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Abstract: Routing a person through a traffic road network presents a tension between selecting a
fixed route that is easy to navigate and selecting an aggressively adaptive route that minimizes
travel time. In this paper, we propose a novel routing framework that strikes a balance between
adaptability and simplicity. Specifically, we propose to create non-aggressive adaptive routes that
seek the best of both these extremes in the navigation world. These selected routes still adapt to
changing traffic conditions, but we limit the number of adjustments made en route. This framework
improves the driver experience by providing a continuum of options between saving travel time and
reducing navigation stress. We design strategies to model single and multiple route adjustments, and
investigate numerous techniques to solve these models for better route selection. To alleviate the
intractability of handling real-life traffic data, we devise efficient algorithms with easily computable
lower and upper bounds. We finally perform computational experiments on our algorithms to
demonstrate the benefits of limited adaptability in terms of reducing the travel time.

Keywords: adaptive routing; dynamic programming; directed acyclic graphs; shortest paths

MSC: 90C39

1. Introduction

Traffic congestion is an unprecedented problem in many major cities in the United
States. The number of vehicles on road has increased significantly in recent years, leading
to increased congestion. In year 2021, there were an estimated 282 million registered
vehicles in the United States, up from 225 million in year 2000 [1]. According to data
from the Census Bureau [2], there were about 1.8 vehicles available per US household
in year 2016. These number of vehicles per household varies depending on the city and
its population density. For example, in Austin, Texas, the population in year 2016 was
925 K [3] and there were 1.9 vehicles per household in year 2016 [2]. Figure 1a,b show that
the number of vehicles per household and population density in Austin has been steadily
increasing in recent years [1,3]. In year 2000, the average number of vehicles per household
in Austin was 1.43. This number has increased by 48.2% in the past 23 years, up to 2.12
in year 2023. On the other hand, the population in Austin is also expected to increase by
at least 30% by year 2030 [4]. This will lead to an even greater increase in the number of
vehicles on road, and will further exacerbate the problem of traffic congestion. According
to an INRIX report [5] and a congestion statistics report [6], due to poor traffic conditions,
Austin-area commuters wasted about 41 h on average in traffic in year 2020 (3 hours more
than in year 2012), the seventh-highest of any city in the country, thereby increasing the
overall travel time by 22%. The problem of traffic congestion is expected to worsen due to
future predicted population growth, which can lead to significant increase in travel times,
decreased fuel efficiency, and increased air pollution. It can also have a negative impact on
businesses and city’s economy. One way to alleviate traffic congestion is to use efficient
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routing strategies. These strategies can help drivers find the fastest and most efficient
routes to their destinations, and help drivers avoid congested areas.

(a) Number of vehicles per household in the city of Austin, TX

(b) Austin population growth

Figure 1. (a) Average vehicle density per household in Austin city. (b) Population history of
Austin city.

There are various strategies and tools currently available to develop optimized routes.
For example, Google Maps and Waze route in different ways and serve a different clientele.
Google Maps creates a fixed static route which is easier to navigate but could be potentially
slow. On the other extreme, Waze provides an aggressive adaptive route. A snapshot
of routes generated between a specific source–destination pair using Google Maps and
Waze are shown in Figure 2a and Figure 2b, respectively. It is to be noted that the latter
recommends a recourse path en route to the destination, which is depcited in Figure 2b
with teal color. An (aggressive) adaptive route by Waze is a potentially faster route that
dynamically changes and adapts to traffic conditions, but the frequent route changes may
lead to high stress in navigation. To alleviate this issue and create a middle-ground that
seeks the best of both extremes, in this work, we develop a methodology to compute
non-aggressive adaptive routes.

A non-aggressive adaptive route adapts dynamically to changing traffic conditions
but in a limited way—for example, by allowing only a certain number of route-shifts at
critical junctures. These routes seek to provide both low travel times and low stress of
navigation. At the start of the route, the conditions on the roads are only known through a
probability distribution. As the driver approaches closer to individual intersections, specific
road conditions are observed and the routes are adjusted to minimize the travel time.

The contributions of this paper can be summarized as follows:



Mathematics 2023, 11, 3639 3 of 25

1. We propose a novel routing framework for routing in road networks with limited
adaptability. We call this non-aggressive adaptive routing, aiming to seek both low
travel times and low navigation stress compared to traditional routing technologies
like Google Maps and Waze;

2. We design several strategies to model and compute such non-aggressive adaptive
routes, based on where and how the route adjustments are performed;

3. We develop exact mathematical methods such as complete enumeration and dynamic
programming algorithms for each of the strategies. We also derive easily computable
bounds that can be used to solve these algorithms efficiently for large networks;

4. We evaluate and analyze the performance of proposed algorithms using the Austin
road network as an example and demonstrate the benefits of limited adaptability.

The remainder of the paper is organized as follows. In Section 2, we discuss the related
work on adaptive routing. In Section 3, we present our proposed routing strategies and
the respective solution methodologies. In Section 4, we develop efficient bounds to render
our algorithms tractable for large sized networks, and also present the computational
evaluation of our proposed tractable algorithms using Austin road network. Finally,
Section 5 concludes our work by summarizing the key contributions and pointing to future
research directions.

(a) Google maps: An example (b) Waze: An example

Figure 2. Sample routes generated using Google Maps and Waze on the Austin road network.

2. Related Work

Consider the case of routing a driver from point s to t in a traffic network. Adaptive
routing is a stochastic shortest path problem where the edge costs are unknown until arriving
at one of its endpoints. The decision to continue or change the route is based on the traffic
condition at that edge. Croucher [7] appears to be the first to have studied a model of this
type but in a fairly restricted setting. In that model, a first-choice arc is selected for every node,
there is some probability that the arc fails, and, if it fails, a second outgoing arc is selected at
random. Andretta and Romeo [8] considered a similar model with the choice of recourse
computed in an optimal way. In their work, a recourse path to the destination is computed for
every edge, assuming that the edge is inactive. In our work, if an edge has traffic congestion,
it is still considered active with greater time delay for traversal. Additionally, if an edge is
selected for observation and found to be congested, the driver may revert to a recourse route.
Unlike the past literature, our work describes a sequence of models in which the driver may
observe between one and all edges for traffic congestion.

Another widely studied variant of adaptive routing is the Canadian Traveller Problem
(CTP). CTP was first defined in [9] (see also [10]). The goal is to find an optimal routing
policy that guarantees a good route under uncertain road conditions, minimizing the



Mathematics 2023, 11, 3639 4 of 25

expected cost of travel. In this problem, the arc costs are deterministic but unknown and,
once a road is considered blocked, it remains blocked forever. In general, CTP is known
to be #P-hard and there has been no significant progress on approximation algorithms.
Several variants to this problem, such as k−CTP, k−vital edges problem, and deterministic
and stochastic recoverable CTP, are defined in [11]. Polychronopoulos and Tsitsiklis [12]
presented another variation to CTP where the realization of arc costs is learned progressively
as the graph is traversed. They provided dynamic programming algorithms to solve models
with both dependent and independent arc costs and they established that the running time
of these algorithms is exponential in number of arcs. There are few other algorithms that
address the adaptive routing problem with time-dependent and stochastic costs [13–16].
In our work, we assume independent arc costs and limit the number of re-routing decisions,
as opposed to CTP and its variants. We also present tractable dynamic programming
algorithms which are solvable in polynomial time.

