
Citation: Li, H.; Wang, J.

Differentially Private Sparse

Covariance Matrix Estimation under

Lower-Bounded Moment

Assumption. Mathematics 2023, 11,

3670. https://doi.org/10.3390/

math11173670

Received: 14 June 2023

Revised: 2 August 2023

Accepted: 23 August 2023

Published: 25 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Differentially Private Sparse Covariance Matrix Estimation
under Lower-Bounded Moment Assumption
Huimin Li and Jinru Wang *

Department of Mathematics, Beijing University of Technology, Beijing 100124, China; lihuim@emails.bjut.edu.cn
* Correspondence: wangjinru@bjut.edu.cn

Abstract: This paper investigates the problem of sparse covariance matrix estimation while the
sampling set contains sensitive information, and both the differentially private algorithm and locally
differentially private algorithm are adopted to preserve privacy. It is worth noting that the require-
ment of the distribution assumption in our work is only the existing bounded 4 + ε (ε > 0) moment.
Meanwhile, we reduce the error bounds by modifying the threshold of the existing differentially
private algorithms. Finally, the numerical simulations and results from a real data application are
presented to support our theoretical claims.
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1. Introduction

The covariance matrix plays an important role in modern multivariate analysis. Many
methodologies, including regression analysis, principal component analysis and discrimi-
nant analysis, rely on the estimation of the covariance matrices. Such estimation problems
arise in various fields of science; for example, risk management [1], gene expressions [2],
social networks [3], among others. Up to now, many methods have been developed to
estimate the covariance matrix. One of the most popular approaches is to impose the sparse
structure on the covariance matrix (see [4,5]).

In the big data era, sampling databases usually include personal financial or health
information, such as those used in social science, biomedicine and genomics, so it is
inevitable that one must deal with sensitive data. In recent years, the differentially private
algorithm (DPA) and locally differentially private algorithm (LDPA) have become widely
used methods that can prevent privacy leakage and defend against differential attacks,
and these methods have been developed in the real world by Apple [6], Microsoft [7] and
Google [8]. The DPA and LDPA aim at hiding the true information while keeping the basic
property of the whole dataset. A popular idea to achieve this goal is to add some special
noise into the original model [9–11].

This paper focuses on efficient estimation for a form of general sparse covariance
matrix based on both DPA and LDPA in order to protect sensitive information. Although
the study of datasets with the DPA and LDPA brings difficulties, it also makes it possi-
ble to use some special methods to break this bottleneck. In this paper, we adopt the
Gaussian mechanism to keep the differentially private property of algorithms, and use the
thresholding method to deal with the covariance matrix.

1.1. Related Work and Our Contributions

There are several papers developing the theory of covariance matrix estimation based
on the DPA or LDPA to provide private protection. Jiang et al. [12] added Wishart-
distributed noise to construct a DPA, and applied it to keep privacy while establishing the
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covariance matrix estimation; however, the Wishart distribution seems a strong condition.
Amin et al. [13] used the Laplace mechanism to construct a DPA, and they utilized it to
protect sensitive samples while estimating the covariance matrix; nonetheless, their method
is just for the low-dimensional case. Kamath et al. [14] considered high-dimensional co-
variance matrix estimation with a DPA to protect privacy, but they did not assume the
sparse structure of the covariance matrix, so it led to a large error bound. Moreover, the
distribution assumption is required to be Gaussian. Recently, Wang and Xu [10] reduced the
distribution assumption from Gaussian to sub-Gaussian and imposed the sparse structure
on the covariance matrix, which led to a low convergence rate, while using a DPA and
LDPA to preserve privacy.

Our contributions are as follows: (i) For the random vector X = (X1, · · · , Xp)T ∈ Rp,
the requirement for the distribution of Xi is only the existing bounded 4+ ε (ε > 0) moment.
However, previous work requires that X is Gaussian [14] or sub-Gaussian [10], which is
equivalent to any existing bounded moment of Xi (i = 1, · · · , p) (see [15]). Moreover,
if Xi (i = 1, · · · , p) is subjected to a heavy-tailed distribution, i.e, the distribution of Xi
satisfies

∫
R etxdFi(x) = ∞ for any t > 0, then it is obvious that this distribution can be

covered by our distribution, and cannot be handled by the existing literature. (ii) We adjust
the threshold in the original algorithms of Wang and Xu [10], which leads to the error
bound becoming smaller under both the DPA and LDPA (see Remarks in 3 and 7). (iii) We
measure the error bounds not only by the spectral norm and matrix operator norm, but also
by the Frobenius norm, which has not previously been considered as far as we know. (iv)
The sparse structure of the covariance matrix in the present paper contains that of Wang
and Xu under an extra condition as a special case (see Remark 1).

1.2. Notations

For a random variable Z, EZ and DZ denote the expectation and variance of Z, re-
spectively. For a vector X = (X1, · · · , Xp)T ∈ Rp, we define its lω norm by ‖X‖lω =

(∑
p
i=1 |Xi|ω)1/ω with w ∈ [1, ∞) and ‖X‖l∞ = maxi |Xi|. For a matrix A = (aij) ∈ Rp×p,

the spectral norm is defined as ‖A‖2 = sup‖X‖l2
≤1 ‖AX‖l2 ; the matrix l1 norm and the

Frobenius norm are defined by ‖A‖1 = maxj ∑
p
i=1 |aij| and ‖A‖F =

√
∑

p
i,j=1 |aij|2, respec-

tively. Moreover, the matrix lω operator norm is given by ‖A‖ω = sup‖X‖lω≤1 ‖AX‖lω . For
two sequences of real numbers {an}n≥1 and {bn}n≥1, “an = O(bn)” stands for an ≤ Cbn
for some constant C > 0 independent of n.

1.3. Organization of this Paper

The remainder of this paper is outlined as follows. Section 2 introduces some important
definitions and lemmas. In Section 3, we firstly establish the sparse covariance matrix
estimation based on the DPA, while any component of the random vector just has a
bounded 4 + ε (ε > 0) moment. Then, the estimation problem is extended to utilize the
LDPA. Finally, the results from several numerical experiments and a real data example are
presented to support our theoretical results. All proofs are relegated to Appendix A.

