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1. Introduction

Define A as a class of analytic functions σ of the form

σ(z) = z +
∞

∑
k=2

σkzk, (z ∈ D), (1)

where D = {z ∈ C : |z| < 1}.
Let S ,S∗, and K be the subclasses of A, which are composed of univalent functions,

starlike functions, and convex functions, respectively [1,2].
Let P denote the class of analytic functions p(z), Rep(z) > 0 (z ∈ D) of the following

form:

p(z) = 1 +
∞

∑
j=1

pjzj. (2)

The function p ∈ P is called a Carathéodory function.
Suppose that the functions λ and µ are analytic in D. The function λ is said to

be subordinate to the function µ if there exists a function Θ satisfying Θ(0) = 0 and
|Θ(z)| < 1 (z ∈ D), such that λ(z) = µ(Θ(z))(z ∈ D). Note that λ(z) ≺ µ(z). In particular,
if µ is univalent in D, the following conclusion follows (see [1]):

λ(z) ≺ µ(z)⇐⇒ λ(0) = µ(0) and λ(D) ⊂ µ(D).

In 1994, Ma and Minda [3] introduced the classes S∗(ϑ) and K(ϑ) of starlike functions
and convex functions by using subordination. The function σ(z) ∈ S∗(ϑ) iff zσ′(z)

σ(z) ≺ ϑ(z)

and the function σ(z) ∈ K(ϑ) iff 1 + zσ′′(z)
σ′(z) ≺ ϑ(z), where σ ∈ A and ϑ ∈ P .

Let ϑ(z) = 1+az
1+bz and −1 ≤ b < a ≤ 1. The classes S∗( 1+az

1+bz ) = S∗(a, b) and
K( 1+az

1+bz ) = K(a, b) are the classes of Janowski starlike and convex functions, respectively
(refer to [4]). S∗( 1+z

1−z ) = S∗ and K( 1+z
1−z ) = K are known for the classes of starlike and

convex functions, respectively.
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In 1959, Sakaguchi [5] introduced the class S∗s of starlike functions with respect to
symmetric points. The function σ ∈ S∗s if and only if

Re
(

zσ′(z)
σ(z)− σ(−z)

)
> 0.

In 1987, El Ashwah and Thomas [6] introduced the classes S∗c and S∗sc of starlike
functions with respect to conjugate points and symmetric conjugate points as follows:

σ ∈ S∗c ⇐⇒ Re
(

zσ′(z)
σ(z) + σ(z)

)
> 0 and σ ∈ S∗sc ⇐⇒ Re

(
zσ′(z)

σ(z)− σ(−z)

)
> 0.

Similarly to the previous section, the classes S∗c and S∗sc can be further generalized to
the classes S∗sc(ϑ) and Ksc(ϑ).

The function σ(z) belongs to S∗sc(ϑ) if and only if 2zσ′(z)
σ(z)−σ(−z) ≺ ϑ(z) holds true, and

σ(z) belongs to Ksc(ϑ) if and only if 2(zσ′(z))′

(σ(z)−σ(−z))′ ≺ ϑ(z) holds true, where σ ∈ A and
ϑ ∈ P .

If the function σ ∈ Ameets the following criteria—Re
(

σ(z)
zσ′(z)

)
> α(0 ≤ α < 1)—then

σ is said to be in the class of the reciprocal starlike functions of order α, which is represented
by σ ∈ RS∗(α).

In contrast to the classical starlike function class S∗(α) of order α, the reciprocal starlike
function class of order α maps the unit disk to a starlike region within a disk with

(
1

2α , 0
)

as the center and 1
2α as the radius [7]. In particular, the disk is large when 0 < α < 1

2 .
Therefore, the study of the class of reciprocal starlike functions has aroused the research
interest of most scholars [8–13]. In 2012, Sun et al. [8] extended the reciprocal starlike
function to the class of the meromorphic univalent function.

As a generalization of the analytic function, the harmonic function has become one
of the key branches in complex analysis because of the study of the minimal surface of
parameters in differential geometry. After more than 20 years of development, harmonic
function theory has been widely used in fluid dynamics, mathematical physics equations,
and image processing, and it is also a powerful tool for studying minimal surfaces in
differential geometry.

For the analytic functions σ(z) and τ(z)(z ∈ D), let SH be a class of harmonic mappings
that has the following form (see [14–19]):

f (z) = σ(z) + τ(z), z ∈ D, (3)

where

σ(z) = z +
∞

∑
k=2

σkzk and τ(z) =
∞

∑
k=1

τkzk, |τ1| = ρ ∈ [0, 1). (4)

Specifically, σ is referred to as the analytical part, and τ is known as the co-analytic
part of f .

It is known that the function f = σ(z) + τ(z) is locally univalent and sense-preserving
in D if and only if |σ′(z)| > |τ′(z)| (see [20]).

Based on these results, it is possible to obtain the geometric properties of the co-analytic
part by means of the analytic part of the harmonic function.

In the last few years, different subclasses of SH have been studied by several authors.
In 2007, Klimek and Michalski [21] investigated the subclass SH with σ ∈ K.
In 2014, Hotta and Michalski [22] investigated the subclass SH with σ ∈ S .
In 2015, Zhu and Huang [23] investigated the subclasses of SH with σ ∈ S∗( 1+(1−2β)z

1−z )

and σ ∈ K( 1+(1−2β)z
1−z ).
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Combined with the above studies, by using the subordination relationship, this pa-
per further constructs the reciprocal-structure harmonic function class with symmetric
conjugate points as follows.

Definition 1. Let f = σ + τ be in the class SH of the Form (4) and let −1 ≤ b < a ≤ 1. We
define the class HRS∗,ρsc (a, b) as that of univalent harmonic reciprocal starlike functions with a
symmetric conjugate point; the function f = σ + τ ∈ HRS∗,ρsc (a, b) if and only if σ ∈ RS∗sc(a, b),
that is,

σ(z)− σ(−z)
2zσ′(z)

≺ 1 + az
1 + bz

. (5)

In addition, let HRKρ
sc(a, b) define the class of harmonic univalent reciprocal convex functions

with a symmetric conjugate point. The function f = σ + τ ∈ HRKρ
sc(a, b) if and only if σ ∈

RKsc(a, b), that is,
(σ(z)− σ(−z))′

2(zσ′(z))′
≺ 1 + az

1 + bz
. (6)

In this paper, we discuss the geometric properties of these classes, such as the integral
expression, coefficient estimation, distortion theorem, Jacobian estimation, growth estimate,
and covering theorem. In order to show the geometric properties of the function more
intuitively, we give the corresponding function image. The conclusion has enriched the
field of research on harmonic functions.

2. Preliminary Preparation

To obtain our results, we need the following Lemmas.