Special cases of CTP were studied by Nikolova and Karger [17] to explore exact solu-
tions. They explained the connection of CTP to Markov Decision Processes (MDPs) solvable
in polynomial time. They also presented polynomially solvable dynamic programming
algorithms for a standard version of CTP on directed acyclic graphs (DAGs). It is important
to note that our problem is a generic version of CTP. CTP can be derived by equating the
number of re-routing decisions to the total number of edges in the network, which, in one
of our proposed routing strategies, we call the parallel model.

The research presented here complements these works by examining non-aggressive
adaptive routing, identifying an optimal yet small number of decision points on a route.
The focus of our work is to derive the benefits of adaptive routing but with a limited
number of adaptations to reduce driving stress. To this end, we propose, compare, and con-
trast several models for defining the decision points, and develop tractable algorithms to
compute the optimal routing policy.

Many other recent extensions to adaptive routing have been proposed, primarily
focusing on route planning under uncertainty for different modes of transportation [18–20],
route planning under uncertainty with optimal information location points [21], stability
of transportation networks [22], stochastic time-dependent networks [23], maximizing the
probability of on-time arrival [24], application to online decision problems [25], and com-
petitive analysis of CTP [26].

Another emerging field in adaptive routing models is the development of connected
automated vehicles (CAV) technology [27,28], vehicle-to-vehicle (V2V) commnuication [29],
and automonous vehicle tracking [30,31], with a variation to consider user preferences [32].
CAVs can provide real-time information about the individual position and velocity of vehicles,
which can be used to develop more accurate and efficient routing algorithms. However, in this
work, we focus on macroscopic routing models with high-level traffic congestion and delay
information. We believe that, by understanding macroscopic traffic patterns, we can develop
better routing algorithms for both CAVs and non-CAVs in the future.

3. Model Description

Consider a directed acyclic network G = (N, A), with specified source s and destina-
tion t nodes, as shown in Figure 3a. We believe that directed acyclic networks (DAGs) are
a more general representation of real-world traffic networks and best suited to generate
practical recommendations to users. On a city road network G, N represents the set of road
intersections and A represents the set of roads or edges connecting those intersections. We
consider potential traffic congestion on the edges given by the set A.

We examine a simple model of traffic congestion where each edge is in either a high
traffic state or low traffic state, independently of other edges. The traffic probability
distribution is assumed to be known ahead of time. Every edge e = (a, b) is defined
by three inputs: e = (c, d, p), where cab represents the travel time under low traffic, dab
represents the travel time due to high traffic, and pab represents the probability of low
traffic on the edge. This is visually depicted in Figure 3b.
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(a) A sample network (b) Traffic Model

Figure 3. Two-state traffic model. Blue nodes represent the source and destination nodes. Red solid
line indicates the possibility of high traffic on an edge, for example, edge (a, b) with probability
1− pab and travel time dab. Black solid line indicates the possibility of low traffic with probability pab
and travel time cab.

Given these inputs, we determine the edges to be observed for traffic congestion and
the corresponding adjustment routes should high traffic states be observed on those edges.
We call an edge selected for observation and for possible route adjustment an adjustment
edge. When the driver reaches the source node of an adjustment edge and observes low
traffic, they proceed through the edge. If the driver observes high traffic, then they take an
adjustment route. To simplify the exposition, we start with a single route adjustment and
then provide several extensions to multiple route adjustments. A detailed discussion on
these route adjustment strategies is presented in the following subsections.

We begin with a simple example presented in Figure 4. This example shows that
the optimal adjustment edge need not be a part of the fixed non-adaptive shortest route.
The shortest path from s to t can be computed as s → b → t with expected travel time
10. If edge (a, t) is observed, there is 20% chance of low traffic with zero travel time.
However, there is 80% chance of high traffic at edge (a, t), and, if the driver adjusts the
route to a → b → t, then the travel time is 11. With the single observation of edge (a, t),
the expected travel time is 11 · 0.8 + 0 · 0.2 = 8.8, which is lower than the expected travel
time without any adjustments (which is equal to 10). An interesting aspect of this example
is that the edge (a, t) is not on the fixed (no-adjustment) shortest path.

Figure 4. An example to show that an adjustment edge need not be a part of the fixed shortest route.
Edge weights represent expected travel time with probability of low traffic assumed to be 1.0 on all
the edges in dotted line, except edge (a, t) in solid line. At edge (a, t), we assume pat as 0.2, cat as 0,
and dat as 100, with expected travel time 80.
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3.1. Single Route Adjustment Policy

A pictorial representation of a single route adjustment policy is shown in Figure 5,
where the route from source s to destination t has a single adjustment edge, (u, v). In this
policy, the driver takes the shortest path from s to u, and observes edge (u, v) for traffic. In
case of low traffic, driver continues on the edge (u, v) and takes the shortest path from v to
t. In case of high traffic, driver takes an adjustment route from u to t. The overall expected
travel time for any adjustment edge (u, v) is computed using

E1[(u, v)] = E[s→ u] + puv(cuv +E[v→ t]) + (1− puv)E[u→ t|duv], (1)

where E[i→ j] represents the expected travel time of a no-adjustment shortest path from
node i to j, E[i → j|dik] represents the expected travel time of a no-adjustment shortest
path given edge (i, k) is congested, and E1[(u, v)] represents the expected travel time of
a single route adjustment policy using the adjustment edge (u, v). One could determine
the adjustment edge that yields minimal expected travel time, arg min(u,v) E1[(u, v)], using
complete enumeration, given by

Z1[s→ t] =min
{
E[s→ t];

min
(u,v)∈A

E1[(u, v)]
}

, (2)

where Z1[s → t] represents the overall minimum expected travel time from s to t due to
the single-route adjustment policy. An equivalent integer programming formulation is
presented in Appendix A.1.

Figure 5. Single-route adjustment policy. Solid black line represents an edge and solid red line
represents an adjustment edge. Grey dotted lines represent the shortest paths between nodes, with
expected travel time as edge lengths.

3.2. Multiple Route Adjustment Policy

There are several potential models for multiple route adjustments. We present and
explore three different strategies that we call the series unforced, series forced, and parallel mod-
els. We develop dynamic programming-based algorithms to solve these route adjustment
models, and, finally, compare their performances.

3.2.1. Series Unforced Model

Let us start with two adjustment edges as shown in Figure 6, which follow what we
call a series unforced model. In this model, once the driver makes a route adjustment, he
loses the potential to observe the other edges for traffic. Say, for instance, the source s
and destination t nodes are connected by a highway. The driver enters the highway from
source s, and, upon arriving at u1, observes edge (u1, v1) for traffic. In case of high traffic,
driver adjusts the route to reach the destination t and never gets to make any other route
adjustments. In case of low traffic, driver traverses the edge (u1, v1), and continues on
the highway until u2 where they observe edge (u2, v2) for traffic. In case of high traffic at
(u2, v2), driver adjusts the route to destination t. In case of low traffic, driver traverses the
edge (u2, v2), and continues on the highway to reach the destination t.

