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Abstract: In recent years, active research has been conducted on computer vision and artificial
intelligence (AI) for autonomous driving to increase the understanding of the importance of object
detection technology using a frontal-viewing camera. However, using an RGB camera as a frontal-
viewing camera can generate lens flare artifacts due to strong light sources, components of the camera
lens, and foreign substances, which damage the images, making the shape of objects in the images
unrecognizable. Furthermore, the object detection performance is significantly reduced owing to
a lens flare during semantic segmentation performed for autonomous driving. Flare artifacts pose
challenges in their removal, as they are caused by various scattering and reflection effects. The
state-of-the-art methods using general scene image retain artifactual noises and fail to eliminate flare
entirely when there exist severe levels of flare in the input image. In addition, no study has been
conducted to solve these problems in the field of semantic segmentation for autonomous driving.
Therefore, this study proposed a novel lens flare removal technique based on a class attention map-
based flare removal network (CAM-FRN) and a semantic segmentation method using the images in
which the lens flare is removed. CAM-FRN is a generative-based flare removal network that estimates
flare regions, generates highlighted images as input, and incorporates the estimated regions into the
loss function for successful artifact reconstruction and comprehensive flare removal. We synthesized
a lens flare using the Cambridge-driving Labeled Video Database (CamVid) and Karlsruhe Institute
of Technology and Toyota Technological Institute at Chicago (KITTI) datasets, which are road scene
open datasets. The experimental results showed that semantic segmentation accuracy in images with
lens flare was removed based on CAM-FRN, exhibiting 71.26% and 60.27% mean intersection over
union (mIoU) in the CamVid and KITTI databases, respectively. This indicates that the proposed
method is significantly better than state-of-the-art methods.

Keywords: lens flare removal; frontal viewing camera; autonomous vehicle; semantic segmentation;
CAM-FRN

MSC: 68T07; 68U10

1. Introduction

There is an increasing need for object detection and recognition technologies to prevent
accidents during autonomous driving by precisely identifying the road conditions around a
vehicle. In recent years, semantic segmentation methods have been used to identify objects
on roads accurately, and further studies are being conducted to enhance segmentation
performance [1–7]. However, there are limitations when detecting objects using a frontal-
viewing camera. Ceccarelli et al. [8] reported that a flare is one of the causes of the failure
of an RGB camera in autonomous driving vehicle applications.

Figure 1 shows the generation process of a lens flare. To acquire a normal image, the
light source and object must reach the image sensor through a correct path, as indicated
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by the figure’s dotted gray and black solid lines. However, unintentional reflection and
scattering (indicated by orange and yellow solid lines in Figure 1) may occur by a light
ray from a light source and damage or foreign substance in the front part of a lens. As
shown in Figure 1, an artifact owing to a light source is overlaid on top of the existing
scene as a layer, which generates a lens flare [9,10]. This significantly degrades semantic
segmentation performance and can lead to inaccurate decisions in dangerous situations
during autonomous driving.
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Figure 1. Process of lens flare artifacts being generated inside a camera.

Figure 2 shows the effects of a lens flare on semantic segmentation, which is required
for object detection during autonomous driving. Figure 2d shows an image damaged by a
lens flare. When semantic segmentation by DeepLabV3+ [7] is performed using the image
in Figure 2d, the error in the segmentation result worsens to the extent that objects are
undetectable, as shown in Figure 2e. On comparing Figure 2c,e, which show the semantic
segmentation results by DeepLabV3+ [7] of the original image, it was found that a lens flare
is an obstacle in autonomous driving as it negatively affects the object detection system for
autonomous driving.

Figure 2. The effect of a lens flare on the results of semantic segmentation. (a) Original image before
synthesizing a lens flare, (b) segmentation ground-truth label, (c) semantic segmentation result by
DeepLabV3+ of (a), (d) image after synthesizing a lens flare, and (e) semantic segmentation result by
DeepLabV3+ of (d).
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A lens flare can be prevented to a certain extent by improving the camera hardware.
An anti-reflective coating can be applied to a lens, or a lens flare can be suppressed
by improving the camera barrel or lens hood. However, such hardware improvement
measures are expensive and can prevent only certain types of lens flares [11–13]. Another
method involves software improvement. In particular, there are handcrafted feature-
based methods for automatically detecting and removing flares in images with a lens
flare [10,14–18]. Because the types of flares that can be removed using handcrafted feature-
based methods are limited, such methods are difficult to apply to autonomously driving
vehicles. Therefore, we performed semantic segmentation tasks after removing the lens
flare using deep learning methods.

However, there is a limitation to removing a lens flare using deep learning methods.
There is insufficient training data for supervised learning, and extensive amounts of time
and effort are required to obtain a pair of images with and without a lens flare at the
same location and time. When these image pairs are being acquired, the data acquisition
process becomes complicated owing to certain conditions (e.g., the angle at which the
light is radiated onto the camera lens front, location of the light source, etc.) that must
be satisfied to generate a lens flare. Even when a pair of images with and without a lens
flare is obtained from the same scene, the two images cannot be guaranteed to be captured
under the same conditions. Therefore, we used a lens flare generation method proposed
by Wu et al. [9] to solve the issue of insufficient training data by classifying lens flares into
scattering and reflective cases. To obtain a scattering flare, scattering lens flare images were
generated using the physics-based data generation method based on the physics of a lens
flare. Conversely, a reflective flare was obtained directly through experiments because
obtaining such type of data through a simulation is rather difficult. Therefore, they created
a dataset for a single image flare removal (SIFR) task by synthesizing a lens flare with
clean images without a flare. Data synthesis is conducted to create a lens flare removal
dataset to be used for training, considering a lens flare, as shown in Figure 1, is overlaid on
top of an existing scene. Accordingly, previous work [9] proposed synthesizing lens flare
artifacts with images without a flare to generate the training data. Therefore, in this study,
we used the method proposed in [9] to synthesize lens flare artifacts with CamVid [19] and
KITTI [20] dataset inputs wherein a semantic segmentation label exists.

In addition, flare artifacts can be a combination of different types of scattering and
reflection artifacts. Considering the various artifacts when removing flare remains a
challenge, and in some cases the network cannot remove them successfully, leaving an
artifactual noises [9,21,22]. Furthermore, in some cases the network cannot remove the
flare if there exist the severe level of flare in the input image [23]. To address these issues,
we propose a generative-based flare removal network that estimates the flare region in an
image, and generates additional images that highlight it in addition to serving as input
to the network. In addition, we incorporate the estimated flare region into a loss function
to successfully reconstruct objects occluded by the artifact and effectively remove flare
artifacts that appear throughout the image.

This study proposes a novel lens flare removal technique based on a class attention
map-based flare removal network (CAM-FRN) and a semantic segmentation method using
images with the lens flare removed. The novelty of the proposed method with respect to
previous studies is as follows.

• This study is the first to solve the lens flare problem in the field of semantic segmenta-
tion for frontal-viewing camera images using CAM-FRN as a solution;

• We propose a class attention map (CAM) module utilizing a ResNet-50 classifier to
detect and remove areas damaged by lens flare artifacts effectively. Additionally, we
incorporate the obtained flare regions into the network’s objective function, enabling
efficient lens flare removal;

• We propose an atrous convolution dual channel attention residual block (ADCARB)
that estimates the features corrupted by flare via channel attention and sigmoid
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function while performing multi-scale learning utilizing dilated convolution [24] to
remove flare.

• By applying self-attention to the latent space, global information is considered. To con-
sider local information simultaneously, the latent space before and after self-attention
is fused and then delivered to the decoder. Lastly, the CAM-FRN model with code
and the flare-generated image database are publicly disclosed for a fair performance
evaluation by other researchers via Github site [25].

The remainder of this paper is organized as follows: Section 2 introduces previous
research methods related to this study. Section 3 explains the details of the proposed
method. Section 4 analyzes the experimental results, and Section 5 presents the discussion.
Lastly, Section 6 concludes the study and presents future research directions.

2. Related Works

Research on lens flare removal can be categorized into two main areas: general scene
image environment, focusing on image quality improvement, and vehicle frontal viewing
camera image environment, emphasizing semantic segmentation accuracy. Notably, the
latter domain lacks prior research dedicated to solving the lens flare problem. In contrast,
the former domain has existing studies proposing lens flare removal methods; however,
these methods predominantly concentrate on enhancing image quality and do not address
the specific objective of improving semantic segmentation accuracy.

2.1. Studies on Image Quality Improvement in General Scene Images

Previous studies that have proposed lens flare removal in general scene images can be
categorized into hardware- and software-based methods.

2.1.1. Hardware-Based Methods

Several studies have attempted different methods to mitigate a lens flare through
camera hardware and optical design. First, an anti-reflective coating is applied to the
camera lens to prevent flare artifacts from being generated. However, considering an
anti-reflective coating is only effective for suppressing and removing a lens flare when
a light ray comes in at a specific angle under the appropriate conditions, it cannot be
used as a solution for all lens flare artifacts. Boynton et al. [11] proposed a simulated-eye
design (SED) wherein the camera interior is filled with liquid, which prevents unintentional
reflection in a lens by acting as an anti-reflective coating. However, this method requires
a complicated camera design compared with a general RGB camera, which increases the
costs. Unlike previous methods that involved analyzing a lens flare in a two-dimensional
image, Raskar et al. [12] demonstrated that lens flares occur in a four-dimensional light
ray space and statistically analyzed flare artifacts generated inside a camera. However, as
mentioned in [12], their proposed method cannot eliminate the streaks of light appearing on
the aperture and the diffraction effect and cannot resolve the issue of light glare caused by
the surrounding environment, such as fog. Additionally, the blooming phenomenon caused
by a sensor and the purple-fringing phenomenon cannot be resolved, considering a lens
flare cannot be removed if a light source is expanded, as in the case of vehicle headlights.
Talvala et al. [13] proposed a method for analyzing and removing veiling glare and lens
flare artifacts for diverse kinds of digital cameras by configuring an occlusion mask based
on the measured data and selectively blocking light that triggers flare and glare.

2.1.2. Software-Based Methods

The hardware-based lens flare removal methods explained above are generally applied
to acquire camera images by analyzing certain types of flare and hence, cannot prevent
or remove various types of artifacts. Moreover, additional costs are required considering
cameras require additional design modifications. To overcome these drawbacks, software-
based methods for detecting and removing a flare in images have been developed based
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on image processing algorithms, which can be roughly classified into handcrafted feature-
based and deep feature-based methods.

(1) Handcrafted Feature-Based Methods

Wu et al. [14] proposed a method to extract shadows in an image through Bayesian
optimization. This method, however, requires a user to provide information about the
shadows. Asha et al. [15] proposed a method for removing bright spots generated when
a scene having a strong light source is captured by a camera. However, the proposed
method could only be applied to certain types of artifacts or bright spots. Chabert et al. [16]
proposed a two-step post-processing method for detecting the region damaged by a lens
flare in an image and restoring the damaged region. However, the method proposed
in [16] is also effective in removing certain flare types, such as ghosting; however, it is
ineffective for other types of flare. Similar to [15,16], Vitoria et al. [17] proposed a method
for automatically detecting the flare region and estimating and restoring a mask for the
detected region. However, their method only detects and removes flare spots and ghosting
artifacts caused by the reflection of lens components inside a camera instead of detecting
and removing various types of lens flare artifacts. Koreban et al. [18] proposed a method to
mitigate a flare using images of two frames captured by a moving camera. The method
proposed in [18] is specialized for a specific type of flare and requires continuous images.
Zhang et al. [10] removed a flare in an image by decomposing the image damaged by
a flare into the scene and flare layers and eliminated the effects of a flare by adjusting
the brightness and color balance of the scene layer. However, segmentation of the scene
layer and lens flare layer may not work appropriately if the texture feature is not evidently
exposed, and the color of a local object may be distorted.

(2) Deep Feature-Based Methods

Deep learning technologies have been gaining wide attention in recent years and have
been widely used in restoration tasks. In particular, research is actively being conducted
for the cases where images are damaged owing to environmental factors such as fog or
rain [21,22]. However, there is limited research on removing artifacts generated inside a
camera by a strong light source. Lens flare removal tasks are difficult to solve because
distinguishing a light source from a flare is difficult, and obtaining paired data on whether
a flare exists is challenging. Considering the above difficulties, the following deep learning-
based studies examined different methods for removing lens flare artifacts generated in the
process of acquiring images.