Lemma 1 ([24]). Let γ be a complex number. If the function Θ(z) is analytic in D, satisfies
|Θ(z)| ≤ 1, and is of the form Θ(z) = c0 + c1z + · · ·+ cnzn + · · · , then

|cn| ≤ 1− |c0|2, n = 1, 2, · · · ,

and ∣∣∣c2 − γc2
1

∣∣∣ ≤ max{1, |γ|}.

According to the subordination relationship, we get the integral expression of the
classes RS∗sc(a, b) and RK∗sc(a, b) as follows.

Lemma 2. Let − 1 ≤ b < a ≤ 1.

(1) If σ(z) ∈ RS∗sc(a, b), then

σ(z) =
∫ z

0
χ(ζ)dζ, (7)

where

χ(ζ) =
1 + bv(ζ)

1 + av(ζ)
exp

{
(b− a)

2

∫ ζ

0

v(t)
t(1 + av(t))

+
v̄(−t̄)

t(1 + av̄(−t̄))
dt
}

, (8)

and v is analytic in D, satisfying v(0) = 0, |v(z)| < 1.
(2) If σ(z) ∈ RK∗sc(a, b), then

σ(z) =
∫ z

0

1
ξ

∫ ξ

0
χ(ζ)dζdξ,

where χ(ζ) is given by (8) and v is analytic in D, satisfying v(0) = 0, |v(z)| < 1.
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Proof. Let σ(z) belong to the class RS∗sc(a, b). According to Definition 1 and the subordina-
tion principle, there exists an analytic function v in D that satisfies v(0) = 0, |v(z)| < 1
such that

σ(z)− σ̄(−z̄)
2zσ′(z)

=
1 + av(z)
1 + bv(z)

. (9)

By replacing z in (9) with −z̄, we get

σ(−z̄)− σ̄(z)
−2z̄σ′(−z̄)

=
1 + av(−z̄)
1 + bv(−z̄)

. (10)

By combining (9) and (10), the following formula can be established:

2z(σ̄(z)− σ(−z̄))′

σ̄(z)− σ(−z̄)
=

1 + bv(z)
1 + av(z)

+
1 + bv̄(−z̄)
1 + av̄(−z̄)

. (11)

We integrate both sides of Equation (11) and make a simple calculation to get the
following result:

σ̄(z)− σ(−z̄)
2

= z exp
{
(b− a)

2

∫ z

0

v(t)
t(1 + av(t))

+
v̄(−t̄)

t(1 + av̄(−t̄))
dt
}

. (12)

From (9) and (12), we have

σ′(z) =
1 + bv(z)
1 + av(z)

exp
{
(b− a)

2

∫ z

0

v(t)
t(1 + av(t))

+
v̄(−t̄)

t(1 + av̄(−t̄))
dt
}

. (13)

We integrate both sides of Equation (13) again, and we get

σ(z) =
∫ z

0

1 + bv(ζ)

1 + av(ζ)
exp

{
(b− a)

2

∫ ζ

0

v(t)
t(1 + av(t))

+
v̄(−t̄)

t(1 + av̄(−t̄))
dt
}

dζ.

According to (7), we have σ ∈ RKsc(a, b) if and only if zσ′(z) ∈ RS∗sc(a, b). So, we can
easily get (8).

Lemma 3. Let − 1 ≤ b < a ≤ 1 and σ(z) = z +
∞
∑

k=2
σkzk.

(1) If σ(z) ∈ RS∗sc(a, b), then

|σ2n| ≤
(a− b)

2n
Gn−1(a, b), (14)

and

|σ2n+1| ≤
(a− b)(1 + a− b)

2n
Gn−1(a, b). (15)

In particular, |σ2| ≤ a−b
2 and |σ3| ≤ (a−b)

2 (1 + a− b).
The estimate is sharp if

σ(z) =
∫ z

0

(1− ξ)[1− (1 + a− b)2ξ2]
− (a−b)

2(1+a−b)

1− (1 + a− b)ξ
dξ.

(2) If σ(z) ∈ RKsc(a, b), then

|σ2n| ≤
(a− b)

4n2 Gn−1(a, b), (16)

and

|σ2n+1| ≤
(a− b)(1 + a− b)

2n(2n + 1)
Gn−1(a, b), (17)
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where

Gm(a, b) = (1 + a− b)m
m

∏
k=1

(
1 +

(2k + 1)(a− b)
2k

)
, m ≥ 1. (18)

In particular, |σ2| ≤ a−b
4 and |σ3| ≤ (a−b)

6 (1 + a− b).
The estimate is sharp if

σ(z) =
∫ z

0

1
η

∫ η

0

(1− ξ)[1− (1 + a− b)2ξ2]
− (a−b)

2(1+a−b)

1− (1 + a− b)ξ
dξdη.

In particular, if a = 1 and b = −1, we get the following conclusion.

(1) If σ(z) ∈ RS∗sc, then

|σ2n| ≤
3n−1

n!

n−1

∏
k=1

(3k + 1) and |σ2n+1| ≤
3n

n!

n−1

∏
k=1

(3k + 1).

The estimate is sharp if σ(z) = (1+3z)
2
3

3(1−3z)
1
3
− 1

3 , and a graph of this function is shown in

Figure 1. In the figure, the complex function σ(z) is represented by the three-dimensional
coordinate system plus color; the x-axis represents the real part of the variable z; the y-axis
represents the imaginary part of the variable z; the z-axis represents the real part of the function
σ(z), and the color represents the imaginary part of the function σ(z). In Figure 2, the range
of the function σ(z) is shown, with the x-axis representing the real part of the function σ(z)
and the y-axis representing the imaginary part of the function σ(z).
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Figure 2. The range of σ(z) = (1+3z)
2
3

3(1−3z)
1
3
− 1

3 .

(2) If σ(z) ∈ RKsc, then

|σ2n| ≤
3n−1

(2n)n!

n−1

∏
k=1

(3k + 1) and |σ2n+1| ≤
3n

(2n + 1)n!

n−1

∏
k=1

(3k + 1).

The estimate is sharp if

σ(z) =
∫ z

0

(1 + 3η)
2
3

3η(1− 3η)
1
3
− 1

3η
dη.

Proof. First, we prove the first part of Lemma 3. Let σ(z) = z +
∞
∑

k=2
σkzk ∈ RS∗sc(a, b),

and there exists a positive real function p(z) = 1 +
∞
∑

j=1
pjzj ∈ P with |pj| ≤ a − b that

satisfies the following condition:

σ(z)− σ(−z)
2zσ′(z)

= p(z).

By comparing the coefficients of the two sides of the equation, the following conclu-
sions are drawn:

2nσ2n = −p2n−1 − 2σ2 p2n−2 − 3σ3 p2n−3 − · · · − (2n− 1)σ2n−1 p1,

and
2nσ2n+1 = −p2n − 2σ2 p2n−1 − 3σ3 p2n−2 − · · · − 2nσ2n p1.