Let Esuf[(u1, v1), (u2, v2)] denote the expected travel time with respect to the adjustment
edges (u1, v1) and (u2, v2). One could find a pair of edges that yield a minimum expected
travel time through complete enumeration, arg min(u1,v1)(u2,v2)

Esuf[(u1, v1), (u2, v2)], using
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Esuf[(u1, v1), (u2, v2)] =

E[s→ u1]+(1− pu1v1)E[u1 → t|du1v1 ]

+pu1v1

{
cu1v1 +E[v1 → u2] + pu2v2 [cu2v2 +E[v2 → t]]

+ (1− pu2v2)E[u2 → t|du2v2 ]

}
. (3)

The first summand is the expected travel time from s to u1. The second summand is the
expected travel time from u1 to t if high traffic is observed at (u1, v1). The third summand
is the travel time from u1 to t if low traffic is observed at (u1, v1). This third summand
includes within it a version of (1), computing the travel time from v1 to t that is dependent
on the observation of traffic at edge (u2, v2). Similarly, one could express the computation
of the minimum expected travel time with k adjustment edges recursively with the equation
for k− 1 adjustment edges as follows. Let Zsuf

k [s→ t] denote the overall minimum expected
travel time when k adjustment edges are observed for traffic. We can then write

Zsuf
1 [s→ t] = Z1[s→ t], and

Zsuf
k [s→ t] = min

{
Zsuf

k−1[s→ t];

min
(u,v)∈A

[
E[s→ u] + (1− puv)E[u→ t|duv]

+ puv(cuv + Zsuf
k−1[v→ t])

]}
. (4)

The basecase Zsuf
1 [s → t] represents the minimum expected travel time for a single ad-

justment edge. The recursive equation to compute Zsuf
k [s → t] includes a Zsuf

k−1[s → t] in
case it is unnecessary to observe k edges. The second term involves picking the first edge
(u, v) for observation, and the remaining length of the paths to destination is based on the
probabilities of that observation.

Figure 6. Series unforced model with two adjustment edges

The recursive equation (4) yields a dynamic programming algorithm for computing
the best set of k adjustment edges. The dynamic programming algorithm reduces the
computational effort from O(mk), roughly what is required with complete enumeration
using (3), to O(mk), where m = |A|. This brings significant computational savings,
though, as is discussed later, this is still insufficient for practical applications.

3.2.2. Series Forced Model

An alternate model with two adjustment edges, which we call series forced, is depicted
in Figure 7. In this model, the driver is forced to observe all the adjustment edges; hence,
they have the potential to adjust the route at every such adjustment edge. Consider the
same instance where the driver enters the highway from source s and observes an edge
(u1, v1) for traffic. In case of high traffic, driver adjusts the route but returns to the next
source node u2 to observe adjustment edge (u2, v2). In case of low traffic, driver traverses
the edge (u1, v1), and continues on the highway until u2, where they observe edge (u2, v2)
for traffic. In case of high traffic at (u2, v2), driver adjusts the route to destination t. In
case of low traffic, driver traverses the edge (u2, v2), and continues on the highway to
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reach the destination t. In this model, the driver always observes all the adjustment edges,
irrespective of the traffic states of previous adjustment edges.

Let Esf[(u1, v1), (u2, v2)] denote the expected travel time if adjustment edges (u1, v1)
and (u2, v2) are selected. One could find a pair of adjustment edges that yield a minimum
expected travel time, which is given by arg min(u1,v1)(u2,v2)

Esf[(u1, v1), (u2, v2)] through
complete enumeration using

Esf[(u1, v1), (u2, v2)] ={
E[s→ u1] + pu1v1 [cu1v1 +E[v1 → u2]] + (1− pu1v1)E[u1 → u2|du1v1 ]

}
+

{
pu2v2 [cu2v2 +E[v2 → t]] + (1− pu2v2)E[u2 → t|du2v2 ]

}
. (5)

Figure 7. Series forced model with two adjustment edges.

The first summand in (5) is the expected travel time from s to u2. This first summand
includes within it a version of (1), computing the travel time from s to u2 as dependent on
the observation of edge (u1, v1). The second summand is the expected travel time from u2
to t with traffic state observed at (u2, v2). Thus, (5) can be expressed as a recursive equation
for k adjustment edges as follows:

Zsf
1 [s→ t] = Z1[s→ t], and

Zsf
k [s→ t] = min

{
Zsf

k−1[s→ t];

min
(u,v)∈A

[
Zsf

k−1[s→ u] + puv(cuv +E[v→ t]) + (1− puv)E[u→ t|duv]
]}

, (6)

where Zsf
k [s → t] denotes the overall minimum expected travel time obtained using the

series forced model when k adjustment edges are observed for traffic. Though inefficient,
an integer programming formulation for this model is presented in Appendix A.2.

An interesting fact is that there is no evidence to show the superiority of one series
model over the other, in terms of reducing expected travel time. To illustrate this, let us
consider the example network in Figure 8a. The edge weights (c, d, p) represent the travel
time under low traffic, the travel time under high traffic, and the probability of low traffic,
respectively. The expected travel time of the series models are computed using (4) and
(6), and the resulting best adjustment edges are highlighted in in red in Figure 8b and
Figure 8c, respectively. We obtain Zsuf

2 [s → t] as 34.8 and Zsf
2 [s → t] as 35.6, with the

series unforced model performing better than the series forced model. Let us now consider
another example network as in Figure 9a. We follow the same routine to obtain Zsuf

2 [s→ t]
as 55.4 and Zsf

2 [s → t] as 50.8. In this network, the series forced model performs better
than the series unforced model. This shows that the performances of the series models
are incomparable, and they depend on the network instance considered. Generally, one
may think that the series forced model should perform better, because it has the ability
to execute several observations in sequence as opposed to just one. However, as these
examples demonstrate, it may be too expensive to execute the secondary observations,
when unnecessary, as compared to the series unforced model.
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(a) An example network to compare series models with two adjustment edges.

(b) Solution: Series Unforced Model. (c) Solution: Series Forced Model.

Figure 8. Example 1—Expected travel time comparison to show series unforced model is better. Red
solid lines represent the two best adjustment edges for the respective models. Edge weights e = (c, d, p)
depict c[e] as travel time under low traffic, d[e] as travel time due to high traffic, and p[e] as the probability
of low traffic on the edge e.

(a) Another example network to compare series models with two adjustment edges.

(b) Solution: Series Unforced and Forced Models.

Figure 9. Example 2—Expected travel time comparison to show series forced model is better. Red
solid lines represent the two best adjustment edges for the respective models. Edge weights e =

(c, d, p) depict c[e] as travel time under low traffic, d[e] as travel time due to high traffic, and p[e] as the
probability of low traffic on the edge e.
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3.2.3. Parallel Model

Another model with two adjustment edges, which we call parallel, is depicted in
Figure 10. In this model, the driver has the potential to observe edges and make route
adjustments, in both original and adjustment routes. Consider the same instance where
the driver enters the highway from source s and observes an edge (u11, v11) for traffic. In
case of low traffic, driver traverses the edge (u11, v11), and continues on the highway until
u12, where they observe edge (u12, v12) for traffic. In case of high traffic at (u11, v11), driver
adjusts the route to reach node u22 and observes an edge (u22, v22) for traffic in the adjusted
route. In case of high traffic at the second adjustment edge ((u12, v12) or (u22, v22)), driver
adjusts the route to destination t. In case of low traffic, driver traverses the edge, and
continues on the route to reach the destination t. Unlike series models, here driver observes
different adjustment edges based on the traffic state of previous adjustment edges.

