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Abstract: Integration of gene expression (GE) and protein–protein interaction (PPI) is not straightfor-
ward because the former is provided as a matrix, whereas the latter is provided as a network. In many
cases, genes processed with GE analysis are refined further based on a PPI network or vice versa.
This is hardly regarded as a true integration of GE and PPI. To address this problem, we proposed a
tensor decomposition (TD)-based method that can integrate GE and PPI prior to any analyses where
PPI is also formatted as a matrix to which singular value decomposition (SVD) is applied. Integrated
analyses with TD improved the coincidence between vectors attributed to samples and class labels
over 27 cancer types retrieved from The Cancer Genome Atlas Program (TCGA) toward five class
labels. Enrichment using genes selected with this strategy was also improved with the integration
using TD. The PPI network associated with the information on the strength of the PPI can improve
the performance than PPI that stores only if the interaction exists in individual pairs. In addition,
even restricting genes to the intersection of GE and PPI can improve coincidence and enrichment.

Keywords: tensor decomposition; gene expression; protein–protein interaction; integrated analyses

MSC: 92B05; 68T09

1. Introduction

The integrated analysis of gene expression (GE) and protein–protein interaction (PPI)
has not been studied extensively [1]. This is possibly because of the distinct formats
provided for GE and PPI. GE is usually provided in a matrix format, whose columns
and rows typically correspond to samples and genes, whereas PPI is usually provided
in a network format. Integrating these two formats is not straightforward. Mainly, two
approaches were tried: the matrix-based (MB) method and the network-based (NB) method
(Figure 1).

Typically, in MB methods, differentially expressed genes (DEGs) are identified and
PPI is used to validate or filter DEGs [2–4]. However, these kinds of MB methods are rarely
recognized as integrated analyses of GE and PPI since the strategy of further screening
DEGs is based on an independent strategy that is common and not restricted to PPI. For
example, various enrichment analyses based on previous biological knowledge were often
used to screen DEGs. Thus, MB methods are typically unlikely to be regarded as integrated
analyses of GE and PPI. In actuality, although [1] reviewed some studies that were regarded
as integrated analyses of GE and PPI, most of these studies are not MB but NB methods.

In contrast to MB methods, in NB methods, GE information is mapped onto a network,
and modules associated with co-expression genes are selected. These NB approaches
integrated with GE are known to improve the performance of simple NB approaches [5–7].
This strategy, where genes embedded in network structures that are further screened based
on GE, is more likely to be regarded as integrated analyses of GE and PPI than MB methods
because GE is not the only criterion to further screen genes embedded in a network. Many
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other criteria, such as the previously mentioned enriched analyses, can be used to further
screen genes embedded in a network, and NB methods are not specifically integrated
analyses of GE and PPI.
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Figure 1. (A) Network-based approach. (B) Matrix-based approach (C). Tensor-based approach (this
also shows the analysis flow chart in this study).

The weak point of both the MB and NB methods is obvious. One of two criteria, GE or
PPI, inevitably dominates another. In MB approaches, no non-DEGs are selected because
only DEGs are passed to be screened by PPI, whereas in NB approaches, no non-network-
connected genes are selected because only genes connected within a network are passed
to be screened based on whether they are DEGs. Thus, there are inevitable inequalities
between GE and PPI in both approaches.

Some studies attempted to avoid the inequality between GE and PPI. For example,
ref. [8] tried to equally weight GE and PPI by introducing the Jaccard similarity index (JDC),
which is a simple product between the edge clustering coefficient computed from the PPI
network and the Jaccard coefficient computed from the GE similarity. Although JDC was
superior to other existing methods and removing the inequality between GE and PPI could
improve performance, using JDC is restricted to the time course dataset and this type of
approach (i.e., trying to equally weight GE and PPI) has only been rarely investigated.

In this paper, we introduce new, tensor-based (TB) approaches to integrate PPI and
GE, assuming no priority between GE and PPI. In the TB approach, PPI expressed in a
matrix format is once transformed using singular value decomposition into singular value
vectors (SVV), which are later bundled with SVVs computed from GE with SVD to generate
a tensor to which TD is applied. The TD-generated SVVs attributed to a gene are further
used to generate vectors attributed to samples by projecting GE to TD-generated SVVs
attributed to a gene. These obtained vectors attributed to samples are tested if they are
coincident with class labels (e.g., patients vs. healthy controls) and are selected based on
coincidence. Once vectors attributed to samples are selected, then corresponding SVVs
attributed to a gene, to which GE is mapped, are used to select DEGs using a previously
proposed TD-based unsupervised feature extraction (FE) [9] criterion that was recently
improved with optimized standard deviation [10,11] used in Gaussian distribution, which
SVVs attributed to genes are supposed to obey in the null hypothesis. Selected genes
can be further validated with various enrichment analyses based on previously obtained
biological knowledge.

