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Abstract: This paper is devoted to problem-oriented reinforcement methods for the numerical
implementation of Randomized Machine Learning. We have developed a scheme of the reinforcement
procedure based on the agent approach and Bellman’s optimality principle. This procedure ensures
strictly monotonic properties of a sequence of local records in the iterative computational procedure
of the learning process. The dependences of the dimensions of the neighborhood of the global
minimum and the probability of its achievement on the parameters of the algorithm are determined.
The convergence of the algorithm with the indicated probability to the neighborhood of the global
minimum is proved.
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1. Introduction

The beginning of this century has been marked by an increased interest in the problems
of reinforcement learning. The essence of this branch of machine learning is to train an
object (model, algorithm, etc.) by interacting not with a teacher but with an environment,
using the trial-and-error method with reward or penalty depending on the results.

Let us look at this idea, abstracting from the specifics of the experiment, exclusively
from the methodological point of view. Clearly, it represents a virtual game procedure
where the game is simulated by two player-agents, their strategies, and quantitative
assessments of their payoffs and losses. Reflecting on the peculiarities of learning processes,
F. Rosenblatt, the author of the perceptron, introduced the concept of learning without a
teacher and classified the types of structural tuning for playing automata [1].

The same concept can be traced in the paper [2] by I.M. Gelfand, I.I. Pyatetskij-Shapiro,
and M.L. Tsetlin. The authors proposed a mathematical model of a game between two au-
tomata with a variable structure changing in the course of interaction with the environment.
The interaction results were characterized by quantitative assessments.

Later, the response to the action of “environment” was given a particular term, the so-
called “reinforcement.” It became a whole branch in the theory and applications of machine
learning. Admittedly, both focused on two problems, clustering (visualization) and pattern
recognition. Such problems involve objects with their quantitative characteristics (feature),
and, most importantly, the “distances” between them can be calculated. Some kinds of
rewards or penalties in the algorithm parameters were arranged based on the distance
matrix. Neural networks were used as algorithms [3]. In particular, the so-called “Kohonen
maps” were one of the first research works in this area; for details, see [4]. In such maps, the
weights of a neural network are adjusted using a game-theoretic model that implements
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the principle of competition between its nodes: an advantage is gained for the nodes with
the minimum distance between the objects at each step of the algorithm.

Subsequently, reinforcement learning was actively developed based on the automata
models of an object (agent) interacting with the environment in game-theoretic terms
(strategies, utility functions, and payoffs). It was presented to the scientific community as a
certain model of human management [5].

Numerous algorithms appeared with different models and volumes of a priori infor-
mation about the environment, different methods for choosing strategies, and different
procedures for forming utility functions. For example, we refer to [6–8]. A fairly com-
prehensive survey of reinforcement learning methods was prepared at the Department
of Mathematical Methods of Forecasting (Faculty of Computational Mathematics and
Cybernetics, Moscow State University) [9].

The general structure of reinforcement learning procedures is interpreted in terms
of a Markov decision process, an extremely general construction of one-step iterations
in continuous time t with feedback, accompanied by a specific terminology [10]. Its
main components are an agent model with output (agent’s action) and inputs in the
form of environment states and rewards, current or averaged over a certain number of
iterations, and an environment model with input (agent’s action) and outputs in the form
of specified rewards and responses (environment states). The fundamental feature of this
procedure is the empirical estimation of the conditional probabilities of rewards for the
agent’s actions based on adjustable random Monte Carlo simulations. Such simulations
(also called iterations or trials) are used to average a fixed number of current rewards
or discount them. The resulting function depends on the environment state and the
agent’s strategy and is being taken as a utility function (an analog of the objective function
in teacher-assisted learning procedures). During learning, this function is sequentially
maximized [11,12] using Bellman’s optimality principle [13] in its stochastic setting [14]
(Many researchers of reinforcement learning interpret it as learning without a teacher.
Indeed, this approach involves no goal-setting in the form of a teacher’s error-and-response
function to be minimized. However, the corresponding role is played by experimentally
generated utility and reward functions, which represent a virtual “teacher.” The structures
of these functions and methods for calculating their mathematical expectations are based
on experimental statistical material and expert opinions. Therefore, the results of using
reinforcement learning often provoke discussions.).

Reinforcement learning is actively applied in its traditional field—robotics [15–17]—
as well as in self-tuning procedures for trade forecasting [18], adaptive programming
technologies [19,20], and dynamic decision support [21].

In the papers [22,23], and the book [24], a new machine learning procedure (Ran-
domized Machine Learning, RML) was developed. The basic concept of RML is based
on the use of a parameterized model with random parameters, its optimization using the
conditional information entropy maximization method, and the subsequent generation
of random parameters with optimized probability density functions. According to this
concept, it consists of three stages: analytical (determining the entropy-optimal probability
density function of randomized model parameters and measurement noises consistent with
empirical balances with the data), computational (solving the empirical balance equations
numerically), and experimental (performing Monte Carlo simulations to reproduce random
sequences with the entropy-optimal probabilistic characteristics).