Wu et al. [9] successfully developed lens flare removal methods based on deep learning
methods by focusing on the difficulty in obtaining pairs of images with or without a lens
flare to obtain only the images with flare artifacts. Moreover, they proposed a semi-synthetic
data synthesis technique for creating flare-damaged images using two types of flare artifacts.
And a flare removal method using U-Net [26] architecture for removing a flare in an image
is used. This method is more outstanding than other handcrafted-based methods for a
lens flare. However, it removes artifacts as well as the light source, and the light source
is synthesized through post-processing; however, the method cannot accurately remove
flares. Qiao et al. [23] proposed an unpaired dataset called the “unpaired flare removal
(UFR) dataset” by focusing on the fact that it is challenging to acquire a paired dataset for
flare removal tasks. Furthermore, they observed that information about a flare, such as its
shape and color, is in the light source and hence, conducted unsupervised learning based
on the observation result. Light source mask and flare mask were estimated within an
image using the encoder–decoder structure. And the flare removal and generator modules
based on a cycle-consistent generative adversarial network (CycleGAN) were trained using
the two masks, flare images, and flare-free images. Although this method can generalize
flare images in real life through unsupervised learning, it inadequately removes lens flare
artifacts found throughout an image.

As seen above, previous studies concentrated on improving the quality of general
scene images through lens removal rather than improving the semantic segmentation
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accuracy. Therefore, no study has examined the solution for the lens flare problem in the
field of semantic segmentation in front-viewing camera images captured by a vehicle. A
more detailed explanation is provided in the following subsection.

2.2. Studies on Improving the Semantic Segmentation Accuracy in Frontal-Viewing Camera
Images of a Vehicle

Previous studies can be distinguished into handcrafted feature-based and deep feature-
based methods.

2.2.1. Handcrafted Feature-Based Methods

Previous studies on handcrafted semantic segmentation [27–31] performed segmen-
tation using superpixels, which are a set of similar pixels that are connected or using
contextual models such as conditional random field (CFR) and the Markov random field
(MRF), which is based on the Markov theory. Tu et al. [27] proposed a method of utiliz-
ing context information to solve the high-level vision problem. Kontschieder et al. [28]
suggested a method of integrating the structural information, wherein the object class
label of semantic segmentation is formed in the designated region of an image with the
random forest framework. Semantic segmentation using a hierarchical CRF, which has
advanced from the existing CRF, demonstrates a better performance by combining multi-
scale contextual information; however, it generates excessively simplified models that
cannot allocate multiple labels. Gonfaus et al. [29] suggested harmony potential, which can
encode all possible combinations of class labels to overcome such a drawback. Furthermore,
they suggested a two-stage CRF utilizing harmony potential. Kohli et al. [30] suggested
a new segmentation framework using an unsupervised algorithm based on higher-order
CRF. They focused on how the superpixels obtained from the unsupervised segmentation
algorithm belong to the same object and how higher-order features can be computed and
used for classification based on all pixels constituting the segment. Their proposed method
proceeds with segmentation by combining conventional unary and pair-wise information
using higher-order CRF for potential functions that have been defined by the set of pixels.
Zhang et al. [31] suggested a framework for semantic parsing and object recognition based
on depth maps by extracting 3D features of object classes in a dense map using the random
forest, followed by segmenting and recognizing various object classes by combining them
with the features extracted from the MRF framework. The handcrafted methods [27–31]
exhibit outstanding semantic segmentation performance in frontal-viewing camera images
as in the CamVid dataset; however, a user must adjust the detailed parameters, which
requires an extensive period of time for optimization. In addition, such methods are inade-
quate for classifying small objects such as streetlights, road signs, and poles if objects of
different sizes are present, as in the CamVid dataset.

2.2.2. Deep Feature-Based Methods

Several studies have been conducted [1–7] to overcome the shortcomings of existing
handcrafted-based methods based on deep learning. SegNet [1] has a symmetrical encoder–
decoder structure, where max pooling indices are delivered to the max pooling layer of the
encoder and the upsampling layer of the corresponding decoder to preserve the information
of the pixels lost during the max pooling process of the encoder. The results of previous
segmentation models did not adequately distinguish the objects’ boundary; however,
SegNet can accurately simulate the object boundary and is efficient in terms of memory
and computational time during the inference process. However, relatively smaller objects
such as streetlights, poles, road signs, and fences are not adequately detected. A pyramid
scene parsing network (PSPNet) [2] was proposed to solve the problem of classifying
incorrect semantic classes that are inappropriate for image situations considering previous
segmentation methods did not consider the global context of input images. They applied
various pooling operations to the feature maps extracted through a convolutional neural
network (CNN) and connected them to obtain the segmentation prediction result. Various
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pooling operations enable the model to learn feature maps in different resolutions, and
global contextual information can be considered when all information is combined. Classes
appropriate for an image scene can be classified as global contextual information and
verified. Image cascade network (ICNet) [3] provides detailed segmentation results with
enhanced speed by extracting features from input images of various resolutions based
on cascade feature fusion and cascade label guidance. Although the inference time and
frames processed per second are improved compared with other models, accuracy is
lower compared with state-of-the-art models. It is important to extract features from
various receptive fields to detect different types of objects effectively. Therefore, various
versions of DeepLab [4–7] proceeded with semantic segmentation using atrous convolution
(dilated convolution). DeepLabV1 [4] used convolution of a fixed dilated rate; however,
DeepLabV2 [5] introduced atrous spatial pyramid pooling (ASPP) where multi-scale feature
information can be obtained from various receptive fields by combining features that have
undergone different dilated rates. DeepLabV3 [6] uses an ASPP module that is enhanced
from ASPP introduced in [5]. The difference is that spatial information loss is reduced
significantly by applying different dilated rates according to the changes in the output
stride. Segmentation is performed by capturing the information of multi-scale features
and various objects in an image accordingly. The authors of [6] predicted segmentation
results by applying a simple bilinear upsampling process to the features from the encoder
in the decoder, which decreases the resolution of segmentation results, thereby preventing
detailed information from being detected. As a solution, DeepLabV3+ [7] predicts the
segmentation results by concatenating the feature maps of the interim stage and the last
stage of the encoder and upscaling after learning.

However, previous studies did not consider the lens flare issue in images captured by
a frontal-viewing camera of a vehicle. To resolve this problem, this study proposes a novel
lens flare removal technique based on CAM-FRN and a semantic segmentation method
using images to remove lens flares. Table 1 compares previous methods and the proposed
method of semantic segmentation with frontal-viewing camera images of vehicles.

Table 1. Comparison of previous methods and the proposed methods on semantic segmentation
with frontal viewing camera images of vehicle.

Category Method Advantages Disadvantages

Not considering
lens flare

Handcrafted
feature-based

methods

Auto-context algorithm [27],
structural information +

random forest [28],
harmony potential + CRF [29],

higher order CRF [30], and
dense depth maps-based

framework [31]

Adequate semantic
segmentation performance

can be obtained by
considering both

contextual information and
low-level information

through superpixels, MRF,
and CRF

User must directly
adjust the parameters
in detail, and perfect

optimization requires a
long time

Deep feature-based
methods

SegNet [1],
PSPNet [2],

ICNet [3], and
DeepLab [4–7]

Objects of various sizes are
detected with high

accuracy by applying
pooling layers of different
sizes or receptive fields are

applied, or by sending
pooling indices

information to the decoder

Semantic segmentation
performance is

degraded when a lens
flare occurs in an image

because the images
damaged by a lens flare

are not taken into
consideration
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Table 1. Cont.

Category Method Advantages Disadvantages

Considering
lens flare

Deep feature-based
methods

CAM-FRN
(proposed method)

Lens flare region in an
image is highlighted

through CAM, and a lens
flare is effectively removed
by reflecting a binary mask

for the lens flare region
obtained through CAM in

the loss

Light source is
removed along with a

lens flare owing to
insufficient training

data

3. Proposed Method
3.1. Overall Procedure of the Proposed Method

Figure 3 shows the overall architecture of the model proposed. In the first step, when
a frontal-viewing camera image is input, CAM with the flare region highlighted is obtained
using the weights of the ResNet-50 [32]-based binary classifier, which classifies the presence
of lens flare. Furthermore, the ResNet-50 classifier uses images with and without flare as
input during training, and the datasets having labels 1 and 0 are used for training. Then, we
create three additional input images through CAM, which are applied with channel-wise
concatenation and are input to the proposed CAM-FRN. The second step removes the
flare from CAM-FRN based on the received images. Finally, the final segmentation map is
predicted as the flare-free image is input to the segmentation network.
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3.2. Flare Removal by CAM-FRN and Semantic Segmentation
3.2.1. Step 1: Generation of CAM and Channel-Wised Concatenated Inputs to CAM-FRN

In this step, once the image is input to the ResNet-50 classifier, the feature map and
weights generated based on the presence of flare in the image are used to find the CAM for
the lens flare class. If the lens flare artifact is present in the image, as shown in Figure 4b,
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the feature map from the last CNN layer of ResNet-50 and the weights of the classifier can
be used to find the CAM. The equation to find the CAM according to class (c) is expressed
as follows [33].

CAM(x, y)c =
φc

T f (x, y)
max
(x,y)

φc
T f (x, y)

, (1)

where c represents the two classes of flare-corrupted and non-flare-corrupted images.
f (x, y) is the feature map output from the last layer of CNN in ResNet-50, and φc is
the trained weights of a ResNet-50 classifier for the class. The notation φc

T indicates the
transpose of φc, which is applied in matrix product operations to calculate the CAM. The
corresponding CAM(x, y)c obtained using a flare-corrupted image as input is denoted
as CAM(x, y)F of Equations (2) and (3). x and y are two-dimensional coordinates of a
feature map.
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have value 0, and (e) mask covering the flare region created by using (d).

When Figure 4a is input to the ResNet-50 binary classifier, the flare region is seen as
shown in Figure 4b, considering the classifier determines whether there is a lens flare in the
image. Using Figure 4b, we can highlight and detect the flare region. Figure 4c is the result
of multiplying Figure 4a,b, as expressed in Equation (2), and shows the image in which the
flare region is highlighted.

IAF = IF × CAM(x, y)F, (2)

Figure 4d is a binary mask in which the flare region created through binarization by
providing a threshold value to (b) has a value of 1, while all other regions have a value of 0;
the flare region mask (MF) is computed as follows:

MF =

{
1, i f CAM(x, y)F ≥ threshold
0, otherwise

, (3)

where the optimal threshold of 0.2 was experimentally determined for obtaining the highest
accuracy of semantic segmentation using the training data. Lastly, Figure 4e shows an
image created by covering the flare region with a mask using Figure 4d and Equation (4).

IMF = IF × (1−MF) + MF, (4)

For lens flare removal, we used the images shown in Figure 4a–e as inputs to CAM-
FRN. Figure 4a is an image damaged by a lens flare while Figure 4c is an attention image
in which the lens flare region is highlighted. Using both Figure 4a,c as additional inputs,
information on the lens flare region within the image is additionally provided to the
proposed CAM-FRN. Figure 4d is a mask formed by binarizing the flare region into 0 and
1; Figure 4e is an image created by converting the flare region to have a value of 1 using
Figure 4d. Using Figure 4d,e, we defined the flare region as having a missing pixel value
as in the inpainting task, and CAM-FRN performs inpainting for the relevant region. In
other words, we used four types of input in CAM-FRN to specify the lens flare region in an
image through CAM, provided additional information on the relevant region, and restored
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the image details covered by the flare region. The inputs provided for this process are
defined as:

ICF = C(IF, IAF, MF, IMF), (5)

where C(·) indicates channel-wise concatenation. Based on Equation (5), we define a
concatenated image as ICF. We used ICF as an input image of CAM-FRN for flare removal.

3.2.2. Step 2: Lens Flare Removal by CAM-FRN

The image damaged by a lens flare can be expressed using the below equation based
on the observation in Figure 1.

IF = I + f , (6)

where I refers to a clean image without a flare and f refers to lens flare artifacts. IF indicates
an image synthesized with a lens flare. We aimed to remove lens flare artifact ( f ) overlaid
in I in Equation (6) and retain only I. In this section, we explain how lens flare artifacts in
the images captured by a frontal-viewing camera of a vehicle are removed by CAM-FRN,
which requires IF generated by CAM obtained in step 1 and three additional images as
the input.