As the scarcity of data hinders the performance of data-driven methods, thereby
affecting the biological reliability of selected genes, we proposed a new computational
method to integrate GE and PPI and improve the biological significance of obtained results
from enrichment analysis as shown from the analysis of cancer data obtained from the
GEO database.
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2. Materials and Methods

In this paper, to express network structure in a matrix format to be integrated with GE,
we employed the simplest network structure representation (NSR) [12], where nii′ ∈ RN×N

is 1 only when the node i and i′ are connected with each other and otherwise is zero.
The R source code used to perform this analysis is in the supplementary file.

2.1. Integrated Analysis of Matrices and Networks with Tensor

To convert an NSR into a matrix starting with nii′ , we applied SVD to nii′ as

nii′ = ∑
`

λ`u`iu`i′ (1)

where λ` is a singular value and u`i ∈ RN×N are the singular value matrix and the
orthogonal matrix.

On the other hand, we apply SVD to xij ∈ RN×M, which represents the gene expression
of the ith gene of the jth sample as

xij = ∑
`

λ′`u
′
`iv`j (2)

where u′`i ∈ RM×N and v`j ∈ RM×M (here we assume M < N). Then, we generate the
tensor xi`k ∈ RN×L×2 using the first L(< M) SVVs as:

xi`k =

{
u`i, k = 1
u′`i, k = 2

(3)

to which higher order singular value decomposition (HOSVD) is then applied, giving:

xi`k =
N

∑
`1=1

L

∑
`2=1

2

∑
`3=1

G(`1`2`3)ũ`1iũ`2`ũ`3k (4)

where G ∈ RN×L×2 is a core tensor and ũ`1i ∈ RN×N , ũ`2` ∈ RL×L, and ũ`3k ∈ R2×2 are
singular value matrices and orthogonal matrices. Throughout this article, L = 10. Next, we
project xij onto ũ`1i by

ṽ`1 j =
N

∑
i=1

ũ`1ixij (5)

to get vectors attributed to sample, ṽ`1 j.

2.2. Comparisons of Coincidence with Class Labels between v`j and ṽ`1 j

Categorical regression is performed for v`j and ṽ`1 j as

v`j = a` + ∑
s

b`sδjs (6)

ṽ`1 j = a′`1
+ ∑

s
b′`1sδjs (7)

where δjs is 1 only when j belongs to the sth class and otherwise is 0, and a`, b`s, a′`1
, b′`1s

are regression coefficients. p-values are computed by the lm function in R. Hereafter, we
denote p-values computed using Equations (6) and (7) for the mth dataset as Pm

` and P̃m
` ,

respectively. The obtained p-values are corrected by the BH criterion [9] using the p.adjust
function in R with the “BH” option.

If there are M0 data sets (i.e., m ≤ M0), which is the number of cancer types in this
study as shown in the following, then there are M0L P-values (Pm

` or P̃m
` ), Ph ∈ RM0L which

are ranked in ascending order (i.e., if h > h′ then Ph > Ph′ ). Phs re-ranked from Pm
` and P̃m

`
are compared with a paired Wilcoxon test with the alternative hypothesis that the Ph found
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via SVD (i.e., re-ranked Pm
` ) is greater (i.e., less significant) than that given by HOSVD (i.e.,

re-ranked P̃m
` ).

The coincidence with class labels can be evaluated as follows. v`j as well as ṽ`1 j can
be regarded as the individual genes’ representative profiles that represent dependence
upon j. Thus, if v`j as well as ṽ`1 j have a dependence upon class labels, we can regard
that individual genes’ profiles have sufficient projection onto those coincident with class
labels as well. Moreover, since v`j or ṽ`1 j can be computed by projecting xij onto u′`i or ũ`1i,
respectively, we can derive the dependence of xij upon j even only from the dependence
upon i. In this sense, the evaluating coincident of v`j as well as ṽ`1 j with class labels can be
regarded as a measure of inherent coincidence between individual genes’ profiles and class
labels as well.