Because all machine learning problems incorporate intrinsic uncertainty in models
and data, it was proposed to maximize the informational entropy of probability density
functions (PDFs) of the model parameters and measurement noises as a measure of un-
certainty subject to empirical balances with real data. This is a functional entropy-linear
programming problem of the Lyapunov type [24]. It has an analytical solution, i.e., the
optimal PDFs parameterized by Lagrange multipliers, which are determined from the
empirical balance equations.
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They are specific nonlinear equations containing the so-called integral components
(multidimensional parametrized definite integrals). Therefore, it is impossible to establish
any fruitful properties of the equations that would ensure the convergence of iterative
procedures for their solution.

In this paper, we employ the GFS method based on Monte Carlo batch iterations [25,26].
The basic method GFS (Generation, Filtration, Selection) is an improved method for finding
an approximate value of the global minimum on a unit cube, with an estimate of the size of
the neighborhood and the probability of reaching it.

A problem-oriented version of the reinforcement concept is being developed to funda-
mentally improve the computational properties of the GFS method and the RML procedure
as a whole. We prove the theorem on the strict monotonic decrease of the residual function
for a system of nonlinear equations of empirical balances in which only measurements
of the values of the functions are available. The latter is used to study the convergence
with probability 1 of an iterative procedure with reinforcement and to estimate the size of
the neighborhood of the global minimum and the probability of reaching it with a finite
number of iterations.

Therefore, our contribution to the theory and practice of RMS is to develop a reinforce-
ment scheme that allows us to increase the computational efficiency of the procedure and
prove its convergence to the neighborhood of the global minimum with a certain probability.

2. The Mathematical Model of the RML Procedure

We study the problem of learning the model of dependence between one-dimensional
input and output data. Consider a set of measurements of input data x[0], . . . , x[N] and
output data y[0], . . . , y[N]. The latter are measured with random and independent noises
ξ[0], . . . , ξ[N] of the interval type:

ξ[k] ∈ Ξk = [ξ
(−)
k , ξ

(+)
k ], k ∈ N = [0, N], (1)

where ξ
(−)
k , ξ

(+)
k are left and right boundaries of the interval. The probabilistic properties

of the measurement noises are characterized by PDFs Qk(ξ[k]), k ∈ N . Suppose that they
are continuously differentiable.

The mathematical model of the general dynamic dependence with finite memory ρ is
described by a functional B [24]:

ŷ[k] = B(x[i], k− ρ ≤ i ≤ k | a), k ∈ N , (2)

where parameters a = {a1, . . . , am}.
If the functional B is linear and continuous, it can be represented by a segment of the

Volterra functional power series [24].
In the equality above, the parameters a are random and interval-type:

a ∈ A ⊂ Rm, A =
[
a(−), a(+)

]
. (3)

The probabilistic properties of the parameters are characterized by a PDF P(a), which is
supposed to be continuously differentiable as well.

The output of the model is observed with additive noises:

v̂[k] = ŷ[k] + ξ[k], k ∈ N . (4)

Because the model parameters are random and measurements of the output are
distorted by random noises, according to (1) and (4) it is generated ensembles of random
trajectories ŷ[k] ∈ Y and v̂[k] ∈ V , where k ∈ N .
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To form the morphological properties of the PDFs, we adopt the numerical character-
istics of ensembles based on moments and called normalized total moments:

m(s)[k] = (M{ŷs[k]})1/s + (M{ξs[k]})1/s, s ∈ [1, S], (5)

where s is a degree of the moment, and S is a number of moments.

M{ŷs[k]} =
∫
A

P(a) (B(x[τ], k− ρ ≤ τ ≤ k | a))sda,

M{ξs[k]} =
∫

Ξk

Qk(ξ[k]) (ξ[k])sdξ[k], k ∈ N . (6)

The numerical characteristics (5) are the values of the normalized total moments along
the trajectories of the observed model output. Output data u(s)[k], s ∈ [1, S], k ∈ N are
assumed to be similar indicators of some real process:

u(s)[k] = (M{ys[k]})1/s. (7)

In particular, such properties are inherent in trading procedures for options [27,28].
In this case, the basic RML algorithm [24] has the following form:

H[P(a); Q0(ξ[0]), . . . , QN(ξ[N])] =

−
∫
A

P(a) ln P(a) da−
N

∑
k=0

∫
Ξk

Qk(ξ[k]) ln Qk(ξ[k]) dξ[k]⇒ max (8)

subject to
—the normalization conditions∫

A
P(a)da = 1,

∫
Ξk

Qk(ξ[k])dξ[k], k ∈ N , (9)

and
—the empirical balance conditions

m(s)[k] = u(s)[k], k ∈ N . (10)

Problem (8)–(10) has an analytical solution parameterized by Lagrange multipliers
Λ = [λs,k | s = 1, S; k ∈ N ]:

P∗(a) =
exp

(
−∑S,N

s=1,k=0 λs,kBs(x[τ], k− ρ ≤ τ ≤ k | a)
)

P(Λ)
, (11)

Q∗k (ξ[k]) =
exp(λs,kξs[k])
Qk(λs,k)

,

where

P(Λ) =
∫
A

exp

(
−

S,N

∑
s=1,k=0

λs,kBs(x[τ], k− ρ ≤ τ ≤ k | a)
)

da,

Qk(λs,k) =
∫

Ξk

exp(−λs,k ξs[k]) dξ[k]. (12)

The Lagrange multipliers figuring in these equations satisfy the empirical balance equations



Mathematics 2023, 11, 3651 5 of 14

P−1(Λ)
∫

A
exp

(
−

S,N

∑
s=1,k=0

λs,kBs(x[τ], k− ρ ≤ τ ≤ k | a)
)
×

× Bs(x[τ], k− ρ ≤ τ ≤ k | a) da +

+ Q−1
k (λs,k)

∫
Ξk

exp(λs,k ξs[k]) ξs[k] dξ[k] = u(s)[k], (13)

s ∈ [1, S]; k ∈ N .