(1) Structure of CAM-FRN

Figure 5 shows the architecture of CAM-FRN. Four types of inputs provided in
step 1 are concatenated to generate an input for CAM-FRN. The structure of CAM-FRN
includes a generator comprising an encoder and a decoder and a discriminator, and a
reparameterization trick for variational inference is added between the encoder and the
decoder. ICF enters the encoder of CAM-FRN for extracting features and undergoes a
total of five ADCARBs. ADCARBs perform multi-scale feature learning using a dilated
convolution (atrous convolution) layer and are trained to remove lens flare by extracting
the parts damaged by lens flare artifacts within the feature map as a mask. Additionally,
Tables 2–4 show in more detail the structure of layers and modules used in our proposed
CAM-FRN.
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Table 2. CAM-FRN architecture.

Layer Type Input Feature
Map

Output Feature
Map

Size of Kernel,
Stride, Padding

Number of
Iteration

Input layer 300× 300× 10 1

Encoder
Conv 300× 300× 10 300× 300× 128 3× 3, 1, 1 1

Conv 300× 300× 128 150× 150× 128 4× 4, 2, 1 1

Conv 150× 150× 128 75× 75× 128 4× 4, 2, 1 1

ADCARB 75× 75× 128 75× 75× 128 5

Variational
inference

Conv 75× 75× 128 75× 75× 512 3× 3, 1, 1
1

Conv 75× 75× 128 75× 75× 512 3× 3, 1, 1

Self-attention
module

Self-attention 75× 75× 512 75× 75× 512

1Concatenation 75× 75× 512
75× 75× 512 75× 75× 1024

Conv 75× 75× 1024 75× 75× 512 3× 3, 1, 1

ADCARB 75× 75× 512 75× 75× 128 5

Decoder

Transpose Conv 75× 75× 128 150× 150× 128 4× 4, 2, 1 1

Transpose Conv 150× 150× 128 300× 300× 128 4× 4, 2, 1 1

Conv 300× 300× 128 300× 300× 3 3× 3, 1, 1 1

Sigmoid 300× 300× 3 300× 300× 3 1

Table 3. ADCARB architecture.

Layer Type Input Feature
Map

Output Feature
Map

Size of Kernel,
Stride, Padding Dilated Rate

Feature fusion

Dilated Conv 75× 75× 128 75× 75× 8 3× 3, 1, 1 1

Dilated Conv 75× 75× 128 75× 75× 8 3× 3, 1, 4 4

Dilated Conv 75× 75× 128 75× 75× 8 3× 3, 1, 16 16

Concatenation
75× 75× 8
75× 75× 8
75× 75× 8

75× 75× 24

Conv + InstanceNorm + GELU 75× 75× 24 75× 75× 128 3× 3, 1, 1 1

Conv + InstanceNorm 75× 75× 128 75× 75× 128 3× 3, 1, 1 1

Mask

Channel Attention 75× 75× 128 75× 75× 128

Conv 75× 75× 128 75× 75× 128 3× 3, 1, 1 1

Sigmoid 75× 75× 128 75× 75× 128 1

Channel Attention 75× 75× 128 75× 75× 128

Table 4. Discriminator architecture.

Layer Type Input Feature Map Output Feature Map Size of Kernel,
Stride, Padding

Conv + LeakyReLU 300× 300× 3 150× 150× 64 4× 4, 2, 1

Conv + LeakyReLU 150× 150× 64 75× 75× 128 4× 4, 2, 1

Conv + LeakyReLU 75× 75× 128 37× 37× 256 4× 4, 2, 1

Conv + LeakyReLU 37× 37× 256 36× 36× 512 4× 4, 1, 1
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Table 4. Cont.

Layer Type Input Feature Map Output Feature Map Size of Kernel,
Stride, Padding

Conv + LeakyReLU 36× 36× 512 35× 35× 1 4× 4, 1, 1

Sigmoid 35× 35× 1 35× 35× 1

We performed variational inference using the feature maps that underwent ADCARBs
of the encoder. We aimed to remove lens flare through variational inference, inspired by
variational auto-encoder (VAE) [34,35] and VAE with denoising criterion [36]. To ensure the
image generated by the generator is semantically similar to the ground truth, latent variable
z was sampled in the probability distribution p(z|target) with the ground truth as the
condition. If an image is generated accordingly, the generated image can be semantically
similar to the ground truth instead of having a close Euclidean distance [35]. To obtain
the same effect, the variational inference was applied to the proposed method to create
an image that is semantically similar to the ground truth. Unlike existing VAE, which
reconstructs an input image, we attempted to reconstruct a clean image without lens flare
from the image damaged by a lens flare. Inspired by [36], we defined a lens flare as a noise,
utilized the proposed encoder network as an inference network for variational inference,
and applied the denoising variational lower bound suggested in [36].

The denoising variational lower bound [36] was proposed for applying the denoising
criterion used in a denoising auto-encoder (DAE) to a VAE framework and used it to
remove lens flare as noise. Then, self-attention was applied to latent space z obtained
from variational inference, and latent space z applied and not applied with self-attention
were fused through a convolution layer. The detailed explanation is provided in Section of
“Variational Inference with Latent Space Fusion Using Self-Attention”.

The latent space z obtained was sent to ADCARBs and decoder. Then, feature map
resolution was increased to the input image size through transposed convolution, and
the output image was generated through convolution layer and sigmoid layer at the
end. The final output image was generated using summation of the generated image
and the image damaged by lens flare through residual connection. The image generated
accordingly entered the discriminator of PatchGAN [37]. We ensured that the image
generated using a discriminator was similar to the ground truth and improved the quality
of a flare removal image. Furthermore, Figure 4d was created using CAM and images
utilizing MF were provided as an input of a discriminator. MF was multiplied as shown in
Equations (7) and (8) below.

OFRM = OFR ×MF, (7)

IFRM = I ×MF, (8)

where OFR refers to the lens flare removal image and OFRM is an image in which only the
pixels value for the lens flare region are expressed. I is the clean image without a lens flare,
and IFRM is the image showing only the lens flare region from the ground truth in the form
of OFRM instead of the image generated by CAM-FRN. We inputted OFRM and IFRM in
the discriminator, and lens flare was removed by focusing more on the flare region. The
detailed explanation is provided in Section of “Total loss function of CAM-FRN”.

(2) ADCARB

To remove f from IF using four inputs obtained from step 1 as much as possible, we
propose a new residual block, ADCARB, as shown in Figure 6.
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When a feature map was provided as an input for ADCARB, we obtained feature
maps trained with receptive fields of various sizes through 3× 3 dilated convolution, with
the dilated rates of 1, 4, and 16. For the activation function after each dilated convolution
layer, Gaussian error linear unit (GELU) [38] was used instead of rectified linear unit
(ReLU) [39]. Unlike ReLU, which determines a value depending on the input feature sign,
GELU creates probabilistic characteristics by multiplying the standard Gaussian cumulative
distribution function with the input feature. Feature maps extracted with different dilated
rates pass through GELU and become concatenated. Concatenated feature maps comprise
information extracted from receptive fields of various sizes, and concatenated features
pass through a residual block that uses GELU, instead of ReLU, in the existing CycleGAN
structure. We define such feature map as Ff use. Ff use is a feature created by fusing feature
maps obtained from various receptive fields, and hence, considers the information of
different scales for removing flare.

In addition, we highlighted the degraded channel within a feature through channel
attention and extracted the degraded part as a mask after undergoing 3× 3 convolution
and sigmoid. We defined this mask as m. We defined the following equation using Ff use
and m [40].

Ff inal_ f use = F× (1−m) + Ff use ×m, (9)

where F is the feature map input in ADCARB, and Ff use and m are defined identically
as above. Ff inal_ f use represents the feature maps determined by considering m in F and
Ff use. We multiplied F with (1−m) to highlight the parts not degraded by a flare and
obtained a feature map that highlights the parts degraded by flare from Ff use. Again,
channels with evident features were highlighted after going through channel attention
for lens flare removal, and the output feature map of previous ADCARB was considered
through residual connection. Lastly, the feature map obtained through Equation (9) was
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applied with channel attention to extract feature maps that highlight important channels
for flare removal training. We propose ADCARB to extract features from various receptive
fields and learn the regions covered by a lens flare by extracting the regions damaged by
lens flare as a mask (m) to enable inpainting.

(3) Variational Inference with Latent Space Fusion Using Self-Attention

In this section, we explain the process of sampling latent space z in a significant proba-
bility distribution that considers a clean image without lens flare through the variational
inference explained in Section of “Structure of CAM-FRN”. As proposed in [36], we can
define posterior distribution as:

∼
q∅(z|I) =

∫
q∅(z|IF)p(IF|I)dIF, (10)

where IF is lens flare artifacts ( f ) added to the original image in Equation (6). Lens flare
artifacts ( f ) can be considered as noise, and we can apply a denoising criterion to remove
this noise. p(IF|I) in Equation (10) represents the distribution damaged by noise (lens flare),
and we can sample the image damaged by lens flare to IF ∼ p(IF|I). q∅(·) represents the
proposed encoder network and is used as an inference network for variational inference.
∅ represents µ (mean) and σ (variance), which are trained to approximate the Gaussian
distribution in the inference network.

pθ(I, z) = pθ(I|z)p(z), (11)

Then, the process of generating images with z, which is sampled from z ∼ q∅(z|IF),
can be expressed as shown in Equation (11). pθ(·) indicates the generator network and θ is
the parameter for training the generator. As in [36], we can express the evidence of lower
bound (ELBO) for denoising (lens flare removal), as shown in Equations (12) and (13) based
on Equations (10) and (11). Because our final goal is to maximize Ldvae (ELBO), it can be
expressed below, as proven in [36].

log(pθ(I)) ≥ E∼
q∅(z|I)

[
log

pθ(I, z)
q∅(z|IF)

]
= E∼

q∅(z|I)

[
log

pθ(I, z)
∼
q∅(z|I)

]
, (12)

Ldvae = E∼
q∅(z|I)

[
log

pθ(I, z)
q∅(z|IF)

]
, (13)

argmax
∅,θ
Ldvae ≡ argmin

∅,θ

[
KL
(∼

q∅(z|I)‖p(z|I)
)
− KL

(∼
q∅(z|I)‖q∅(z|IF)

)]
≡ argmin

∅,θ
Ep(IF |I)[KL(q∅(z|IF)‖p(z|I) )],

(14)

If Ldvae is maximized, ∅ and θ are learned to minimize the difference between true
posterior distribution p(z|I) and posterior probability distribution q∅(z|IF), which infer
the image damaged by lens flare. We used the denoising variational lower bound proposed
in [36] to define the variational lower bound for flare removal, which is our ultimate goal,
as defined in Equation (14). Using Equation (14), it is possible for CAM-FRN to sample
the latent space z in a significant probability distribution while considering the ground
truth to generate a clean image without a noise that is semantically similar to the ground
truth. However, we did not simply use only the images damaged by a lens flare as an
input for CAM-FRN. As explained in Section 3.2.1 and Section of “Structure of CAM-FRN”,
we aimed to improve the performance by providing additional information on lens flare.
As defined in Equation (5), ICF becomes an input of CAM-FRN, and ultimately, the loss
equations for variational inference are as shown in Equations (15) and (16).

Ldvae = E∼
q∅(z|I)

[
log

pθ(I, z)
q∅(z|ICF)

]
, (15)
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argmax
∅,θ
Ldvae ≡ argmin

∅,θ

[
KL
(∼

q∅(z|I)‖p(z|I)
)
− KL

(∼
q∅(z|I)‖q∅(z|ICF)

)]
≡ argmin

∅,θ
Ep(ICF |I)[KL(q∅(z|ICF)‖p(z|I) )],

(16)

We conducted an ablation study for the cases of using and not using variational
inference, which confirmed that outstanding performance was achieved when variational
inference was performed. The detailed explanation is provided in Section of “Performance
Comparisons with and without Variational Inference”.