It is easy to prove that

|σ2n| ≤
(a− b)

2n
(1 + 2|σ2|+ · · ·+ (2n− 1)|σ2n−1|), (19)
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and

|σ2n+1| ≤
(a− b)

2n
(1 + 2|σ2|+ · · ·+ 2n|σ2n|). (20)

From (19) and (20), we have

1 + 2|σ2|+ · · ·+ (2n + 1)|σ2n+1| ≤ (1 + a− b)n
n

∏
k=1

(
1 +

(2k + 1)
2k

(a− b)
)

, (21)

and

1 + 2|σ2|+ · · ·+ (2n)|σ2n| ≤ (1 + a− b)n
n−1

∏
k=1

(
1 +

(2k + 1)
2k

(a− b)
)

. (22)

According to (19)–(22), we can obtain (14) and (15), that is,

|σ2n| ≤
(a− b)

2n
(1 + a− b)n−1

n−1

∏
k=1

(
1 +

(2k + 1)(a− b)
2k

)
and

|σ2n+1| ≤
(a− b)

2n
(1 + a− b)n

n−1

∏
k=1

(
1 +

(2k + 1)(a− b)
2k

)
.

The second part of Lemma 3 is shown below. Let σ(z) = z +
∞
∑

k=2
σkzk ∈ Ksc(a, b).

Similarly to the previous proof, we can obtain

(σ(z)− σ(−z))′

2(zσ′(z))′
= p(z),

where p(z) = 1 +
∞
∑

j=1
pjzj ∈ P is a positive real function with |pj| ≤ a− b.

By comparing the coefficients of the two sides of the equation, we can get the follow-
ing results:

22σ2 = −p1,

3 · 2σ3 = −p2 − 22σ2 p1,

42σ4 = −p3 − 22σ2 p2 − 32σ3 p1,

5 · 4σ5 = −p4 − 22σ2 p3 − 32σ3 p2 − 22σ2 p1,
...

(2n)2σ2n = −p2n−1 − 22σ2 p2n−2 − 32σ3 p2n−3 − · · · − (2n− 1)2σ2n−1 p1,

(2n + 1)(2n)σ2n+1 = −p2n − 22σ2 p2n−1 − 32σ3 p2n−2 − · · · − (2n)2σ2n p1.

It is easy to see that

|σ2n| ≤
(a− b)
(2n)2 (1 + 22|σ2|+ · · ·+ (2n− 1)2|σ2n−1|), (23)

and

|σ2n+1| ≤
(a− b)

2n(2n + 1)
(1 + 22|σ2|+ · · ·+ (2n)2|σ2n|). (24)

From (23) and (24), we have

1 + 22|σ2|+ · · ·+ (2n)2|σ2n| ≤ (1 + a− b)n
n−1

∏
k=1

(
1 +

(2k + 1)
2k

(a− b)
)

, (25)
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and

1 + 22|σ2|+ · · ·+ (2n + 1)2|σ2n+1| ≤ (1 + a− b)n
n

∏
k=1

(
1 +

(2k + 1)
2k

(a− b)
)

(26)

According to (23)–(26), we can obtain (16) and (17), that is,

|σ2n| ≤
(a− b)
(2n)2 (1 + a− b)n−1

n−1

∏
k=1

(
1 +

(2k + 1)
2k

(a− b)
)

,

and

|σ2n+1| ≤
(a− b)

(2n)(2n + 1)
(1 + a− b)n

n−1

∏
k=1

(
1 +

(2k + 1)
2k

(a− b)
)

.

Lemma 4. Let −1 ≤ b < a ≤ 1, µ ∈ C.

(1) If σ(z) = z + ∑∞
k=2 σkzk ∈ RS∗sc(a, b), then∣∣∣σ3 − µσ2

2

∣∣∣ ≤ a− b
2

max
{

1,
∣∣∣a + µ

2
(b− a)

∣∣∣}. (27)

The estimate is sharp if

σ(z) =
∫ z

0
(1 + bξ)(1− aξ)

b−a
2a (1 + aξ)

b−3a
2a dξ,

or

σ(z) =
∫ z

0

(
1 + bξ2

)(
1 + aξ2

) b−3a
2a dξ.

(2) If σ(z) = z + ∑∞
k=2 σkzk ∈ RKsc(a, b), then∣∣∣σ3 − µσ2

2

∣∣∣ ≤ a− b
6

max
{

1,
∣∣∣∣a + 3µ(b− a)

8

∣∣∣∣}. (28)

The estimate is sharp if

σ(z) =
∫ z

0

1
η

∫ η

0
(1 + bξ)(1− aξ)

b−a
2a (1 + aξ)

b−3a
2a dξdη,

or

σ(z) =
∫ z

0

1
η

∫ η

0

(
1 + bξ2

)(
1 + aξ2

) b−3a
2a dξdη.

In particular, if a = 1, b = −1, we have the following results:

(1) If σ(z) = z + ∑∞
k=2 σkzk ∈ RS∗sc, then∣∣∣σ3 − µσ2

2

∣∣∣ ≤ max{1, |1− µ|}.

The estimate is sharp if σ(z) = z
1+z or σ(z) = z

1+z2 .
(2) If σ(z) = z + ∑∞

k=2 σkzk ∈ RKsc, then∣∣∣σ3 − µσ2
2

∣∣∣ ≤ 1
3

max{1, |1− 3µ

4
|}.

The estimate is sharp if σ(z) = log(1 + z) or σ(z) = arctan z.
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Proof. Let σ(z) = z + ∑∞
k=2 σkzk ∈ RS∗sc(a, b). According to Definition 1 and the subordina-

tion principle, there exists an analytic function v(z) = c1z + c2z2 + · · · in D that satisfies
v(0) = 0, |v(z)| < 1 such that

σ(z)− σ̄(−z̄)
2zσ′(z)

=
1 + av(z)
1 + bv(z)

. (29)

By comparing the coefficients of the two sides of Equation (29), we get the follow-
ing results:

σ2 =
b− a

2
c1 and a3 =

b− a
2

c2 −
(b− a)a

2
c2

1.

Therefore, we have

σ3 − µσ2
2 =

b− a
2

{
c2 −

(
a +

µ(b− a)
2

)
c2

1

}
.

Applying Lemma 1, we get (27). The extremal function is as follows:

σ(z) =
∫ z

0
(1 + bξ)(1− aξ)

b−a
2A (1 + aξ)

b−3a
2a dξ,

or

σ(z) =
∫ z

0

(
1 + bξ2

)(
1 + aξ2

) b−3a
2a dξ.