It can be seen from these equations that they contain the so-called integral compo-
nents, namely, definite parametrized multidimensional integrals on m-dimensional paral-
lelepipeds A (3). In general, it is possible to determine numerically only the values of the
functions in which they are included. The latter excludes the possibility of a reasonable
declaration of the properties of functions in the left parts of these equations.

3. The Adaptive Method of Monte Carlo Packet Iterations with Reinforcement (the
GFS-RF Algorithm)

To solve these equations, in [26], the GFS algorithm was proposed, which is a modifica-
tion of the random search method, in which the generation (G) of the number Mi of random
and independent points specified at each iteration step i on the unit cube in Rm, filtering (F)
“good” points, i.e., that fall into the admissible region, their selection (S) according to the
values of the residual functional adopted for these equations. The convergence properties
of GFS were based on the existence of certain functional properties of the functions involved
in these equations. It is proposed to fundamentally modify this algorithm using the ideas
of reinforcement.

The Canonical Form of the Problem

The system of formula (13) can be represented in the following form:

Φs,k(Λ) = 0, s ∈ [1, S], k ∈ [0, N], (14)

where Λ = [λs,k | s ∈ [1, S], k ∈ N ]—Lagrange multipliers matrix, and functions

Φs,k(Λ) = P−1(Λ)
∫

A
exp

(
−

S,N

∑
s=1,k=0

λs,kBs(x[τ], k− ρ ≤ τ ≤ k | a)
)
×

× Bs(x[τ], k− ρ ≤ τ ≤ k | a) da +

+ Q−1
k (λs,k)

∫
Ξk

exp(λs,k ξs[k]) ξs[k] dξ[k]− u(s)[k], (15)

s ∈ [1, S]; k ∈ N .

In the vectorization procedure [29], Equations (14) and (15) can be written as

φ(λ) = 0, (16)

where the vector function φ, the variable λ, and the 0-vector on the right-hand side have
the dimension d = S × (N + 1). The vector λ ∈ Rd, i.e., its components take values
−∞ < λn < ∞.

We reduce problem (16) to the canonical form using the following change of variables:

zn =
1

1 + exp(−bn λn)
, (17)

λn =
1
bn

ln
zn

1− zn
, n ∈ [1, d],

where bn is a parameter. This mapping changes the infinity interval to the interval [0, 1].
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As a result, Equation (16) takes the form

ψ(z) = 0, z ∈ Zd
+ = [0, 1]. (18)

We introduce the residual function (the Euclidean norm)

J(z) =‖ Ψ(z) ‖E . (19)

Solving Equation (18) is equivalent to finding points z∗, in which the global minimal
of the residual function J(z) is reached. Such an interpretation turns out to be fruitful since
the global minimum is known:

J(z) ≥ J(z∗) = 0. (20)

Thus, solving Equation (18) is reduced to finding the global minimum of a continuous
function that is bounded below and algorithmically computable function values on the
unit cube:

J(z)⇒ glob min, z ∈ Zd
+. (21)

Because the function J(z) is continuous and z ∈ Zd
+, there exist its modulus of

continuity ω(h) and positive constants (H, h):

ω(H, h) = max
(v,y)∈Zd

+ ; ‖v−y‖≤h
|J(v)− J(y)| ≤ H hs, (22)

where the constants H, s are unknown. In order to use these constants to study the proper-
ties of the iterative process, we have to estimate them using only the values of the residual
function.

4. Structure of Reinforcement Procedure

Let us introduce a useful terminological framework. The function J(z) is treated as
an environment and its values Jk(z(k)) on iteration k are responses to the agent’s strategy
(action) z(k). The quality of the environment response is assessed by a utility function Q(J),
whose values on iteration k are Qk(Jk). The quality of the agent’s actions (strategies) is
characterized by a payoff function κ(Q).

The self-learning algorithm minimizing the residual function (21) based on Monte
Carlo packet iterations has the following reinforcement scheme. Note that this algorithm
enumerates in a controlled way the values of the residual function on the unit cube.
Therefore, the reinforcement scheme is focused on learning rational controllability to
accelerate the iterative process.