2.3. Identification of Genes Expressed Distinctly between Class Labels and Enrichment Analysis

First, for each cancer dataset, using one of five class labels (see below), ` or `1 with the
smallest Pm

` or P̃m
` computed by categorical regression of Equations (6) and (7), respectively,

we attributed p-values to individual genes (proteins) as follows:

Pm
i = Pχ2

[
>

(
u`i
σ`

)]
(8)

or

P̃m
i = Pχ2

[
>

(
ũ`1i

σ`1

)]
(9)

where Pχ2 [> x] is the cumulative χ2 distribution when the argument is larger than x and
σ` and σ`1 are optimized standard deviations so that Pm

i or P̃m
i obeys Gaussian, which

is the null hypothesis, as much as possible [10,11]. Computed p-values are corrected by
the BH criterion [9] and is associated with adjusted p-values less than 0.01 are selected.
Selected genes in each of the 27 cancer types were separately uploaded to Enrichr [13]
with the enrichR [14] package. Then, enrichment in KEGG, GO BP, GO CC, and GO MF
were retrieved.

Enrichr evaluates the enrichment of genes using Fisher’s exact test. Suppose G1 is a set
of genes uploaded (i.e., genes selected by our method) and G2 is a set of genes with known
function (e.g., genes that belong to a specific KEGG pathway). The overlap between G1 and
G2, G1

⋂
G2, is evaluated by the comparison with that by chance. If G1

⋂
G2 is much larger

than that by chance and the probability of occurrence by chance is small, G1 is regarded
to be associated with the function associated with G2. In this study, we selected biological
terms enriched if associated adjusted p-values given by Enrichr are less than 0.05.

For the enrichment analyses that considered HALLMARK cancer gene sets, we evalu-
ate enrichment with enrichment function in clusterProfiler package [15] with the reference
to HALLMARK genes in msigdbr package [16]. Gene sets associated with adjusted p-values
less than 0.05 were selected.

2.4. PPI Dataset

We have employed the following two PPI datasets for comparison.

2.4.1. Stanford PPI Dataset

The PPI dataset, PP-Pathways_ppi.csv.gz, was retrieved from the human protein–
protein interaction network [17], which includes 342,353 pairs for 21,557 proteins. After
excluding self-pairs (i.e., self-dimers), these data were formatted as a nii′ ∈ RN×N where
N = 21, 557. Then, there were 16,774 is, which is common with the is in the TCGA gene
expression profiles (see below). Since these 342,353 pairs represent only one of nij and
nji, (i.e., pairs whose order is reversed are not included), when nij 6= nji, nij = nji = 1
is required.
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2.4.2. BIOGRID PPI Dataset

The PPI dataset, BIOGRID-MV-Physical-4.4.221.tab2.zip, which is supposed to rep-
resent physical PPIs, was retrieved from BIOGRID [18], which includes 437,679 pairs for
27,978 proteins. These data were also formatted as a nii′ ∈ RN×N where N = 27,978. Then,
there were 11,294 is, which is common with the is in the TCGA gene expression profiles
(see below). Since these 437,679 pairs represent only one of nij and nji, (i.e., pairs whose
order is reversed are not included), when nij 6= nji, nij = nji is required. In the BIOGRID
dataset, nij is not always taken to be 1 when protein pairs interact with each other, but
the number of occurrences in the BIOGRID PPI datasets. Thus, nij can be larger than 1 in
contrast to the Stanford PPI. Thus, nij in the BIOGRID PPI represents not only whether
pairs of proteins interact with each other, but also the strength of the interaction.

2.5. Gene Expression Profiles

TCGA gene expression profiles are used as xij. The RTCGA dataset [19] was used
for this purpose. RTCGA.rnaseq [20] was used as a gene expression profile. It includes
27 cancer datasets with various sample sizes (js) ranging from a few tens to a few hundred,
as well as 20,532 genes (is) whose expression profiles are available. The cancers considered
are ACC, BLCA, BRCA, CESC, COAD, ESCA, GBM, HNSC, KICH, KIRC, KIRP, LGG,
LIHC, LUAD, LUSC, OV, PAAD, PCPG, PRAD, READ, SARC, SKCM, STAD, TGCT, THCA,
UCEC, and UCS. The class labels considered, retrieved from RTCGA.clinical [21], are pa-
tient.vital_status, patient.stage_event.pathologic_stage, patient.stage_event.tnm_categories.
pathologic_categories. pathologic_m, patient.stage_event.tnm_categories.pathologic_categories.
pathologic_n, and patient.stage_event.tnm_categories. pathologic_categories. pathologic_t.
In order to avoid complexity, in the following, we employ shortened label class names as
follows: “vital_status”,“pathologic_stage”,“pathologic_m”,“pathologic_n”, and “patho-
logic_t”. All 27 cancer datasets are associated with “vital_status” labels, “pathologic_stage”
and “pathologic_m” are associated with only 18 datasets, and “pathologic_t” and “patho-
logic_n” are associated with 20 datasets (Table 1).

