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Abstract: We prove that a Beurling system with F ∈ Hp(D), 1 ≤ p < ∞ is an M−basis in Hp(D)
with an explicit dual system. Any function f ∈ Hp(D), 1 ≤ p < ∞ can be expanded as a series by
the system {zmF(z)}∞

m=0. For different summation methods, we characterize the outer functions F
for which the expansion with respect to the corresponding Beurling system converges to f . Related
results for weighted Hardy spaces in the unit disc are studied. Particularly we prove Rosenblum’s
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1. Introduction

The present study is related to the main problem posed in [1]: describe the subsystems
of the trigonometric system that are complete and minimal in some weighted Lp space. If
one deletes a finite number of elements from the trigonometric system, then the remaining
system has the desired property. But we are unable to find a subsystem that had the
mentioned property and is obtained after deleting an infinite number of elements from the
trigonometric system. The progress in the mentioned problem will be helpful in advancing
a much more important problem posed more than a century ago by N.N. Luzin [2]: given a
measurable function, determine the coefficients of the trigonometric series that represents it.

The formulation of the Fourier–Luzin problem is vague enough to leave room for
imagination. In the described approach, we need minimality for the definition of the
coefficients. In [3], we have observed that in any weighted Lp, 1 ≤ p < ∞ space, the
subsystem {eikt}∞

k=0 is minimal or complete. The information that a system is minimal in a
subspace in itself is not sufficient for the study of the expansions by the given system. One
needs to have the dual system in a form that can be used for the study. In the present work,
we find the system dual to the system {eikt}∞

k=0 when it is minimal in a weighted Lp space.
We say that a system {zmF(z)}∞

m=0 is a Beurling system if F is an outer function.
In his fundamental work [4], Beurling proved that if F is an outer function in H2(D),
then the system {zmF(z)}∞

m=0 is complete in the space H2(D). This result can be easily
extended to the spaces Hp(D), 1 ≤ p < ∞ (see [5]). In the present paper, we study
questions of representations of functions from the spaces Hp(D), 1 ≤ p < ∞ by series with
respect to Beurling systems. Our study is based on the fact that any Beurling system in
Hp(D), 1 ≤ p < ∞ is an M˘basis with an explicit dual system. It is a natural question
to characterize the outer functions F for which the system {zmF(z)}∞

m=0 is a basis or a
summation basis in Hp(D). In the theory of Hp(D) spaces the most interesting case is to
characterize the functions F for which the corresponding Beurling system {zmF(z)}∞

m=0 is
an A—summation basis in Hp(D), 1 ≤ p < ∞.

The obtained results can be interpreted in terms of weighted Hp spaces with weights
that we call admissible weight functions. A non-negative function w defined on the
boundary, such that ln w is integrable, is called an admissible weight function. For the
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weighted norm spaces, we obtain theorems that can be considered extensions of important
results known for the Hp spaces. Moreover, this approach can be helpful for the study of
similar questions in more general domains.

We used the results obtained in [6] for the study of the systems eiktΨL,M in the spaces
Lp(T), where

ΨL,M = {L(t)eint}−1
n=−∞ ∪ {M(t)eint}∞

n=0

and L and M are the boundary values of some outer functions defined in D.
This paper is divided into two parts. In the first part, we provide the results for

Beurling systems, and the second part is dedicated to the study of weighted Hp spaces.

1.1. Preliminary Results, Definitions, and Notations

We say that w ≥ 0 is a weight function on a measurable set E ⊆ R if w is integrable on
E. A function ϕ ∈ Lp(E, w), 1 ≤ p < ∞ if ϕ : E → C is measurable on E, and the norm is
defined by

‖ϕ‖Lp(E,w) :=
(∫

E
|ϕ(t)|pw(t)dt

) 1
p
< +∞.

When w ≡ 1, we write Lp(E). Denote T = R/2πZ and identify T with any 2π length
semi-open interval on the real line. For 1 < p < ∞, the conjugate number p′ is defined
by the equation 1

p + 1
p′ = 1 and p′ = ∞ if p = 1. The set of integers is denoted by Z and

N = {1, 2, . . . }.
By S[ f ](t), we denote the Fourier series of a function f ∈ L1(T). For any n ∈ N,

Sn[φ](t) =
n

∑
j=−n

cj(φ)eijt, cj(φ) =
1

2π

∫
T

φ(θ)e−ijθdθ.

The space of continuous functions on T with the maximum norm is denoted by C(T). For
1 ≤ p ≤ ∞, we write

Hp(T) = {φ ∈ Lp(T) :
∫
T

φ(t)eintdt = 0 for all n ∈ N}.

The spaces Hp(T), 1 ≤ p ≤ ∞ are Banach spaces of functions defined on T. The Cauchy
kernel is defined as follows:

Cr(θ) =
+∞

∑
n=0

rneinθ 0 < r < 1, θ ∈ T,

and the Poisson and conjugate Poisson kernels are defined as follows:

Pr(θ) =
+∞

∑
n=−∞

r|n|einθ =
1− r2

1− 2r cos θ + r2 ,

Qr(θ) = Im Hr(θ), Pr(θ) = Re Hr(θ),

where

Hr(θ) = 2Cr(θ)− 1 =
1 + reiθ

1− reiθ (0 < r < 1, θ ∈ T).

We denote D = {z ∈ C : |z| < 1} and its closure by D. The convolution of functions
g, ϕ ∈ L(T) is denoted by

g ∗ ϕ(t) =
1

2π

∫
T

g(θ)ϕ(t− θ)dθ.