2. Preliminaries
2.1. Sparse Covariance Estimation

In this paper, we always assume the real random vector X = (X1, · · · , Xp)T ∈ Rp

satisfying the following conditions, denoted as X ∼ P(K, τ0, sn,p, M).
Condition (i) For a polynomial-type moment, assume EX = 0, ‖X‖2 = 1, and for

some positive constants γ, τ0, K and ε = c(γ), it holds p ≤ nγ,

E
∣∣∣ Xi√

DXi

∣∣∣4+ε
≤ K for 1 ≤ i ≤ p

and min1≤i,j≤p D
( XiXj√

DXiDXj

)
≥ τ0.
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Condition (ii) The covariance matrix Σ of the random vector X belongs to the lq-sparse
space as follows:

Uq(sn,p, M) :=
{

Σ = (σij)p×p > 0 : max
j

p

∑
i=1
|σij|q ≤ sn,p, max

j
σjj ≤ M

}
.

Remark 1. Condition (i) mainly means that the distribution of the any component of X satisfies
the existing bounded 4 + ε (ε > 0) moment. Note that if X is subjected to a multivariate normal
distribution Np(µ, Σ) or a multivariate t-distribution Tp(α; µ, Σ) with freedom α ≥ 4 + ε, then
Condition (i) holds. Moreover, the relationship p ≤ nγ is necessary for proofing Lemma 1. Mean-
while, the parameter ε controls the level of moment; K, M can be determined if the distribution of X
and the covariance matrix Σ are given.

Condition (ii) is a common assumption for the high-dimensional covariance matrix Σ of X
(see [4] and [5]). Moreover, we find that the parameter space defined in Wang and Xu [10] is

G0(sn,p) :=
{

Σ = (σij)p×p > 0 : max
j

∑
i 6=j
|σij|0 ≤ sn,p

}
. (1)

Then, it is obvious that there exists a constant C > 0, such that

G0(sn,p, M) :=
{

Σ ∈ G0(sn,p), 0 < σjj ≤ M (j = 1, · · · , p)
}
⊆ U0(Csn,p, M), (2)

i.e., the sparse space (1) with the extra condition of 0 < σjj ≤ M (j = 1, · · · , p) can be seen as a
special case of U0(sn,p, M).

Let X1, · · · , Xn
i.i.d.∼ P(K, τ0, sn,p, M), where Xi = (X1i, · · · , Xpi), then, the sample

covariance matrix is given as

Σ̂ := (σ̂ij)p×p =
1
n

n

∑
i=1

XiXT
i . (3)

The following conclusion about the difference between σ̂ij and σij was acquired by [4].

Lemma 1. For any η ≥ 2 and some ε > 0,

P
{
|σ̂ij − σij| ≥ η

√
(θ̂ij log p)/n, ∃1 ≤ i, j ≤ p

}
= O

(
(log p)−

1
2 p−η+2 + n−ε

)
,

where θ̂ij =
1
n ∑n

k=1(XikXjk − σ̂ij)
2.

2.2. Differential Privacy: Gaussian Mechanism and Post-Processing Property

This paper adopts the differentially private mechanism to protect sensitive data, which
requires no significant change in the outcome if a single data point of a dataset varies.

Definition 1 ([9]). Two datasets, X and X′ ∈ X p, are called neighbors if they only differ in only
one entry, denoted as X ∼ X′.

A similar explanation can be found in Cai et al. [11].

Definition 2 ([13]). A randomized algorithmM is (ε, δ)-differentially private (DP) if

P(M(X) ∈ O) ≤ eεP(M(X′) ∈ O) + δ

holds for every pair of neighbors, i.e., X and X′ ∈ X p, where O is any measurable event in the
output space ofM.
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This paper adopts the Gaussian mechanism to guarantee the algorithm being (ε, δ)-DP.

Definition 3 ([16]). For any algorithm f mapping a dataset X p to Rp, the Gaussian mechanism
is defined as

MG(X) := f (X) + Y,

where Y = (Y1, · · · , Yp)T with Yi
i.i.d.∼ N(0, 2(42( f )/ε)2 log(1.25/δ)) and 42( f ) =

sup
X∼X′

‖ f (X)− f (X′)‖l2 .

In fact, post-processing a differentially private algorithm preserves privacy.

Lemma 2. Post-processing property [11]: IfM1 is a (ε, δ)-differentially private algorithm andM2
is any deterministic algorithm, then the compositionM2(M1(·)) is (ε, δ)-differentially private.

3. Two Methods for Privacy Protection
3.1. Differentially Private Algorithm

Firstly, we introduce the (ε, δ)-differentially private algorithm, which post-processes
the perturbed sample covariance matrix by the modified threshold. After thresholding,
eigenvalue selection is conducted to guarantee a positive semi-definite property. For details,
see the following description of Algorithm 1. Moreover, we provide Theorem 1 to bound
the errors between Σ ∈ Uq(sn,p, M) and the output Σ̃τ

+ of Algorithm 1.

Algorithm 1 Modified DP-Thresholding

Input: X1, · · · , Xn
i.i.d.∼ P(K, τ0, sn,p, M), ε, δ ∈ (0, 1), ε, K, M > 0 and

η ≥ 2
1: Compute

Σ̃ = (σ̃ij)1≤i,j≤p =
1
n

n

∑
i=1

XiXT
i + N, (4)

where N = (nij)1≤i,j≤p is a symmetric matrix for i ≤ j, nij
i.i.d.∼ N(0, σ2

1 ) with σ2
1 =

4 log(1.25/δ)/(nε)2.
2: Define the thresholding estimator Σ̃τ = (σ̃τ

ij)1≤i,j≤p with

σ̃τ
ij = σ̃ij · I

{
|σ̃ij| >

4
√

2
3

ηK
2

4+ε M

√
log p

n
+ 4σ1(log p)1/2

}
.

3: Compute the eigen-decomposition Σ̃τ = ∑
p
i=1 λ̃ivivT

i and λ̃+
i = max{λ̃i, 0}, then let

Σ̃τ
+ = ∑

p
i=1 λ̃+

i vivT
i .

4: return Σ̃τ
+.

In Algorithm 1, the parameters ε and δ control the level of privacy protection, and the
privacy constraint becomes more stringent as ε and δ tend to 0. The parameter η is usually
chosen by cross-validation in the simulation experiment in order to decrease the error.