Agent. The agent’s strategy on iteration k is to generate a packet of uniformly dis-
tributed random vectors on the unit cube. The strategy is characterized by the grid step ηk
and the number Mk of random values for each component of the vector z from the interval
[0, 1]. They have the relation

ηk = M−q
k , 0 < q < 1, (23)

where q is a fixed parameter.
Due to this relation, let the agent’s strategy be the value Mk.
On a given grid step, it is possible to generate a different number Nk of independent

random vectors (agent’s strategies) with the uniform distribution on the cube Zd
+ :

Zk = {z(1), . . . , z(Nk)}. (24)
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Assume that in this packet (As has been emphasized, we employ simple Monte Carlo
simulations: the same number of independent random numbers with the uniform distribu-
tion on [0, 1] is generated for each coordinate of the original space),

Nk = Md
k . (25)

For each pair of the (k− 1)th and kth packets, the corresponding (k− 1, k)-records,
and the decrements are calculated by the formulas

J∗k−1(Mk) = J(zNk−1) = min
z∈Zk−1

J(z),

J∗k (Mk) = J(zNk ) = min
z∈Zk

J(z), (26)

and
uk(Mk) = J∗k (Mk)− J∗k−1(Mk), (27)

respectively.
Utility function. The performance of the iterative process is characterized by the

values of the decrements. Because the iterative process involves Monte Carlo simulations,
the values uk appear to be random. To operate more reliable trend indicators of the iterative
process, we organize m simple Monte Carlo simulations with Mk (23) trials on each iteration
k and compute the mean values ūk(Mk):

ūk(Mk) =
1
m

m

∑
h=1

u(k)
h (Mk). (28)

To describe the state of the iterative process, we adopt the concept of exponential compar-
ative utility [30,31]. In this context, the utility function ϕ(ūk(Mk)) is assumed continuously
differentiable, positive, and monotonically decreasing in the variable ūk:

ϕ(ūk) > 0, ϕ′(ūk) < 0 for all −∞ < ūk < +∞. (29)

Following [30,31], we choose the exponential comparative utility function

ϕ(ūk, ūk−1 |Mk) = η exp(γ(ūk(Mk)− ūk−1(Mk))) = ϕk,k−1(Mk), (30)

where η > 0 and γ > 0 are some parameters.
Payoff function. In the concept of reinforcement, the payoff function reflects the

dependence of the payoff rk on the utility ϕk,k−1(Mk). By assumption, the payoff grows
with increasing the exponential comparative utility. Therefore, the payoff function satisfies
the condition rk(ϕk,k−1 |Mk) > 0 and is monotonically increasing in the variable ϕk,k−1, i.e.,

r′k(ϕk,k−1 |Mk) > 0. (31)

The reinforcement decision is taken after accumulating a given number L of the payoffs
Qk by iteration k, i.e., the mean payoff Q̄k(Mk) over L iterations:

Q̄k(Mk) =
1
L

L

∑
j=0

rk−L+j(ϕk−L+j,k−L+j−1 |Mk). (32)

The value Q̄k(Mk) is an important characteristic of the reinforcement procedure and is
used to optimize the main parameter of MC trials—the number of required random points
at the (k + 1)-th iteration step.
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Formation of the Monotonic Sequences of Records

Following the concept of reinforcement, we use a Markov iterative process for RML;
the state of this process on iteration (k + 1) depends only on the state of the previous
iteration (k.)

To search for the agent’s optimal strategy (the value Mk+1), let us use Bellman’s
optimality principle [13]. In its extended interpretation, the agent’s optimal strategy on
iteration (k + 1) depends on the weighted optimal strategy on iteration k. This principle
can be implemented within the additive

Mk+1 = Mk + α max
Mk

Q̄k(Mk) (33)

or multiplicative

Mk+1 = Mk

(
max

Mk
Q̄k(Mk)

)γ

(34)

form of the algorithm. Here, α and γ are some parameters.

Remark 1. Generally speaking, Bellman’s optimality principle is only a declaration here, which
sometimes may fail. In particular, learning processes and their internal mechanisms are underinves-
tigated, and they do not necessarily satisfy the Markov property. As a result, the agent’s strategy on
iteration (k + 1) can be formed from the weighted optimal strategies on iterations (k− s)−, . . . , k.
For example,

Mk+1 =
s

∑
j=0

αk−s+j max
Mk−s+j

Q̄k−s+j(Mk−s+j), (35)

where αk−s, . . . , αk are some parameters.

The reinforcement procedure generates an optimal number Mk+1 of random values
for each iteration. The local record J∗k+1(Mk+1) and the decrement uk+1(Mk+1) are then
determined for the resulting value Mk+1. They are compared to their counterparts obtained
on the previous iteration k. If the first record is smaller than the previous one, it becomes a
member of the strictly monotonically decreasing sequence of local records. In this case, the
sequence of decrements has strictly negative elements:

u∗k∗i < 0, k∗i ∈ K∗. (36)

Thus, the Reinforcement module has the logical diagram shown in Figure 1. Agent is the
central block of this diagram. It generates the number Mk+1 of random values on iteration
(k + 1) as the sum of the number of random values on the previous iteration k and the
optimized component ∆Mk with the parameter α. At each iterative step, the Optimization
block outputs the maximum Q̄k of the payoffs rk accumulated over L iterations (a fixed
number), which are calculated in the Payoff function block. The necessary values of the
comparative utility function ϕk,k−1, records J∗k and J∗k−1, and their decrements uk and uk−1
are calculated in the Feedback block.