Table 1. Availability of class labels for cancer datasets. (1) “patient.vital_status”, (2) “patho-
logic_stage,” (3) “pathologic_m”, (4) “pathologic_t”, and (5) “pathologic_n”.

ACC BLCA BRCA CESC COAD ESCA GBM HNSC KICH KIRC KIRP LGG LIHC LUAD

(1) X X X X X X X X X X X X X X
(2) X X X X X X X X X X X
(3) X X X X X X X X X X X
(4) X X X X X X X X X X X X
(5) X X X X X X X X X X X X

LUSC OV PAAD PCPG PRAD READ SARC SKCM STAD TGCT THCA UCEC UCS Total (= M0)

(1) X X X X X X X X X X X X X 27
(2) X X X X X X X 18
(3) X X X X X X X 18
(4) X X X X X X X X 20
(5) X X X X X X X X 20

A total of 16,774 is (for Stanford) and 11,294 (for BIOGRID) that are common with is in
PPI (see above) are used.

3. Results
3.1. Identification of Sample Vectors Coincident with Labels

The first evaluation of the proposed TB method is a comparison of the significance of
coincidence between labels and vectors attributed to samples with and without considera-
tion of PPI (i.e., comparisons between Equations (6) and (7)). If Equation (7) can provide
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more significance than Equation (6), an integrated analysis of PPI and GE can improve
the performance, because PPI itself is unlikely to include class label information, which is
supposed to be specific to individual cancer types. The reason why we employed these
class labels is simply because they are widely common for the majority of cancer types in
TCGA. Since they are patient class labels, they might not be directly related to some specific
biological concepts.

3.1.1. Stanford PPI

In this section, we evaluate each class label.

“vital_status”

First, we considered the label “vital_status”, which has two levels, “dead” and “alive.”
Figure 2 (the left panel (1)) represents the logarithmic p-values computed by applying
a Wilcoxon test (2.144 × 10−8) to ascending ordered log10 Ph computed from v`j with
Equation (6) and ṽ`1 j with Equation (7), respectively, whose scatter plot is shown in Figure 3
(the left panel). Since the number of vectors attributed to samples associated with adjusted
p-values less than 0.05 for HOSVD (green and blue crosses) is larger than those for SVD
(green crosses), the integrated analysis clearly improves the coincidence between the class
label “vital_status” and vectors attributed to samples.
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Figure 2. Barplot of p-values computed by a Wilcoxon test to evaluate the difference in ascend-
ing ordered Ph between SVD (Equation (6)) and HOSVD (Equation (7)) when Stanford PPI (left)
or BIOGRID PPI (right) was used. (1) “vital_status”, (2) “pathologic_stage”, (3) “pathologic_m”,
(4) “pathologic_t”, (5) “pathologic_n”. Numerical values of bar plots are listed in Table S1.
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Figure 3. Scatter plot (logarithmic scale) of ascending ordered Ph computed from v`j (horizontal axis)
and ṽ`1 j (vertical axis) for “vital_status.” Green crosses are those associated with adjusted p-values
less than 0.05 for both axes and blue crosses are those associated with adjusted p-values less than
0.05 for the vertical axis alone. Grey asterisks represent all other situations. Left: Stanford PPI, right:
BIOGRID PPI.
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“pathologic_stage”

Next, we considered the label “pathologic_stage.” Figure 2 (the left panel (2)) repre-
sents the logarithmic p-values computed by applying a Wilcoxon test (3.178× 10−18) to
ascending ordered log10 Ph computed from v`j with Equation (6) and ṽ`1 j with Equation (7),
respectively, whose scatter plot is shown in Figure 4 (the left panel).
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Figure 4. Scatter plot in logarithmic scale of ascending ordered Ph computed from v`j (horizontal
axis) and ṽ`1 j (vertical axis) for “pathologic_stage.” Green crosses are those associated with adjusted
p-values less than 0.05 for both axes and blue crosses are those associated with adjusted p-values less
than 0.05 only for vertical axis. Grey asterisks represent all other situations. Left: Stanford PPI, right:
BIOGRID PPI.

Again, Ph with integrated analysis of GE and PPI is significantly lower than that
without consideration of PPI. Thus, the improvement observed in the label “vital_status” is
unlikely accidental.