Mathematics 2023, 11, 3663 3 of 16

Let

ln+ x =

{
ln x, if x ≥ 1
0, if x < 1.

A holomorphic function f (z), z ∈ D is said to be of class N if

sup
0≤r<1

∫
T

ln+ | f (reit)|dt < +∞,

and f ∈ Hp(D), 1 ≤ p < ∞ if

sup
0≤r<1

∫
T
| f (reit)|pdt < +∞.

Moreover, f ∈ H∞(D) if sup0≤r<1 ‖ f (reit)‖L∞(T) < +∞. We also have that Hp(D) ⊂ N for
all 1 ≤ p ≤ ∞.

If f ∈ N, according to a well-known theorem [7] (see also [5]), f is a quotient of two
bounded holomorphic functions. Hence, according to Fatou’s theorem, the non-tangential
limit f (eit) exists almost everywhere on the unit circle, and ln | f (eit)| is integrable unless f
vanishes everywhere. Moreover, the map T : f (z) −→ f (eit) establishes an isomorphism of
Hp(D), 1 ≤ p < ∞ onto Hp(T). Furthermore, facts related to metric properties in the space
Hp(D) are applicable in Hp(T) and vice versa, without any special quotation.

The spaces Hp(D) have been studied in several works (e.g., [5,8–10], among others).
A holomorphic function F in D is an outer function if

F(reit) = eiαeϕ∗Hr(t), α ∈ T,

where ϕ is a real-valued integrable function defined on T [4] (see also [11,12]). Evidently,
F is a non-zero holomorphic function and F ∈ H1(D) if and only if eϕ(t) is integrable.
The function F has non-tangential limits almost everywhere on the unit circle: F∗(t) :=
limz→eit F(z), and

|F∗(t)| = eϕ(t).

Moreover, ln |F(z)| is a harmonic function in D and

1
2π

∫
T

ln |F(reit)|dt = ln |F(0)| 0 ≤ r < 1.

For a complex-valued integrable function g defined on T, such that ln |g(t)| is integrable,
we set

Gg(reit) = eln |g|∗Hr(t). (1)

The following statement [8] holds.

Proposition 1. Let F ∈ H1(D) be an outer function. Then

GF∗(z) = eiαF(z), z ∈ D for some α ∈ T.

If F ∈ Hp(D), 1 ≤ p < ∞, then

GF∗(reit) = eln |F∗ |∗Pr(t)ei ln |F∗ |∗Qr(t)

and according to Fatou’s and Luzin–Privalov’s theorems [10,13], we have that

ln |F∗(t)| = lim
r→1−

ln |F∗| ∗ Pr(t) a.e. on T,

lim
r→1−

ln |F∗| ∗Qr(t) := l̃n |F∗|(t) a.e. on T,
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where g̃ is denoted as the conjugate function of an integrable function g. Thus, we have
that almost everywhere on T

G∗F∗(t) = lim
r→1−

GF∗(reit) = |F∗(t)|eil̃n |F∗ |(t), (2)

According to Jensen’s inequality, it follows that for 0 < r < 1

1
2π

∫
T
|GF∗(reiθ)|pdθ ≤ 1

2π

∫
T
|F∗(θ)|pdθ,

which yields GF∗ ∈ Hp(D) and G∗F∗ ∈ Hp(T). We also have that

GF∗(0) = e
1

2π

∫
T ln |F∗(t)|dt 6= 0.

The function 1
GF∗ (reit)

is holomorphic in D, has no zeros, and belongs to N. Clearly,

lim
r→1−

[GF∗(reit)]−1 = |F∗(t)|−1e−il̃n |F∗ |(t).

Let B be a separable Banach space with the dual space B∗. The closed linear span in B of a
system of elements X = {xk}∞

x=0 ⊂ B is denoted by spanB(X). A system X = {xk}∞
x=0 ⊂ B

is complete in B if spanB(X) = B. A system X = {xk}∞
k=0 ⊂ B is called minimal if there

exists a system X∗ = {φn}∞
n=0 ⊂ B∗, such that

φn(xk) = δnk (n, k ∈ N0 = N∪ {0}),

where δnk is the Kronecker symbol (δnk = 0 if n 6= k and δkk = 1). The system X∗ is called
dual to X. It is easy to observe that if X is a complete and minimal system in B, then the
dual system X∗ is unique [14]. A set Ψ ⊂ B∗ is called total if

φ(x) = 0 for x ∈ B and for all φ ∈ Ψ

if and only if x = 0. A system X = {xk}∞
k=0 ⊂ B is an M—basis in B if X is complete

and minimal in B and its dual system X∗ is total. A complete and minimal system X =
{xk}∞

k=0 ⊂ B with the dual system X∗ = {φk}∞
k=0 ⊂ B∗ is uniformly minimal if there exists

C > 0, such that
‖xk‖B‖φk‖B∗ ≤ C for all k ∈ N0.

We say that a system of elements, X = {xk}∞
k=0 ⊂ B, is an A—basis of the Banach space B

if X is closed and minimal in B and for any x ∈ B

lim
r−→1−

‖x−
∞

∑
k=1

rkφ∗k (x)xk‖B = 0,

where X∗ = {φ∗k}
∞
n=1 ⊂ B∗ is the dual system.

1.2. Classes of Weight Functions

Furthermore, we consider only the weight functions on T. For any 1 ≤ p < ∞, we
denote byWp the class of all weight functions w ≥ 0 integrable on T and such that∫

T
[w(t)]−

1
p−1 dt < +∞, if p = 1 then

1
w
∈ L∞(T).