If σ(z) = z + ∑∞
k=2 σkzk ∈ RKsc(a, b), then zσ′(z) ∈ RS∗sc(a, b). It is easy to obtain (28),

and the bound is sharp, as shown in the following:

σ(z) =
∫ z

0

1
η

∫ η

0
(1 + bξ)(1− aξ)

b−a
2a (1 + aξ)

b−3a
2a dξdη,

or

σ(z) =
∫ z

0

1
η

∫ η

0

(
1 + bξ2

)(
1 + aξ2

) b−3a
2a dξdη.

Lemma 5. Let −1 ≤ b < a ≤ 1 and |z| = r ∈ [0, 1).

(1) If σ(z) ∈ RS∗(a, b), then

m1(r; a, b) ≤ |σ(z)| ≤ M1(r; a, b), (30)

and
m2(r; a, b) ≤

∣∣σ′(z)∣∣ ≤ M2(r; a, b). (31)

(2) If σ(z) ∈ RK(a, b), then

m3(r; a, b) ≤ |σ(z)| ≤ M3(r; a, b), (32)

and
m1(r; a, b)

r
≤
∣∣σ′(z)∣∣ ≤ M1(r; a, b)

r
, (33)

where

M1(r; a, b) =

{
r(1− ar)

b−a
a , a 6= 0,

re−br, a = 0,
(34)

m1(r; a, b) =

{
r(1 + ar)

b−a
a , a 6= 0,

rebr, a = 0,
(35)
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M2(r; a, b) =

{
(1− ar)

b−2a
a (1− br), a 6= 0,

(1− br)e−br, a = 0,
(36)

m2(r; a, b) =

{
(1 + ar)

b−2a
a (1 + br), a 6= 0,

(1 + br)ebr, a = 0,
(37)

M3(r; a, b) =

{
1
b −

1
b (1− ar)

b
a , a 6= 0,

1
b −

1
b e−br, a = 0,

(38)

m3(r; a, b) =

{
1
b (1 + ar)

b
a − 1

b , a 6= 0,
1
b ebr − 1

b , a = 0.
(39)

Proof. For σ(z) ∈ RS∗(a, b), we let

σ(z)
zσ′(z)

= P(z) and P(z) ≺ 1 + az
1 + bz

.

After a simple calculation, we can get

σ(z) = z · exp
[(∫ z

0

1− P(ζ)
ζP(ζ)

dζ

)]
.

Therefore,

|σ(z)
z
| = exp

(
Re
∫ z

0

1− P(ζ)
ζP(ζ)

dζ

)
.

Substituting ζ = zt, we obtain

|σ(z)| = |z| exp
(∫ 1

0
Re

1− P(zt)
tP(zt)

dt
)

. (40)

Letting z = x + iy and |z| = r ∈ (0, 1], we get

Re
(b− a)z
1 + azt

dt =
(b− a)(x + ar2t)
1 + a2r2t2 + 2axt

:= Θ(x).

It is easy to find that Θ(x) is decreasing with respect to x ∈ [−r, r]. Therefore,

− (a− b)r
1 + art

≤ Re
(b− a)z
1 + azt

≤ (a− b)r
1− art

,

that is,

− (a− b)r
1 + art

≤ Re
1− P(zt)

tP(zt)
≤ (a− b)r

1− art
.

Integrating the two sides of the inequality for t above from 0 to 1, we get

(1 + ar)
b−a

a ≤ exp
∫ 1

0
Re

1− P(zt)
tP(zt)

dt ≤ (1− ar)
b−a

a , (a 6= 0), (41)

and

ebr ≤ exp
∫ 1

0
Re

1− P(zt)
tP(zt)

dt ≤ e−br, (a = 0). (42)

By combining inequalities (40)–(42), we can obtain (30) from Lemma 5.
On the other hand, for |z| = r, we have

1− ar
1− br

<

∣∣∣∣ σ(z)
zσ′(z)

∣∣∣∣ < 1 + ar
1 + br

. (43)
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From (41)–(43), we can obtain (31) from Lemma 5.
If σ(z) ∈ RK(a, b), then zσ′(z) ∈ RS∗(a, b). According to the results in (30), we can

easily get (33), that is,
m1(r; a, b)

r
≤
∣∣σ′(z)∣∣ ≤ M1(r; a, b)

r
,

By integrating the two sides of the inequality from 0 to r, we can get (32).

Lemma 6. If σ(z) ∈ RS∗sc(a, b), then σ(z)−σ̄(−z̄)
2 ∈ RS∗(a, b).

Proof. For convenience, we set ∆σ(z) = σ(z)−σ̄(−z̄)
2 and Dσ(z) = zσ′(z).

Let σ(z) ∈ RS∗sc(a, b). According to Definition 1 and the relationship of subordination,
we have

σ(z)− σ̄(−z̄)
2zσ′(z)

=
1 + av(z)
1 + bv(z)

,

that is,
∆σ(z)
Dσ(z)

=
1 + av(z)
1 + bv(z)

,

where v(z) is analytic in U and satisfies v(0) = 0 and |v(z)| < 1.
Let p(z) = 1+v(z)

1+v(z) , and we have Rep(z) > 0. Thus, we get

∆σ(z)
Dσ(z)

=
1− a + (1 + a)p(z)
1− b + (1 + b)p(z)

,

that is,

(1− b)∆σ(z) + (1 + b)p(z)∆σ(z) = (1− a)Dσ(z) + (1 + a)p(z)Dσ(z).

Since

∆(∆σ)(z) = ∆σ(z),

D(∆σ)(z) = ∆(Dσ)(z),

we have

(1− b)∆σ(z) + (1 + b)q(z)∆σ(z) = (1− a)D∆σ(z) + (1 + a)q(z)D∆σ(z),

which is equivalent to
∆σ(z)

D∆σ(z)
=

1− a + (1 + a)q(z)
1− b + (1 + b)q(z)

,

where q(z) = ∆p(z).
Since Req(z) > 0, by combining this with the conclusion above, we get

∆σ(z)
D∆σ(z)

≺ 1 + az
1 + bz

,

that is, ∆σ(z) = σ(z)−σ̄(−z̄)
2 ∈ RS∗(a, b).

Thus, we complete the proof of Lemma 6.

Lemma 7. If σ(z) ∈ RKsc(a, b), then σ(z)−σ̄(−z̄)
2 ∈ RK(a, b).

Proof. Similarly to the proof of Lemma 6, let ∆σ(z) = σ(z)−σ̄(−z̄)
2 and Dσ(z) = zσ′(z).
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If σ(z) ∈ RKsc(a, b), according to Definition 1 and the relationship of subordination,
we have

D(∆σ)(z)
D(Dσ)(z)

=
1− a + (1 + a)p(z)
1− b + (1 + b)p(z)

,

where p(z) ∈ P . Thus, we get

(1− b)D(∆σ)(z) + (1 + b)p(z)D(∆σ)(z) = (1− a)D(Dσ)(z) + (1 + a)p(z)D(Dσ)(z).