Thus, the described reinforcement procedure proves the following assertion:
Let at each step of the iterative process of finding a solution to the Equations (14) and (16) a

reinforcement procedure (30)–(32) is carried out, which implements the Belman optimality principle
in the form (33) or (34).

Then, a strictly monotonically decreasing sequence of local records is generated:

J∗k∗1 > J∗k∗2 > · · · > J∗k∗i > . . . , K∗ = {k∗1 < k∗2 < · · · < k∗i < . . .} (37)

Note that the sequence of local records consists of random elements but satisfies the
chain of inequalities (36).
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Figure 1. Logical diagram of the Reinforcement module.

5. The Probabilistic Properties of Random Sequences Generated by the
GFS-RF Algorithm
5.1. The Probabilistic Characteristics of the Packet Zk

The iterative procedure is based on generating the packet Zd
k of random and indepen-

dent vectors with a uniform distribution on the unit d-dimensional cube. The source of this
packet is a random generator that produces on each iteration k a (d×Mk)-dimensional
array of independent random variables with a uniform distribution on the interval [0, 1].

Consider the d-dimensional unit cube Zd
+ and the grid with step ηk (23). The cube Zd

+

is the union of the elementary cubes with side M−q
k . We estimate the probability P(Mk, d, q)

that each elementary cube will contain at least one of the random vectors from the packet
Zd

k generated on iteration k.

Lemma 1. The probability P(Mk, d, q) satisfies the upper bound

P(Mk, d, q) ≤ 1− (M−q/2
k + 1)d (1−M−qd

k )Md
k <

< 1− (1−M−qd
k )Md

k = P0(Mk, d, q). (38)

where
P(Mk, d, q) ≤ P̂(Mk, d, q) ∼ Mq/2

k exp
(
−Md(1−q/2)

k

)
< 1. (39)

as Mk → ∞.

Proof. Consider the partition of the interval [0, 1] by a grid with step ηk � 1 (23). At
least one random value from Mk = (1/η)1/q will fall into the elementary interval with the
probability ηk. Let this grid be applied to all sides of the unit cube. Then the event A that
at least one random vector from Nk = Md

k will fall into the elementary cube and has the
probability ηd

k . Hence, the complementary event (not getting into the elementary cube) has
the probability (1− ηd

k )
Nk .

The upper bounds on the number of elementary intervals and the number of elemen-
tary cubes are (1 + M−q/2

k ) and (1 + M−q/2
k )d, respectively. Therefore, the upper bound on

the probability of the event A is given by

P̂(Mk, d, q) = (1 + M−q/2
k )d (1− ηd

k )
Nk . (40)

Due to the relation (25) between Mk and Nk, we finally arrive at the upper bound (38).
For large values Mk = x,

lim
x→∞

(1− x−q)x

exp(−x1−q)
= 1,

which yields (39).



Mathematics 2023, 11, 3651 10 of 14

5.2. The Probabilistic Properties of the Local Record Sequence (36)

The reinforcement procedure forms the strictly monotonically decreasing sequence J∗

of local records and the sequence of their arguments z∗. Because of their strict monotonic
decrease, it is more convenient to renumber the elements by integers 1, 2, . . . , i, . . . :

J ∗ = {J∗1 > J∗2 ,> . . . ,> J∗i ,> . . . } (41)

z∗ = {z∗1 , z∗2 , . . . , z∗i , . . . }.

Let Z denote the set of points z0 corresponding to the zero value of the residual function:
J(z0) = J∗ = 0 (20). Due to the continuity of the function J(z), this set is compact.

We introduce the distance between an arbitrary point in the cube and the set Z:

$(z,Z) = min
y∈Z
‖z− y‖. (42)

The elements of the local record sequence are ordered but random values. Therefore,
the deviation from the global record (the global minimum) takes a random value J∗i on each
iteration. Using the assumption that the residual function (19) has a modulus of continuity
ω(H, h) (22), we can formulate the following Lemma 2.

Lemma 2. For a finite number of iterative steps i with a probability not smaller than P0(Mi, d, q)
(38) and (39), we have the bilateral estimate

Pb{0 ≤ J∗i − J∗ ≤ ω(H, hi)} > P0(Mi, d, q), (43)

where ω(H, hi) denotes the modulus of continuity of the function J(z) (22), and hi =
√

d
2 M−q

i .

Proof. Consider the random points generated on iteration i among them, let ẑ be the closest
one to the set Z in terms of the distance (42).

At least one of these points will fall with a probability not smaller than P0(Mi, d, q)
into each elementary cube with side M−q

i ; see Lemma 1. Hence,

hi = ‖ẑ− z0‖ ≤ M−q
i

√
d

2
. (44)

This happens if the point z0 corresponding to the zero value of the residual function is
in the center of the elementary cube with side M−q

i and its nearest random points are in the
cube vertices so that each cube contains at least one random point.