“pathologic_m”

Next, we considered the label “pathologic_m.” Figure 2 (the left panel (3)) represents
the logarithmic p-values computed by applying a Wilcoxon test (0.6685) to ascending or-
dered log10 Ph computed from v`j with Equation (6) and ṽ`1 j with Equation (7), respectively,
whose scatter plot is shown in Figure 5 (the left panel).
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Figure 5. Scatter plot (logarithmic scale) of ascending ordered Ph computed from v`j (horizontal
axis) and ṽ`1 j (vertical axis) for “pathologic_m.” Green crosses are associated with adjusted p-values
less than 0.05 for both axes and blue crosses are associated with adjusted p-values less than 0.05
for the vertical axis alone. Grey asterisks represent all other situations. Left: Stanford PPI, right:
BIOGRID PPI.

Since consideration of PPI does not improve the coincidence between class labels and
vectors attributed to samples in this case, integrated analysis of PPI and GE does not always
improve the coincidence (this will be discussed further).
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“pathologic_t”

Next, we considered the label “pathologic_t.” Figure 2 (the left panel (4)) represents the
logarithmic p-values computed by applying a Wilcoxon test (6.430× 10−22) to ascending or-
dered log10 Ph computed from v`j with Equation (6) and ṽ`1 j with Equation (7), respectively,
whose scatter plot is shown in Figure 6 (the left panel).
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Figure 6. Scatter plot (logarithmic scale) of ascending ordered Ph computed from v`j (horizontal axis)
and ṽ`1 j (vertical axis) for “pathologic_t.” Green crosses are associated with adjusted p-values less than
0.05 for both axes and blue crosses are associated with adjusted p-values less than 0.05 for the vertical
axis alone. Grey asterisks represent all other situations. Left: Stanford PPI, right: BIOGRID PPI.

Although the log Ph does not appear significantly distinct between SVD and HOSVD
(Figure 6, the left panel), since the p-values are small enough (Figure 2, the left panel (4)),
integrated analysis of PPI and GE could improve the coincidence between vectors attributed
to samples with class labels.

“pathologic_n”

Next, we considered the label “pathologic_n.” Figure 2 (the left panel (5)) represents
the logarithmic p-values computed by applying a Wilcoxon test (0.8667) to ascending or-
dered log10 Ph computed from v`j with Equation (6) and ṽ`1 j with Equation (7), respectively,
whose scatter plot is shown in Figure 7 (the left panel).
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Figure 7. Scatter plot (logarithmic scale) of ascending ordered Ph computed from v`j (horizontal
axis) and ṽ`1 j (vertical axis) for “pathologic_n.” Green crosses are associated with adjusted p-values
less than 0.05 for both axes and blue crosses are associated with adjusted p-values less than 0.05
for the vertical axis alone. Grey asterisks represent all other situations. Left: Stanford PPI, right:
BIOGRID PPI.

Since most vectors attributed to samples associated with adjusted Ph less than 0.05 for
SVD are associated with lower Ph for HOSVD, integrated analysis of GE and PPI surely
improved the coincidence between vectors attributed to samples and class labels.
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3.1.2. BIOGRID PPI

Although integrated analysis of Stanford PPI and GE surely improved the coincidence
between vectors attributed to samples and class labels for four out of five class labels
(Figure 2), we were not certain if one class label, “pathologic_m”, without improved coinci-
dence is because of PPI or because of the class label itself. Furthermore, we were not certain
whether coincidence increased or decreased when we considered other PPIs. To examine
these questions, we tested another PPI taken from BIOGRID. In the following section, we
evaluate each class label.

“vital_status”

First, we considered the label “vital_status",which has two levels, “dead” and “alive”.
Figure 2 (the right panel (1)) represents the logarithmic p-values computed by applying
a Wilcoxon test (1.027451× 10−30) to ascending ordered log10 Ph computed from v`j with
Equation (6) and ṽ`1 j with Equation (7), respectively, whose scatter plot is shown in Figure 3
(the right panel). Compared to the improvement when Stanford PPI is used (left panel in
Figure 3), coincidence improvement increased when PPI is considered. This suggests that
which PPI is used greatly affects the improvement when integrated analysis of GE and PPI
is performed.

“pathologic_stage”

Next, we considered the label “pathologic_stage.” Figure 2 (the right panel (2))
represents the logarithmic p-values computed by applying a Wilcoxon test (1.34× 10−5) to
ascending ordered log10 Ph computed from v`j with Equation (6) and ṽ`1 j with Equation (7),
respectively, whose scatter plot is shown in Figure 4 (the right panel). Compared to the
left panel in Figure 4, coincidence improvement slightly decreased when PPI is considered.
Although the direction of alteration is opposite to the “vital_status”, this suggests again
that which PPI is used greatly affects the improvement when integrated analysis of GE and
PPI is performed.