Since

∆D(∆σ)(z) = D(∆σ)(z),

D(∆σ)(z) = ∆(Dσ)(z),

we have
D(∆σ)(z)

D(D∆σ)(z)
=

1− a + (1 + a)q(z)
1− b + (1 + b)q(z)

,

where q(z) = ∆p(z).
Since Req(z) > 0, by combining this with the above conclusion, we get

D(∆σ)(z)
D(D∆σ)(z)

≺ 1 + az
1 + bz

,

that is, ∆σ(z) = σ(z)−σ̄(−z̄)
2 ∈ RK(a, b).

Thus, we complete the proof of Lemma 7.

Lemma 8. Let −1 ≤ b < a ≤ 1 and |z| = r ∈ [0.1).

(1) If σ(z) ∈ RS∗sc(a, b), then

m2(r; a, b) ≤
∣∣σ′(z)∣∣ ≤ M2(r; a, b), (44)

(2) If σ(z) ∈ RKsc(a, b), then

m1(r; a, b)
r

≤
∣∣σ′(z)∣∣ ≤ M1(r; a, b)

r
, (45)

where M1(r; a, b), m1(r; a, b), M2(r; a, b), and m2(r; a, b) are given by (34), (35), (36), and
(37) respectively.

Proof. (1) Suppose that σ(z) ∈ RS∗sc(a, b); then, we get

1 + br
1 + ar

· |σ(z)− σ̄(−z̄)
2

| ≤
∣∣zσ′(z)

∣∣ ≤ 1− br
1− ar

· |σ(z)− σ̄(−z̄)
2

|. (46)

According to Lemma 5 and Lemma 6, we have

m1(r; a, b) ≤ |σ(z)− σ̄(−z̄)
2

| ≤ M1(r; a, b). (47)

Equation (44) can be obtained by combining Equations (46) and (47).
(2) Suppose that σ(z) ∈ RKsc(a, b); then, we get

1 + br
1 + ar

≤
∣∣∣∣ 2(zσ′(z))′

σ(z)− σ̄(−z̄)

∣∣∣∣ ≤ 1− br
1− ar

. (48)
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According to Lemma 5 and Lemma 7, we have

m1(r; a, b)
r

≤
∣∣∣∣∣
(

σ(z)− σ̄(−z̄)
2

)′∣∣∣∣∣ ≤ M1(r; a, b)
r

. (49)

With (48) and (49), we can obtain

(1 + br)
r(1 + ar)

m1(r; a, b) ≤
∣∣(zσ′(z))′

∣∣ ≤ (1− br)
r(1− ar)

M1(r; a, b). (50)

By integrating the two sides of inequality (50) about r, we can get (45) after a simple
calculation.

3. Main Results

First, we get the integral expression for functions of these classes as follows.

Theorem 1. If f = σ + τ̄ ∈ HRS∗,ρsc (a, b), then we have

f (z) =
∫ z

0
ϕ(ζ)dζ +

∫ z

0
ω(ζ)ϕ(ζ)dζ, (51)

where

ϕ(ζ) =
1 + bv(ζ)

1 + av(ζ)
exp

{
(b− a)

2

∫ ζ

0

v(t)
t(1 + av(t))

+
v̄(−t̄)

t(1 + av̄(−t̄))
dt
}

, (52)

and ω and v are analytic in D and satisfy |ω(0)| = ρ, v(0) = 0, |ω(z)| < 1, |v(z)| < 1.

Proof. Suppose that f = σ + τ̄ ∈ HRS∗,ρsc (a, b). According to Definition 1 and the relation-
ship of the analytic part and the co-analytic part of the harmonic function, we have

τ′(z) = ω(z)σ′(z), (53)

where ω(z) satisfies |ω(0)| = ρ and |ω(z)| < 1(z ∈ D).
By using Lemma 2, we get

σ(z) =
∫ z

0

1 + bv(ζ)

1 + av(ζ)
exp

{
(b− a)

2

∫ ζ

0

v(t)
(1 + av(t))t

+
v̄(−t̄)

(1 + av̄(−t̄))t
dt
}

dζ. (54)

From (53) and (54), we obtain

τ(z) =
∫ z

0
ω(ζ)

1 + Bv(ζ)

1 + av(ζ)
exp

{
(b− a)

2

∫ ζ

0

v(t)
(1 + av(t))t

+
v̄(−t̄)

(1 + av̄(−t̄))t
dt
}

dζ. (55)

Therefore, we get the result of (51).

Similarly to the proof of Theorem 1, we can get the integral expression of the function
in the class HRKρ

sc(a, b) as follows.

Theorem 2. Let f ∈ HRKρ
sc(a, b); then, we have

f (z) =
∫ z

0

1
η

∫ η

0
ϕ(ζ)dζdη +

∫ z

0

ω(η)

η

∫ η

0
ϕ(ζ)dζdη. (56)

where ϕ(ζ) is given in (52), and ω and v are analytic in D and satisfy |ω(0)| = ρ,
v(0) = 0, |ω(z)| < 1, |v(z)| < 1.
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Next, we will get the coefficient estimates for the function classes HRS∗,ρsc (a, b) and
HRKρ

sc(a, b).

Theorem 3. Let f = σ + τ̄, where σ and τ are given by (4).

(1) If f ∈ HRS∗,ρsc (a, b), then

|τ2n| ≤
{

1−ρ2

2 + (a−b)ρ
2 , n = 1,

(1−ρ2)+ρ(a−b)
2n Gn−1(a, b), n ≥ 2,

(57)

and

|τ2n+1| ≤


(

1−a2

3 + (a−b)ρ
2

)
(1 + a− b), n = 1,(

1−a2

2n+1 + (a−b)ρ
2n

)
(1 + a− b)Gn−1(a, b), n ≥ 2.

(58)

The above estimates are sharp, and the extremal function is

f (z) =
∫ z

0
(1−ξ)[1−(1+a−b)2ξ2]

− (a−b)
2(1+a−b)

1−(1+a−b)ξ dξ +
∫ z

0
(ρ+(1−ρ−ρ2)ξ)[1−(1+a−b)2ξ2]

− (a−b)
2(1+a−b)

1−(1+a−b)ξ dξ.