Both the encoder of CAM-FRN, which was utilized as an inference network, and µ
and σ, which are estimated for variational inference, used convolution layers. Although
convolution layers can adequately extract local information of features using filters, it
inadequately extracts global features (long-range dependency). To supplement this draw-
back, we applied the self-attention module proposed in [41] to our proposed method. We
attempted to consider long-range dependency by applying self-attention to latent space
z, which was sampled from q∅(z|ICF). Two latent spaces were concatenated to fuse two
features to simultaneously consider the latent space z before applying self-attention and
the latent space z wherein long-range dependency was considered. The process described
above is shown in Figure 7. We confirmed that the performance was improved when
the fused latent space z was utilized; the relevant experimental results are explained in
Section of “Performance Comparisons According to Module Combinations Performance
Comparisons According to Module Combinations”.
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(4) Total loss function of CAM-FRN

The ultimate purpose of the proposed CAM-FRN is image-to-image translation from
an image with lens flare to an image without lens flare. Therefore, we adopted content
loss and style loss [42], which are frequently used in the image-to-image translation field.
In this study, content and style losses use intermediate layers of the pretrained VGG-19
model [43].

Lcontent =
1

Wi Hi

Wi

∑
w=1

Hi

∑
h=1

∥∥∥φi(I)w,h − φi(OFR)w,h

∥∥∥
1
, (17)

Lmasked_content =
1

Wi Hi

Wi

∑
w=1

Hi

∑
h=1

∥∥∥φi(IFRM)w,h − φi(OFRM)w,h

∥∥∥
1
, (18)

Lstyle =
1

Wi Hi

Wi

∑
w=1

Hi

∑
h=1

∥∥∥φi(I)w,h
Tφi(I)w,h − φi(OFR)w,h

Tφi(OFR)w,h

∥∥∥
1
, (19)

Lmasked_style =
1

Wi Hi

Wi
∑

w=1

Hi
∑

h=1
‖φi(IFRM)w,h

Tφi(IFRM)w,h

−φi(OFRM)w,h
Tφi(OFRM)w,h‖1,

(20)
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Ltv =
Wi

∑
w=1

Hi

∑
h=1

(∥∥OFRw,h−1 − IFw,h
∥∥2

2 +
∥∥OFRw−1,h − IFw,h

∥∥2
2

)
, (21)

Ledge =

√
(∆(I)− ∆(OFR))

2 + ε2, (22)

where Wi and Hi are the width and height of the feature maps of the pretrained VGG-19
model, respectively, and φi(·) is the feature map obtained from the intermediate layers
(relu1_1, relu2_1, relu3_1, relu4_1, and relu5_1) of the pretrained VGG-19 model. I is
a target image and OFR is the restored output of CAM-FRN. I and OFR ensure that the
features of OFR become identical to the features of I by minimizing the difference between
feature maps that have undergone the VGG-19. Equation (19) is the style loss that heightens
the similarity between the output features of a target and the model by determining the
correlation between feature maps of the VGG-19, and accordingly, an output similar to
the target is generated. Similar to Equation (17), φi(·) is one of the layers (relu5_3) of the
pretrained VGG-19. Therefore, I, OFR, Wi, and Hi have the same meaning. Using the
mask of the lens flare region obtained using Equation (2), we can obtain IFRM and OFRM
defined in Equations (7) and (8). Based on IFRM and OFRM, we applied the content and
style losses, as shown in Equations (18) and (20) for the flare regions in the ground truth
and the predicted image. In other words, we aim to concentrate more on the artifacts in
the flare region for removal, and the restoration performance was improved when content
loss and style loss were applied while considering a mask. The detailed explanations are
presented in Section of “Performance Comparisons According to Mask Considering Loss”.

Equation (21) is a total variational regularizer in which smoothing is applied to remove
artifacts that may remain in an image from which lens flare artifacts are removed. Equa-
tion (22) is the edge loss proposed in MPRNet [21], which is a ∆(·) Laplacian function, and ε
is a regularization term. Through the Laplacian function, we can allow the edge component
of a target to become similar to the edge component of a model output. Therefore, we can
preserve the edge component of contents and the objects restored in an image.

Furthermore, we used the discriminator of PatchGAN [37] to ensure that the image
generated using the discriminator becomes similar to the distribution of the ground truth,
and the following equations represent adversarial loss and discriminator loss, which utilizes
the discriminator.

Ladv = Ez∼p f ake

[
(1− D(G(z)))2

]
, (23)

Lmasked_adv = Ez∼p f ake

[
(1− D(G(z)×MF))

2
]
, (24)

Ldis =
1
2

(
Ez∼p f ake

[
(D(G(z)))2

]
+EI∼preal

[
(D(I)− 1)2

])
, (25)

Lmasked_dis =
1
2

(
Ez∼p f ake

[
(D(G(z)×MF))

2
]
+EI∼preal

[
(D(IFRM)− 1)2

])
, (26)

As shown in Equations (18) and (20), we applied the loss equation considering the lens
flare region in Equations (24) and (26). As IFRM and OFRM pass through the discriminator,
they focus more on the lens flare region to effectively remove lens flare artifacts in the
predicted image. The final loss equation of CAM-FRN is as follows: in Equations (24) and
(26), G(z) refers to OFR, and the multiplication of G(z) and MF represents OFRM. Similar to
Equations (17)–(20), learning is proceeded by using the loss defined in Equations (23)–(26),
which used the discriminator where the entire image and lens flare region are considered.

Ltotal = Ldvae + Lcontent + Lmasked_content + λstyle(L style + Lmasked_style

)
+

λadv(Ladv + Lmasked_adv) + Ledge + λtvLtv,
(27)
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Ltotal_dis = Ldis + Lmasked_dis, (28)

CAM-FRN undergoes the process of optimizing Ltotal and Ltotal_dis through which the
damaged image as input can be successfully restored as an output.

3.2.3. Step 3: Semantic Segmentation Network

We perform semantic segmentation after removing lens flare in an image of a frontal-
viewing camera of a vehicle using CAM-FRN. Semantic segmentation is performed with
DeepLabV3+ [7] as a network. This study compared the segmentation performance of
PSPNet [2], ICNet [3], CGNet [44], and DeepLabV3+ [7]. The experimental results showed
that DeepLabV3+ demonstrated the highest accuracy. Therefore, DeepLabV3+ was used as
the semantic segmentation network.

Figure 8 shows the architecture of DeepLabV3+. The encoder of DeepLabV3+ uses the
ASPP module, which learns in receptive fields of various sizes through dilated convolution.
Multi-scale features can be learned through ASPP to extract the features of objects of various
sizes in the image. The decoder of DeepLabV3+ predicts the final segmentation map by
concatenating the final and intermediate features of the encoder. We use DeepLabV3+
to consider the characteristics of a frontal-viewing camera image of a vehicle containing
several objects. Furthermore, we evaluated the performance improvement of the proposed
method (CAM-FRN) by assessing the segmentation performance for the image wherein
lens flare artifacts were removed.
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3.3. Experimental Environment

In all our experiments, we used a desktop computer (Intel® Core™ i9-11900K @
3.50 GHz × 16 CPU with 64 GB of main memory) equipped with NVIDIA GeForce RTX
3090 graphics processing unit (GPU) with a graphics memory of 24 GB [45] on a Linux
operating system. All the training and testing algorithms of our network were implemented
with a pytorch library (version 1.12.0) [46]. Except for this, no tool or library was used
in our method. In addition, our proposed model with the code for algorithm and the
flare-generated image database are publicly disclosed for a fair performance evaluation by
other researchers via Github site [25].
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4. Experimental Results and Analysis
4.1. Experimental Data
4.1.1. CamVid and KITTI Databases

No open database was present for frontal-viewing camera images of a vehicle con-
taining a lens flare artifact along with the segmentation ground-truth label. Therefore,
we synthesized lens flare artifacts with the frontal-viewing camera images of a vehicle as
proposed by Wu et al. [9]. Then, we used the Cambridge-driving Labeled Video Database
(CamVid) [19] and the Karlsruhe Institute of Technology and Toyota Technological Institute
at Chicago (KITTI) [20] database, which are open databases having segmentation labels, to
measure the segmentation performance for images with lens flare and the original images
without lens flare. Previous works [19,20] are road scene databases built by capturing
various scenes of roads using a camera installed inside a vehicle. Each database provides
segmentation labels comprising 12 same labels; one is a void label, while the remaining
11 labels are for different objects. The CamVid database comprises data used in SegNet [1],
wherein the input and label have a resolution of 360× 480 pixels. In the KITTI database, the
input and label have various resolutions of 370× 1220, 376× 1241, and 375× 1242 pixels
depending on each scene.

4.1.2. Synthesized Lens Flare CamVid and KITTI Databases

Wu et al. [9] synthesized lens flare artifacts of a reflective type they obtained through a
simulation of clean images without lens flare. We synthesized lens flare artifacts in CamVid
and KITTI databases, as shown in Figure 9. Figure 9a shows the original image of CamVid,
and (b) shows the lens flare synthesized image. Similarly, Figure 9c shows the original
image of KITTI, and (d) shows the lens flare synthesized image. In [9], each image was
linearized before synthesizing lens flare artifacts and clean images without flare. These
researchers performed linearization by applying a random value between 1.8 and 2.2,
assuming an unknown gamma value is applied during image capturing. Furthermore,
to obtain more diverse synthesized images, they proceeded with synthesis by applying
digital gain, Gaussian blur, RGB gain, and offset values within a random range, as shown
in Table 5, to linearized flare images. Furthermore, they added the Gaussian noise to
clean images to represent various types of noises we can visually inspect during the image
acquisition process. They sampled the variance of the Gaussian noise in the scaled chi-
square distribution ( σ2 ∼ 0.01χ2). Synthesis was performed where clean images were
added with lens flare artifact images, as shown in Equation (6).

Table 5. Synthesized flare CamVid and KITTI databases.

Datasets Syn-Flare CamVid Syn-Flare KITTI

Subsets fold 1 fold 2 fold 1 fold 2
Number of images 350 351 223 222

Image size (H ×W × C) 360× 480× 3
370× 1220× 3
376× 1241× 3
375× 1242× 3

Classes Sky, Building, Pole, Road, Pavement, Tree, Sign symbol, Fence, Car, Pedestrian, Bicyclist

Random gamma value for
linearization 1.8–2.2

Random digital gain 0.5–1.0

Random Gaussian blur 0.1–3

Gaussian noise (N
(
0, σ2)) variance σ2 ∼ 0.01χ2

Random RGB gain 1–1.1

Random offset −0.05–0.05
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We randomly shuffled all the data of the datasets and divided them into two parts
to perform cross-validation on the data synthesized with lens flare artifacts [47]. Then,
training and testing were performed based on two-fold cross-validation of the datasets by
dividing them into two values, and the final testing accuracy was calculated by averaging
the two testing accuracy values.

4.2. Training Our Proposed Method

First, a ResNet-50 [32]-based binary classifier was trained for extracting CAM for
the images synthesized with lens flare. The syn-flare CamVid dataset was trained with
the original image size of 360× 480 pixels, while the syn-flare KITTI dataset was trained
by resizing to 400× 1200 pixels considering the original images had three different sizes
depending on the road scene. Furthermore, the mean and standard deviation of each
channel were normalized to 0.5. The learning rate of the ResNet-50-based binary classifier
was 3 × 10−5, and the two datasets exhibited the same learning rate. The number of
epochs was 200, and the batch size of training was 4, which were applied to two datasets.
Additionally, adaptive moment estimation (Adam) [48] was applied as an optimizer.

Syn-flare CamVid, syn-flare KITTI input images, and all other images were randomly
cropped to 300× 300 pixels for training CAM-FRN. For both datasets, the learning rate of
CAM-FRN was 1× 10−4, the number of epochs was 400, the batch size was 2, and Adam
was used as an optimizer. Inference proceeded at the size of 360× 480 pixels for the syn-
flare CamVid dataset. For the syn-flare KITTI dataset, test prediction images were obtained
at the size of 400 × 1200 pixels; ultimately, images were resized to the size before the
400× 1200 pixels when measuring peak signal-to-noise ratio (PSNR), structural similarity
index map (SSIM), and Frechet inception distance (FID) score in Section 4.3. During the
inference of the syn-flare KITTI dataset, we used bicubic interpolation to resize the images
to the original size. Figure 10 shows the training and validation losses of CAM-FRN in
which 10% of training data were used as validation data when measuring the validation
loss; the validation data were not used for training. As the epoch increases, training loss
decreasingly converges, which indicates that the proposed CAM-FRN was sufficiently
trained for the training data. Additionally, when the epoch increased, the validation loss
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decreasingly converged, which indicates that the proposed CAM-FRN was not overfitted
to the training data.
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4.3. Testing of Proposed Method
4.3.1. Evaluation Metrics

We used the following evaluation metrics to compare the proposed model’s perfor-
mance.