Remark 2. Algorithm 1 is (ε, δ)-differentially private. Since Theorem 1 in [17] states that Step 1
in Algorithm 1 preserves (ε, δ)-differential privacy, then this, along with Lemma 2, implies that
Algorithm 1 is (ε, δ)-differentially private. Note that the process of verifying differential privacy is
long and elementary [18], so we omit it here.
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Theorem 1. For any η ≥ 2 and some ε > 0, there exist positive constants C1 := C1(q, η, K, M, ε),
C2 := C2(q, η, K, M, ε), such that the output Σ̃τ

+ of Algorithm 1 satisfies

(i). inf
P∈P(K,τ0,sn,p ,M)

PX|P

{
‖Σ̃τ

+ − Σ‖2 ≤ C1sn,p

(√ log p
n

+

√
log δ−1 log p

n2ε2

)1−q}
≥ 1−O

(
(log p)−

1
2 p−η+2 + n−ε + p−

5
2

)
;

(ii). inf
P∈P(K,τ0,sn,p ,M)

PX|P

{ 1
√

p
‖Σ̃τ

+ − Σ‖F ≤ C2
√

sn,p

(√ log p
n

+

√
log δ−1 log p

n2ε2

)1−q/2}
≥ 1−O

(
(log p)−

1
2 p−η+2 + n−ε + p−

5
2

)
.

Remark 3. In Theorem 1, the condition η ≥ 2 is necessary. Otherwise, O((log p)−
1
2 p−η+2 +n−ε)

may be larger than 1 for some ε > 0, which leads to results (i)–(ii) being trivial. According to the
results in Theorem 1, we find that when the levels of sparsity (i.e., sn,p) and the dimension p of the
random vector increase and the sample size n decreases, the errors between Σ ∈ Uq(sn,p, M) and
the output Σ̃τ

+ of Algorithm 1 become larger. Moreover, if ε and δ become smaller, which means
stronger privacy protection and noise disturbance, the errors become larger. This theoretical analysis
is consistent with the results of the simulation experiments in Section 4.1.

Note that the error bound under the spectral norm over the parameter space G0(sn,p) (see

(1)) in Wang and Xu [10] is O
(

sn,p

(√
log p

n +
√

log δ−1 log p
n2ε2

)
+

log2 δ−1

n2ε4

)
, while guaranteeing DP.

Theorem 1(i), together with (2), states that our error bound over G0(sn,p, M) is O
(

sn,p

(√
log p

n +√
log δ−1 log p

n2ε2

))
, which performs better than that of Wang and Xu if the space G0(sn,p) has an extra

condition. However, the distribution assumption in our work is weaker than that of Wang and Xu,
and we also consider the case with 0 < q < 1.

Remark 4. In a non-private case, result (i) of Theorem 1 reduces to

inf
P∈P(K,τ0,sn,p ,M)

PX|P

{
‖Σ̃τ

+ − Σ‖2 ≤C1sn,p

( log p
n

) 1−q
2
}
≥ 1−O

(
(log p)−

1
2 p−η+2 + n−ε + p−

5
2

)
,

which is consistent with Theorem 1(ii) in [4], i.e., we extend the work of [4] from a non-private
mechanism to a (ε, δ)-differentially private mechanism.

Remark 5. From the proving process of Theorem 1(i), we find that

‖Σ̃τ − Σ‖1 ≤ C1sn,p

(√
log p

n
+

√
log δ−1 log p

n2ε2

)1−q

holds under event E defined by (A1).
On the other hand, the Riesz–Thorin interpolation theorem [19] states that the lω operator

norm of the symmetric matrix A satisfies ‖A‖ω ≤ ‖A‖1. Hence, we obtain

‖Σ̃τ − Σ‖ω ≤ C1sn,p

(√
log p

n
+

√
log δ−1 log p

n2ε2

)1−q

under event E. This, along with Lemma A1, implies that

inf
P∈P(K,τ0,sn,p ,M)

PX|P

{
‖Σ̃τ − Σ‖ω ≤ C1sn,p

(√ log p
n

+

√
log δ−1 log p

n2ε2

)1−q}
≥ 1−O

(
(log p)−

1
2 p−η+2 + n−ε + p−

5
2

)
,
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i.e., we can provide the upper error bound under the lω operator norm of the matrix.

3.2. Locally Differentially Private Algorithm

Differential privacy in the local model. In the locally differentially private (LDP)
model, there exists a data universe D, n users who hold private data x ∈ D and a server. In
each round, the server sends a message, each user selects a differentially private algorithm
and runs it on their data in order to encrypt it, and then sends the output back to the server.

Definition 4 ([20]). A randomized algorithmM is (ε, δ)-locally differentially private if

P(M(x) ∈ S) ≤ eεP(M(x′) ∈ S) + δ

holds for all pairs of x, x′ ∈ D, where S is any measurable event in the output space ofM.

In fact, the idea of Algorithm 2 is that each Xi perturbs its sample covariance matrix in
order to aggregate the noise disturbance in the algorithm.

Algorithm 2 Modified LDP-Thresholding

Input: X1, · · · , Xn
i.i.d.∼ P(K, τ0, sn,p, M), ε, δ ∈ (0, 1), ε, K, M > 0 and

η ≥ 2
1: for each k ∈ {1, · · · , n} do
2:

XkXT
k + Rk,

where Rk = (rk
ij)1≤i,j≤p is a symmetric matrix and for i ≤ j, rk

ij
i.i.d.∼ N(0, σ2

2 ) with

σ2
2 = 2 log(1.25/δ)/ε2.

3: end for
4: Compute

Σ̌ = (σ̌ij)p×p =
1
n

n

∑
k=1

(XkXT
k + Rk).

5: Define the thresholding estimator Σ̌τ = (σ̌τ
ij)1≤i,j≤p with

σ̌τ
ij = σ̌ij · I

{
|σ̌ij| >

4
√

2
3

ηK
2

4+ε M

√
log p

n
+ 4σ2(log p)1/2

}
.

6: Compute the eigen-decomposition Σ̌τ = ∑
p
i=1 λ̌ivivT

i and λ̌+
i = max{λ̌i, 0}, then let

Σ̌τ
+ = ∑

p
i=1 λ̌+

i vivT
i .

7: return Σ̌τ
+.

Remark 6. In fact, Step 2 in Algorithm 2 can be viewed as a special case of Algorithm 1 in [21]
that keeps (ε, δ)-locally differentially private. Then, using the post-processing property leads to
Algorithm 2 being (ε, δ)-locally differentially private. Here, we omit Step 2 to verify the preservation
of local differential privacy.

