 1) ≤ α ≤ 0.01× i

}
= 1, 2, . . . , k (41)

The following defines the length of ith horizontal line ri:

ri =
χ2
(2r), 0.5

χ2
(2r), 0.005×i

CR − β̂L0 = 1, 2, . . . , k (42)

This indicates that r0 = r1 and rk = 0, so the area of BR is

BR =
k

∑
i=1

(0.01)×
(

ri−1 + ri
2

)
= 0.01

(
r1

2
+

k−1

∑
i=1

ri

)
(43)

The ratio of BR/BT can be usefully applied to fuzzy decision-making:

BR/BT =

0.01
(

r1
2 +

k−1
∑

i=1
ri

)
0.01

(
d1
2 +

99
∑

i=1
di

) (44)

However, calculation of BR/BT is complicated.
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According to Equations (39) and (43), these have calculated that, respectively, obtaining
the block areas of BT and BR is extremely complicated. Therefore, for the purpose of
simplifying the complicated calculating process of ratio BR/BT , the technique, membership
functions g(x) and h(x) with asymmetry (in Figure 2), proposed by Chen and Chang [13] is
utilized in the present study. The method suggested by Chen and Chang [13], to replace dR
(the length of the base of the set BR) with the area of BR, facilitates industrial applications.
Similarly, dT (the length of the base of the set BT) is replaced with the area of BT . As
the membership functions are asymmetric, dT = 2(CRR − CR) on the basis of Chen and
Chang [13] and Chen et al. [20]. In Figure 2, by using the principle of similar shapes, the
square of the side length ratio is equal to the area ratio. Next, BR/BT was replaced with
dR/dT as the fuzzy evaluation tool, where dR and dT are calculated as follows [13,20,33]:

dR = CRR − β̂L0 =
χ2
(2r), 0.5

χ2
(2r), 0.995

CR − β̂L0 (45)

and

dT = 2(CRR − CR = 2

(
χ2
(2r), 0.5

χ2
(2r), 0.005

CR − CR

)
(46)

Based on their past experiences originating from other experts and the past data over
the certain products [34], manufacturing engineers are allowed to define the values of δ1
and δ2. The following two numbers 0 < δ1 < δ2 < 0.5 and δ = dR/dT , the fuzzy test rules are
as follows [13,20,35]:

(1) If δ < δ1, then conclude that βL ≥ c (i.e., do not reject H0).
(2) If δ1 ≤ δ ≤ δ2, then make no decision; more information is needed.
(3) If δ2 < δ < 0.5, then conclude that βL < c (i.e., reject H0).

4. Practical Example

This section presents a numerical example to demonstrate the proposed fuzzy test
method. The required value of the lifetime performance index is at least 3; thus, the null
hypothesis is H0:βL ≥ 3 vs. the alternative hypothesis H1:βL < 3 [19]. If y1, y2, . . . , y30 is
the observed value of Y1, Y2, . . . , Y30 with number of the uncensored data r = 18 (r/n = 60%),
then the observed value of the estimator is

β̂L0 =
1
r

n

∑
i=1

yi =
41.6894

18
= 2.316 (47)

The values of βL0 and βR0 are then calculated as follows:

βL0 =
χ2
(18), 0.5

χ2
(18), 0.995

× 2.316 = 1.329 (48)

and

βR0 =
χ2
(18), 0.5

χ2
(18), 0.005

× 2.316 = 4.576 (49)

Furthermore, the membership function of fuzzy numbers β̃ ∗∗L0 is

h(x) =



0 , i f x < 1.329
2
(

1− FW

(
1.3290

x × χ2
(36), 0.5

))
, i f 1.329 ≤ x < 2.316

1 , i f x = 2.316
2FW

(
1.3290

x × χ2
(36), 0.5

)
, i f 2.316 < x ≤ 4.576

0 , i f 4.576 < x

(50)
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where χ2
(36), 0.005 = 17.887, χ2

(36), 0.995 = 61.581, and χ2
(36), 0.5 = 35.336. As the significance level

is α = 0.05, then

CR =
c χ2

(2r), α

2r
=

3χ2
(36), 0.05

36
= 1.939 (51)

The values of CLR and CRR are calculated as follows:

CLR =
χ2
(36), 0.5

χ2
(36), 0.995

× 1.9391 = 1.113 (52)

and

CRR =
χ2
(36), 0.5

χ2
(36), 0.005

× 1.9391 = 3.831 (53)

Furthermore, the membership function of fuzzy number C̃R is

g(x) =



0 , i f x ≤ 1.113
2
(

1− FW

(
1.9391

x χ2
(36), 0.5

))
, i f 1.113 < x < 1.939

1 , i f x = 1.939
2FW

(
1.9391

x χ2
(36), 0.5

)
, i f 1.939 < x ≤ 3.831

0 , i f 3.831 < x

(54)

By Equations (50) and (54), we have the graphs of h(x) and g(x) in Figure 3. From
Equation (54), we obtain α = g(x). When x = β̂L0 = 2.316, α ∈ (0.46, 0.47), a = 0.468 could be
obtained by interpolation method.
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The values of dR and dT are calculated as follows [13,20,33]:

dR = CRR − β̂L0 = 3.831− 2.316 = 1.515 (55)

and
dT = 2(CRR − CR) = 2(3.831− 1.939) = 3.784 (56)

Therefore,
δ= dR/dT = 1.515/3.784 = 0.4004 (57)
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This leads to the conclusion that for β̂L0 = 2.316 > CR = 1.939, βL ≥ 3 (i.e., the null
hypothesis should not be rejected). However, β̂L0 = 2.316 is far less than βL = 3. Thus, for
δ1 = 0.2 and δ2 = 0.4 [13], βL < 3 (i.e., the null hypothesis should be rejected). This is the risk
of misjudgment caused by sampling errors in small sample sizes [7,9]. The proposed fuzzy
method therefore provides a more reasonable conclusion.

5. Conclusions

This paper proposes an evaluation approach for product lifetime performance under
type-II censoring. This evaluation enables the improvement of lifetime performance, which
enhances the value of products as well as attains green goals such as energy efficiency and
waste reduction. The proposed index is easy to use as its value increases with performance.
Examination of the probability density function, cumulative distribution function, and
reliability function of relative lifetime X indicated that reliability increased with the value
of the index, as did the probability of the product lifetime surpassing the minimum with
value L. An unbiased consistent estimator of the proposed index is also presented alongside
a fuzzy test model based on the derived confidence interval. This model reduces the proba-
bility of misjudgment caused by sampling errors [7,9]. Additionally, many benefits will be
gained by seizing the chance to improve, such as decreasing the testing cost and meeting
the certain requirements in a short time. Furthermore, doing so is said to expand the
possibility of using less paper, saving social resources, decreasing the carbon footprint and
so forth [36]. In the electronics industry, passive components have long been indispensable
parts that stimulate peripheral equipment industries. The proposed model thus focuses on
passive components, with applicability demonstrated through a numerical example.
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