“pathologic_m”

Next, we considered the label “pathologic_m.” Figure 2 (the right panel (3)) repre-
sents the logarithmic p-values computed by applying a Wilcoxon test (3.16× 10−15) to
ascending ordered log10 Ph computed from v`j with Equation (6) and ṽ`1 j with Equation (7),
respectively, whose scatter plot is shown in Figure 5 (the right panel). Although p-values
computed by the Wilcoxon test are small enough to be significant, because no Phs associ-
ated with significant adjusted p-values (the green and blue crosses in the right panels in
Figure 5) decreased because of integrated analysis of PPI and GE, it is not regarded as an
improvement. Thus, the failure of “pathologic_m” when Stanford PPI was used (left panel
in Figure 5) is likely because of the class label itself and not because of PPI.

“pathologic_t”

Next, we considered the label “pathologic_t.” Figure 2 (the right panel (4)) represents
the logarithmic p-values computed by applying a a Wilcoxon test (8.534979× 10−29) to
ascending ordered log10 Ph computed from v`j with Equation (6) and ṽ`1 j with Equation (7),
respectively, whose scatter plot is shown in Figure 6 (the right panel). Although two panels
in Figure 6 do not look distinct, since p-values computed by the Wilcoxon test (Figure 2 (4) in
the right panel) are much smaller than those when Stanford PPI was employed (Figure 2 (4)
in the left panel), integrated analysis of PPI and GE could improve the coincidence between
vectors attributed to samples with class labels.

“pathologic_n”

Next, we considered the label “pathologic_n.” Figure 2 (the right panel (5)) represents
the logarithmic p-values computed by applying a Wilcoxon test (3.930971× 10−18) to as-
cending ordered log10 Ph computed from v`j with Equation (6) and ṽ`1 j with Equation (7),
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respectively, whose scatter plot is shown in the right panel of Figure 7 (the right panel).
Because the right panel of Figure 7 is somewhat improved, compared to the left panel
of Figure 7, the employment of BIOGRID PPI could improve the performance with Stan-
ford PPI.

3.2. Identification of DEGs and Enrichment Analysis

In general, integrated analysis of PPI and GE could improve the coincidence between
vectors attributed to samples and class labels. Nevertheless, it is still unclear whether the
improved coincidence between vectors attributed to samples and class labels is useful. To
address this problem, we performed an enrichment analysis of DEGs.

3.2.1. Stanford PPI

Figure 8 shows the summation of the number of biological terms enriched over
27 cancer classes for four categories (KEGG, GO BP, GO CC, and GO MF). A more detailed
cancer cell barplot is available as supplementary material. It is obvious that integrated
analysis of PPI and GE increases the number of enriched biological terms, no matter which
category is considered.

KEGG Stanford
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0

(1) (2) (3) (4) (5)

GO BP Stanford
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5

10
20

30
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GO CC Stanford

0
20

40
60

80
10

0

(1) (2) (3) (4) (5)

GO MF Stanford

0
20
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60

80

(1) (2) (3) (4) (5)

Figure 8. Barplot of the number of enriched biological terms summed over 27 cancers when Stanford
PPI was used. (1) “vital_status”, (2) “pathologic_stage”, (3) “pathologic_m”, (4) “pathologic_t”, and
(5) “pathologic_n”. Red: without integration of PPI, blue: with integration of PPI.

3.2.2. BIOGRID PPI

Figure 9 shows the summation of the number of biological terms enriched over
27 cancer classes for four categories (KEGG, GO BP, GO CC, and GO MF). A more detailed
cancer cell barplot is available as supplementary material. It is obvious that the integrated
analysis of PPI and GE increases the number of enriched biological terms excluding a few
cases, although the amount of the increase is less than in Figure 8.
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Figure 9. Barplot of the number of enriched biological terms summed over 27 cancers when BIOGRID
PPI was used. (1) “vital_status”, (2) “pathologic_stage”, (3) “pathologic_m”, (4) “pathologic_t”, and
(5) “pathologic_n”. Red: without integration of PPI, blue: with integration of PPI.

In conclusion, the integrated analysis of PPI and GE increases not only the coincidence
between vectors attributed to samples and class labels but also the biological reliability of
selected genes.

4. Discussion

Integrated analysis of PPI and GE is unlikely to improve coincidence with class labels
because there are many class labels which are distinct from one another, whereas the PPI
network does not vary depending on class labels. GE also does not change its values
depending on class labels, but because samples are associated with class labels, it is not
surprising that GE is coincident with class labels to some extent. Nevertheless, why can PPI
that does not have any direct relation to class labels improve coincidence with class labels?