Theorem 2. For any η ≥ 2 and some ε > 0, there exist positive constants C3 := C3(q, η, K, M, ε),
C4 := C4(q, η, K, M, ε), such that the output Σ̌τ

+ of Algorithm 2 satisfies

(i). inf
P∈P(K,τ0,sn,p ,M)

PX|P

{
‖Σ̌τ

+ − Σ‖2 ≤ C3sn,p

( log δ−1 log p
nε2

) 1−q
2
}

≥ 1−O
(
(log p)−

1
2 p−η+2 + n−ε + p−

5
2

)
;
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(ii). inf
P∈P(K,τ0,sn,p ,M)

PX|P

{ 1
√

p
‖Σ̌τ

+ − Σ‖F ≤ C4
√

sn,p

( log δ−1 log p
nε2

) 1
2−

q
4
}

≥ 1−O
(
(log p)−

1
2 p−η+2 + n−ε + p−

5
2

)
.

Remark 7. The reason for setting η ≥ 2 and ε > 0 is the same as in Theorem 1. Moreover, the
parameters sn,p and p are positively correlated with error bounds, and n, ε and δ are negatively
correlated with error bounds, respectively, and these results are consistent with the simulation
studies in Section 4.1.

It is easy to see that the error bound under the spectral norm over G0(sn,p) in Wang and

Xu [10] is O
(

sn,p

√
log δ−1 log p

nε2

)
while maintaining LDP. Moreover, our Theorem 2(i) and (2)

imply that the error bound under the spectral norm over G0(sn,p, M) differs with that of Wang and
Xu only in theory. However, according to the numerical studies in Section 4, the output of our
Algorithm 2 outperforms that of Wang and Xu. In addition, our assumption of the distribution is
weaker than Wang and Xu’s condition, and the parameter space with 0 < q < 1 is considered in
our work.

Remark 8. According to the proving process of Theorem 2, we observe that the error bounds under

spectral and Frobenius norms can be O
(

sn,p

(√
log p

n +
√

log δ−1 log p
nε2

)1−q)
and O

(√sn,p

(√
log p

n

+
√

log δ−1 log p
nε2

)1−q/2)
, respectively. Comparing these results with the conclusions of Theorem 1,

it is easy to see that the upper bound of Theorem 2 is larger than that of Theorem 1. This is reasonable
since Algorithm 2 enforces a stronger privacy protection mechanism, so it has to pay a larger price.

4. Numerical Experiments
4.1. Simulation Studies

In this subsection, we investigate the numerical performances of the outputs Σ̃τ
+ and

Σ̌τ
+ of Algorithms 1 and 2, respectively. Moreover, we also compare these two estimators

with the outputs Σ̃+
1 and Σ̃+

2 of the DP-thresholding and LDP-thresholding algorithms
proposed by Wang and Xu [10], respectively.

Data generation
The following models for the covariance matrix Σ = (σij)p×p are considered:
Model 1. σij = 0.6|i−j|;
Model 2. σii = 1, σi,i+1 = σi+1,i = 0.6, σi,i+2 = σi+2,i = 0.3 and σij = 0 for |i− j| ≥ 3.
Then, we generate samples X1, · · · , Xn in two different ways:

(i) Xk
i.i.d∼ N(0, Σp×p);

(ii) Xk are independent from multivariate t-distribution Tp(α; 0, Σp×p) with freedom
α = 5.

Experimental settings
(i) Set p = {50, 100, 200}, n = {200, 300}, ε = 1/2, ε = 0.5 and δ = 1/400;
(ii) Set p = 100, n = 200, ε = 1/2, δ = 1/400 and ε = {0.1, 0.4, 0.6, 0.7};
(iii) Set p = 100, n = 200, ε = 1/2, ε = 0.5 and δ = {1/50, 1/100, 1/200, 1/500}.
In each setting, we choose the tuning parameter η in the threshold by 10-fold cross-

validation, as proposed by Cai and Liu [4]. Moreover, we measure the errors by the spectral
and Frobenius norms, respectively. We run each experiment 50 times and take the average
errors as the final result (with standard errors in parentheses).

Experimental results
From Tables 1 and 2, we find that the output Σ̃τ

+ of Algorithm 1 (differentially private
algorithm) performs better than the output Σ̃+

1 of the DP-thresholding algorithm proposed
by Wang and Xu [10]. The above property also holds for our Algorithm 2 (locally differen-
tially private algorithm) compared with the LDP-thresholding algorithm of Wang and Xu.
Moreover, we observe that the dimension p increase leads to the errors becoming larger.
Meanwhile, if the sample size n becomes larger, then the errors become smaller. It can
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also be seen that the errors under Model 1 are larger than those under Model 2, since the
covariance matrix in Model 1 is more dense.

Tables 3 and 4 demonstrate that if the privacy parameter ε increases (resulting in
weaker privacy protection), the errors will become smaller. Moreover, Tables 5 and 6
show that when the privacy parameter δ decreases, the errors will become larger. These
phenomena are also consistent with our theoretical results. In addition, the following
numerical results are in line with the theoretical findings indicated by Remark 8, i.e., the
error estimation of Algorithm 1 is smaller than that of Algorithm 2.

Table 1. Comparison of different outputs of the algorithms with normal distributions.

Spectral Norm Frobenius Norm

(p, n) Σ̃τ
+ Σ̃+

1 Σ̌τ
+ Σ̃+

2 Σ̃τ
+ Σ̃+

1 Σ̌τ
+ Σ̃+

2

Model 1
(50,200) 1.92 (0.12) 2.50 (0.14) 4.31 (0.23) 4.95 (0.48) 4.41 (0.17) 5.90 (0.31) 8.15 (0.36) 9.77 (0.40)
(50,300) 1.52 (0.13) 1.89 (0.15) 3.70 (0.29) 4.18 (0.25) 3.74 (0.16) 4.65 (0.13) 6.58 (0.30) 7.65 (0.44)