Denote
eW := {w ≥ 0 : ln w ∈ L1(T)}.
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We say that w(x) ≥ 0 is an admissible weight function if w ∈ eW . The class Ap, p ≥ 1
contains only the weights w that satisfy the following condition: there exists Cp > 0, such
that

1
|I|

∫
I

w(t)dt
[

1
|I|

∫
I

w(t)−
1

p−1 dt
]p−1

≤ Cp

holds for any interval I ⊂ T. Sometimes, it is called the Muckenhoupt condition [15,16].
We note that the class Ap ⊂ Wp in an equivalent form appeared earlier in M. Rosenblum’s
article [17], where weighted Hp spaces were considered, maybe for the first time. In the
same article, another class of weight functionsRwas studied. We say that w ∈ R if w ∈ eW ,
and there exists C > 0, such that

1
2π

∫
T

w(t)
|Gw(reit)|

Pr(θ − t)dt ≤ C ∀θ ∈ T and 0 ≤ r < 1. (3)

Using (1), it is easy to observe that if w ∈ eW , then for q > 0,

|Gw1/q(reit)|q = |Gw(reit)| ∀t ∈ T and 0 ≤ r < 1. (4)

Note that (see [17])
A∞ :=

⋃
p≥1

Ap ⊆ R ⊆ eW . (5)

2. On Beurling Systems

Let p ∈ [1,+∞) be a fixed number and suppose that F ∈ Hp(D) is an outer func-
tion. Using Proposition 1, we have that G∗F∗(t) = eiαF∗(t) almost everywhere on T.
Furthermore, we suppose that

GF∗(z) = F(z), z ∈ D and F(0) ∈ R,

for convenience. Note that if {eijtF∗(t)}∞
j=0 is a basis in one or another sense, then the

system {eijtcF∗(t)}∞
j=0 for any constant c, |c| = 1 will be a basis in the same sense. We write

the Fourier series of the function F∗ ∈ Hp(T) as

F∗(θ) ∼ a0 +
∞

∑
n=1

aneinθ , a0 6= 0, a0 ∈ R.

Moreover,

F(z) = a0 +
∞

∑
n=1

anzn z ∈ D.

Let

[F(z)]−1 = c0 +
∞

∑
n=1

cnzn z ∈ D. (6)

Then, for z ∈ D,

1 = F(z)[F(z)]−1 = 1 +
∞

∑
n=1

bnzn,

where

bn =
n

∑
j=0

ajcn−j = 0 for all n ∈ N and c0 =
1
a0

. (7)
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2.1. A Remarkable System of Polynomials

Set T0(t) ≡ c0 and for n ∈ N

Tn(t) = c0einθ +
n−1

∑
ν=0

c̄n−νeiνt, (8)

where {cj}∞
j=0 are the corresponding coefficients of the representation of F−1(z). Using (7),

we can deduce that if j ∈ N0 and j ≤ n,

1
2π

∫
T

eijtF∗(t)Tn(t)dt =
1

2π

∫
T

n−j

∑
k=0

akei(j+k)tTn(t)dt

=
n−j

∑
k=0

akcn−j−k = δjn.

It is clear that the above integral is equal to zero if j > n. The following theorem holds.

Theorem 1. The system {eijtF∗(t)}∞
j=0 is an M—basis in Hp(T).

Proof. We have checked that {Tn(t)}∞
n=0 is the system dual to {eijtF∗(t)}∞

j=0. Suppose that
there exists f ∈ Hp(T), such that∫

T
f (t)Tn(t)dt = 0 for all n ∈ N0.

From (8), it follows that ∫
T

e−int f (t)dt = 0 for all n ∈ N0.

Hence, f (t) = 0 almost everywhere on T.

Theorem 2. The system {eijtF∗(t)}∞
j=0 is uniformly minimal in Hp(T), 1 < p < ∞ if and only

if [F∗]−1 ∈ Hp′(T).

Proof. If [F∗]−1 ∈ Hp′(T), 1 < p < ∞, then using Proposition 1 and Jensen’s inequality,
we have that for 0 < r < 1,

1
2π

∫
T
|F(reit)|−p′dt =

1
2π

∫
T

eln |F∗ |−p′∗Pr(t)dt

≤ 1
2π

∫
T
|F∗(θ)|−p′dθ < +∞,

which yields 1
F ∈ Hp′(D). Set

Sn(t) =
n

∑
k=0

ckeikt, n ∈ N. (9)

Then, we have that eintSn(t) = Tn(t), which means that

‖Tn‖Lq(T) = ‖Sn‖Lq(T) for 1 ≤ q ≤ ∞, n ∈ N. (10)

Note that Sn[
1

F∗ ](t) = Sn(t) if 1
F∗ ∈ Hp′(T). Hence, there exists Cp′ > 0 (see [10], volume 2,

chapter 7), such that
sup

n
‖Sn‖Lp′ (T) ≤ Cp′‖[F∗]−1‖Lp′ (T).
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For the proof of the necessity, suppose that the system {eijtF∗(t)}∞
j=0 is uniformly minimal

in Hp(T). The norms in Hp(T) of all elements of the system {eijtF∗(t)}∞
j=0 are equal to

‖F∗‖Lp(T). On the other hand, using (10), it follows that

sup
n
‖Sn‖Lp′ (T) < +∞,

where Sn(t) is defined in (9). According to Banach’s theorem (see [18]) on the weak∗ com-
pactness of the closed unit ball in the dual space, it follows that there exists a subsequence
of natural numbers {nν}∞

ν=1 and ψ ∈ Lp′(T), such that for any ϕ ∈ Lp(T),

lim
ν→∞

1
2π

∫
T

ϕ(t)Snν(t)dt =
1

2π

∫
T

ϕ(t)ψ(t)dt.