(2) If f ∈ HRKρ
sc(a, b), then

|τ2n| ≤


2(1−ρ2)+(a−b)ρ

4 , n = 1,
(1−ρ2)

2n

(
1 +

n−1
∑

m=1

(a−b)(2+a−b)
2m Gm−1(a, b)

)
+ ρ(a−b)

(2n)2 Gn−1(a, b), n ≥ 2,
(59)

and

|τ2n+1| ≤


1−ρ2

3 (1 + a−b
2 ) + ρ(a−b)(1+a−b)

6 , n = 1,
(1−ρ2)
2n+1

(
1 +

n−1
∑

m=1

(a−b)(2+a−b)
2m Gm−1(a, b)

)
+ (a−b)[1−ρ2+ρ(1+a−b)]

(2n)(2n+1) Gn−1(a, b), n ≥ 2,
(60)

where Gm(a, b) is given by (18).
The estimates are sharp, and the extremal function is

f (z) =
∫ z

0
1
η

∫ η
0

(1−ξ)[1−(1+a−b)2ξ2]
− (a−b)

2(1+a−b)

1−(1+a−b)ξ dξdη +
∫ z

0
ρ+(1−ρ−ρ2)η

η(1−η)

∫ η
0

(1−ξ)[1−(1+a−b)2ξ2]
− (a−b)

2(1+a−b)

1−(1+a−b)ξ dξdη.

Proof. According to Definition 1 and the relationship of the analytic part and the co-
analytic part of the harmonic function, there exists an analytic function ω(z) of the form
ω(z) = c0 + c1z + c2z2 + · · · in D that satisfies |ω(z)| < 1 such that

τ′(z) = ω(z)σ′(z),

where σ and τ are given by (4).
By comparing the coefficients on both sides of the above equation, we get

2nτ2n =
2n

∑
k=1

kσkc2n−k, (σ1 = 1, n ≥ 1),

and

(2n + 1)τ2n+1 =
2n+1

∑
k=1

kσkc2n+1−k, (σ1 = 1, n ≥ 1).

It is easy to show that

2n|τ2n| ≤ |c2n−1|+ 2|σ2||c2n−2|+ · · ·+ (2n− 1)|σ2n−1||c1|+ 2n|σ2n||c0|, (61)
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and

(2n + 1)|τ2n+1| ≤ |c2n|+ 2|σ2||c2n−1|+ · · ·+ (2n)|σ2n||c1|+ (2n + 1)|σ2n+1||c0|. (62)

Since c0 = τ1, with Lemma 1, it is easy to find that |ck| ≤ 1− ρ2, k = 1, 2, · · · , 2n.
Therefore,

|τ2n| ≤


1−ρ2

2 + |σ2|ρ, n = 1,
(1−ρ2)

2n

(
1 + ∑2n−1

k=2 k|σk|
)
+ ρ|σ2n|, n ≥ 2,

(63)

and

|τ2n+1| ≤


1−ρ2

3 (1 + 2|σ2|) + |σ3|ρ, n = 1,
(1−ρ2)

2n+1

(
1 + ∑2n

k=2 k|σk|
)
+ ρ|σ2n+1|, n ≥ 2.

(64)

According to Lemma 3, (63), and (64), with a simple calculation, we can get (57)–(60).
Thus, the proof is complete.

In particular, by letting a = 1, b = −1, ρ = 0, we can obtain the following result.

Corollary 1. Let f = σ + τ̄ be of the Form (4).

(1) If f ∈ HRS∗sc, then

|τ2n| ≤


1
2 , n = 1,
3n−1

2n

n−1
∏

k=1

(
3 + 1

k

)
, n ≥ 2,

and

|τ2n+1| ≤


1, n = 1,

3n

2n+1

n−1
∏

k=1

(
3 + 1

k

)
, n ≥ 2.

The above estimates are sharp, and the extremal function is as follows:

f (z) =
(1 + 3z)

2
3

3(1− 3z)
1
3
− 1

3
+
∫ z

0

ξ

(1− 3ξ)
4
3 (1 + 3ξ)

1
3

dξ.

(2) If f ∈ HRKsc, then

|τ2n| ≤


1
2 , n = 1,
1

2n

(
1 +

n−1
∑

m=1

4·3m−1

m!

m−1
∏

k=1
(3k + 1)

)
+ 3n−1

n!

n−1
∏

k=1
(3k + 1), n ≥ 2,

and

|τ2n+1| ≤


2
3 , n = 1,

1
2n+1

(
1 +

n−1
∑

m=1

4·3m−1

m!

m−1
∏

k=1
(3k + 1)

)
, n ≥ 2.

The above estimates are sharp, and the extremal function is as follows:

f (z) =
∫ z

0

(1 + 3η)
2
3

3η(1− 3η)
1
3
− 1

3η
dη +

∫ z

0

(1 + 3η)
2
3

3(1− η)(1− 3η)
1
3
− 1

3(1− η)
dη.

By applying Theorem 3, we arrive at the following conclusion.

Theorem 4. Let f = σ + τ be of the Form (4), µ ∈ C,−1 ≤ b < a ≤ 1.

(1) If f ∈ HRS∗,ρsc (a, b), then
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|τ3 − µτ2
2 | ≤

(1−ρ2)
3

{
1 + 3|µ|

4 (1− ρ2) + |2−3µτ1|
2 (a− b)

}
+ (a−b)ρ

2 max
{

1, |a + µτ1
2 (b− a)|

}
, (65)

|τ2n − τ2n−1| ≤


1
2 (1− ρ2) + (1 + a−b

2 )ρ, n = 1,
(1−ρ2)+ρ(a−b)

4 (1 + a− b)(1 + 3(a−b)
2 ) + ( 1−ρ2

3 + (a−b)ρ
2 )(1 + a− b), n = 2,

(1−ρ2)+ρ(a−b)
2n Gn−1(a, b) + ( 1−ρ2

2n−1 + (a−b)ρ
2n−2 )(1 + a− b)Gn−2(a, b), n ≥ 3,

(66)

and

|τ2n+1 − τ2n| ≤

 ( 1−ρ2

3 + (a−b)ρ
2 )(1 + a− b) + (1−ρ2)+ρ(a−b)

2 , n = 1,[
( 1−ρ2

2n+1 + (a−b)ρ
2n )(1 + a− b) + (1−ρ2)+ρ(a−b)

2n

]
Gn−1(a, b), n ≥ 2.

(67)

(2) If f ∈ HRKρ
sc(a, b), then

|τ3 − µτ2
2 | ≤

(1−ρ2)
3

{
1 + 3|µ|(1−ρ2)

4 + (a−b)|2−3µτ1|
4

}
+ (a−b)ρ

6 max
{

1, |a + 3µτ1(b−a)
8 |

}
, (68)

|τ2n − τ2n−1| ≤



(1−ρ2)
2 + ρ(1 + a−b

4 ), n = 1,

(1− ρ2)( 1
2n + 1

2n−1 )[1 + (a− b)(2 + a− b)
n−2
∑

m=1

Gm−1(a,b)
2m ]+

(1−ρ2)(a−b)(2+a−b)Gn−2(a,b)
2n(2n−2)

[(1−ρ2)+ρ(1+a−b)](a−b)Gn−2(a,b)
(2n−1)(2n−2) + ρ(a−b)Gn−1(a,b)

(2n)2 , n ≥ 2,

(69)

and

|τ2n+1 − τ2n| ≤


5(1−ρ2)

6 + (a−b)[1−ρ2+ρ(1+a−b)]
6 + ρ(a−b)

4 ), n = 1,

(1− ρ2)( 1
2n+1 + 1

2n )[1 + (a− b)(2 + a− b)
n−1
∑

m=1

Gm−1(a,b)
2m ]+

[(1−ρ2)+ρ(1+a−b)](a−b)Gn−1(a,b)
(2n)(2n+1) + ρ(a−b)Gn−1(a,b)

(2n)2 , n ≥ 2,

(70)

where Gm(a, b) is given by (18).