Figure 10. Parallel model with two adjustment edges.

Let Epll[(u11, v11), (u12, v12), (u22, v22)] denote the expected travel time if adjustment
edges (u11, v11), (u12, v12), and (u22, v22) are selected. One could find a set of adjustment
edges that yield a minimum expected travel time, arg min(u11,v11),(u12,v12),(u22,v22)

Epll[(u11, v11),
(u12, v12), (u22, v22)], through complete enumeration using

Epll[(u11, v11), (u12, v12), (u22, v22)] = E[s→ u11]

+ pu11v11 [cu11v11 +

{
E[v11 → u12] + pu12v12 [cu12v12 +E[v12 → t]]

+ (1− pu12v12)E[u12 → t|du12v12 ]

}
]

+ (1− pu11v11)

{
E[u11 → u22|du11v11 ] + pu22v22 [cu22v22 +E[v22 → t]]

+ (1− pu22v22)E[u22 → t|du22v22 ]

}
(7)

The first summand is the expected travel time from s to u11. The second and third
summands together represent the weighted sum of expected travel times from u11 to t,
with weights representing the traffic state at (u11, v11). The second summand includes
within it a version of (1), computing the travel time from v11 to t as dependent on the
observation of edge (u12, v12). The third summand includes within it a modified version of
(1), the difference being the first term, where we compute the expected travel time from u11
to u22 given that high traffic is observed at (u11, v11).

Let Zpll
k [s → t] denote the overall minimum expected travel time from s to t with

k adjustment edges. It is to be noted that the driver’s policy may include more than k
adjustment edges, but only k edges will be observed in total as they travel from s to t. We
now express (7) as recursive equations as follows:
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Zpll
1 [s→ t] = Z1[s→ t],

Zpll
k [s→ t] = min

{
Zpll

k−1[s→ t];

min
(u,v)∈A

[
E[s→ u] + puv(cuv + Zpll

k−1[v→ t])

+ (1− puv)Zpll
k−1[u→ t|{duv}]

]}
, and

Zpll
1 [g→ i|D] = min

{
min

(g,v)∈A−D

[
pgv(cgv +E[v→ i])

+ (1− pgv)E[g→ i|D ∪ {dgv}]
]
,

min
(u 6=g,v)∈A

[
E[g→ u|D] + puv(cuv + E[v→ i])

+ (1− puv)E[u→ i|{duv}]
]}

,

Zpll
k [g→ i|D] = min

{
min

(g,v)∈A−D

[
pgv(cgv + Zpll

k−1[v→ i])

+ (1− pgv)Zpll
k−1[g→ i|D ∪ {dgv}]

]
,

min
(u 6=g,v)∈A

[
E[g→ u|D] + puv(cuv + Zpll

k−1[v→ i]) (8)

+ (1− puv)Zpll
k−1[u→ i|{duv}]

]}
,

where Zpll
k [g→ i|D] denotes the minimum expected travel time from any g to i, given that

high traffic is observed at all edges in set D = {dg,j1 , dg,j2 , . . . , dg,jk−1
}.

It is easy to see that the series models are special cases of parallel model, i.e., a solution
to a series model can be expressed as a solution to the corresponding parallel model. Hence,
the parallel model always outperforms the series models in terms of reducing travel time,
but at the expense of more computational effort. It also follows that a parallel model
reduces to a Canadian Traveller Problem (CTP) on directed acyclic graphs (DAGs) when all
edges in the network are observed for traffic, i.e., k equals |A|. Thus, the proposed dynamic
programming algorithm can be used to solve CTP on DAGs. The dynamic programming
algorithm proposed in [17] differs from our algorithm mainly by the following two points:

(1) In [17], an optimal outgoing edge is computed upon arrival at a node as the graph
is traversed. This is different from our dynamic programming approach, where we
pre-compute both the original and adjustment routes to the destination;

(2) The algorithm [17] iterates over all the edges in the network, whereas our algorithm is
made to stop when observing more adjustment edges no longer reduces the expected
travel time.

4. Large Scale Tractable Algorithms

We use the Austin road network (Figure 11) to evaluate the performance of our
proposed dynamic programming algorithms. The travel times c on the edges are known
(Source URL: http://austintexas.gov/department/gis-and-maps/gis-data, accessed on
2 November 2018), and we assume the probability of low traffic and delay offsets based
on the street type, as depicted in Figure 11. The Austin road network consists of about
100,000 edges and it is impractical to find the best adjustment edges, even in a single
route adjustment policy, through complete enumeration. For example, it takes about
6 h to find a single adjustment edge for the example source–destination pair shown in
Figure 11. Inspired by the traditional branch and bound techniques, we develop easily
computable lower and upper bounds to first prune the network and then eliminate many

http://austintexas.gov/department/gis-and-maps/gis-data
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possibilities of adjustment edges, in order to reduce the overall problem size and create
truly tractable algorithms.

Figure 11. Map of the Austin Road Network. Brown-colored edges assume p = 0.4 and d = 5× c.
Red-colored edges assume p = 0.5 and d = 4× c. Remaining edges assume p = 0.6 and d = 3× c.
Solid blue dots represent an example source–destination pair.

4.1. Network Pruning

We first focus on developing some easily computable upper and lower bounds to
prune the network size. This improves the run time of the shortest path procedures and,
consequently, the tractability of the proposed dynamic programming algorithms.

Let ZM
k [s→ t] represent the minimum expected travel time with k adjustment edges

and any route adjustment model M.

Lemma 1. The minimum expected travel time between two nodes s and t is non-decreasing with k
adjustment edges, i.e., E[s→ t] ≥ Z1[s→ t] ≥ ZM

2 [s→ t] ≥ · · · ≥ ZM
k−1[s→ t] ≥ ZM

k [s→ t].

Proof. The recursive Equation (8) shows that Zpll
k [s → t] ≤ Zpll

k−1[s → t], for any k ≥ 2.

Recursively, we can write, Z1[s → t] ≥ Zpll
2 [s → t] ≥ · · · ≥ Zpll

k−1[s → t] ≥ Zpll
k [s → t].

To show E[s → t] ≥ Z1[s → t], consider an edge (u, v) on the shortest path from s to t.
Then, the expected travel time of the shortest path, E[s→ t], can be written as

E[s→ t] = E[s→ u] + puvcuv + (1− puv)duv +E[v→ t]. (9)

A term-by-term comparison of (9) with (1) shows that E[s → t] is an upper bound to
E1[(u, v)] because going through a high traffic edge (u, v) is one potential routing for
E[u → t | duv]. Thus, E[s → t] is an upper bound to Z1[s → t]. Using similar logic,
the lemma can be proven for the series models as well.