MSE =
1

W × H

[
i

∑
W

j

∑
H

(
Îi, j − Ii,j

)2
]

, (29)

PSNR = 10log10

(
Pmax

MSE

)
, (30)

SSIM( Î, I) =

(
2µ ÎµI + C1

)(
2σÎ, I + C2

)
(
µ Î

2 + µI2 + C1
)(

σÎ
2 + σI2 + C2

) , (31)

FID
(

Î, I
)
=
∥∥∥µ∅( Î) − µ∅(I)

∥∥∥2

2
+ Tr

(
Σ∅(I) + Σ∅( Î) − 2

(
Σ∅(I)Σ∅( Î)

) 1
2
)

, (32)

Equations (29)–(32) represent PSNR, SSIM, and FID, respectively, which are the metrics
for evaluating the similarity and accuracy between image restoration results and the
ground truth. In Equation (30), Pmax is the maximum measurement of an image pixel
being and MSE is the mean square error expressed in Equation (29). In Equation (29), W
is the image width, H is the image height, Î is the predicted image, and I is the ground-
truth image. PSNR can evaluate the information lost in terms of the quality of an image
generated in the network, and a higher score indicates that a flare is adequately removed.
In Equation (31), µ Î , µI , σÎ , and σI are mean and standard deviations of Î and I, respectively;
σÎ, I is the cross-covariance of Î and I. C1 and C2 are constants that vary depending on
the range of image pixel values. SSIM evaluates image quality from luminance, contrast,
and structural perspectives where a value closer to 1 indicates that the image with lens
flare removed is closer to the ground-truth image. Lastly, in Equation (32), ∅

(
Î
)

and
∅(I) are the intermediate feature maps created after the generated and ground-truth
images pass through the inception v3 network [49]; µ∅( Î), µ∅(I), Σ∅( Î), and Σ∅(I) are the
mean and covariance of ∅

(
Î
)

and ∅(I). Additionally, Tr(·) is the sum of the diagonal
components. The FID score calculates the distance between the distribution of the ground-
truth image and the distribution of images with flare removed using feature maps that
passed through the inception network. A lower FID score indicates that an image is more
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similar to the ground-truth image. We evaluate how well a lens flare is removed based on
Equations (29)–(32).

Pixel accuracy =
∑C(TP)

∑C(FP + TP)
, (33)

Class accuracy =
1
C

(
∑
C

TP
FP + TP

)
, (34)

mIoU =
1
C

(
∑
C

TP
FP + TP + FN

)
, (35)

Equations (33)–(35) represent pixel accuracy, class accuracy, and mean intersection
over union (mIoU), respectively, which are the metrics for evaluating the semantic seg-
mentation performance for restored images. In each equation, C is the number of classes
for semantic segmentation. True positive (TP) indicates the ground-truth pixels that are
correctly predicted by the segmentation network, false positive (FP) indicates the pixels
that are not ground-truth and predicted as ground-truth by the segmentation network,
and false negative (FN) indicates the pixels that are not ground-truth and not predicted as
ground-truth by the segmentation network. Equation (33) evaluates how accurately the seg-
mentation network predicts the ground-truth pixels among the entire pixels; Equation (34)
evaluates how accurately the segmentation network predicts the ground-truth pixels for
the pixels of each class. Lastly, Equation (35) calculates the ratio of the intersection of classes
to the union of semantic segmentation classes. We used Equations (33)–(35) to evaluate the
segmentation performance for the restored images.

4.3.2. Testing with Synthesized Lens Flare CamVid Database and Synthesized Lens Flare
KITTI Databases

(1) Ablation Study

(a) Performance Comparisons According to Module Combinations

We compared the performance of CAM-FRN by combining the modules proposed in
Section 3. We compared the semantic segmentation performance and image restoration
performance by applying and not applying the following modules: a module for obtaining
additional images using Equations (2)–(4) besides images damaged by a lens flare through
CAM that represents the lens flare region in an image. Lastly, the ADCARB module, a
self-attention module, fuses latent spaces that have undergone variational inference and
applied with self-attention and not applied with self-attention, and sends them to the
decoder. If ADCARB is not applied, the residual block used in the existing CycleGAN was
applied; if the self-attention module is not applied, the latent space that has been sampled
through variational inference is directly sent to the decoder. When the CAM module is not
applied, the process of reflecting the mask for the lens flare region, which can be obtained
by CAM and additional inputs in the losses, is omitted.

To compare the performance of different module combinations on each dataset, we an-
alyzed the restoration performance with the results shown in Tables 6 and 7. Tables 6 and 7
demonstrate the greatest performance improvement, and the best performance was exhib-
ited for all metrics.
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Table 6. Performance evaluation metrics of the restoration results for the images in which a lens flare
is removed for the syn-flare CamVid dataset.

Modules CamVid (2-Fold)

CAM ADCARB Self-
Attention PSNR SSIM FID

16.83 0.7558 268.22
√

17.88 0.7775 227.49
√

21.77 0.8650 49.27
√

19.80 0.8163 150.81
√ √

26.66 0.9242 39.55
√ √

20.87 0.8361 136.94
√ √

22.01 0.8706 42.96
√ √ √

27.95 0.9290 36.41

Table 7. Performance evaluation metrics of the restoration results for the images in which a lens flare
is removed for the syn-flare KITTI dataset.

Modules KITTI (2-Fold)

CAM ADCARB Self-
Attention PSNR SSIM FID

15.70 0.7077 221.58
√

16.37 0.6519 251.58
√

22.42 0.8441 52.84
√

16.12 0.6963 229.38
√ √

25.49 0.9037 42.37
√ √

16.66 0.6950 241.91
√ √

22.58 0.8445 47.87
√ √ √

26.04 0.9054 38.96

Consequently, we verified two aspects through the ablation study. First, inputs ad-
ditionally obtained by CAM enabled ADCARB of CAM-FRN to utilize the additional
information of flare sufficiently and efficiently. CAM provides additional information about
the flare region, which highlights the flare-damaged areas within the feature. This enables
ADCARB to effectively extract and restore damaged areas. The evidence for this is as
follows: in an ablation study, applying ADCARB and self-attention alone without using
CAM resulted in worse performance than applying CAM and ADCARB together. Second, it
was experimentally proven that using CAM, ADCARB, and self-attention module together
may be effective for posterior distribution inference for restoring clean images.

Next, we input the restored images into the segmentation network and tested them
according to the combination of modules. To compare the performance with respect to
the combination of the modules, the evaluation metrics of the semantic segmentation
performance according to the combination of modules are shown in Tables 8 and 9.
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Table 8. Performance evaluation metrics of the semantic segmentation test results for the images in
which a lens flare is removed for the syn-flare CamVid dataset (unit: %).

Modules CamVid (2-Fold)

CAM ADCARB Self-
Attention Class Acc Pixel Acc mIoU

48.18 83.98 46.21
√

49.67 85.92 48.72
√

66.20 93.92 69.87
√

54.67 88.69 55.35
√ √

67.18 94.25 71.02
√ √

56.66 89.61 58.08
√ √

66.78 94.19 70.54
√ √ √

67.34 94.33 71.26

Table 9. This table presents the performance evaluation metrics of the semantic segmentation test
results for the images in which a lens flare is removed for the syn-flare KITTI dataset (unit: %).

Modules KITTI (2-Fold)

CAM ADCARB Self-
Attention Class Acc Pixel Acc mIoU

40.16 75.65 40.88
√

29.87 65.22 28.35
√

53.57 89.67 58.46
√

37.10 73.69 37.11
√ √

54.12 90.22 59.40
√ √

33.52 70.58 32.81
√ √

53.78 89.84 58.68
√ √ √

54.73 90.62 60.27

Tables 8 and 9 demonstrate the greatest performance improvement; the best perfor-
mance was exhibited for all metrics. Accordingly, the metrics of object detection perfor-
mance of semantic segmentation increase along with the restoration performance evaluation
metrics according to the combination of modules. Tables 10 and 11 present IoU metrics
per class in which IoU metrics of each class were improved according to the restoration
performance evaluation metrics, as analyzed in Tables 8 and 9.

Next, we conducted an ablation study for numerically analyzing the semantic seg-
mentation performance for the combination of inputs created with CAM. As shown in
Tables 12 and 13, we measured the semantic segmentation performance according to the
combination of additional inputs based on class accuracy, pixel accuracy, and mIoU. An
image IF damaged by a flare was used in all combinations as a default, and we compared
the performance of the combinations when the inputs proposed in our method were all
used and unused.
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Table 10. IoU performance evaluation metrics by class for the semantic segmentation test results of
the images in which a lens flare is removed for the syn-flare CamVid dataset (unit: %).

Modules CamVid (2-Fold)

CAM ADC-
ARB

Self-
Atten-
tion

Sky Buil-
ding Pole Road Pave-

ment Tree
Sign
Sym-
bol

Fence Car Pede-
strian

Bicy-
clist

Aver-
age

87.79 68.20 26.53 82.50 44.63 56.74 31.29 35.85 49.95 11.40 13.42 46.21
√

89.24 71.52 28.43 84.73 46.61 59.25 33.60 38.98 56.53 13.04 13.95 48.72
√

92.81 84.51 44.42 95.66 78.64 74.95 53.95 57.81 82.65 49.06 54.06 69.87
√

89.80 76.13 32.89 88.95 57.02 62.58 39.78 45.92 66.69 24.26 24.81 55.35
√ √

92.84 85.26 45.73 96.14 80.31 75.70 55.48 59.08 83.59 51.17 55.96 71.02
√ √

90.53 77.34 35.01 90.09 59.45 64.07 42.52 47.25 71.68 28.56 32.41 58.08
√ √

92.96 85.25 45.28 95.97 79.86 75.33 55.20 59.00 83.02 50.86 53.24 70.54
√ √ √

92.94 85.39 45.90 96.24 80.54 76.03 56.10 59.92 83.74 51.58 55.49 71.26

Table 11. This table presents the IoU of each class for the semantic segmentation test results of the
images in which a lens flare is removed for the syn-flare KITTI dataset (unit: %).

Modules KITTI (2-Fold)

CAM ADC-
ARB

Self-
Atten-
tion

Sky Buil-
ding Pole Road Pave-

ment Tree
Sign
Sym-
bol

Fence Car Pede-
strian

Bicy-
clist

Aver-
age

62.23 51.26 21.68 65.90 41.59 60.73 36.94 26.41 52.91 15.35 14.75 40.88
√

42.91 44.31 16.33 38.64 23.34 53.99 28.02 18.11 29.82 7.24 4.12 28.35
√

73.84 73.68 33.01 87.72 64.34 81.66 50.05 42.21 75.73 28.19 32.71 58.46
√

53.45 50.26 21.22 58.15 35.63 61.37 35.77 24.32 48.45 11.20 8.36 37.11
√ √

74.59 74.53 33.78 88.60 65.59 82.78 50.31 42.07 76.34 30.72 34.03 59.40
√ √

41.53 46.92 16.56 58.56 34.08 57.31 25.93 20.54 44.22 6.98 8.26 32.81
√ √

74.27 73.94 33.39 87.98 64.95 82.15 49.83 41.75 75.37 28.63 33.23 58.68
√ √ √

74.43 75.93 33.87 89.02 66.69 83.21 50.50 43.14 77.50 31.92 36.78 60.27

Table 12. Comparison of the semantic segmentation performance for the combination of additional
inputs obtained from CAM for syn-flare CamVid dataset (unit: %).

Additional Inputs CamVid (2-Fold)

IF IAF MF IMF Class Acc Pixel Acc mIoU
√

67.26 94.33 71.13
√ √

67.25 94.29 71.12
√ √

67.24 94.26 71.06
√ √

67.17 94.32 71.09
√ √ √

67.32 94.32 71.23
√ √ √

67.12 94.29 71.05
√ √ √

67.11 94.32 71.15
√ √ √ √

67.34 94.33 71.26
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Table 13. Comparison of the semantic segmentation performance for the combination of additional
inputs obtained from CAM for syn-flare KITTI dataset (unit: %).