By the Hölder condition (22), we have

0 ≤ J(ẑ)− J∗ ≤ ω(hi). (45)

On the other hand,

J∗ = J(z0) = min
z∈Zd

J(z) ≤ min
s,1≤s≤i

J(zs) = J∗i ≤ J(ẑ). (46)

This chain of inequalities implies

0 ≤ J∗i − J∗ ≤ J(ẑ)− J∗. (47)

From (45) and (47) it follows that

0 ≤ J∗i − J∗ ≤ ω(H, hi) (48)

with a probability not smaller than P0(Mi, d, q).



Mathematics 2023, 11, 3651 11 of 14

Inequality (48) provides an upper bound on the deviation from the zero value of the
residual function on each iteration obtained after the reinforcement procedure and a lower
bound on the probability P0(Mi, d, q) (38) of its realization. The upper bound is the value of the
modulus of continuity of the function J on these iterations. In other words, according to (22),

ω(H, hi) ≤ Hhs
i = H

(
ηi

√
d

2

)s

= H

(
M−q

i

√
d

2

)s

. (49)

With the notations

D = H

(√
d

2

)s

, p = sq,

ri(D, p) = D M−p
i . (50)

we arrive at a very useful probabilistic form of inequality (49):

P{0 ≤ J∗i − J∗ ≤ ri(D, p)} ≥ P0(Mi, d, q). (51)

It gives a lower bound on the probability that the current record will fall into the
neighborhood of the global minimum as well as determines its size.

5.3. The Size of the Neighborhood of the Global Minimum

Consider a sequence of decrements on a finite number of iterations k:

uk = J∗k − J∗k−1 < 0, ∀ k = 1, 2, . . . (52)

We represent the decrements as

|uk| = |(J∗k − J∗)− (J∗k−1 − J∗)|. (53)

Due to (51)

|uk| ≤ |(J∗k−1 − J∗)| − |(J∗k − J∗)| ≤ D
(

M−p
k−1 −M−p

k

)
= D M−p

k βk(p) ≤ D M−p
k , (54)

where, due to (33)

βk(p) = 1−
(

Mk−1
Mk

)−p
, βk(p) ∈ [0, 1], ∀p, k. (55)

The boundary value of the modulus of continuity of the decrement for k iterations is

u∗k = D M−p
k , (56)

or, in the logarithmic scale,

log u∗k = log D− p log Mk. (57)

Thus, we have a linear dependence with unknown parameters log D and p, which are
related to the parameters of the modulus of continuity (22). Their values can be estimated
using the available data on log u∗k and log Mk by the least squares method. The parameters
D and p determine the size of the neighborhood of the global minimum and the probability
of reaching it (50) and (51).

Remark 2. The upper bound (54) is very conservative: it focuses on estimating the elements of
the local record sequence and neglects an essential feature of the decrement sequence. In the latter,
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the number of random values on iteration (k + 1) changes compared to iteration k due to the
reinforcement procedure (33) and (34).

This feature is reflected in the expression for the decrement boundary value:

u∗k = D M−p
k βk(p), βk(p) = 1−

(
1

M̃k

)p
, (58)

where the reinforcement procedure (34) generates the values

M̃k = arg max
Mk

Q̄k(Mk). (59)

By analogy with (57), we obtain

log u∗k = log D− p log Mk + log βk(M̃k, p). (60)

This dependence still has two parameters, D and p, but the data include log u∗k , Mk,
and M̃k additionally generated by the reinforcement procedure. The dependence (60) is
nonlinear. Its parameters can be restored using the least squares method as well. As in the
previous case, however, there is no guarantee of obtaining the optimal result.

6. The Convergence of the GFS-RF Algorithm to the Global Minimum

The reinforcement procedure (30)–(33), combined with the selection of local records,
makes their sequence the property of a strictly monotonic decrease (37), accompanied by a
sequence of decrements with negative elements (36). Based on them, we can formulate the
following Theorem 1.

Theorem 1. Let the following conditions be satisfied for a finite number of iterations equal to k:
(a). inequalities (37) and (36) are true;
(б). function J(z) is of Hoelder type with parameters of mudulus of continuity (H∗, h∗k ) which

are estimated by (57);
(в). areaR∗k of the existence of global extrema is as follows:

R∗k = {J : |J∗k − J∗| ≤ rk(D, p)}, (61)

where
rk(D, p) = DM−p

k . (62)

Then the sequence of local records J ∗k = {J∗1 > J∗2 ,> · · · > J∗k } at k iterations achieve the
areaR∗k with probability not less than

P0(Mk, d, q) = 1−
(

1−Mdq
k

)Md
k , (63)

and at high values of Mk

P0(Mk, d, q) ∼ Mq/2
k exp

(
−Md(1−q/2)

k

)
. (64)

Proof. The proof follows from Lemmas 1 and 2 and the estimate (51).

7. Discussion and Conclusions

The concept and computational procedure of Randomized Machine Learning pro-
posed in [22] turned out to be very useful in terms of inaccurate data estimation probability
distributions, and also an effective computer technique for solving many applied prob-
lems [24]. The modules of this procedure have been applied to practical problems of the
randomized forecasting of World population [32], electrical load in the power systems [33],
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the evolution of the thermokarst lakes in the Arctic zone [34], randomized classification
of the objects [35,36]. In these works, we used public datasets of the UN [37], and [38].
However, its practical application is associated with solving a very difficult problem of
finding solutions to a specific system of nonlinear equations in which only the values of the
functions included in it are available.