Hence, ψ ∈ Hp′(T) and
cj(ψ) = cj j ∈ N0.

This means that
ψ ∗ Pr(t) =

1
F(reit)

0 ≤ r < 1, t ∈ T.

Thus, we find that ψ coincides with [F∗]−1 almost everywhere onT, and [F∗]−1 ∈ Hp′(T).

Theorem 3. If the system {eijtF∗(t)}∞
j=0 is uniformly minimal in H1(T), then [F∗]−1 ∈ H∞(T).

If [F∗]−1 ∈ H∞(T) and the partial sums of its Fourier series are uniformly bounded in the C(T)
norm, then the system {eijtF∗(t)}∞

j=0 is uniformly minimal in H1(T).

We omit the proof because it is similar to the proof of the previous theorem.
The following lemma is a useful tool for further exposition. The related statements

can be found in [10,13].

Lemma 1. Let f ∈ Hp(T) and g ∈ Hp′(T), where 1 ≤ p < ∞ and 1
p + 1

p′ = 1, p′ = ∞ if
p = 1. Then:
(1) S[ f g] = S[ f ]S[g], and cn( f g) = ∑n

j=0 cj( f )cn−j(g);
(2) Sn[ f g](t) = ∑n

j=0 cj( f )eijtSn−j[g](t) for any n = 0, 1, . . . .

Proof. We omit the proof of statement (1) because it should be well-known. We have

n

∑
j=0

cj( f )eijtSn−j[g](t) =
n

∑
j=0

n−j

∑
ν=0

cj( f )cν(g)ei(j+ν)t

=
n

∑
k=0

eikt
n

∑
j=0

cj( f )ck−j(g).

Theorem 4. Let |F∗|p ∈ Ap, 1 < p < ∞. Then, {eijtF∗(t)}∞
j=0 is a Schauder basis in Hp(T).
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Proof. We should check that the conditions of Banach’s theorem [18] hold in our case.
According to Theorem 1, we know that {eijtF∗(t)}∞

j=0 is complete and minimal in Hp(T).
Set

En(t, θ) = F∗(t)
n

∑
k=0

eiktTk(θ) = F∗(t)
n

∑
k=0

eikt
k

∑
j=0

ck−je−ijθ

= F∗(t)
n

∑
j=0

e−ijθ
n

∑
k=j

ck−jeikt = F∗(t)
n

∑
j=0

eij(t−θ)Sn−j(t).

For g ∈ Hp(T), let

σn[g](t) =
1

2π

∫
T

g(θ)En(t, θ)dθ = F∗(t)
n

∑
j=0

cj(g)eijtSn−j[[F∗]−1](t)

= F∗(t)Sn[g[F∗]−1](t),

where the last equality is obtained using Lemma 1. Let w(t) = |F∗(t)|p. Then, using a
well-known weighted norm inequality [19] (see also [20]), we finish the proof.∫

T
|σn[g](t)|pdt =

∫
T
|Sn[g[F∗]−1](t)|pw(t)dt

≤ Bp

∫
T
|g(t)[F∗(t)]−1|pw(t)dt = Bp

∫
T
|g(t)|pdt.

3. Weighted H p Spaces

In this section, we consider that p, 1 ≤ p < ∞ is fixed. Let w be an admissible weight
function. We would like to use the notations of the previous section. Let F = Gw1/p ∈
Hp(D). Then, using (1) and Proposition 1, F is an outer function. From (2)

F∗(t) = lim
r→1−

F(reit) = [w(t)]
1
p e

i
p $(t), where $(t) = l̃n w(t). (11)

Set Υ = {eint}∞
n=0 and Υ0 = {eint}∞

n=1. We write

spanLp(T,w)(Υ) := Hp(T, w) and spanLp(T,w)(Υ0) := Hp
0 (T, w).

We consider that

H∞(T, w) := H∞(T) = { f ∈ L∞(T) :
∫
T

f (t)eintdt = 0 for all n ∈ N}.

Set
Hp(T, w) = { f (t) : f ∈ Hp(T, w)} and Hp

0 (T, w) = e−itHp(T, w).

In [17], the weighted spaces Hq(D, w) were defined for w ∈ R. A function f holomorphic
in D belongs to Hq(D, w), 1 ≤ q < ∞ if

‖ f ‖Hq(D,w) = sup
0≤r<1

( ∫
T
| f (reit)|qw(t)dt

) 1
q

< ∞.

The results on weighted Hardy spaces can be found in [21]. The following statement was
formulated by M.Rosenblum in the introduction to his article [17]. In the text, the reader
can find indications for the proof, but the author did not formulate the statement as a
theorem. This is why we prefer to formulate the statement as a hypothesis.
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Hypothesis 1 (M. Rosenblum). Let w ∈ R. Then, the operator Λ : f (z) → f (eit) is a vector
space isomorphism mapping Hq(D, w) onto Hq(T, w), such that Λ and Λ−1 are bounded. If Λ is
an isometry, then w ≡ c, c > 0.