Additional Inputs KITTI (2-Fold)

IF IAF MF IMF Class Acc Pixel Acc mIoU
√

54.70 90.71 60.06
√ √

54.69 90.55 59.95
√ √

54.52 90.46 59.85
√ √

54.69 90.64 60.12
√ √ √

54.54 90.69 60.06
√ √ √

54.70 90.54 60.11
√ √ √

54.64 90.62 60.15
√ √ √ √

54.73 90.62 60.27

According to Table 12, there was no significant difference in the performance according
to the combination of inputs. However, class accuracy, pixel accuracy, and mIoU were the
highest when all inputs were used, as we proposed. In particular, when mIoU was increased
by 0.13% then when only IF was used, and mIoU was 0.03% higher than the combination
of IF, IAF, and MF which demonstrated the second highest mIoU. And Table 13 similarly
shows that there is no significant difference in performance based on the combination of
inputs. However, as suggested, using all inputs resulted in the highest-class accuracy, pixel
accuracy, and mIoU. Specifically, mIoU was 0.21% higher than using IF alone and 0.12%
higher than the combination of IF, IAF, and IMF.

(b) Performance Comparisons with and without Variational Inference

In this section, we conducted an ablation study to verify the effects of adopting
variational inference on the performance of our proposed method. The reparameterization
trick structure for variational inference was removed between the encoder and decoder of
CAM-FRN; then, latent spaces from the encoder that were applied with self-attention and
not applied with self-attention were fused to be delivered to the decoder. Additionally, the
experiment was conducted using L1 loss and L2 loss, without using the Kullback–Leibler
divergence (KL divergence), which was applied to reduce the difference between true
posterior distribution and posterior distribution inferred by the inference network, or the
reconstruction loss used for variational inference.

Tables 14 and 15 present the evaluation metrics of the restoration performance for
syn-flare CamVid dataset and syn-flare KITTI dataset. When L1 loss was used in place of
variational inference, both datasets showed PSNR and SSIM did not exhibit a noticeable
performance difference, but the FID score exhibited a significant difference. The FID score
is a metric for evaluating the quality of images generated by the GAN structure, which uses
a discriminator to calculate the distance between the distribution of the generated image
and the distribution of the ground-truth image. The reason for using variational inference
was to generate images that were semantically similar to the ground-truth image as much
as possible in the decoder by sampling a significant latent space through the inference of
the posterior distribution, which considered the ground-truth image. In other words, we
aim to minimize the difference between the inferred posterior distribution q∅(z|ICF) and
the true posterior distribution p(z|I) as shown in Equation (16). Therefore, Tables 14 and 15
show that using variational inference can result in a better performance in terms of the
FID score.
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Table 14. Comparison of the restoration performance when variational inference is used and when
L1 and L2 losses replace variational inference for syn-flare CamVid dataset.

Loss
CamVid (2-Fold)

PSNR SSIM FID

w/o variational inference, use L1 loss 27.58 0.9238 50.76
w/o variational inference, use L2 loss 26.41 0.9188 51.63

w variational inference 27.95 0.9290 36.41

Table 15. This table compares the restoration performance when variational inference is used and
when L1 and L2 losses replace variational inference for syn-flare KITTI dataset.

Loss
KITTI (2-Fold)

PSNR SSIM FID

w/o variational inference, use L1 loss 25.58 0.9070 55.23
w/o variational inference, use L2 loss 24.61 0.9014 60.09

w variational inference 26.04 0.9054 38.96

When L2 loss is used instead of variant inference, similar results are yielded to the
analysis using L1 loss when compared with using variant inference. Similarly, the FID score
was significantly reduced when using variant inference, and as discussed above, using
variant inference can lead to better performance in terms of FID score.

As shown in Tables 16 and 17, the same performance improvements in semantic
segmentation were demonstrated in restoration. We can see that class accuracy, pixel
accuracy, and mIoU are highest when using variational inference.

Table 16. Comparison of the semantic segmentation performance when variational inference is used
and when L1 and L2 losses replace variational inference for syn-flare CamVid dataset (unit: %).

Loss
CamVid (2-Fold)

Class Acc Pixel Acc mIoU

w/o variational inference, use L1 loss 65.92 93.74 69.48
w/o variational inference, use L2 loss 65.99 93.73 69.38

w variational inference 67.34 94.33 71.26

Table 17. This table compares the semantic segmentation performance for the restored images when
variational inference is used and when L1 and L2 losses replace variational inference for syn-flare
KITTI dataset (unit: %).

Loss
KITTI (2-Fold)

Class Acc Pixel Acc mIoU

w/o variational inference, use L1 loss 52.78 89.29 57.71
w/o variational inference, use L2 loss 52.83 89.39 57.80

w variational inference 54.73 90.62 60.27

(c) Performance Comparisons According to Mask Considering Loss

For the next comparative experiment, we evaluate the semantic segmentation perfor-
mance and image restoration performance for the two cases of considering the flare region
and not considering the flare region in the proposed loss equation. For image-to-image
translation, we used content loss [42] and style loss [42] based on VGG-19. Content loss and
style loss were applied to the result of multiplying a flare region mask to the final output
image and to the ground-truth image. Furthermore, the lens flare region was considered
for the losses utilizing a discriminator; the image restoration performance was improved by
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making it difficult for the discriminator to discriminate whether the flare region is ground
truth by focusing on the flare region. Accordingly, we expected CAM-FRN to concentrate
more on the flare region for removal. We experimentally proved that our hypothesis is
valid, as shown in Tables 18–21.

Table 18. Comparison of the restoration performance when a mask is considered and not considered
in the loss for syn-flare CamVid dataset.

Loss
CamVid (2-Fold)

PSNR SSIM FID

w/o mask 21.96 0.8686 44.48
w mask 27.95 0.9290 36.41

Table 19. This table compares the restoration performance when a mask is considered and not
considered in the loss for syn-flare KITTI dataset.

Loss
KITTI (2-Fold)

PSNR SSIM FID

w/o mask 21.68 0.8483 61.78
w mask 26.04 0.9054 38.96

Table 20. Comparison of the semantic segmentation test performance when a mask is considered
and not considered in the loss for syn-flare CamVid dataset (unit: %).

Loss
CamVid (2-Fold)

Class Acc Pixel Acc mIoU

w/o mask 66.38 94.09 70.16
w mask 67.34 94.33 71.26

Table 21. This table compares the semantic segmentation test performance when a mask is considered
and not considered in the loss for syn-flare KITTI dataset (unit: %).

Loss
KITTI (2-Fold)

Class Acc Pixel Acc mIoU

w/o mask 52.46 88.75 57.26
w mask 54.73 90.62 60.27

Tables 18 and 19 are analyzed with respect to the restoration results. When the loss
considering a mask is used, PSNR and SSIM were improved, respectively, compared
with when not used. Further, the FID score was also significantly decreased. These
results demonstrate that considering the lens flare region and the entire image together
significantly improves performance. Segmentation performance was also improved along
with the restoration performance. According to Tables 20 and 21, when the loss considering
a mask was used, class accuracy, pixel accuracy, and mIoU all increased, respectively,
compared with when not used.

(2) Comparisons of Proposed Method and the State-of-the-Art Methods

We compared our proposed lens flare removal method with the previously proposed
methods of Qiao et al. [23] and Wu et al. [9]. However, research has been insufficiently
conducted owing to the difficulties of a lens flare removal task. Therefore, we addition-
ally adopted several networks that were similar to our research purpose to compare the
performance.

The proposed method used a GAN-based learning method utilizing a discriminator,
wherein an image with a flare undergoes image-to-image translation to a clean image
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without flare. Therefore, we compared our proposed model with Pix2Pix [37] and Cycle-
GAN [50], which have been commonly proposed for image-to-image translation. Lastly, we
compared the performance against FFANet [22] and MPRNet [21] proposed for dehazing
and deraining, respectively. Dehazing and deraining tasks aim to remove artifacts covering
the objects in an image owing to environmental factors, which are similar to the lens flare
removal task, which removes artifacts generated in the presence of a strong light source
in the surrounding. In particular, hazing was similar to a lens flare artifact generated by
light scattering, and veiling glare, which affects contrast within an image and causes the
image to become hazy; therefore, we compare our proposed method with the networks de-
signed for dehazing considering they were deemed effective in removing lens flare artifacts.
Raining was similar to light streaks that radiated from a light source among various lens
flare artifacts. We compared our proposed method with MPRNet, which was considered
effective in restoring the image details covered by light streaks. Figures 11 and 12 show the
restoration results of the proposed method and previously explained methods.
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for the syn-flare CamVid dataset. (a) Restoration result of the method proposed by Qiao et al.;
(b) restoration result of the method proposed by Wu et al.; (c) restoration result of Pix2Pix, one of
image-to-image translation methods; (d) restoration result of CycleGAN; (e) restoration result of
FFANet proposed for dehazing; and (f) restoration result of MPRNet proposed for deraining. The
last image is the lens flare removal result of our proposed method.
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Figure 12. This figure compares the restoration results of the proposed method and state-of-the-art
methods for the syn-flare KITTI dataset: (a) restoration result of the method proposed by Qiao et al.;
(b) restoration result of the method proposed by Wu et al.; (c) restoration result of Pix2Pix, one of
image-to-image translation methods; (d) restoration result of CycleGAN; (e) restoration result of
FFANet proposed for dehazing; and (f) restoration result of MPRNet proposed for deraining. The
last image is the lens flare removal result of our proposed method.

The method proposed by Qiao et al. [23] effectively removes reflection artifacts where
the flare region is seen; however, their method was proven ineffective in removing lens
flare artifacts generated through the image. As shown in Figures 11a and 12a, large
regions of a flare within the image were not effectively removed throughout the image,
and the restoration result was poorer than our proposed method. The method proposed
by Wu et al. [9] demonstrated a better performance than [23]; however, lens flare was not
completely removed. As shown in Figure 11b, this method could not restore the details of
the boundary between the road and sidewalk, or the details of people riding a bicycle. And
in Figure 12b, the artifacts overlaid on the pedestrian are not completely removed.

Next, we analyzed the restoration results of Pix2Pix and CycleGAN, which were pro-
posed for image-to-image translation. Pix2Pix was far more outstanding than CycleGAN,
considering the translation and execution from flare image to clean image and vice versa
was not sufficiently trained. Conversely, the restoration results of Pix2Pix were visually
more outstanding where the conditions of the ground-truth image were directly given
to the discriminator. Compared with the proposed CAM-FRN, the restoration results of
Pix2Pix did not adequately restore the details of the boundary between road and sidewalk,
and light streaks of flare were remaining.

Lastly, our proposed method was compared with FFANet and MPRNet proposed for
dehazing and deraining, respectively. Compared with the previously compared models,
these models demonstrated a far more outstanding performance visually. MPRNet was
effective in removing light streaks; however, it did not accurately restore the details of roads.
FFANet successfully restored the image that became hazy by a flare to a clean original
image, but flare artifacts were not perfectly removed. In contrast, our proposed method
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successfully restored the details of roads while adequately removing flare artifacts with
outstanding performance.

Tables 22 and 23 present the numerical performance evaluation metrics according to
the results of restoring images synthesized with a lens flare of each method. Among various
models, the PSNR, SSIM, and FID scores of our proposed model were the best. FFANet
demonstrated the second-highest performance, where PSNR and SSIM were similar to our
method; however, the FID score was approximately 30 points higher than our proposed
method. Based on such results, the distance difference of the feature maps extracted from
inception v3 network [49] was smaller in the proposed CAM-FRN than FFANet, and the
result image was closer to the ground-truth image.

Table 22. Comparison of the restoration performance of the proposed method and state-of-the-art
methods for syn-flare CamVid dataset.

Method
CamVid (2-Fold)

PSNR SSIM FID

Qiao et al. [23] 17.53 0.6020 238.20
Wu et al. [9] 19.17 0.8174 104.97
Pix2Pix [37] 24.78 0.8685 139.10

CycleGAN [50] 13.53 0.6613 309.68
FFANet [22] 27.61 0.9178 77.88
MPRNet [21] 23.48 0.8842 125.03

Proposed 27.95 0.9290 36.41

Table 23. This table compares the restoration performance of the proposed method and state-of-the-
art methods for syn-flare KITTI dataset.