(100,200) 2.13 (0.13) 2.79 (0.08) 5.44 (0.29) 7.67 (0.43) 6.83 (0.17) 9.34 (0.23) 10.71 (0.25) 14.11 (0.39)
(100,300) 1.76 (0.08) 2.18 (0.11) 4.73 (0.17) 6.73 (0.43) 5.86 (0.17) 7.13 (0.26) 8.81 (0.37) 11.07 (0.28)
(200,300) 1.89 (0.07) 2.56 (0.14) 6.08 (0.25) 8.81 (0.41) 8.73 (0.10) 10.10 (0.23) 11.68 (0.27) 15.28 (0.19)

Model 2
(50,200) 1.01 (0.16) 1.56 (0.15) 3.46 (0.29) 4.11 (0.29) 3.32 (0.21) 4.90 (0.28) 6.42 (0.29) 8.95 (0.46)
(50,300) 0.74 (0.16) 0.92 (0.15) 3.13 (0.27) 3.51 (0.24) 2.87 (0.06) 3.23 (0.13) 5.20 (0.26) 7.16 (0.37)

(100,200) 1.28 (0.16) 1.78 (0.06) 4.19 (0.28) 5.04 (0.23) 4.99 (0.15) 8.07 (0.31) 8.03 (0.33) 13.35 (0.30)
(100,300) 0.82 (0.13) 1.43 (0.09) 3.60 (0.26) 4.30 (0.18) 4.29 (0.07) 5.30 (0.25) 5.75 (0.41) 9.53 (0.39)
(200,300) 0.93 (0.12) 1.63 (0.11) 4.00 (0.17) 5.35 (0.17) 6.28 (0.09) 8.93 (0.34) 8.94 (0.31) 13.84 (0.24)

Table 2. Comparison of different outputs of the algorithms with t-distributions.

Spectral Norm Frobenius Norm

(p, n) Σ̃τ
+ Σ̃+

1 Σ̌τ
+ Σ̃+

2 Σ̃τ
+ Σ̃+

1 Σ̌τ
+ Σ̃+

2

Model 1
(50,200) 4.48 (0.10) 5.31 (0.10) 8.64 (0.26) 10.45 (0.13) 9.44 (0.21) 11.41 (0.20) 13.75 (0.26) 15.44 (0.42)
(50,300) 3.69 (0.20) 4.63 (0.08) 7.79 (0.48) 9.36 (0.37) 7.95 (0.28) 9.80 (0.14) 12.74 (0.46) 13.63 (0.33)

(100,200) 4.81 (0.08) 5.56 (0.04) 9.98 (0.35) 13.75 (0.12) 14.10 (0.25) 16.78 (0.09) 20.32 (0.28) 22.97 (0.28)
(100,300) 4.35 (0.09) 5.08 (0.10) 8.73 (0.35) 11.69 (0.44) 12.53 (0.27) 14.84 (0.21) 18.72 (0.48) 19.42 (0.32)
(200,300) 4.59 (0.04) 5.42 (0.03) 10.62 (0.30) 14.61 (0.31) 18.91 (0.21) 20.59 (0.24) 23.09 (0.20) 24.10 (0.14)

Model 2
(50,200) 2.81 (0.27) 4.23 (0.44) 7.34 (0.48) 9.42 (0.40) 6.06 (0.33) 7.29 (0.28) 10.85 (0.44) 11.78 (0.27)
(50,300) 2.27 (0.21) 3.35 (0.42) 6.19 (0.49) 7.47 (0.43) 4.86 (0.26) 5.88 (0.30) 9.53 (0.35) 10.77 (0.42)

(100,200) 3.91 (0.36) 4.61 (0.39) 8.46 (0.27) 10.95 (0.30) 9.68 (0.25) 13.17 (0.40) 14.58 (0.21) 16.69 (0.32)
(100,300) 2.94 (0.17) 3.73 (0.26) 6.69 (0.39) 8.52 (0.46) 7.63 (0.29) 10.83 (0.31) 11.95 (0.37) 13.65 (0.20)
(200,300) 3.56 (0.27) 4.46 (0.34) 9.36 (0.24) 11.48 (0.22) 12.25 (0.36) 15.81 (0.25) 15.46 (0.32) 18.42 (0.22)

Table 3. Comparison of different privacy levels ε with normal distributions under Model 2.

Spectral Norm Frobenius Norm

ε Σ̃τ
+ Σ̃+

1 Σ̌τ
+ Σ̃+

2 Σ̃τ
+ Σ̃+

1 Σ̌τ
+ Σ̃+

2

Model 1
0.1 2.60 (0.06) 3.04 (0.02) 7.49 (0.23) 9.84 (0.22) 7.69 (0.21) 11.14 (0.13) 12.74 (0.26) 17.54 (0.35)
0.4 1.51 (0.15) 2.12 (0.06) 5.25 (0.33) 6.88 (0.38) 5.95 (0.29) 9.11 (0.17) 9.82 (0.46) 14.72 (0.32)
0.6 1.08 (0.14) 1.70 (0.07) 3.31 (0.25) 4.07 (0.17) 4.66 (0.14) 7.64 (0.31) 7.67 (0.09) 12.67 (0.15)
0.7 1.03 (0.16) 1.65 (0.10) 3.03 (0.14) 3.34 (0.16) 4.45 (0.11) 7.02 (0.33) 7.16 (0.04) 11.66 (0.06)
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Table 4. Comparison of different privacy levels ε with t-distributions under Model 2.

Spectral Norm Frobenius Norm

ε Σ̃τ
+ Σ̃+

1 Σ̌τ
+ Σ̃+

2 Σ̃τ
+ Σ̃+

1 Σ̌τ
+ Σ̃+

2

Model 1
0.1 6.98 (0.28) 8.29 (0.28) 15.03 (0.16) 17.59 (0.17) 12.99 (0.21) 16.58 (0.47) 19.70 (0.35) 22.18 (0.24)
0.4 4.71 (0.39) 5.72 (0.36) 10.37 (0.42) 12.88 (0.31) 10.78 (0.43) 14.34 (0.45) 16.14 (0.18) 18.16 (0.14)
0.6 3.02 (0.30) 3.82 (0.37) 6.90 (0.39) 9.15 (0.21) 8.89 (0.40) 12.39 (0.42) 13.25 (0.47) 15.38 (0.22)
0.7 1.84 (0.41) 2.55 (0.31) 4.54 (0.19) 6.28 (0.24) 7.38 (0.41) 10.65 (0.39) 11.52 (0.30) 13.22 (0.44)

Table 5. Comparison of different privacy levels δ with normal distributions under Model 1.