Proof. Let f ∈ HRS∗,ρsc (a, b) be of the Form (4). By using the relation τ′ = ωσ′, (59), and
(60), we have

2τ2 = c1 + 2σ2c0, 3τ3 = c2 + 2σ2c1 + 3σ3c0,

and

2nτ2n =
2n

∑
k=1

kσkc2n−k, (2n + 1)τ2n+1 =
2n+1

∑
k=1

kσkc2n+1−k (σ1 = 1, n ≥ 1).

According to Lemma 1, we have

|τ3 − µτ2
2 | ≤

1− ρ2

3

{
1 +

3|µ|(1− ρ2)

4
+ |σ2||2− 3µτ1|

}
+ ρ
∣∣∣σ3 − µτ1σ2

2

∣∣∣,
|τ2n− τ2n−1| ≤


(1−ρ2)

2 + ρ(1 + |σ2|), n = 1,

(1− ρ2)

(
1

2n−1

2n−2
∑

k=1
k|σk|+ 1

2n

2n−1
∑

k=1
k|σk|

)
+ ρ(|σ2n|+ |σ2n−1|), n ≥ 2,
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and

|τ2n+1 − τ2n| ≤ (1− ρ2)

(
1

2n

2n−1

∑
k=1

k|σk|+
1

2n + 1

2n

∑
k=1

k|σk|
)
+ ρ(|σ2n+1|+ |σ2n|), n ≥ 1.

According to (14), (15), (25), and (26) of Lemma 4, we can complete the proof of part
(1) of Theorem 4.

Similarly to the previous proof, let f ∈ HRKρ
sc(a, b) be of the Form (4). Accord-

ing to (16), (17), (25), and (26) from Lemma 4, we can complete the proof of part (2) of
Theorem 4.

In particular, if we set a = 1 and b = −1, we get the following result.

Corollary 2. Let f = σ + τ be of the Form (4) for µ ∈ R.
(1) If f ∈ HRS∗,ρsc , then

|τ3 − µτ2
2 | ≤

(1− ρ2)

3

{
1 +

3|µ|(1− ρ2)

4
+ |2− 3µτ1|

}
+ ρ max{1, |1− µτ1|}, (71)

|τ2n − τ2n−1| ≤


1
2 (1− ρ2) + 2ρ, n = 1,
4(1− ρ2) + 9ρ, n = 2,
(1−ρ2)+2ρ

2n Gn−1 + 3( 1−ρ2

2n−1 + 2ρ
2n−2 )Gn−2, n ≥ 3,

(72)

and

|τ2n+1 − τ2n| ≤


3(1−ρ2)

2 + 4ρ, n = 1,[
3( 1−ρ2

2n+1 + 2ρ
2n ) +

(1−ρ2)+2ρ
2n

]
Gn−1, n ≥ 2.

(73)

(2) If f ∈ HRKρ
sc, then

|τ3 − µτ2
2 | ≤

(1− ρ2)

3

{
1 +

3|µ|
4

(1− ρ2) +
|2− 3µτ1|

2

}
+

ρ

3
max

{
1, |1− 3µτ1

4
|
}

, (74)

|τ2n − τ2n−1| ≤



(1−ρ2)
2 + 3

2 ρ, n = 1,
23(1−ρ2)

12 + 5ρ
2 , n = 2,

(1− ρ2)( 1
2n + 1

2n−1 )(1 +
n−2
∑

m=1

4·Gm−1
m ) + 4(1−ρ2)Gn−2

n(2n−2) +

[(1−ρ2)+3ρ]Gn−2
(n−1)(2n−1) + ρGn−1

2n2 , n ≥ 3,

(75)

and

|τ2n+1 − τ2n| ≤


7(1−ρ2)

6 + 3
2 ρ, n = 1,

(1− ρ2)( 1
2n+1 + 1

2n )(1 +
n−1
∑

m=1

4·Gm−1
m ) + [(1−ρ2)+3ρ]Gn−1

n(2n+1) + ρGn−1
2n2 , n ≥ 2,

(76)

where Gn = 3n

n!

n
∏

k=1
(3k + 1).

Theorem 5. Let f = σ + τ̄ ∈ SH , |z| = r ∈ [0, 1).

(1) If f ∈ HRS∗,ρsc (a, b), then

max{ρ− r, 0}
(1− ρr)

m2(r; a, b) ≤
∣∣τ′(z)∣∣ ≤ (ρ + r)

(1 + ρr)
M2(r; a, b). (77)
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In particular, let a = 1, b = −1, ρ = 0; then, we have

∣∣τ′(z)∣∣ ≤ r(1 + r)
(1− r)3 . (78)

(2) If f ∈ HRKρ
sc(a, b), then

max{ρ− r, 0}
r(1− ρr)

m1(r; a, b) ≤
∣∣τ′(z)∣∣ ≤ (ρ + r)

r(1 + ρr)
M1(r; a, b). (79)

In particular, let a = 1, b = −1, ρ = 0; then, we have∣∣τ′(z)∣∣ ≤ r
(1− r)2 , (80)

where M1(r; a, b), m1(r; a, b), M2(r; a, b), m2(r; a, b) are given by (34), (35), (36), and (37),
respectively.

Proof. According to the relation τ′ = ωσ′, |ω(0)| = |τ′(0)| = |τ1| = ρ, it is not hard to see
that there is ω(z) such that (see [25]):∣∣∣∣∣ ω(z)−ω(0)

1−ω(0)ω(z)

∣∣∣∣∣ ≤ |z|, (81)

namely, ∣∣∣∣∣ω(z)−
ω(0)

(
1− r2)

1− |ω(0)|2r2

∣∣∣∣∣ ≤ r
(
1− |ω(0)|2

)
1− |ω(0)|2r2 . (82)

From (82), it is easy to find that

max{0, ρ− r}
1− ρr

≤ |ω(z)| ≤ ρ + r
1 + ρr

, z ∈ D. (83)

By combining (83) and (44), we get (77). Similarly, combining (83) and (45) gives (80).
So, the proof is complete.

By using the same method as that used in the proof of Lemma 5, the following results
are easily obtained.

Theorem 6. Let f = σ + τ̄ ∈ SH , |z| = r ∈ [0, 1).