In the formulated statement, one considers that given f ∈ Hq(D, w), where

f (z) = α0 +
∞

∑
k=1

αkzk,

then f (eit) = α0 + ∑∞
k=1 αkeikt exists and f (eit) ∈ Hq(T, w). Later in this paper, we show

that it is also true when w ∈ eW (see Proposition 2). In the next section, we prove that
Hypothesis 1 holds. Moreover, we provide the integral representation of the operator Λ−1.

3.1. On the Dual Space of Hp(T, w)

In this subsection, we provide the characterization of the dual space of Hp(T, w), 1 ≤
p < ∞ when w is an admissible weight function.

Lemma 2. Let w be an admissible weight function, 1 ≤ p < ∞, and F ∈ Hp(D) be the outer
function defined as above. Then, φF∗ ∈ Hp(T) for φ ∈ Hp(T, w), and if ψ ∈ Hp(T), then
ψ[F∗]−1 ∈ Hp(T, w).

Proof. For the proof, we use Relation (11) and the fact that the system {eintF∗(t)}∞
n=0 is

complete in Hp(T). If φ ∈ Hp(T, w), there exists a sequence of trigonometric polynomials
Pn(t) = ∑Nn

j=0 bjeijt, such that

0 = lim
n→∞

∫
T
|φ(t)− Pn(t)|pw(t)dt = lim

n→∞

∫
T
|φ(t)F∗(t)− Pn(t)F∗(t)|pdt.

Thus, φF∗ ∈ Hp(T). On the other hand, if ψ ∈ Hp(T) we find the trigonometric polynomi-
als P̃n(t) = ∑Ñn

j=0 b̃jeijt, such that

0 = lim
n→∞

∫
T
|ψ(t)− P̃n(t)F∗(t)|pdt = lim

n→∞

∫
T

∣∣ ψ(t)
F∗(t)

− P̃n(t)
∣∣pw(t)dt.

We should describe the annihilator Hp(T, w)⊥ of Hp(T, w) in Lp′(T, w) :

Hp(T, w)⊥ =

{
ψ ∈ Lp′(T, w) :

∫
T

φ(θ)ψ(θ)w(θ)dθ = 0 ∀ φ ∈ Hp(T, w)

}
.

Suppose that 1 < p < ∞, and let ψ ∈ Hp(T, w)⊥. For any φ ∈ Hp(T, w), we write

0 =
∫
T

φ(θ)ψ(θ)w(θ)dθ =
∫
T

φ(θ)F∗(θ)ψ(θ)[w(θ)]
1
p′ e−

i
p $(θ)dθ.

It is well-known that the annihilator of Hp(T) is Hp′
0 (T) (see, e.g., [5]). Hence, using Lemma

2, it follows that

ψ(θ)[w(θ)]
1
p′ e−

i
p $(θ) ∈ Hp′

0 (T) and ψ(θ)e−i$(θ) ∈ Hp′
0 (T, w).

This yields ψ(θ) ∈ e−i$(θ)Hp′
0 (T, w). Conversely, if

ψ(θ) ∈ e−i$(θ)Hp′
0 (T, w) = e−i$(θ)e−it Hp′(T, w)
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the using (11) and Lemma 2, ψ(θ)e−
i
p $(θ)

[w(θ)]
1
p′ ∈ Hp′(T). Hence, for all φ ∈ Hp(T, w)∫

T
φ(θ)ψ(θ)w(θ)dθ =

∫
T

φ(θ)F∗(θ)ψ(θ)[w(θ)]
1
p′ e−

i
p $(θ)dθ = 0.

In the case of p = 1, the proof is similar and we omit it. Thus,

Hp(T, w)⊥ = e−i$(θ)Hp′
0 (T, w)

and from Theorem 7.1 in [5], it follows that [Hp(T, w)]∗ is isometrically isomorphic to

Lp′(T, w)/Hp′
0 (T, w), and for every ψ ∈ [Hp(T, w)]∗,

sup
‖φ‖Hp(T,w)≤1

∣∣∣∣ 1
2π

∫
T

φ(t)ψ(t)w(t)dt
∣∣∣∣ = min

h∈Hp(T,w)⊥
‖ψ + h‖Lp′ (T,w)

.

As above, we check that for 1 < p < ∞,

Hp
0 (T, w)⊥ = e−i$(θ)Hp′(T, w).

Thus, the following statement is proved.

Theorem 5. For 1 < p < ∞, the dual space [Hp(T, w)]∗ is a reflexive Banach space isometri-

cally isomorphic to Lp′(T, w)/Hp′
0 (T, w). Moreover, [H1(T, w)]∗ is isometrically isomorphic to

L∞(T)/H∞
0 (T).

3.2. Summation Basis

The following lemma is the analog of Banach’s theorem for a given system to be an
A—basis. The proof is similar to the proof of Banach’s original theorem, and we do not
provide it here. References for the summation bases can be found in [22].

Lemma 3. Let X = {xk}∞
x=1 ⊂ B be complete and minimal in B with the dual system X∗ =

{ϕn}∞
n=1. Then, X is an A—basis of B if and only if there exists a constant C > 0, such that for

any x ∈ B,

sup
0<r<1

‖
∞

∑
k=1

rkφk(x)xk‖B ≤ C‖x‖B.