Spectral Norm Frobenius Norm

ε Σ̃τ
+ Σ̃+

1 Σ̌τ
+ Σ̃+

2 Σ̃τ
+ Σ̃+

1 Σ̌τ
+ Σ̃+

2

Model 1
1/50 1.85 (0.14) 2.47 (0.11) 4.08 (0.21) 4.92 (0.22) 6.37 (0.16) 8.67 (0.24) 6.33 (0.31) 8.62 (0.34)

1/100 1.99 (0.14) 2.58 (0.09) 4.49 (0.19) 5.51 (0.27) 6.47 (0.47) 8.89 (0.36) 7.66 (0.26) 11.14 (0.15)
1/200 2.08 (0.11) 2.62 (0.09) 4.92 (0.27) 6.43 (0.45) 6.68 (0.21) 9.12 (0.29) 9.17 (0.18) 13.09 (0.17)
1/500 2.32 (0.14) 2.96 (0.08) 5.63 (0.31) 7.97 (0.25) 7.04 (0.17) 9.66 (0.22) 11.15 (0.17) 15.68 (0.21)

Table 6. Comparison of different privacy levels δ with t-distributions under Model 1.

Spectral Norm Frobenius Norm

ε Σ̃τ
+ Σ̃+

1 Σ̌τ
+ Σ̃+

2 Σ̃τ
+ Σ̃+

1 Σ̌τ
+ Σ̃+

2

Model 1
1/50 4.40 (0.07) 5.29 (0.06) 6.95 (0.35) 10.31 (0.28) 13.42 (0.19) 16.22 (0.21) 17.94 (0.40) 19.17 (0.36)

1/100 4.64 (0.06) 5.38 (0.05) 8.01 (0.29) 11.24 (0.14) 13.69 (0.20) 16.39 (0.13) 18.70 (0.37) 20.56 (0.39)
1/200 5.73 (0.08) 5.45 (0.03) 8.91 (0.35) 13.00 (0.21) 13.94 (0.18) 16.55 (0.13) 19.10 (0.18) 21.96 (0.28)
1/500 5.05 (0.04) 5.78 (0.02) 10.51 (0.39) 14.47 (0.26) 14.33 (0.17) 16.93 (0.07) 20.66 (0.38) 23.37 (0.17)

4.2. Real Data Application

To demonstrate the performances of the outputs Σ̃τ
+ and Σ̌τ

+ of Algorithms 1 and 2, and
compare them with the outputs Σ̃+

1 and Σ̃+
2 of the DP-thresholding and LDP-thresholding

algorithms proposed by Wang and Xu [10], respectively, we use quadratic discriminant
analysis (QDA) presented by Liang et al. [22]. We apply these estimators on the human gut
microbiome dataset collected by Wu et al. [23], which contains 98 healthy individuals at the
University of Pennsylvania. In fact, the bacterial community in the dataset was categorized
into 87 genera, which appeared in at least one sample. We select p = 40 bacterial genera
that appeared in at least four samples. Then, according to the body mass index (BMI), we
divide the dataset with 40 bacterial genera into a lean group (BMI < 25, n = 63) and an
obese group (BMI ≥ 25, n = 35).

We randomly select 13 lean subjects and 7 obese subjects via the stratified sampling
approach in order to constitute the testing set (roughly 1/5 of the subjects in each group);
the remaining subjects form the training set. Moreover, a two-sample t test is performed
between the two groups for each bacterial genus in the training set. In the our analysis,
p = 25 and 40 are considered. The data are assumed to be normally distributed as N(µk, Σ),
and the two groups are assumed to have the same covariance matrix Σ but different means
µk, k = 1 for the obese group and k = 2 for the lean group. Note that the parameters δ, ε of
the additive noise in Algorithms 1 and 2 are set as 1/196 and 0.5, respectively. In addition,
we set θ = 4

√
2ηK

2
4+ε M/3 in Algorithms 1 and 2 as the tuning parameter, which is selected

by cross-validation conducted on the real data.
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In order to compare the advantage, the outputs Σ̃τ
+, Σ̌τ

+, Σ̃+
1 and Σ̃+

2 are used to replace
Σ̂ in the following QDA score functions:

δk(y) = −
1
2

log(det(Σ̂))− 1
2
(y− µ̂k)

TΣ̂−1(y− µ̂k) + log(π̂k),

where π̂k = nk/n is the proportion of group k subjects in the training set and µ̂k =
1
nk

∑kth−group yi is the within-group average vector in the training set. The classification
rule is

k̂(y) = arg max
k

δk(y), k = 1, 2.

We use the testing set to evaluate the estimation performance through the average
number of misclassifications. Our result is based on 20 replications of the above procedure.
Table 7 presents the average number of misclassifications for every output of the correspond-
ing algorithms. It can be seen that the output Σ̃τ

+ of our Algorithm 1 performs better than
the output Σ̃+

1 of the DP-thresholding algorithm proposed by Wang and Xu [10]. Similarly,
the output Σ̌τ

+ of Algorithm 2 is more effective than the output Σ̃+
2 of the LDP-thresholding

algorithm [10].

Table 7. Comparison of different outputs of algorithms.

Average Number of Misclassifications

p Σ̃τ
+ Σ̃+

1 Σ̌τ
+ Σ̃+

2

25 2.25 5.70 4.30 6.45
40 3.20 4.95 5.15 6.90

5. Discussion

In this paper, we study the problem of estimating the sparse covariance matrix under
lower-bounded moment assumption while guaranteeing DP and LDP, and measure the
error bounds by spectral and Frobenius norms, respectively. Furthermore, we conduct
numerical experiments to support our theoretical analysis.

However, we do not derive the lower bound of the error estimation. This is possible
to achieve, since there are many well-known technique methods that can be utilized, such
as Fano’s lemma [24], Assuouad’s lemma [25] and Le Cam’s method [26]. Moreover, a
noteworthy open problem is to consider the estimation in terms of expectation with the
lower-bounded moment assumption while preserving DP and LDP. We leave these aspects
as future work.
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theoretical analysis and edited the manuscript. All authors have read and agreed to the published
version of the manuscript.
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Appendix A

In order to present Theorems 1 and 2, we introduce the following lemma:

Lemma A1. Define event E as

E =

{
|σ̃ij − σij| ≤

3
4

(
ξ

√
log p

n
+ 4σ1(log p)1/2

)
, ∀1 ≤ i, j ≤ p

}
, (A1)
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and ξ := 4
√

2
3 ηK

2
4+ε M, where K, γ and M are given in Conditions (i)–(ii). Then, for any η ≥ 2

and some ε > 0,
P(E) ≥ 1−O

(
(log p)−

1
2 p−η+2 + n−ε + p−

5
2

)
.