To clarify this point, we tried a simpler integration between PPI and GE. We com-
puted sample vectors directly from PPI, not passing through TD. Mathematically, vectors
attributed to samples can be computed directly from PPI as

v̂`j =
N

∑
i=1

u`ixij (10)

where u`i was computed from PPI, nii, with Equation (1). Since xij is GE and u`i comes
from PPI, it is a type of integrated analysis of GE and PPI. Then, coincidence with class
labels is evaluated using categorical regression as

v̂`j = a′′` + ∑
s

b′′`sδjs (11)
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which was just performed in the above analysis.

Next, we investigated the correlation between log10

(
P̃m
`

Pm
`

)
and log10

(
P̂m
`

Pm
`

)
over

27 cancers, where P̃m
` , Pm

` , and P̂m
` are p-values computed from Equations (6), (7), and (11)

for mth cancer type. This correlation evaluated whether the coincidence improvement
between vectors attributed to samples and class labels by integrated analysis with TD,

log10

(
P̃m
`

Pm
`

)
, correlates with the coincidence improvement of the integrated analysis with-

out TD evaluated by Equation (11) from coincidence in GE only evaluated by Equation (6),

log10

(
P̂m
`

Pm
`

)
. Interestingly, regardless of class labels and PPI, there are significant correla-

tions (Figure 10).
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Figure 10. Left: Pearson correlation coefficient between log10

(
P̃`
P`

)
and log10

(
P̂`
P`

)
over 27 cancers.

Right: associated p-values (logarithmic scale) (1) “vital_status”, (2) “pathologic_stage”, (3) “patho-
logic_m”, (4) “pathologic_t”, and (5) “pathologic_n”. Red: Stanford PPI, blue: BIOGRID PPI. Numeri-
cal values of bar plots are listed in Table S2.

This means that improved coincidence between vectors attributed to samples and
class labels caused by integrated analysis of PPI and GE with TD can be observed even
in a simpler integration of PPI and GE (Equation (10)) to some extent, and this is why TB
integrated analysis of PPI and GE can improve the coincidence between vectors attributed
to samples and class labels.

Since one might wonder if a simpler integration of PPI and GE (Equation (10)) is
powerful enough to improve the coincidence between vectors attributed to samples and
class labels even without TD, we evaluated (Figure 11) the improvement of the coincidence
using a simpler integration of PPI and GE, as in Figure 2. Since it is obvious that simpler
integration of PPI and GE with Equation (10) is less likely to improve the coincidence
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between vectors attributed to samples and class labels than TB integration, TB integration is
required to improve the coincidence between vectors attributed to samples and class labels.

(1) (2) (3) (4) (5)

−log10 P Stanford

0
5

10
15

(1) (2) (3) (4) (5)

−log10 P Biogrid

0
5

10
15

Figure 11. Barplot of p-values computed by a Wilcoxon test to evaluate the difference in ascending
ordered Ph between SVD (Equation (6) ) and simpler integration (Equation (11)). (1) “vital_status”,
(2) “pathologic_stage,” (3) “pathologic_m”, (4) “pathologic_t”, and (5) “pathologic_n”. Left: Stanford
PPI, right: BIOGRID PPI. Numerical values of bar plots are listed in Table S3.

Considering the distinct performances of Stanford PPI (left panel in Figures 2 and 8),
where nij takes only 1 or 0 dependent upon whether pairs of proteins interact or not and
BIOGRID PPI (right panel in Figures 2 and 9), where nij can take larger values than 1 to
represent the strength of interaction, it is likely better to consider not only if the interaction
exists between pairs of proteins but also how strong the interaction between pairs of protein
is. This finding might be able to help us to consider the integration of PPI and GE in
the future.

We have also noted that the enrichment of SVD-based gene selection (i.e., without
integration of PPI) in BIOGRID (the blue bars in Figure 9) is better than in Stanford PPI (the
blue bars in Figure 8). This should not happen, since nothing can change between Stanford
PPI and BIOGRID PPI when no integrated analyses were performed. Nevertheless, PPI
can affect outcomes even before integration, since genes are screened based on whether
they are also included in PPI. Because Stanford PPI and BIOGRID PPI differ, the other
genes considered also differ. It turned out that this gene restriction largely affected the
enrichment analysis. In this sense, integrated analysis can affect the outcome, but so does
restricting the genes in considering overlaps with PPI.