Let us assume that there exists an optimal policy π that includes edge (i, j) on one
of the paths generated and let Zk(π) be the corresponding expected travel time. A lower
bound on the travel time of any path going through edge (i, j) can be given by

LBP(i, j) = cs→i + cij + cj→t. (10)

where ci→j represents the shortest path from i to j with edge lengths c, i.e., assuming low
traffic on all the edges.
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Let ρ = min
(u,v)∈A

{puv, 1 − puv}. In other words, the probabilities of low traffic are

bounded away from (0, 1) by at least ρ. Under a single route adjustment, every path occurs
in policy π with probability of at least ρ. Under k route adjustments, every path occurs
with probability of at least ρk. This leads to the following lemma defining a lower bound
on any policy that uses edge (i, j).

Lemma 2. Every k-route adjustment policy π that includes edge (i, j) on some path has Zk(π) ≥
ρkLBP(i, j) + (1− ρk)cs→t.

Proof. Any path with edge (i, j) occurs with probability at least ρk and has length at least
LBP(i, j). All other paths in the policy π have length at least cs→t.

Now, we are ready to present our theorem on network pruning.

Theorem 1. An edge (i′, j′) with ρkLBP(i′, j′) + (1− ρk)cs→t > E[s → t], for any k ≥ 1, will
not be on any path in the optimal routing policy.

Proof. Let π denote the optimal routing policy. By Lemma 2, we have Zk(π) ≥ ρkLBP(i′, j′)+
(1− ρk)cs→t. If Zk(π) > E[s→ t], by Lemma 1, π is not an optimal routing policy. Hence,
the edge (i′, j′) will not be on any path in the optimal policy π.

Using the result of Theorem 1, one can prune the network by eliminating several
possibilities. The network pruning procedure is also summarized in Algorithm 1. For the
example source-destination pair considered, and for k = 1 and ρ = 0.4, the network is
pruned to 17,328 edges.

Algorithm 1 Network Pruning

Require: The following are input parameters:
1. Network which denotes city network with latitutde and longitude of nodes,

and edges connecting those nodes;
2. Edge weights e = (c, d, p) include free flow times c[e], low traffic probability p[e]

and travel time due to high traffic d[e];
3. Latitude and longitude of source s and destination t, and maximum number of

adjustment edges k.
Ensure: prunedNetwork

1: function networkPruning(Network, s, t, k):
2: Create an empty network, prunedNetwork
3: Compute the expected travel time due to shortest path from s to t as E[s→ t]
4: for every edge (i, j) ∈ Network do
5: Compute lower bound LB(i, j) = ρkLBP(i, j) + (1− ρk)cs→t, using (10) and Lemma 2
6: if LB(i, j) ≤ E[s→ t] then
7: Append edge (i, j) to prunedNetwork
8: end if
9: end for

10: return prunedNetwork

4.2. Critical Adjustment Edges

In addition to pruning the network size, it is also possible to obtain a set of critical
adjustment edges that contain the optimal solution (as summarized in Algorithm 2). For
this, we employed different lower bounds, as discussed in this section.

Lemma 3. An optimal single route adjustment policy π with adjustment edge (u, v) has Z1(π) ≥
LBA1(u, v), where LBA1(u, v) is given by
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LBA1(u, v) = E[s→ u] + cuv +E[v→ t].

Proof. By definition, we have duv > cuv. Edge (u, v) is an optimal adjustment edge, so
using (1) and (2) yields

Z1(π) = min
(u′ ,v′)∈A

E1[(u′, v′)]

= E[s→ u] + puv(cuv +E[v→ t]) + (1− puv)E[u→ t|duv].

We proceed to complete the proof by contradiction.
Assume E[u → t | duv] < cuv + E[v → t]. Consider a policy π′ that uses no

adjustment edge and the routeE[s→ u] is followed by E[u→ t|duv]. Thus, the policy π′ has
lengthE[s→ u]+E[u→ t|duv] < E[s→ u]+ puv(cuv +E[v→ t])+ (1− puv)E[u→ t|duv],
implying π is not optimal. This yields E[u→ t|duv] ≥ cuv +E[v→ t].

Using this result, we have

Z1(π) = E[s→ u] + puv(cuv +E[v→ t]) + (1− puv)E[u→ t|duv]

≥ E[s→ u] + puv(cuv +E[v→ t]) + (1− puv)(cuv +E[v→ t])

≥ E[s→ u] + (cuv +E[v→ t]).

We define the following variables to simplify our notations in the remainder of the
section. One can easily pre-compute these quantities and use it in subsequent computations.

∫ [j] = max
(a,b)∈A

(1− pab)
[
dab +E[b→ j]−E[a→ j|dab]

]
,

§[j] = max
(a,b)∈A

(1− pab)
[
E[a→ j|dab]

]
,

α = max
(a,b)∈A

pab and β = max
j∈N
∫ [j]. (11)

Lemma 4 (Series unforced model). An optimal route adjustment policy π with edge (u, v) as its
first adjustment edge has Zsuf

k (π) ≥ LBAsuf
k (u, v), where LBAsuf

k (u, v), is given by

LBAsuf
k (u, v) = E[s→ u] + cuv +E[v→ t]− ∫ [t]

k−2

∑
k′=0

αk′ . (12)

Proof. Because π is an optimal policy and edge (u, v) is the first adjustment edge, using (4),
we have

Zsuf
k (π) = E[s→ u] + (1− puv)E[u→ t|duv] + puv(cuv + Zsuf

k−1[v→ t]).

We show E[u → t|duv] ≥ cuv + Zsuf
k−1[v → t], by contradiction. Assume E[u →

t|duv] < cuv + Zsuf
k−1[v → t]. Consider a policy π′ that uses no adjustment edges and

the route E[s → u] is followed by E[u → t|duv]. Thus, the policy π′ has length E[s →
u] +E[u→ t|duv] < E[s→ u] + (1− puv)E[u→ t|duv] + puv(cuv + Zsuf

k−1[v→ t]), implying
π is not optimal. Thus, E[u→ t|duv] ≥ cuv + Zsuf

k−1[v→ t].
Using this result, we have

Zsuf
k (π) = E[s→ u] + (1− puv)E[u→ t|duv] + puv(cuv + Zsuf

k−1[v→ t])

≥ E[s→ u] + (1− puv)(cuv + Zsuf
k−1[v→ t]) + puv(cuv + Zsuf

k−1[v→ t])

≥ E[s→ u] + cuv + Zsuf
k−1[v→ t]. (13)
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This is a valid yet intractable lower bound to Zsuf
k (π). To alleviate this issue, we derive

a lower bound for Zsuf
k−1[v→ t]. The potential savings in travel time from i to j due to the

single-route adjustment policy (using (1) and (4)) are given by

E[i→ j]− Z1[i→ j] ≤ E[i→ j]− min
(u,v)∈A

(E[i→ u] + puv(cuv +E[v→ j])

+ (1− puv)E[u→ j|duv])

≤ max
(u,v)∈A

(
E[i→ u] + puv(cuv +E[v→ j])

+ (1− puv)(duv +E[v→ j])

− (E[i→ u] + puv(cuv +E[v→ j])

+ (1− puv)E[u→ j|duv])
)

≤ max
(u,v)∈A

(1− puv)
[
duv +E[v→ j]−E[u→ j|duv]

]
= ∫ [j]. (14)

It is important to note that (14) holds for all route adjustment models since Zsuf
1 [i→

j] = Zsf
1 [i→ j] = Zpll

1 [i→ j] = Z1[i→ j].
The potential savings in travel time from i to j due to the two-route adjustment policy

are given by

Z1[i→ j]− Zsuf
2 [i→ j] ≤ max

(u,v)∈A

(
E[i→ u] + puv(cuv +E[v→ j])

+ (1− puv)E[u→ j|duv]

− (E[i→ u] + puv(cuv + Z1[v→ j])

+ (1− puv)E[u→ j|duv])
)

≤ max
(u,v)∈A

puv(E[v→ j]− Z1[v→ j])

≤ max
(u,v)∈A

puv∫ [j] = α.∫ [j].