Proof. Note that (3) and (4) in Algorithm 1 show that

σ̃ij = σ̂ij + nij,

thus, we know

P(Ec) = P
{
|σ̂ij + nij − σij| ≥

√
2ηK

2
4+ε M

√
log p

n
+ 3σ1

√
log p, ∃1 ≤ i, j ≤ p

}

≤ P
{
|σ̂ij − σij| ≥

√
2ηK

2
4+ε M

√
log p

n
, ∃1 ≤ i, j ≤ p

}
+ P{|nij| ≥ 3σ1

√
log p, ∃1 ≤ i, j ≤ p} := R1 + R2. (A2)

Since nij ∼ N(0, σ2
1 ), it holds that

P{|nij| ≥ 3σ1
√

log p, ∃1 ≤ i, j ≤ p} ≤ 2p−
5
2 (A3)

due to P{|X| > t} ≤ 2e−
t2

2σ2 for X ∼ N(0, σ2) in [27].
According to Condition (i), we have E|Xi|4+ε ≤ Kσ2+ε/2

ii . Therefore,

D(XiXj) ≤ E|XiXj|2 ≤
√
E|Xi|4E|Xj|4 ≤ K

4
4+ε σiiσjj.

By applying the Σ ∈ Uq(sn,p, M) in Condition (ii), it follows that

D(XiXj) ≤ K
4

4+ε M2. (A4)

On the other hand, Condition (i) implies that

D(XiXj) ≥ τ0σiiσjj. (A5)

Define event E1 as

E1 =
{

θ̂ij ≤ 2D(XiXj), ∀1 ≤ i, j ≤ p
}

and

P(Ec
1) ≤ P{|θ̂ij −D(XiXj)| ≥ D(XiXj), ∃1 ≤ i, j ≤ p}
≤ P

{
|θ̂ij −D(XiXj)| ≥ τ0σiiσjj, ∃1 ≤ i, j ≤ p

}
holds thanks to (A5). Using Lemma 2(ii) in [4], we know that for some ε > 0,

P(Ec
1) ≤ O(n−ε). (A6)

Hence, we obtain that for any η ≥ 2 and some ε > 0,

R1 ≤ P
{
|σ̂ij + nij − σij| ≥

√
2η
√
(D(XiXj) log p)/n, ∃1 ≤ i, j ≤ p

}
≤ P

({
|σ̂ij + nij − σij| ≥

√
2η
√
(D(XiXj) log p)/n, ∃1 ≤ i, j ≤ p

}
∩ E1

)
+ P(Ec

1)

≤ O
(
(log p)−

1
2 p−η+2 + n−ε

)
,
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where the first inequality holds because of (A4), and the last inequality follows from
Lemma 1 and (A6).

Proof of Theorem 1. (i) Considering that Σ is a positive definite matrix, we have

‖Σ̃τ
+ − Σ‖2 ≤ ‖Σ̃τ

+ − Σ̃τ‖2 + ‖Σ̃τ − Σ‖2 ≤ max
{i:λ̃i≤0}

|λ̃i|+ ‖Σ̃τ − Σ‖2

≤ max
{i:λ̃i≤0}

|λ̃i − λi(Σ)|+ ‖Σ̃τ − Σ‖2 ≤ 2‖Σ̃τ − Σ‖2.

Hence, it suffices to show that there exists the constant C1 := C1(q, η, K, M, ε), such
that

‖Σ̃τ − Σ‖2 ≤ C1sn,p

(√ log p
n

+

√
log δ−1 log p

n2ε2

)1−q
(A7)

under event E.
Since Σ̃τ − Σ is symmetric, this, along with the Gersgorin theorem, yields

‖Σ̃τ − Σ‖2 ≤ ‖Σ̃τ − Σ‖1 ≤ ‖Σ̃τ − Στ‖1 + ‖Στ − Σ‖1 := R1 + R2, (A8)

where Στ = (στ
ij)p×p with στ

ij = σij · I
{
|σij| > λ

}
and

λ =
4
√

2
3

ηK
2

4+ε M

√
log p

n
+ 4σ1(log p)1/2. (A9)

We first estimate R2. Clearly, it follows that

R2 = max
j

p

∑
i=1

[|στ
ij − σij|I(|σij| ≤ λ) + |στ

ij − σij|I(|σij| > λ)]

= max
j

p

∑
i=1
|σij|I(|σij| ≤ λ) ≤ max

j

p

∑
i=1
|σij|qλ1−q (A10)

from the definition of στ
ij .

The remaining work sets out to estimate R1. It is easy to see that

R1 ≤ max
j

p

∑
i=1
|σ̃ij − σij|I(|σ̃ij| > λ, |σij| > λ) + max

j

p

∑
i=1
|σij|I(|σ̃ij| ≤ λ, |σij| > λ)

+ max
j

p

∑
i=1
|σ̃ij|I(|σ̃ij| > λ, |σij| ≤ λ) = R11 + R12 + R13. (A11)

When event E occurs, we obtain

R11 ≤
3
4

max
j

p

∑
i=1

λI(|σ̃ij| > λ, |σij| > λ) ≤ 3
4

max
j

p

∑
i=1

λ1−q|σij|q (A12)

and

R12 ≤ max
j

p

∑
i=1
|σ̃ij − σij|I(|σij| > λ) + max

j

p

∑
i=1
|σ̃ij|I(|σ̃ij| ≤ λ, |σij| > λ)

≤ 7
4

max
j

p

∑
i=1

λI(|σij| > λ) ≤ 7
4

max
j

p

∑
i=1

λ1−q|σij|q. (A13)

For R13, it holds that
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R13 ≤ max
j

p

∑
i=1
|σij|I(|σij| ≤ λ) + max

j

p

∑
i=1
|σ̃ij − σij|I(|σ̃ij| > λ, |σij| ≤ λ)

≤ max
j

p

∑
i=1

λ1−q|σij|q + R131. (A14)