(1) If f ∈ HRS∗,ρsc (a, b), then

∫ r

0

max{0, ρ− t}
(1− at)

m2(t; a, b)dt ≤ |τ(z)| ≤
∫ r

0

(ρ + t)
(1 + ρt)

M2(t; a, b)dt. (84)

In particular, let a = 1, b = −1, ρ = 0 for f (z) ∈ HS∗sc; then, we get

|τ(z)| ≤
∫ r

0

t(1 + t)
(1− t)3 dt = − log(1− r) +

r(5− 4r)
(1− r)2 . (85)

(2) If f ∈ HRKρ
sc(a, b), then

∫ r

0

max{0, ρ− t}
t(1− ρt)

m1(t; a, b)dt ≤ |τ(z)| ≤
∫ r

0

(ρ + t)
t(1 + ρt)

M1(t; a, b)dt. (86)
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In particular, let a = 1, b = −1, ρ = 0 for f (z) ∈ HRKsc; then, we get

|τ(z)| ≤ log(1− r) +
r

(1− r)
, (87)

where M1(r; a, b), m1(r; a, b), M2(r; a, b), m2(r; a, b) are given by (34), (35), (36), and (37),
respectively.

Below, we show how we can obtain the Jacobian estimate and growth estimate of f .

Theorem 7. Let f = σ + τ̄ ∈ SH , |z| = r ∈ [0, 1).

(1) If f ∈ HRS∗,ρsc (a, b), then

(
1− ρ2)(1− r2)

(1 + ρr)2 m2
2(r; a, b) ≤ J f (z) ≤


(1−ρ2)(1−r2)

(1−ρr)2 M2
2(r; a, b), r < ρ,

M2
2(r; a, b), r ≥ ρ.

(88)

(2) If f ∈ HKρ
sc(a, b), then

(
1− ρ2)(1− r2)

r2(1 + ρr)2 m2
1(r; a, b) ≤ J f (z) ≤


(1−ρ2)(1−r2)

r2(1−ρr)2 M2
1(r; a, b), r < ρ,

M2
1(r;a,b)

r2 , r ≥ ρ,
(89)

where M1(r; a, b), m1(r; a, b), M2(r; a, b), m2(r; a, b) are given by (34), (35), (36), and (37),
respectively.

Proof. The Jacobian of f = σ + τ̄ is of the following form:

J f (z) =
∣∣σ′(z)∣∣2 − ∣∣τ′(z)∣∣2.

Because τ′(z) = σ′(z)ω(z), we have

J f (z) =
∣∣σ′(z)∣∣2(1− |ω(z)|2

)
. (90)

Let f ∈ HRS∗,ρsc (a, b); by applying (44) and (83) to (90), we obtain

J f (z) ≥
(
1− ρ2)(1− r2)

(1 + ρr)2 m2
2(r; a, b)

and

J f (z) ≤
(

1− (max{(ρ− r), 0})2

(1− ρr)2

)
M2

2(r; a, b) =


(1−ρ2)(1−r2)

(1−ρr)2 M2
2(r; a, b), r < ρ,

M2
2(r; a, b), r ≥ ρ.

Therefore, the proof of (1) is complete. By applying (45) and (83) to (90), (2) of
Theorem 7 can be proved in the same way as before.

Theorem 8. Let f = σ + τ̄ ∈ SH , |z| = r ∈ [0, 1).

(1) If f ∈ HRS∗,ρsc (a, b), then

∫ r

0

(1− ρ)(1− ξ)

(1 + ρξ)
m2(ξ; a, b)dξ ≤ | f (z)| ≤

∫ r

0

(1 + ρ)(1 + ξ)

(1 + ρξ)
M2(ξ; a, b)dξ. (91)
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(2) If f ∈ HRKρ
sc(a, b), then

∫ r

0

(1− ρ)(1− ξ)

ξ(1 + ρξ)
m1(ξ; a, b)dξ ≤ | f (z)| ≤

∫ r

0

(1 + ρ)(1 + ξ)

ξ(1 + ρξ)
M1(ξ; a, b)dξ. (92)

Proof. Suppose that z = reiθ is any point in D and let Dr = {z ∈ D : |z| < r} and
d = min

z∈Dr
| f (Dr)|; then, Dd ⊆ f (Dr) ⊆ f (D).

So, there is zr ∈ ∂Dr such that d = | f (zr)|. Let L(t) = t f (zr), t ∈ [0, 1]; then,
`(t) = f−1(L(t)), t ∈ [0, 1] is a well-defined Jordan arc. By applying (44) and (83) for
f = σ + τ̄ ∈ HRS∗,ρsc (a, b), we have

d = | f (zr)| =
∫

L
|dω| =

∫
`
|d f | =

∫
`

∣∣∣σ′(η)dη + τ′(η)dη̄
∣∣∣

≥
∫
`

∣∣σ′(η)∣∣(1− |ω(η)|)|dη|

≥
∫
`

(1− ρ)(1− |η|)
1 + ρ|η| m2(|η|; a, b)|dη|

=
∫ 1

0

(1− ρ)(1− |`(t)|)
1 + ρ|`(t)| m2(|`(t)|; a, b)d t

≥
∫ r

0

(1− ρ)(1− ξ)

1 + ρξ
m2(ξ; a, b)dξ.

The right side of Equation (91) can be obtained after a simple calculation by using
Equations (44) and (83). The rest is similar to that in (91) and is omitted.

By combining (91) and (92), we get the covering theorem of f .

Theorem 9. Let f = σ + τ̄ ∈ SH .

(1) If f ∈ HRS∗,ρsc (a, b), then Dr1 ⊂ f (D), where

r1 =
∫ 1

0

(1− ρ)(1− ξ)

(1 + ρξ)
m2(ξ; a, b)dξ.

(2) If f ∈ HRKρ
sc(a, b), then Dr2 ⊂ f (D), where

r2 =
∫ 1

0

(1− ρ)(1− ξ)

ξ(1 + ρξ)
m1(ξ; a, b)dξ.

In particular, if a = 1, b = −1, ρ = 0, then we obtain the following results.

Corollary 3. Let f = σ + τ̄ ∈ SH .

(1) If f ∈ HRS∗sc, then Dr1 ⊂ f (D), where r1 = − 1
2 + log 2.

(2) If f ∈ HRKsc, then Dr2 ⊂ f (D), where r2 = 1− log 2.

4. Conclusions

In this paper, by means of subordination, we introduce some classes of univalent
harmonic functions with respect to the symmetric conjugate points, the analytic parts
of which are reciprocal starlike (or convex) functions. Further, we discuss the geometric
properties of the classes, such as the integral expression, coefficient estimation, distortion
theorem, Jacobian estimation, growth estimate, and covering theorem, which can enrich
the research field of univalent harmonic mapping.
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