The penultimate inequality is due to (14). Combining this result with (13) for k = 3,
we obtain

Zsuf
3 (π) ≥ E[s→ u] + cuv + Zsuf

2 [v→ t]

≥ E[s→ u] + cuv + Z1[v→ t]− α∫ [t]
≥ E[s→ u] + cuv +E[v→ t]− ∫ [t]− α∫ [t].

Extending this logic to any k yields

Zsuf
k (π) ≥ E[s→ u] + cuv +E[v→ t])− ∫ [t]

k−2

∑
k′=0

αk′ .

Lemma 5 (Series forced model). An optimal route adjustment policy π with edge (u, v) as its
last adjustment edge has Zsf

k (π) ≥ LBAsf
k (u, v), where LBAsf

k (u, v) is given by

LBAsf
k (u, v) = E[s→ u]− ∫ [u]− (k− 2)β + cuv +E[v→ t]. (15)

Proof. Because π is an optimal policy and edge (u, v) is the last adjustment edge, using (6),
we have

Zsf
k (π) = Zsf

k−1[s→ u] + puv(cuv +EE[v→ t]) + (1− puv)E[u→ t|duv].
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Given edge (u, v) is the optimal adjustment edge, we show E[u → t|duv] ≥ cuv +
E[v→ t] following the same procedure as in the proof of Lemma 4.

Assume E[u→ t|duv] < cuv +E[v→ t]. Consider a policy π′ that uses only the first
k− 1 adjustment edges of π in the same sequence and does not use the last adjustment edge.
In other words, the route Zsf

k−1[s→ u] is followed by E[u→ t|duv]. Thus, the policy π′ has
length Zsf

k−1[s → u] + E[u → t|duv] < Zsf
k−1[s → u] + (1− puv)E[u → t|duv] + puv(cuv +

E[v→ t]), implying π is not optimal. Thus, E[u→ t|duv] ≥ cuv +E[v→ t], given (u, v) is
the last adjustment edge.

Using this result, we have

Zsf
k (π) = Zsf

k−1[s→ u] + puv(cuv +E[v→ t]) + (1− puv)E[u→ t|duv]

≥ Zsf
k−1[s→ u] + puv(cuv +E[v→ t]) + (1− puv)(cuv +E[v→ t])

≥ Zsf
k−1[s→ u] + cuv +E[v→ t]. (16)

We now proceed to obtain a tractable lower bound on Zsf
k−1[s → u]. The potential

savings in travel time from i to j due to the two-route adjustment policy using (6) are given
by

Z1[i→ j]− Zsf
2 [i→ j] ≤ max

(u,v)∈A

(
Z1[i→ j]− (Z1[i→ u] + puv(cuv +E[v→ j])

+ (1− puv)E[u→ j|duv])
)

≤ max
(u,v)∈A

(E[i→ u]− Z1[i→ u])

≤ max
(u,v)∈A

∫ [j] = β.

The penultimate inequality is due to (14). Combining this result with (16) for k = 3 yields

Zsf
3 (π) ≥ Zsf

2 [s→ u] + cuv +E[v→ t]

≥ Z1[s→ u]− β + cuv +E[v→ t]

≥ E[s→ u]− ∫ [u]− β + cuv +E[v→ t].

By extending the logic to a generic k, we obtain

Zsf
k (π) ≥ E[s→ u]− ∫ [u]− (k− 2)β + cuv +E[v→ t].

Lemma 6 (Parallel model). An optimal route adjustment policy π with edge (u, v) as its first
adjustment edge has Zpll

k (π) ≥ LBApll
k (u, v) and Zpll

k (π|D) ≥ LBApll
k (u, v), where LBApll

k (u, v)
is given by

LBApll
k (u, v) = E[s→ u] + cuv +E[v→ t]− ∫ [t]

k−2

∑
k′=0

αk′ − (k− 2)§[t]. (17)

Proof. Because π is an optimal policy and edge (u, v) is the first adjustment edge, using (8),
we have

Zpll
k (π) = E[s→ u] + (1− puv)Zpll

k−1[u→ t|{duv}] + puv(cuv + Zpll
k−1[v→ t]).

We show Zpll
k−1[u→ t|{duv}] ≥ cuv + Zpll

k−1[v→ t] by contradiction. Assume Zpll
k−1[u→

t|{duv}] < cuv + Zpll
k−1[v→ t]. Consider a policy π′ that uses the k− 1 adjustment edges of

the first adjusted route of π (in the same sequence) and does not use any other adjustment
edges. In other words, route E[s → u] is followed by Zpll

k−1[u → t|{duv}]. Thus, the
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policy π′ has length E[s → u] + Zpll
k−1[u → t|{duv}] < E[s → u] + (1− puv)Zpll

k−1[u →
t|{duv}] + puv(cuv + Zpll

k−1[v→ t]), implying π is not optimal. Thus, Zpll
k−1[u→ t|{duv}] ≥

cuv + Zpll
k−1[v→ t].

Using this result, we have

Zpll
k (π) = E[s→ u] + (1− puv)Zpll

k−1[u→ t|{duv}] + puv(cuv + Zpll
k−1[v→ t])

≥ E[s→ u] + (1− puv)(cuv + Zpll
k−1[v→ t]) + puv(cuv + Zpll

k−1[v→ t])

≥ E[s→ u] + cuv + Zpll
k−1[v→ t]. (18)

We follow the same procedure as in the proofs of Lemmas 4 and 5 to obtain a lower
bound on Zpll

k−1[v→ t]. The potential savings in travel time from i to j due to the two-route
adjustment policy using (8) are given by

Z1[i→ j]− Zpll
2 [i→ j] ≤ max

(u,v)∈A

(
Z1[i→ j]− (E[i→ u] + puv(cuv + Z1[v→ j])

+ (1− puv)Z1[u→ j|duv])
)

≤ max
(u,v)∈A

(
puv(E[v→ j]− Z1[v→ j])

+ (1− puv)(E[u→ j|duv]− Z1[u→ j|duv])
)

≤ max
(u,v)∈A

(
puv∫ [j]

)
+ max

(u,v)∈A

(
(1− puv)E[u→ j|duv]

)
= α∫ [j] + §[j].