Through the condition δ ∈ (0, 1) in Algorithm 1, we know that constant c1 > 0
exists, such that log(1.25/δ) ≤ c1 log δ−1 and σ1 ≤ 2

√
c1 log δ−1/nε. This, along with the

definition of λ in (A9), leads to

λ ≤ 4
√

2
3

ηK
2

4+ε M

√
log p

n
+ 8
√

c1

√
log δ−1

ε2

√
log p

n2 . (A15)

On the other hand, we obtain

R131 ≤
3
4

max
j

p

∑
i=1

λI
(
|σ̃ij| > λ,

1
4

λ ≤ |σij| < λ

)
+

3
4

max
j

p

∑
i=1

λI
(
|σ̃ij| > λ, |σij| <

1
4

λ

)

≤ 3
4

max
j

p

∑
i=1

λI
(

1
4

λ ≤ |σij| < λ

)
+

3
4

max
j

p

∑
i=1

λI
(
|σ̃ij − σij| >

3
4

λ

)
(A16)

= T1 + T2

under event E.
Obviously, T1 in (A16) is controlled by 4q maxj ∑

p
i=1 λ1−q|σij|q. For T2, (A15) and the as-

sumption in Condition (i) imply λ is a bounded quantity. In addition, I
(
|σ̃ij − σij| > 3

4 λ
)
= 0

if event E occurs. Thus, T2 in (A16) is 0 under event E. Therefore,

R131 ≤ 4q max
j

p

∑
i=1

λ1−q|σij|q.

This, along with (A14), reveals that

R13 ≤ (4q + 1)max
j

p

∑
i=1

λ1−q|σij|q (A17)

under event E. Then, we have

R1 ≤
(

4q +
7
2

)
max

j

p

∑
i=1

λ1−q|σij|q, (A18)

thanks to (A11)–(A13) and (A17).
Furthermore, substituting (A18) and (A10) into (A8) indicates that

‖Σ̃τ − Σ‖2 ≤
(

4q +
9
2

)
max

j

p

∑
i=1

λ1−q|σij|q.

Hence, we derive

‖Σ̃τ − Σ‖2 ≤
(

4q +
9
2

)(
4
√

2
3

ηK
2

4+ε M

√
log p

n
+ 8
√

c1

√
log δ−1 log p

n2ε2

)1−q

max
j

p

∑
i=1
|σij|q

≤ C1sn,p

(√
log p

n
+

√
log δ−1 log p

n2ε2

)1−q
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due to (A15) and Σ ∈ Uq(sn,p, M), which reaches the conclusion of (A7).
(ii) Similar to the discussions in (i), we derive that

‖Σ̃τ
+ − Σ‖2

F ≤ 2(‖Σ̃τ
+ − Σ̃τ‖2

F + ‖Σ̃τ − Σ‖2
F) ≤ 2

 ∑
i:λ̃i≤0

λ̃2
i + ‖Σ̃τ − Σ‖2

F


≤ 2

{
p

∑
i=1

[λ̃i − λi(Σ)]
2 + ‖Σ̃τ − Σ‖2

F

}
= 4‖Σ̃τ − Σ‖2

F.

Therefore, the remaining work is conducted to show that the constant C5 := C5(q, η, K, M, ε)
exists, such that

1
p
‖Σ̃τ − Σ‖2

F ≤ C5sn,p

(√
log p

n
+

√
log δ−1 log p

n2ε2

)2−q

(A19)

under event E.
Obviously, it holds that

1
p
‖Σ̃τ − Σ‖2

F =
1
p

p

∑
j=1

p

∑
i=1
|σ̃τ

ij − σij|2 ≤ max
j

p

∑
i=1
|σ̃τ

ij − σij|2

≤ 2

(
max

j

p

∑
i=1
|σ̃τ

ij − στ
ij |2 + max

j

p

∑
i=1
|στ

ij − σij|2
)

.

Using similar discussion techniques as those applied for estimating R1, R2 in (A11)
and (A10), we know that

1
p
‖Σ̃τ − Σ‖2

F ≤ Cq max
j

p

∑
i=1

λ2−q|σij|q

under event E, where Cq denotes a constant related to q. Thus, we have

1
p
‖Σ̃τ − Σ‖2

F ≤ Cq

(
4
√

2
3

ηK
2

4+ε M

√
log p

n
+ 8
√

c1

√
log δ−1 log p

n2ε2

)2−q

max
j

p

∑
i=1
|σij|q

≤ C5sn,p

(√
log p

n
+

√
log δ−1 log p

n2ε2

)2−q

due to (A15) and Σ ∈ Uq(sn,p, M). This is the expected conclusion of (A19).

Proof of Theorem 2. To show the conclusions (i)–(ii) of Theorem 2, we define the event as

E2 =

{
|σ̌ij − σij| ≤

3
4

(
ξ

√
log p

n
+ 4σ2(log p)1/2

)
, ∀1 ≤ i, j ≤ p

}

and ξ := 4
√

2
3 ηK

2
4+ε M.

Based on Lemma 1 and P{|X| > t} ≤ 2e−
t2

2σ2 for X ∼ N(0, σ2) in [27], and using the
similar proving process of Lemma A1, we know that for any η ≥ 2 and some ε > 0,

P(E2) ≥ 1−O
(
(log p)−

1
2 p−η+2 + n−ε + p−

5
2

)
. (A20)
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By considering the similar discussions used to prove Theorem 1, we deduce that
constants C6 := C6(q, η, K, M, ε), C7 := C7(q, η, K, M, ε) exist, such that

‖Σ̌τ
+ − Σ‖2 ≤ C6sn,p

(√
log p

n
+

√
log δ−1 log p

nε2

)1−q

and
1
√

p
‖Σ̌τ

+ − Σ‖F ≤ C7
√

sn,p

(√
log p

n
+

√
log δ−1 log p

nε2

)1−q/2

under event E2. Furthermore, there exists c2 > 0, such that (log p)/n ≤ c2(log δ−1 log p)/
nε2. Hence, the above two inequalities reduce to

‖Σ̌τ
+ − Σ‖2 ≤ C3sn,p

(
log δ−1 log p

nε2

) 1−q
2

and
1
√

p
‖Σ̌τ

+ − Σ‖F ≤ C4
√

sn,p

(
log δ−1 log p

nε2

) 1
2−

q
4

under event E2. This, along with (A20), enables us to reach the desired conclusions of
Theorem 2.
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