In this subsection, we suppose that w is an admissible weight function. We recall that
in this case, F−1 ∈ N, and we have Representation (6). Hence, for any 0 < R < 1, there
exists NR ∈ N, such that |cn| < 1

Rn for n > NR. For 0 ≤ r < 1, set

Kr(t, θ) = F∗(t)[c0 +
∞

∑
n=1

rneintTn(θ)]. (12)

Note that the following series
∞

∑
n=1

rn
n

∑
j=0
|cj|

converges uniformly on [0, ρ] for any 0 < ρ < 1. Indeed, for ρ < R < 1 and n > NR, we
have that

n

∑
j=0
|cj| ≤

NR

∑
j=0
|cj|+ R−NR−1

n−NR−1

∑
ν=0

R−ν ≤ CR + R−n 1
1− R

.
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Hence, Series (12) converges absolutely on [0, 1)×T×T. The absolute convergence of the
series permits us to write

Kr(t, θ) = F∗(t)
∞

∑
n=0

rneint
n

∑
j=0

cn−je−ijθ = F∗(t)
∞

∑
j=0

∞

∑
n=j

rncn−jeinte−ijθ

= F∗(t)Cr(t− θ)
∞

∑
ν=0

rνcνeiνt = F∗(t)Cr(t− θ)F−1(reit).

Thus, from Fatou’s theorem, we obtain the following theorem.

Theorem 6. Any function φ ∈ Hp(T) is the non-tangential limit of

Φ(reit) :=
1

2π

∫
T

φ(θ)Kr(t, θ)dθ.

Let φ(θ) = u(θ) + iv(θ) ∈ Hp(T), 1 ≤ p < ∞ and c0( f ) ∈ R. Then, it is well-known
(see, e.g., [8]) that

1
2π

∫
T

φ(θ)Cr(t− θ)dθ =
1

2π

∫
T

u(θ)Hr(t− θ)dθ

=
1

2π

∫
T

φ(θ)Pr(t− θ)dθ. (13)

Consider the following family of maps

Λr[φ](t) = F∗(t)F−1(reit)
1

2π

∫
T

φ(θ)Pr(t− θ)dθ 0 < r < 1, φ ∈ Hp(T).

Theorem 7. The inequality

‖Λr[φ]‖Lp(T) ≤ Cp‖φ‖Hp(T) 0 < r < 1, (14)

holds for all φ ∈ Hp(T), 1 ≤ p < ∞ and Cp > 0 independent of φ, if and only if w ∈ R.

Proof. Let w ∈ R. If p = 1, then

‖Λr[φ]‖L(T) =
1

4π2

∫
T

∣∣∣∣F∗(t)F−1(reit)
∫
T

φ(θ)Pr(t− θ)dθ

∣∣∣∣dt

≤ 1
4π2

∫
T
|φ(θ|

∫
T

w(t)|F−1(reit)|Pr(t− θ)dtdθ ≤ C‖φ‖H1(T),

where C > 0 is the constant in the conditionR. If 1 < p < ∞, then for any ψ ∈ Lp′(T), we
have ∣∣∣∣ 1

2π

∫
T

ψ(t)Λr[φ](t)dt
∣∣∣∣ = 1

4π2

∣∣∣∣∫T ψ(t)F∗(t)F−1(reit)
∫
T

φ(θ)Pr(t− θ)dθdt
∣∣∣∣

≤ 1
4π2

∫
T
|φ(θ)|

∫
T
|ψ(t)||F∗(t)F−1(reit)|Pr(t− θ)dtdθ.
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From the Hölder inequality, we deduce∫
T
|ψ(t)||F∗(t)F−1(reit)|Pr(t− θ)dt

≤
( ∫

T
|ψ(t)|p′Pr(t− θ)dt

) 1
p′
( ∫

T
|F∗(t)F−1(reit)|pPr(t− θ)dt

) 1
p

=

( ∫
T
|ψ(t)|p′Pr(t− θ)dt

) 1
p′
( ∫

T

w(t)
|F(reit)|p

Pr(t− θ)dt
) 1

p

≤ (2πC)
1
p

( ∫
T
|ψ(t)|p′Pr(t− θ)dt

) 1
p′

.

The last inequality follows by using (3) and (4). Hence,∣∣∣∣ 1
2π

∫
T

ψ(t)Λr[φ](t)dt
∣∣∣∣

≤ 1
4π2 (2πC)

1
p

( ∫
T
|φ(θ)|pdθ

) 1
p
( ∫

T

∫
T
|ψ(t)|p′Pr(t− θ)dθdt

) 1
p′

= C
1
p

(
1

2π

∫
T
|φ(θ)|pdθ

) 1
p
(

1
2π

∫
T
|ψ(t)|p′dt

) 1
p′

,

which yields (14).
For the proof of necessity, fix some ρ, 0 < ρ < 1, and set ϕθ(t), θ ∈ T equal to any

branch of 1

(1−ρei(t−θ))
2
p

. Then, we have that

‖Λr[ϕθ ]‖
p
Lp(T) =

1
2π

∫
T

∣∣∣∣ F∗(t)
F(reit)

∣∣∣∣p 1
|1− ρrei(t−θ)|2

dt

=
1

2π

∫
T

w(t)
|F(reit)|p

1
|1− ρrei(t−θ)|2

dt

If we suppose that the maps Λr : Hp(T)→ Lp(T) are uniformly bounded, then for r = ρ,
we obtain

1
2π

∫
T

w(t)
|F(reit)|p

1
|1− r2ei(t−θ)|2

dt ≤
Cp

p

2π

∫
T

1
|1− rei(t−θ)|2

dt =
Cp

p

1− r2 ,

where the last relation follows using Parseval’s equality. Using the inequality |1− r2eix|2 ≤
4|1− reix|2 for all x ∈ T and 0 < r < 1, we finish the proof.