In this paper, we propose to use the idea of reinforcement to give adaptive properties
to computational algorithms. A problem-oriented reinforcement procedure based on the
agent-based approach is proposed, in which the agent generates a strategy in terms of the
optimal number of random numbers generated at each step of the iterative process. As a
utility function, the exponential comparative utility function is used, which depends on the
average decrements of local records achieved at each main iteration. An important role in
the reinforcement procedure is played by the payoff function, which generates “penalties”
on the values of the utility function. Optimization of the agent’s strategy is carried out using
R. Belman’s principle of optimality. As a result of applying the reinforcement procedure, the
dimensions of the neighborhood of the global minimum of the quadratic residual function
and the probability of its achievement with a finite number of iterations are determined.

Author Contributions: Conceptualization, Y.S.P.; Data curation, A.Y.P.; Methodology, Y.S.P., A.Y.P.
and Y.A.D.; Software, A.Y.P. and Y.A.D.; Supervision, Y.S.P.; Writing–original draft, Y.S.P., A.Y.P. and
Y.A.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Higher Education of the Russian
Federation, project no. 075-15-2020-799.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rosenblatt, F. Principles of Neirodynamic: Perceptrons and the Theory of Brain Mechanisms; Spartan Books: Washington, DC, USA, 1962.
2. Gelfand, I.M.; Pyatetskij-Shapiro, I.I.; Tsetlin, M.L. Certain Classes of Games and Automata Games. Sov. Phys. Dokl. 1964, 8,

964–966.
3. Wasserman, P.D. Neural Computing: Theory and Practice; Van Nostrand Reinhold Co.: New York, NY, USA, 1992.
4. Kohonen, T. Self-Organizing Maps; Springer: Berlin/Heidelberg, Germany, 1995.
5. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A. Human-

level Control through Deep Reinforcement Learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]
6. Sutton, R.S.; Barto, A.G. Introduction to Reinforcement Learning; MIT Press: Cambridge, UK, 1998.
7. Russel, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2010.
8. van Hasselt, H. Reinforcement Learning in Continuous State and Action Spaces. In Reinforcement Learning: State-of-the-Art;

Wiering, M., van Otterio, M., Eds.; Springer Sciences & Business Media: Berlin/Heidelberg, Germany, 2012; pp. 207–257.
9. Kropotov, D.; Bobrov, E.; Ivanov, S.; Temirchev, P. Reinforcement Learning Textbook. arXiv 2022, arXiv:2201.09746v1.

(In Russian)
10. Bozinovski, S. Crossbar Adaptive Array: The First Connectionist Network That Solved the Delayed Reinforcement Learning

Problem. In Artificial Neural Nets and Genetic Algorithms; Dobnikar, A., Steele, N.C., Pearson, D.W., Albrecht, R.F., Eds.; Springer
Science & Business Media: Berlin/Heidelberg, Germany, 1999; pp. 320–325.

11. Watkins, C.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
12. van Hasselt, H.; Guez, A.; Silver, D. Deep Reinforcement Learning with Double Q-learning. In Proceedings of the 13th AAAI

Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; pp. 2094–2100.
13. Bellman, R. Dynamic Programming; Princeton University Press: Princeton, NJ, USA, 1957.
14. Robbins, H.; Monro, S. A Stochastic Approximation Method. Ann. Math. Stat. 1951, 22, 400–407. [CrossRef]
15. Spong, M.W.; Hutchinson, S.; Vidyasagar, M. Robot Modeling and Control; Wiley: Hoboken, NJ, USA, 2005.
16. Koshmanova, N.P.; Pavlovsky, V.E.; Trifonov, D.S. Reinforcement Learning for Manipulator Control. Rus. J. Nonlin. Dyn. 2012, 8,

689–704. (In Russian) [CrossRef]
17. Fu, Y.; Jha, D.K.; Zhang, Z.; Yuan, Z.; Ray, A. Neural Network-Based Learning from Demonstration of an Autonomous Ground

Robot. Machines 2019, 7, 24. [CrossRef]

http://doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1214/aoms/1177729586
http://dx.doi.org/10.20537/nd1204002
http://dx.doi.org/10.3390/machines7020024


Mathematics 2023, 11, 3651 14 of 14

18. Nikitin, P.V.; Gorokhova, R.I.; Korchagin, S.A.; Krasnikov, V.S. Applying Deep Reinforcement Learning to Algorithmic Trading.
Mod. Inf. Technol. IT-Educ. 2020, 16, 510–517. (In Russian)

19. Esfahani, N.; Malek, S. Uncertainty in Self-Adaptive Software Systems. In Software Engineering for Self-Adaptive Systems II; de
Lemos, R., Giese, H., Müller, H.A., Shaw, M., Eds.; Lecture Notes in Computer Science Book Series; Springer: Berlin/Heidelberg,
Germany, 2013; pp. 214–238. [CrossRef]

20. Ghezzi, C.; Salvaneschi, G.; Pradella, M. ContextErlang. Sci. Comput. Program. 2015, 102, 20–43. [CrossRef]
21. Bencvoma, N.; Belaggoun, A. Supporting Decision-Making for Soft-Adaptive Systems: From Goal Models to Dynamic Decision

Network. In Requirements Engineering: Foundation for Software Quality, proceedings of the 19th International Working Conference,
REFSQ 2013, Essen, Germany, 8–11 April 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 221–236.