The penultimate inequality is due to the fact that Z1[u→ j|duv] ≥ 0 and due to (14).
Similarly, the potential savings in travel time from i to j due to the three-route adjust-

ment policy are given by

Zpll
2 [i→ j]− Zpll

3 [i→ j] ≤ max
(u,v)∈A

(
puv(Z1[v→ j]− Zpll

2 [v→ j])

+ (1− puv)(Z1[u→ j|duv]− Zpll
2 [u→ j|duv])

)
≤ max

(u,v)∈A

(
puv(α∫ [j] + §[j]) + (1− puv)E[u→ j|duv]

)
≤ α2∫ [j] + §[j].

The penultimate inequality is due to Zpll
2 [u→ j|duv] ≥ 0 and Z1[u→ j|duv] ≤ E[u→ j|duv].

Using the above results in (18) for k = 4, we obtain

Zpll
4 (π) ≥ E[s→ u] + cuv + Zpll

3 [v→ t]

≥ E[s→ u] + cuv + Zpll
2 [v→ t]− α2∫ [t]− §[t]

≥ E[s→ u] + cuv + Zpll
1 [v→ t]− α∫ [t]− §[t]− α2∫ [t]− §[t]

≥ E[s→ u] + cuv +E[v→ t]− ∫ [t](1 + α + α2)− 2§[t].

By similar logic, we derive, for any k,

Zpll
k (π) ≥ E[s→ u] + cuv +E[v→ t]− ∫ [t]

k−2

∑
k′=0

αk′ − (k− 2)§[t].

Since Zpll
k (π|D) ≥ Zpll

k (π) by definition, LBApll
k (u, v) is a valid lower bound to

Zpll
k (π|D).

Now, we present our theorem to obtain a set of feasible adjustment edges.
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Theorem 2. An edge (u′, v′) with LBA1(u′, v′) > E[s → t] or LBAM
k (u′, v′) > ZM

k−1[s → t]
cannot be the first adjustment edge (for M being series unforced or parallel models) or the last
adjustment edge (for M being series forced model) in an optimal routing policy.

Proof. Let π be a routing policy using series unforced model and edge (u′, v′) as the first
adjustment edge.

We show that π is not optimal if LBAsuf
k (u′, v′) > Zsuf

k−1[s→ t].
If π is optimal, we have Zsuf

k (π) ≥ LBAsuf
k (u′, v′), using the result of Lemma 4. Since

LBAsuf
k (u′, v′) > Zsuf

k−1[s → t] (by assumption), we have Zsuf
k (π) > Zsuf

k−1[s → t], implying
π is not optimal. This completes our proof. Similar logic can be used along with Lemmas 5
and 6 to prove this claim for the series forced and parallel route adjustment models.

Algorithm 2 Critial Adjustment Edges

Require: The following are input parameters:
1. A road network Network with edge weights e = (c, d, p), depicting free flow times

c[e], low traffic probability p[e] and travel time due to high traffic d[e];
2. Source s, destination t and number of adjustment edges k;
3. Routing model type M, where M ∈ {Series Un f orced, Series f orced, Parallel}; and
4. Optimal expected travel time ZM

k−1[s → t] for k− 1 route adjustment policy M.
Here, recursive term ZM

k−1[s → t] = recursiveFunction(Network, s, t, k − 1, M),
from Algorithm 3 with respect to routing model M and k− 1 adjustment edges.

Ensure: Set criticalEdges
1: function f easibleEdges(Network, s, t, k, M, ZM

k−1[s→ t]):
2: Create an empty set criticalEdges
3: if k = 1 (Single route adjustment policy) then
4: for every edge (u, v) ∈ Network do
5: Compute lower bound LBA1(u, v) = E[s→ u] + cuv +E[v→ t], as in Lemma 3
6: if LBA1(u, v) ≤ E[s→ t] then
7: Append edge (u, v) to set criticalEdges
8: end if
9: end for

10: end if
11: if k > 1, Multiple route adjustment policy then
12: for every edge (u, v) ∈ Network do
13: Compute lower bound LBAM

k (u, v):
(a) If model M is Series Unforced Model, LBAsuf

k (u, v) = E[s→ u] + cuv +

E[v→ t]− ∫ [t]∑k−2
k′=0 αk′ , as in Lemma 4 using (11) and (12)

(b) If model M is Series Forced Model, LBAsf
k (u, v) = E[s → u]− ∫ [u]−

(k− 2)β + cuv +E[v→ t], as in Lemma 5 using (11) and (15)
(c) If model M is Parallel Model, LBApll

k (u, v) = E[s→ u] + cuv +E[v→
t]− ∫ [t]∑k−2

k′=0 αk′ − (k− 2)§[t], as in Lemma 6 using (11) and (17)
14: if LBAM

k (u, v) ≤ ZM
k−1[s→ t] then

15: Append edge (u, v) to set criticalEdges
16: end if
17: end for
18: end if
19: return criticalEdges

These two pre-processing algorithms for pruning the network size and eliminating
the possibilities of adjustment edges reduce the computation time from several hours
to seconds. Specifically, it takes about 10 s to prune the network from 108,000 edges to
17,328 edges and to find a set of 21 feasible edges for a single route adjustment policy,
which is depicted in Figure 12. As a result of these pruning processes, the algorithm is
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able to compute an optimal single-route adjustment policy in less than 15 s. The solution
pertaining to the example considered is presented in Figure 13.

Figure 12. Pruned network and the set of critical adjustment edges for the single-route adjustment
policy. Shaded portion in pink represents the pruned network and red solid line represents the set of
feasible adjustment edges.

Figure 13. Optimal single route adjustment policy. Red solid line represents the optimal adjustment
edge. Blue and green lines represent the non-adjusted and adjusted shortest route, respectively.

For the same source–destination pair, k = 2 and ρ = 0.16, Theorem 1 prunes the
original network to 50,628 edges and Theorem 2 yields a set of 2091 feasible adjustment
edges. The routing algorithm(s) is (are) summarized in Algorithm 3 and the solutions are
presented in Figure 14. In the final steps of Algorithm 3, we use the popular Dijkstra’s
shortest path algorithm to compute the shortest paths for original and adjusted routes.
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Algorithm 3 Non-Aggressive Adaptive Routing—Recursive Algorithm

Require: The following are input parameters:
1. A road network Network with edge weights e = (c, d, p), depicting free flow times

c[e], low traffic probability p[e] and travel time due to high traffic d[e];
2. Source s, destination t, and maximum number of adjustment edges k; and
3. Routing model type M, where M ∈ {Series Un f orced, Series f orced, Parallel}

Ensure: Optimal routing policy π that minimizes expected travel time ZM
k [s→ t]

1: function recursiveFunction(Network, s, t, k, M):
2: Create an empty set optimalAdjEdges
3: for every k′ = [1, 2, · · · , k] do
4: Compute prunedNetwork = networkPruning(Network, s, t, k′),using Algorithm 1
5: Compute set criticalEdges = f easibleEdges(prunedNetwork, s, t, k′, M, ZM

k′−1[s →
t]), using Algorithm 2

6: Find an optimal edge (u, v) that minimizes the expected travel time ZM
k′ [s→ t]:

(a) If model M is Series Unforced Model, use (4) to compute Zsuf
k′ [s→ t]

(b) If model M is Series Forced Model, use (6) to compute Zsf
k′ [s→ t]

(c) If model M is Parallel Model, use (8) to compute Zpll
k′ [s→ t]

7: if ZM
k′ [s→ t] ≤ ZM

k′−1[s→ t] then
8: Append the optimal adjustment edge (u, v) to optimalAdjEdges
9: else Terminate

10: end if
11: end for
12: Derive OriginalRoute that combines the shortest paths from source s to start

node of every adjustment edge (ui, vi) and finally to the destination t. Here,
edge (ui, vi) = optimalAdjEdges[i] is ith adjustment edge with weight cuivi , ∀i ∈
[1, 2, · · · , |optimalAdjEdges|]. Remaining edges assume expected times as their edge
weights.