We would like to formulate the main result of this subsection from another point of
view. Let F ∈ Hp(D), 1 ≤ p < ∞ be an outer function, and let F(eit) be the non-tangential
limit of F on the unit circle. Note that Beurling’s approximation theorem states that the
system {F(eit)eikt}∞

k=0 is complete in Hp(T). Set w(t) = |F(eit)|p. Then, using Proposition 1,
we can claim that Theorem 7 yields the following.

Theorem 8. Let F ∈ Hp(D), 1 ≤ p < ∞ be an outer function, and let F(eit) be the non-tangential
limit of F on the unit circle.
Then, {F(eit)eikt}∞

k=0 is an A−basis in Hp(T) if and only if |F(eit)|p ∈ R.

3.3. The System {eijt}∞
j=0 in the Space Hp(T, w)

The following assertion holds.
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Theorem 9. For any admissible weight function w, the system {eijt}∞
j=0 is an M−basis in Hp(T, w),

1 ≤ p < ∞.

Proof. The completeness of the system {eijt}∞
j=0 in Hp(T, w) follows by definition. Set

ϕn(t) =
F∗(t)
w(t)

Tn(t), n ∈ N0,

where the polynomials Tn(t) are defined using (8). As in the proof of Theorem 1, it is easy
to check that {ϕn(t)}∞

n=0 is the dual system of {eijt}∞
j=0 in Hp(T, w). Suppose that there

exists f ∈ Hp(T, w), such that for all n ∈ N0

0 =
∫
T

f (t)ϕn(t)w(t)dt =
∫
T

f (t)F∗(t)Tn(t)dt.

Using Lemma 2, we have that f F∗ ∈ Hp(T). Hence, using Theorem 1, it follows that
f (t) = 0 almost everywhere on T.

Theorem 10. The system {eijt}∞
j=0 is uniformly minimal in Hp(T, w), 1 < p < ∞ if and only if

w ∈ Wp.

Proof. The statement is an immediate consequence of Theorem 2. Using (11), we deduce
that

1
2π

∫
T
|ϕn(t)|p

′
w(t)dt =

1
2π

∫
T
|Tn(t)|p

′
dt.

The following theorem is a direct consequence of Theorem 4.

Theorem 11. Let w ∈ Ap, 1 < p < ∞. Then, the system {eijt}∞
j=0 is a Schauder basis in

Hp(T, w).

Let w be an admissible weight function. We expand any f ∈ Hp(T, w) with respect to
the system {eijt}∞

j=0 and consider the Abel means of the obtained expansion. Let

Lr(t, θ) =
∞

∑
n=0

rneint ϕn(θ) =
F∗(θ)
w(θ)

∞

∑
n=0

rneintTn(θ), 0 < r < 1.

As in the case of the kernel Kr(t, θ), we deduce that

Lr(t, θ) =
F∗(θ)
w(θ)

Cr(t− θ)F−1(reit).

Set

σr[ f ](t) =
1

2π

∫
T

f (θ)Lr(t, θ)w(θ)dθ =
F−1(reit)

2π

∫
T

f (θ)F∗(θ)Cr(t− θ)dθ.

Using Lemma 2, we have that f F∗ ∈ Hp(T). Hence, the following theorem holds.

Theorem 12. Any function f ∈ Hp(T, w), 1 ≤ p < ∞ is the non-tangential limit of

Ψ(reit) :=
1

2π

∫
T

f (θ)Lr(t, θ)dθ.
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Afterward, we write f (θ)F∗(θ) = u1(θ) + iv1(θ) ∈ Hp(T), 1 ≤ p < ∞ and assume
that c0( f F∗) ∈ R. Then, as in (13),

1
2π

∫
T

f (θ)F∗(θ)Cr(t− θ)dθ =
1

2π

∫
T

u1(θ)Hr(t− θ)dθ

=
1

2π

∫
T

f (θ)F∗(θ)Pr(t− θ)dθ.

Theorem 13. Let 1 ≤ p < ∞. The inequality∥∥∥∥ F−1(reit)

2π

∫
T

f (θ)F∗(θ)Pr(t− θ)dθ

∥∥∥∥
Lp(T,w)

≤ C∗p‖ f ‖Hp(T,w) 0 < r < 1,

holds for all f ∈ Hp(T, w), 1 ≤ p < ∞, and C∗p > 0 independent of f if and only if w ∈ R.

Proof. Let w ∈ R. Then, for any g ∈ Lp′(T, w) we have

1
4π2

∣∣∣∣∫T g(t)F−1(reit)
∫
T

f (θ)F∗(θ)Pr(t− θ)dθw(t)dt
∣∣∣∣

≤ 1
4π2

∫
T
| f (θ)F∗(θ)|

∫
T
|g(t)||F−1(reit)|Pr(t− θ)w(t)dtdθ.

Afterward, using (11), we obtain∫
T
|g(t)||F−1(reit)|Pr(t− θ)w(t)dt

≤
( ∫

T
|g(t)|p′Pr(t− θ)w(t)dt

) 1
p′
( ∫

T
|F−1(reit)|pw(t)Pr(t− θ)dt

) 1
p

≤ (2πC)
1
p

( ∫
T
|g(t)|p′Pr(t− θ)w(t)dt

) 1
p′

,

where C > 0 is the constant in the conditionR. Hence,

1
4π2

∣∣∣∣∫T g(t)h−1
p (reit)

∫
T

f (θ)F∗(θ)Pr(t− θ)dθw(t)dt
∣∣∣∣

≤ 1
4π2 (2πC)

1
p

( ∫
T
| f (θ)|pw(θ)dθ

) 1
p
( ∫

T

∫
T
|g(t)|p′w(t)Pr(t− θ)dθdt

) 1
p′

= C
1
p

(
1

2π

∫
T
| f (θ)|pw(θ)dθ

) 1
p
(

1
2π

∫
T
|g(t)|p′w(t)dt

) 1
p′

.