22. Popkov, Y.S.; Popkov, A.Y. New Nethod of Entropy-Robust Estimation for Randomized Models under Limited Data. Entropy
2014, 16, 675–698. [CrossRef]

23. Popkov, Y.S.; Dubnov, Y.A.; Popkov, A.Y. Randomized Machine Learning: Statement, Solution, Applications. In Proceedings of
the IEEE 8th International Conference on Intelligent Systems, Sofia, Bulgaria, 4–6 September 2016; pp. 27–39.

24. Popkov, Y.S.; Popkov, A.Y.; Dubnov, Y.A. Entropy Randomization in Machine Learning; CRC Press: Boca Raton, FL, USA, 2023.
25. Darkhovskii, B.S.; Popkov, A.Y.; Popkov, Y.S. Monte Carlo Method of Batch Iterations: Probabilistic Characteristics. Autom. Remote

Control 2015, 76, 775–784. [CrossRef]
26. Popkov, A.Y.; Darkhovskii, B.S.; Popkov, Y.S. Iterative MC-Algorithm to Solve the Global Optimization Problems. Autom. Remote

Control 2017, 78, 261–275. [CrossRef]
27. Avellaneda, M. Minimum-Relative-Entropy Calibration of Asset-Pricing Models. Int. J. Theor. Appl. Financ. 1998, 1, 447–472.

[CrossRef]
28. Vine, S. Options: Trading Strategy and Risk Management, 1st ed.; Wiley: Hoboken, NJ, USA, 2005.
29. Magnus, J.R.; Neudecker, H. Matrix Differential Calculus (with Applications in Statistics and Econometrics); John Wiley and Sons:

New York, NY, USA, 1999.
30. von Neumann, J.; Morgenstern, O. Theory of Games and Economic Behavior; Princeton Univiversity Press: Princeton, NJ, USA, 1944.
31. Fishburn, P.C. Utility Theory for Decision Making; Wiley: New York, NY, USA, 1970.
32. Popkov, Y.S.; Dubnov, Y.A.; Popkov, A.Y. New Method of Randomized Forecasting Using Entropy-Robust Estimation: Application

to the World Population Prediction. Mathematics 2016, 4, 16. [CrossRef]
33. Popkov, Y.S.; Popkov, A.Y.; Dubnov, Y.A.; Solomatine, D. Entropy-Randomized Forecasting of Stochastic Dynamic Regression

Models. Mathematics 2020, 8, 1119. [CrossRef]
34. Dubnov, Y.A.; Popkov, A.Y.; Polyschuk, V.Y.; Sokol, E.A.; Melnikov, A.V.; Polyschuk, Y.M.; Popkov, Y.S. Randomized Machine

Learning to Forecast the Evolution of Thermokarst Lakes in Permafrost Zones. Autom. Remote Control 2023, 84, 56–70. [CrossRef]
35. Popkov, Y.S.; Volkovich, Z.; Dubnov, Y.A. Entropy “2”-Soft Classification of Objects. Entropy 2017, 19, 178. [CrossRef]
36. Dubnov, Y.A. Entropy-Based Estimation in Classification Problems. Autom. Remote Control 2019, 80, 502–512. [CrossRef]
37. UNdata—A World of Information. Available online: https://data.un.org (accessed on 17 August 2023).
38. Hong, T.; Prinson, P.; Fan, S.; Zareipour, H.; Triccoli, A.; Hyndman, R.J. Probabilistic Energy Forecasting: Global Energy

Forecasting Competition 2014 and Beyond. Int. J. Forecast. 2016, 32, 896–913. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/978-3-642-35813-5_9
http://dx.doi.org/10.1016/j.scico.2014.11.016
http://dx.doi.org/10.3390/e16020675
http://dx.doi.org/10.1134/S0005117915050045
http://dx.doi.org/10.1134/S0005117917020060
http://dx.doi.org/10.1142/S0219024998000242
http://dx.doi.org/10.3390/math4010016
http://dx.doi.org/10.3390/math8071119
http://dx.doi.org/10.1134/S0005117923010034
http://dx.doi.org/10.3390/e19040178
http://dx.doi.org/10.1134/S0005117919030093
https://data.un.org
http://dx.doi.org/10.1016/j.ijforecast.2016.02.001

	Introduction
	The Mathematical Model of the RML Procedure
	The Adaptive Method of Monte Carlo Packet Iterations with Reinforcement (the GFS-RF Algorithm)
	Structure of Reinforcement Procedure
	The Probabilistic Properties of Random Sequences Generated by the GFS-RF Algorithm
	The Probabilistic Characteristics of the Packet Zk
	The Probabilistic Properties of the Local Record Sequence (36)
	The Size of the Neighborhood of the Global Minimum

	The Convergence of the GFS-RF Algorithm to the Global Minimum
	Discussion and Conclusions
	References