Method
KITTI (2-Fold)

PSNR SSIM FID

Qiao et al. [23] 18.58 0.7121 192.92
Wu et al. [9] 19.89 0.7543 86.52
Pix2Pix [37] 22.66 0.8314 119.59

CycleGAN [50] 14.07 0.6571 238.81
FFANet [22] 25.64 0.9048 72.13
MPRNet [21] 22.43 0.8715 120.41

Proposed 26.04 0.9054 38.96

Figures 13 and 14 show the semantic segmentation test results for the images restored
by our proposed method, the previously proposed method for flare removal, image-to-
image translation methods, and the methods for dehazing and deraining. Overall, seg-
mentation performance improved tremendously as the restoration performance improved.
The method proposed by Qiao et al. [23] was ineffective in removing lens flare artifacts
generated throughout the image, as in the restoration result, thus also exhibiting poor
segmentation results. The method proposed by Wu et al. [9] effectively removed lens flare
artifacts generated through the image compared with the method proposed in [23], but as
shown in the segmentation results in Figure 13b, the details of the road, sidewalk boundary,
and the person riding the bike were not properly restored, which contradicts the restoration
results in Figure 11b, and the pedestrian was not detected at all in Figure 14b.
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of Pix2Pix and CycleGAN, which were proposed for image-to-image translation. The res-
toration result of Pix2Pix was more outstanding than that of CycleGAN; which is in line 
with the restoration result, and the segmentation test result of the image restored by 
Pix2Pix was more outstanding than CycleGAN. However, Pix2Pix could not remove lens 
flare artifacts perfectly; road or people riding a bicycle were not properly detected de-
pending on the restoration results, as shown in the enlarged part in Figures 13 and 14. 

Figure 13. Semantic segmentation test results of the image restored by the proposed method and
state-of-the-art methods for the syn-flare CamVid dataset. (a) Segmentation result of the image
restored by the method of Qiao et al.; (b) segmentation result of the image restored by the method of
Wu et al.; (c) segmentation result of the image restored by Pix2Pix, one of image-to-image translation
methods; (d) segmentation result of the image restored by CycleGAN; (e) segmentation result of
the image restored by FFANet proposed for dehazing; and (f) the segmentation result of the image
restored by MPRNet proposed for deraining. The last image shows the segmentation result of the
image from which a lens flare is removed by our proposed method.

Next, the segmentation test results were analyzed according to the restoration result
of Pix2Pix and CycleGAN, which were proposed for image-to-image translation. The
restoration result of Pix2Pix was more outstanding than that of CycleGAN; which is in line
with the restoration result, and the segmentation test result of the image restored by Pix2Pix
was more outstanding than CycleGAN. However, Pix2Pix could not remove lens flare
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artifacts perfectly; road or people riding a bicycle were not properly detected depending
on the restoration results, as shown in the enlarged part in Figures 13 and 14.
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Figure 14. This figure shows the semantic segmentation test results of the images restored by the
proposed method and state-of-the-art methods for the syn-flare KITTI dataset: (a) segmentation result
of the image restored by the method of Qiao et al.; (b) segmentation result of the image restored by the
method of Wu et al.; (c) segmentation result of the image restored by Pix2Pix, one of image-to-image
translation methods; (d) segmentation result of the image restored by CycleGAN; (e) segmentation
result of the image restored by FFANet proposed for dehazing; and (f) segmentation result of the
image restored by MPRNet proposed for deraining. The last image shows the segmentation result of
the image from which a lens flare is removed by our proposed method.

Lastly, we compared the segmentation performance of FFANet and MPRNet. The
segmentation result of the images restored by FFANet in Figures 13e and 14e, visually
showed a greater segmentation improvement compared with (a)–(d), which are the results
of the previous methods. As presented in Tables 24 and 25, the class accuracy, pixel accuracy,
and mIoU were lower than that of the proposed method. Additionally, as shown in the
enlarged part in Figure 13e, the proposed method detected the shape of a bicyclist object
more effectively compared with other methods. When the pedestrian class in the enlarged
part of Figure 14e and the enlarged part of the proposed method are compared, the proposed
method detected the shape of the pedestrian more effectively. The segmentation result
of the images restored by MPRNet in Figure 13f demonstrated a noticeable performance
improvement compared with other methods, as in Figure 14e; however, the class accuracy,
pixel accuracy, and mIoU were 6.49%, 2.99%, and 8.91% lower than that of the proposed
method. In the segmentation result of the image restored by MPRNet shown in Figure 14f,
the pedestrian was not detected at all. Class accuracy, pixel accuracy, and mIoU are 5.31%,
4.63%, and 7.3% lower than the proposed method, respectively. Tables 26 and 27 present
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the IoU of each class in the semantic segmentation result of the images restored by each
method. As analyzed above, the proposed method demonstrates the best performance in
terms of IoU per class.

Table 24. This table compares the semantic segmentation performance of the images restored by the
proposed method and state-of-the-art methods for syn-flare CamVid dataset (unit: %).

Method
CamVid (2-Fold)

Class Acc Pixel Acc mIoU

Qiao et al. [23] 39.53 79.24 36.26
Wu et al. [9] 59.98 90.54 61.19
Pix2Pix [37] 54.79 88.71 54.70

CycleGAN [50] 43.82 80.95 40.95
FFANet [22] 65.01 92.81 67.73
MPRNet [21] 60.85 91.34 62.35

Proposed 67.34 94.33 71.26

Table 25. This table compares the semantic segmentation performance of the images restored by the
proposed method and state-of-the-art methods for syn-flare KITTI dataset (unit: %).

Method
KITTI (2-Fold)

Class Acc Pixel Acc mIoU

Qiao et al. [23] 36.28 68.20 34.49
Wu et al. [9] 46.96 84.23 48.33
Pix2Pix [37] 44.33 81.41 44.95

CycleGAN [50] 34.92 70.01 34.25
FFANet [22] 52.98 89.17 57.57
MPRNet [21] 49.42 85.99 52.97

Proposed 54.73 90.62 60.27

Figure 15 shows the results of extracting Grad-CAM for the bicyclist class when the
original CamVid image was input in DeepLabV3+ [7], and when Grad-CAM [51] for the
bicyclist class and the images restored by CAM-FRN and other methods were input in
DeepLabV3+. And Figure 16 shows the results of extracting Grad-CAM for the pedestrian
class when the original KITTI image is input in DeepLabV3+ [7], and when Grad-CAM [51]
for the pedestrian class and the images restored by CAM-FRN and other methods are input
in DeepLabV3+. After analyzing each figure, we found that our proposed method is the
closest to the original image’s Grad-CAM.

Based on the analysis of the previous ablation study and comparative analysis with
existing methods, we can provide the following reasons for the better performance of our
proposed method compared with existing methods. Existing methods suffer from the
problem of not removing artifacts properly when there are complex flare artifacts or there is
a severe level of flare in the input image [9,21–23]. To solve these problems, we used CAM
to provide additional information about the flare regions to the network, and reflected it in
the loss function to successfully restore the parts covered by flare. Furthermore, we were
able to consider composite flare artifacts. By doing so, we could achieve better restoration
results compared with other methods, and based on the restoration results, we can see that
the performance of our final goal, semantic segmentation, is also better than that of the
existing restoration methods.
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Table 26. Comparisons of the proposed and the state-of-the-art methods for syn-flare CamVid dataset (unit: %).

Method

CamVid (2-Fold)

Sky Building Pole Road Pavement Tree Sign
Symbol Fence Car Pedestrian Bicyclist Average

Original

PSPNet [2] 88.65 83.97 10.23 96.22 79.43 74.78 40.68 61.49 74.98 36.66 46.59 63.06

ICNet [3] 91.74 83.40 9.07 96.26 77.92 74.42 36.07 53.94 76.99 34.76 43.29 61.63

CGNet [44] 92.21 83.55 18.27 96.85 79.58 75.02 37.10 52.25 79.11 38.95 43.02 63.26

DeepLabV3+ [7] 93.67 88.50 52.44 97.46 85.40 80.23 64.51 67.96 87.58 64.50 65.94 77.11

Without
restoration

PSPNet [2] 84.66 67.14 5.16 80.23 41.37 55.84 21.72 31.11 39.12 5.84 6.41 39.87

ICNet [3] 85.46 61.84 4.05 75.51 33.53 51.11 10.27 23.05 26.28 2.35 3.38 34.36

CGNet [44] 86.80 60.12 8.23 73.33 33.67 48.16 9.59 19.41 25.62 2.17 2.56 33.61

DeepLabV3+ [7] 85.62 66.85 24.97 78.53 39.68 57.50 32.25 31.54 42.13 10.10 12.46 43.78

With restoration
use

DeepLabV3+

Qiao et al. [23] 86.28 61.54 14.39 78.95 32.01 47.43 12.25 21.91 33.97 6.87 3.78 36.26

Wu et al. [9] 91.62 78.59 36.67 90.44 63.56 67.08 46.68 47.19 74.90 37.83 38.49 61.19

Pix2Pix [37] 91.67 75.32 30.51 89.04 54.25 63.17 37.65 41.71 65.33 27.75 25.31 54.70

CycleGAN [50] 84.79 64.03 21.85 77.59 37.11 54.67 25.31 29.54 38.94 8.13 8.54 40.95

FFANet [22] 92.42 82.95 43.52 93.36 71.96 71.93 53.51 56.57 80.59 47.70 50.13 67.73

MPRNet [21] 91.23 79.78 38.29 91.43 68.36 68.05 45.99 51.04 72.49 38.84 40.33 62.35

Proposed 92.94 85.39 45.90 96.24 80.54 76.03 56.10 59.92 83.74 51.58 55.49 71.26
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Table 27. Comparisons of proposed and the state-of-the-art methods for syn-flare KITTI dataset (unit: %).

Method

KITTI (2-Fold)

Sky Building Pole Road Pavement Tree Sign
Symbol Fence Car Pedestrian Bicyclist Average

Original

PSPNet [2] 73.43 79.75 18.10 90.12 70.37 87.76 45.83 47.89 78.22 33.03 35.00 59.96

ICNet [3] 73.48 76.49 12.01 88.48 64.71 86.37 34.48 38.60 72.84 11.80 20.96 52.75

CGNet [44] 72.35 74.94 14.70 87.90 62.74 84.93 27.48 35.69 69.23 8.13 4.88 49.36

DeepLabV3+ [7] 76.15 81.66 37.25 91.54 73.57 88.72 56.53 51.02 82.89 44.90 48.85 66.65

Without
restoration

PSPNet [2] 50.83 50.98 12.07 61.65 48.98 56.10 31.04 29.70 48.34 9.87 7.49 37.00

ICNet [3] 45.62 47.17 7.06 65.33 43.80 51.99 21.04 23.37 38.02 2.92 4.04 31.85

CGNet [44] 40.62 42.41 7.42 63.67 42.51 47.58 15.35 21.73 29.12 1.81 1.55 28.52

DeepLabV3+ [7] 60.47 51.57 25.72 74.20 51.81 59.45 39.94 32.45 55.70 15.81 16.53 43.97

With restoration
use

DeepLabV3+

Qiao et al. [23] 60.01 45.91 17.10 58.20 39.49 52.11 28.11 21.37 41.16 7.92 8.01 34.49

Wu et al. [9] 68.46 67.04 24.32 73.34 53.47 73.99 41.56 32.68 62.76 16.74 17.22 48.33

Pix2Pix [37] 68.41 62.14 22.01 70.36 51.86 70.01 36.54 28.85 56.94 12.74 14.61 44.95

CycleGAN [50] 48.27 44.80 18.33 64.32 40.40 53.54 26.23 24.02 41.17 7.29 8.36 34.25

FFANet [22] 73.08 73.81 32.41 85.79 61.65 81.01 49.14 41.06 74.55 26.08 34.69 57.57

MPRNet [21] 67.81 67.07 30.52 80.93 56.82 75.84 46.23 37.88 67.60 23.89 28.12 52.97

Proposed 74.43 75.93 33.87 89.02 66.69 83.21 50.50 43.14 77.50 31.92 36.78 60.27
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Figure 15. Grad-CAM for the bicyclist class when segmentation is performed using the restoration
results according to the input combination in the syn-flare CamVid dataset: (a) the method of Qiao
et al.; (b) the method of Wu et al.; (c) Pix2Pix which is one of image-to-image translation methods;
(d) CycleGAN; (e) FFANet which is proposed for dehazing; and (f) MPRNet which is proposed for
deraining. The last image is the case of our proposed method.
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Figure 16. This figure shows the Grad-CAM for the pedestrian class when segmentation is performed
using the restoration results according to the input combination in the syn-flare KITTI dataset: (a) the
method of Qiao et al.; (b) the method of Wu et al.; (c) Pix2Pix which is one of image-to-image
translation methods; (d) CycleGAN; (e) FFANet which is proposed for dehazing; and (f) MPRNet
which is proposed for deraining. The last image is the case of our proposed method.