13: Derive AdjustedRoute[i] for every ith adjustment edge, that combines the shortest paths
from source s to destination t via the adjustment edge following the design presented
in Section 3. Here, ith adjustment edge (ui, vi) = optimalAdjEdges[i] with weight
duivi , ∀i ∈ [1, 2, · · · , |optimalAdjEdges|]. Remaining edges assume expected times as
their edge weights.

14: return Optimal policy π =
[
OriginalRoute, optimalAdjEdges, (AdjustedRoute[i], ∀i ∈

[1, 2, · · · , |optimalAdjEdges|]
]

(a) Solution to series unforced model

Figure 14. Cont.
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(b) Solution to series forced model

(c) Solution to parallel model

Figure 14. Optimal two-route adjustment policy. Red solid line represents the optimal adjustment
edges. Blue and green lines represent the non-adjusted and adjusted shortest routes, respectively.

4.3. Performance Evaluation

We conducted several computational experiments by implementing our algorithms
in Python and solving it using MacOS 2.6 GHz Intel i5 processor with 8 GB RAM. We
summarize the performance of our algorithms with respect to two adjustment edges, using
the same example network as in Figure 12, the parallel model performs the best in terms
of reducing expected travel time. We save about 7% of travel time when compared to
the single-route adjustment policy and about 13% compared to the fixed (non-adaptive)
shortest path. Followed by parallel model, the series forced model performs better yielding
about 3% savings compared to single-route policy and 9.5% savings compared to fixed
path. Finally, the series unforced model provides the least savings, of less than 1% and 7%,
respectively.

One can achieve more savings by increasing the number of route adjustments, albeit
with a large increase in the computational effort. For the above example, the pruned
network size for two adjustment edges is about 50% of the original network size and that
of the three edges is almost the same as the original network, increasing the computational
effort drastically. Thus, a trade-off arises between the number of edges to be observed for
traffic and potential savings in expected travel times. In order to understand this trade-off,
we solved our dynamic programming algorithms for different route adjustment models,
on a smaller network consisting of 17,328 edges (given by the pruned network of the
single-route adjustment model). The graph summarizing the benefit of adaptability is
presented in Figure 15.

It can be inferred from the graph that there is not much improvement in the expected
travel time beyond two adjustment edges using the series unforced model. However, the
series forced model yields about 2% reduction in expected travel time with three adjustment
edges, after which the reduction deteriorates and tends to saturate. Similarly, the parallel
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model results in 3–5% reduction in the travel time up to seven adjustment edges, after which
the reduction saturates. Thus, we can conclude that observing more than seven edges in
this network instance, as opposed to CTP where all edges are decision points, does not
contribute significantly to the reduction in travel time. We emphasize the fact that this
summary is specific to the problem instance considered and the performance graph is likely
to vary for different instances. Thus, choosing the right adjustment strategy and the right
number of adjustments is a decision to be made by the user, based on the trade-off between
the computational effort required and the anticipated reduction in expected travel times.

Figure 15. Benefit of adaptability. This graph summarizes the expected travel time across varying
number of adjustment edges. Brown dashed and brown solid lines represent the non-adaptive and
completely adaptive expected travel times. Red, green, and blue bars represent the summaries of our
proposed series unforced, series forced, and parallel models, respectively.

5. Conclusions

In this paper, we present a new way to route traffic in large networks. Our approach is
called non-aggressive adaptive routing, and it allows the driver to make limited adjustments
to routes while still minimizing the expected travel times. We propose three different
routing strategies: series unforced, series forced, and parallel models. In every strategy, the
driver observes the optimal adjustment edges for traffic and makes route adjustments in
case of high traffic on the observing edge(s). However, where and how these adjustments
are performed is the key differentiating factor to choose the right strategy.

We develop exact mathematical models to generate an optimal routing policy from
each proposed strategy. In spite of our proposed dynamic programming algorithms being
polynomially solvable, the algorithms may get intractable for medium to large sized
networks. To alleviate this problem, we design some efficient bounds and present several
theorems, to reduce the network size and compute a reduced feasible set of adjustment
edges, leading to tractable algorithms.

Finally, we numerically assess the performance of our tractable algorithms using
single- and two-route adjustment policies, and present the benefit of adaptability graph for
an example source-destination pair in the Austin road network.

In terms of future extensions of this work, there is still scope to improve the tractability
of our algorithms by developing even tighter lower bounds. There is also scope to studying
other multiple route adjustment strategies; for example, one can consider a model where the
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driver is constrained to switching back and forth between two or more pre-computed routes.
One can extend this model to account for correlation in traffic states between different
edges. Another area of exploration will be using real-time traffic data from suitable sources,
like unmanned aerial vehicles. Detecting tassels with imagery can provide instantaneous
traffic information, in fact, factoring in the traffic information for different times of day
might yield better results. Another possible future extension is to consider microscopic
traffic factors like an individual vehicle’s position and velocity to further optimize the
routing policies. We strongly believe that these extensions require significant additional
research and therefore we defer their investigation to future work.
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Appendix A. Integer Programming Formulations

Appendix A.1. IP Formulation–Single Route Adjustment Policy

An IP formulation for a single route adjustment policy is given by

Min
(u,v)∈A

∑
(u,v)∈A

(E[s→ u] + puv(cuv + E[v→ t]) + (1− puv)E[u→ t|duv]) ∗ Zuv

s.t. ∑
(u,v)∈A

Zuv = 1

where Zuv is a binary variable that is equal to 1 if edge (u, v) is an adjustment edge and
0 otherwise.

Appendix A.2. IP Formulation–Series Forced Adjustment Policy

An IP formulation to a series forced route adjustment policy with k-route adjustments
is given by

Min
(u,v)∈A

∑
(u,v)∈A

E[s→ u]Z1
uv +

k

∑
l=1

∑
(u,v)∈A

∑
m∈N

puv(cuv + E[v→ m] ∑
n∈N

Zl+1
mn )Zl

uv

+
k

∑
l=1

∑
(u,v)∈A

∑
m∈N

(1− puv)E[u→ m|duv] ∑
n∈N

Zl+1
mn Zl

uv

s.t. ∑
(u,v)∈A

Zl
uv = 1 ∀l = 1, . . . , k

where Zl
uv is a binary variable that is 1 if edge (u, v) is an adjustment edge at the lth route

adjustment and 0 otherwise.
The objective function is quadratic and can be converted to a linear form using any

standard conversion technique. IP formulations for other models can also be devised in the
same manner.
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