To see if integrated analysis correctly identifies biologically reasonable genes, we
investigated the frequency of selected terms in KEGG pathway for BIOGRID data (Table 2).
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Table 2. Top ten most frequently selected pathways in KEGG pathway for BIOGRID data when PPI
and GE are integrated. The numbers indicate the frequency of selections among 27 cancer types.
(1) “vital_status”, (2) “pathologic_stage”, (3) “pathologic_m”, (4) “pathologic_t”, and (5) “patho-
logic_n”.

Pathway (1) (2) (3) (4) (5)

Salmonella infection 25 18 17 20 20
JAK-STAT signaling pathway 23 18 17 19 20
Cytokine-cytokine receptor interaction 23 17 17 19 20
Influenza A 22 17 16 18 19
Pathways in cancer 22 17 14 19 19
Apoptosis 20 18 14 18 16
Ribosome 20 15 16 16 15
Non-alcoholic fatty liver disease 18 16 14 18 16
PI3K-Akt signaling pathway 16 17 15 18 16
C-type lectin receptor signaling pathway 18 15 13 17 16

Pathways in Table 2 are related to cancers. “Pathways in cancer” is directly related to
cancer. ”JAK-STAT signaling pathway” is related to cancers [22]. As for “Cytokine-cytokine
receptor interaction”, Cytokine signaling is known to be related to cancers [23]. “PI3K-Akt
signaling pathway” is known to be dysregulated almost in all human cancers [24]. As for
“C-type lectin receptor signaling pathway”, C-Type lectin receptors are related to cancer
immunity [25]. In addition to these, increased colon cancer risk was observed after severe
Salmonella infection [26], cancers are associated with less apotosis [27], non-alcoholic
fatty liver disease increases the cancer risk [28], and influenza is associated with worse
in-hospital clinical outcomes among hospitalized patients with malignancy [29]. Thus,
most of the frequently selected pathways are related to cancers.

Table 2 included many biological pathways other than cancer-specific ones. To see
more cancer-specific results, we restrict to “HALLMARK cancer gene sets” and repeated
the above procedure for the integration with BIOGRID (Table 3).

Table 3. Enriched gene sets in “HALLMARK cancer gene sets” with and without the integration using
BIOGRID. The numbers indicate the frequency of selections among 27 cancer types. (1) “vital_status”,
(2) “pathologic_stage”, (3) “pathologic_m”, (4) “pathologic_t”, and (5) “pathologic_n”.

Pathway (1) (2) (3) (4) (5)

HOSVD (with integration)
HALLMARK_MYC_TARGETS_V1 10 4 5 6 6
HALLMARK_FATTY_ACID_METABOLISM 6 4 6 5 4
HALLMARK_OXIDATIVE_PHOSPHORYLATION 3 1 1 2 2
HALLMARK_APOPTOSIS 3 1 2 — 2
HALLMARK_PEROXISOME 2 2 — 1 —
HALLMARK_IL6_JAK_STAT3_SIGNALING 1 — 1 — —
HALLMARK_MYC_TARGETS_V2 — — 1 — 1
HALLMARK_ALLOGRAFT_REJECTION 1 — — — —
HALLMARK_APICAL_SURFACE 1 — — — —

SVD (without integration)
HALLMARK_APOPTOSIS 11 5 7 3 3
HALLMARK_FATTY_ACID_METABOLISM 6 3 4 3 3
HALLMARK_PEROXISOME 2 2 — 3 3
HALLMARK_MYC_TARGETS_V1 1 2 2 1 1

Although the frequency of selection decreased from Table 2, possibly because of a more
specific (strict) evaluation of the relationship to cancers, Table 3 still includes a substantial
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frequency of selection. Moreover, the number of selected gene sets is more in the integrated
analysis (denoted as HOSVD) than without integrated analysis (denoted as SVD). Therefore,
even if we consider more cancer-specific features, the integrated analysis of PPI and GE has
a substantial number of identifications and more numbers than that without integration

5. Conclusions

We proposed the integrated analysis of PPI and GE with TD that can result in more
coincidence between vectors attributed to samples and one in five class labels in an evalu-
ation of 27 cancer types using RNA-seq data retrieved from TCGA. Enrichment in genes
selected as expressed distinctly among class labels are also improved. Furthermore, it was
found that the consideration of the strength of PPI as well as the restriction of genes to
intersect between PPI and GE can drastically improve the coincidence.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math11173655/s1, Table S1: Numerical values of bar plots shown
in Figure 2. Table S2: Numerical values of bar plots shown in Figure 10. Table S3: Numerical values
of bar plots shown in Figure 11. More detailed enrichment analyses of those shown in Figures 8 and 9.
The R source code used to perform this analysis.
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