We calculate the p-values using the values of the proposed method and the second-best
method among all semantic segmentation evaluation metrics in Table 24. We conducted
t-test [52] and measured Cohen’s d-values [53] to demonstrate the significance of the
performance difference between the two methods. As shown in Figure 17, the p-value
of pixel accuracy is 0.5× 10−1, which indicates that a null hypothesis is rejected at the
confidence interval of 95% and that the two methods have a difference in performance
for pixel accuracy at the confidence interval of 95%. Subsequently, we measured Cohen’s
d-value for pixel accuracy, and the result was 6.7363. The criteria for Cohen’s d-value
are divided into 0.2, 0.5, and 0.8, which are distinguished into small, medium, and large
effective sizes, respectively. Our Cohen’s d-value is greater than 0.8, which indicates that
the performance difference between our method and the second-best method in terms of
pixel accuracy is significantly large in the large effective size.
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(FFANet + DeepLabV3+)’s pixel accuracy in the syn-flare CamVid dataset.

4.4. Computational Cost of Proposed Method

Lastly, we measured the parameters (Params), floating point operations (FLOPs), and
multiply accumulate (MACs) to compare the computational costs of the proposed and
previous methods. In Table 28, CycleGAN and Pix2Pix exhibited the lowest and highest
number of parameters, respectively, while the proposed method exhibited the second
highest number of parameters. In terms of MACs and FLOPs, [9] exhibited the lowest
value while MPRNet had the highest value. The proposed method had the fourth highest
value, thereby indicating that our method is heavy in terms of parameters but fourth most
efficient in terms of computation amount. As shown in Tables 14–16 and 25–27, excluding
FFANet and MPRNet, which demonstrated the second and third best performance besides
the proposed method, lens flare removal performance was poor for the syn-flare CamVid
dataset and the syn-flare KITTI dataset, which also resulted in poor segmentation perfor-
mance. In other words, the proposed method has the most efficient lens flare removal and
semantic segmentation performance compared with other methods (FFANet, MPRNet, and
proposed method).

Table 28. Comparison of the measurement of parameters, MACs, and FLOPs between previous
methods and the proposed method.

Method Params (M) MACs (G) FLOPs (G)

Qiao et al. [23] 7.18 908.74 454.37
Wu et al. [9] 31.03 219.16 109.58
Pix2Pix [37] 54.40 725.85 362.93

CycleGAN [50] 6.07 227.46 113.73
FFANet [22] 44.56 1150.13 575.07
MPRNet [21] 36.37 1446.64 723.32

Proposed 39.46 773.95 386.98

5. Discussion
5.1. Limitations of Proposed Method

In this section, we analyze the failure cases of our proposed method when removing
lens flare artifacts and related problems. The most serious problem is that not only the
lens flare artifacts generated by the light source are removed, but also the light source is
removed. A light source is an object that does not need to be removed because it is not an
unnatural artifact. The problem occurs owing to the difficulty of finding datasets having
images with lens flare and clean images without lens flare as input and label, respectively,
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and we must consider the semantic segmentation task for images captured by a frontal-
viewing camera of a vehicle. It is challenging to find images that have a segmentation label
while simultaneously considering a lens flare. Therefore, to solve the problem of insufficient
data, we configured datasets by synthesizing lens flare artifacts into semantic segmentation
datasets built by images captured using a frontal-viewing camera of a vehicle, such as
CamVid [19] and KITTI [20]. Therefore, the target image being restored by removing a lens
flare does not include a light source such as the sun, streetlight, and vehicle headlight, and
the image generated by CAM-FRN is trained to remove a light source.

If Figure 18a,d,g,j become the input of CAM-FRN, the results shown in Figure 18c,f,i,
are produced owing to a lack of information on a light source in Figure 18b,e,h,k, and
the parts where a light source is located are placed with other pixel values. The model is
trained to create images that are similar to the original images in Figure 18b,e,h,k, which is
one of the problems to be resolved for lens flare removal. For removing lens flare artifacts
more appropriately, further research is needed on finding methods to remove only the flare
region by distinguishing a light source and the flare region.
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Figure 18. Failure cases of CAM-FRN in each dataset. In the syn-flare CamVid dataset, (a,d) are the
input image of each row, (b,e) are the ground-truth image of each row, and (c,f) are the prediction
image of CAM-FRN of each row. In the syn-flare KITTI dataset, (g,j) are the input image of each
row, (h,k) are the ground-truth image of each row, and (i,l) are the prediction image of CAM-FRN of
each row.

Subsequently, we analyzed the cases of adequate and inadequate restoration of our
proposed model. The first and second rows in Figure 19 show the cases where CAM-FRN
inadequately removed lens flare in the syn-flare CamVid dataset. In both examples, lens
flare generated on top of an object is removed, but the color of the original image is not
restored compared with the ground-truth image. In the first row in Figure 19a, a traffic
light is located close to a light source, and the intensity of a lens flare from the light source
is fairly strong; therefore, the color of the traffic light shown in the original image (b) is not
restored properly in the CAM-FRN result image in (c). In the second row in Figure 19d,
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the object is not located close to the light source as in the first case; however, a strong lens
flare completely covers a person in the enlarged part. As a result, the color of a coat on the
pedestrian in the original image (d) is not appropriately restored in the CAM-FRN result
image in (f). In the third and last rows, the lens flare is effectively removed, and the color of
an object covered by the flare is restored fairly adequately. Similar to (a) and (b), the object
is covered by lens flare in (g) and (j) in the third and fourth rows, respectively; however, the
pedestrians and the details of the building in the enlarged part are preserved adequately.
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Figure 19. Successful and unsuccessful restoration cases of CAM-FRN in the syn-flare CamVid
dataset. Images of unsuccessful restoration: (a,d) input images, (b,e) ground-truth images, and
(c,f) prediction images. Images of successful restoration: (g,j) input images, (h,k) ground-truth
images, and (i,l) prediction images.

We analyzed the cases of successfully and unsuccessfully restoring the color details of
an object behind a flare during adequate lens flare removal in the syn-flare KITTI dataset
in Figure 20. In image (a) in the first row, lens flare is formed over a building, and the
color of the building in the original image (b) is not properly restored in the CAM-FRN
image (c) where the flare is removed. In image (b) in the second row, lens flare is formed
over a building, and the paint color of the building in the original image (e) is not properly
restored in the flare removal process and is shown as gray in image (f). Similar to the first
and second rows, lens flare covers an object in images (g) and (j); however, lens flare is
effectively removed, and the color of the object behind the flare is adequately preserved.
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Figure 20. Successful and unsuccessful restoration cases of CAM-FRN in the syn-flare KITTI dataset.
Images of unsuccessful restoration: (a,d) input images, (b,e) ground-truth images, and (c,f) predic-
tion images. Images of successful restoration: (g,j) input images, (h,k) ground-truth images, and
(i,l) prediction images.

The cause of the result images in the first and second rows of Figures 19 and 20 is the
effect of lens flare on an image. Lens flare affects the contrast of an image, and a higher
intensity of lens flare reduces the contrast. Therefore, lens flare in images (a) and (d) in
Figures 19 and 20 reduces their contrast, and the intensity of lens flare is high that the
information of pixel values in the original image is severely lost. As the contrast value
increases, dark areas become darker and bright areas become brighter, thereby creating
a more evident contrast; however, the contrast between two areas becomes less in the
opposite case. Because the contrast value is adjusted in proportion to the intensity of a
pixel value, the loss of information of bright pixels before a lens flare increases as the
contrast decreases. As a result, when lens flare is generated on objects with brighter pixel
values, as shown in images (a) and (d) of Figures 19 and 20, the pixel information in the
original images (c) and (f) cannot be perfectly restored. However, in the third and fourth
rows of Figures 19 and 20, objects have relatively darker colors with low brightness or
pixel intensity, and hence, lens flare is removed while retaining their colors to a certain
extent. These limitations can adversely affect semantic segmentation, which is a pixel-wise
classification task. Therefore, there is a need for research on methods for retaining the color
and contrast of an image while removing lens flare.

5.2. Discussion of the Performance Analysis of the Proposed Method

As mentioned, we can see in Table 13 that the pixel accuracy metric is worse than the
other results. However, we focused on the highest mIoU metric when utilizing all input
images. Looking at Equation (33), pixel accuracy only considers true positives (TPs) and
false positives (FPs). However, as we can see in Equation (35), mIoU additionally considers
false negatives (FNs) and can also evaluate class misclassification, i.e., the possibility of
class misclassification exists even if pixel accuracy is higher. Based on this rationale, we
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confirm that the proposed method utilizing all the inputs with the highest mIoU shows the
best performance. In Table 16, we can see that our proposed method utilizing variational
inference has a slightly worse SSIM score compared with the other results. However,
we wanted to obtain an image with the most similar distribution of flare-free images
and CAM-FRN outputs by using variational inference rather than simply considering
the distance between pixels, as mentioned in the paper. The evaluation metric that can
show this more clearly is the FID score, and we can see that the FID score is the best when
using variational inference. We can also see in Table 17 that the proposed method using
variational inference has the best segmentation performance. From this, we confirm that
the FID score is more important than the other evaluation metrics in Table 16, and the best
performance can be obtained when utilizing variational inference like the proposed method.
In Tables 26 and 27, “Original” means the segmentation accuracies using original images
without flare, and they are the baseline accuracies. The important part of Tables 26 and 27
is the performance over the segmentation network after flare removal, which can be seen
in “With restoration use DeepLabV3+” in each table. We can see that the proposed method
of “With restoration use DeepLabV3+” has the highest performance in each table. Table 28
compares the computational cost of the proposed method with previously studied methods.
Although the proposed method does not show the best results compared with previous
studies in Table 28, the segmentation accuracies by proposed method are higher than those
by all the previous methods as shown in Tables 24–27, and we focus on the segmentation
accuracy rather than computational cost in our paper.

6. Conclusions

This study examined different methods for improving semantic segmentation per-
formance by removing lens flares from images captured by frontal-viewing cameras in
vehicles. This study is the first to solve the problem of an autonomous driving vehicle
being unable to detect objects owing to a lens flare while simultaneously conducting lens
flare removal and segmentation.

The proposed method removes a lens flare by extracting the lens flare region of an
image as a class attention map and providing additional information on lens flare artifacts
and lens flare region by creating additional inputs. Furthermore, we proposed ADCARB,
which uses multi-scale feature learning and extracts the parts damaged by a lens flare as
a mask for learning, which significantly improves the lens flare removal performance by
using such a block. Additionally, we created an image that was as similar to the ground-
truth image as possible through variational inference; self-attention was applied to the
estimated latent space by executing variational inference to ensure global information was
considered. The lens flare region mask obtained using CAM was reflected in style loss,
content loss, adversarial loss, and discriminator loss, which improved the image quality
by removing the lens flare with a focus on the flare region. When applying CAM-FRN to
the segmentation task on the restored images, it demonstrated considerable performance
improvements compared with previous restoration models [9,21,22], achieving a class
accuracy of 67.34%, pixel accuracy of 94.33%, and mIoU of 71.26% on the syn-flare CamVid
dataset. Additionally, CAM-FRN exhibited superior performance on the syn-flare KITTI
dataset, attaining a class accuracy of 54.73%, pixel accuracy of 90.62%, and mIoU of 60.27%.

As mentioned in Section 5, CAM-FRN has the problem of removing flare artifacts
while also removing light sources, and it has the problem of failing to restore the original
color due to contrast being ruined by flare. In our follow-up research, we plan to design
a restoration network that can accurately remove only lens flare by separating the light
source and lens flare regions to address these issues. Furthermore, we plan to address the
problem of being unable to restore color due to contrast being ruined properly. Our final
goal is to work on an end-to-end network design that combines lens flare removal and
semantic segmentation steps.
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