For the proof of necessity, we fix some r, 0 < r < 1 and take 1
F∗(t) ϕθ(t), θ ∈ T, where ϕθ(t)

is equal to any branch of 1

(1−rei(t−θ))
2
p

. We omit further details because they are similar to

those given in the proof of Theorem 7.

The following statement provides a representation of the inverse operator Λ−1 from
Hypothesis 1.

Corollary 1. Let w ∈ R and f ∈ Hp(T, w), 1 ≤ p < ∞. Then, the holomorphic function

f (reit) =
F−1(reit)

2π

∫
T

f (θ)F∗(θ)Pr(t− θ)dθ

belongs to Hp(D, w).
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Thus, using Lemma 3, we obtain

Theorem 14. The system {eikt}∞
k=0 is an A−basis in Hp(w), 1 ≤ p < ∞ if and only if w ∈ R.

The following proposition is true.

Proposition 2. Let w ∈ eW and 1 ≤ p < ∞. Let

f (z) = α0 +
∞

∑
k=1

αkzk

be a holomorphic function in D, such that

sup
0≤r<1

1
2π

∫
T
| f (reiθ)|pw(θ)dθ < +∞.

Then, there exists ϕ ∈ Hp(T, w), such that for all n ∈ N0,

αn =
1

2π

∫
T

ϕ(t)ϕn(t)w(t)dt. (15)

Proof. Using Lemma 2, we have that f (reit)F∗(t), r ∈ (0, 1) is a uniformly bounded family
of functions in Hp(T). Thus, using Banach’s theorem [18], we can find a sequence 0 < r1 <
r2 < · · · < 1, such that limj→∞ rj = 1 and f (rjeit)F∗(t) converges weakly in Hp(T), 1 <

p < ∞. In other words, there exists ψ ∈ Hp(T), such that for any h ∈ Hp′(T),

lim
j→∞

1
2π

∫
T

f (rjeit)F∗(t)h(t)dt =
1

2π

∫
T

ψ(t)h(t)dt.

If we fix j ∈ N, then for any n ∈ N,

αnrn
j =

1
2π

∫
T

f (rjeit)ϕn(t)w(t)dt =
1

2π

∫
T

f (rjeit)F∗(t)Tn(t)dt.

By letting j→ +∞, we obtain

αn =
1

2π

∫
T

ψ(t)Tn(t)dt =
1

2π

∫
T

ϕ(t)ϕn(t)w(t)dt,

where ϕ(t) = ψ(t)
F∗(t) ∈ Hp(T, w). The proof for the case of p = 1 is longer but its first part

is well-known (see, e.g., [8,9]). The set f (reit)F∗(t), r ∈ (0, 1) is uniformly bounded in the
L1(T) norm. Afterward, we consider L1(T) as a subspace of the space of Borel measures, the
dual of C(T). Thus, as above, one can pick an increasing sequence {rj}∞

j=1, limj→∞ rj = 1,
such that for some analytic Borel measure µ,

lim
j→∞

1
2π

∫
T

f (rjeit)F∗(t)g(t)dt =
1

2π

∫
T

g(t)dµ for any g ∈ C(T).

Using the Riesz Brothers theorem, we deduce that µ is absolutely continuous with respect
to the Lebesgue measure on T, dµ(t) = ψ(t)dt, where ψ ∈ H1(T). Afterward, we finish the
proof as above.

4. Discussion

The author feels obliged to explain some trivial things. Professional mathematicians
may omit the following few lines. It is clear that any solved problem is no longer a problem.
The key instrument for the present study is polynomials, as defined in Section 2.1. It is easy
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to check that they constitute a dual system for the corresponding Beurling system. The
main difficulty is to determine that system.

These polynomials are remarkable because, by expanding elements of the Hardy
spaces with a Beurling system, we obtain integral representations in terms of classical
kernels. This fact permits us to use tools developed for weighted norm inequalities in our
research. The obtained results belong to different topics, which can be classified as parallel.

On the one hand, we extend Beurling’s approximation theorem, showing that any
Beurling system is an M−basis in the corresponding Hardy space. Moreover, we character-
ize the outer functions for which the corresponding Beurling system is a uniformly bounded
M−basis, Schauder basis, and summation basis. On the other hand, we can study weighted-
norm Hardy spaces. Here, we should mention M. Rosenblum’s important article [17]. In the
introduction in [17], a statement was formulated related to weighted-norm Hp spaces. In
my talks related to the present study, we formulated that statement as Rosenblum’s theorem.
We should note that in [17], the author did not formulate that statement as a theorem. Hence,
after some reflection, it seems more adequate to formulate it as Rosenblum’s hypothesis.
Our study permits us to provide a complete proof of Hypothesis 1. Moreover, we determine
the precise formula for representing the function from the space Hp(D, w) with its boundary
value, which belongs to Hp(T, w), when w ∈ R. It should be mentioned that the classR is
large enough (see (5)). These relations need further study.
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