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Abstract: In this manuscript, we explore how the solution of the matrix differential Riccati equation
(MDRE) can be computed with the Extreme Theory of Functional Connections (X-TFC). X-TFC is
a physics-informed neural network that uses functional interpolation to analytically satisfy linear
constraints, such as the MDRE’s terminal constraint. We utilize two approaches for solving the
MDRE with X-TFC: direct and indirect implementation. The first approach involves solving the
MDRE directly with X-TFC, where the matrix equations are vectorized to form a system of first order
differential equations and solved with iterative least squares. In the latter approach, the MDRE is
first transformed into a matrix differential Lyapunov equation (MDLE) based on the anti-stabilizing
solution of the algebraic Riccati equation. The MDLE is easier to solve with X-TFC because it is linear,
while the MDRE is nonlinear. Furthermore, the MDLE solution can easily be transformed back into
the MDRE solution. Both approaches are validated by solving a fluid catalytic reactor problem and
comparing the results with several state-of-the-art methods. Our work demonstrates that the first
approach should be performed if a highly accurate solution is desired, while the second approach
should be used if a quicker computation time is needed.

Keywords: differential Riccati equation; differential Lyapunov equation; functional interpolation;
optimal control; physics-informed neural network

MSC: 46B70

1. Introduction

In 1960, Rudolph E. Kalman introduced a paper that was the first to describe how the
solution of the matrix differential Riccati equation (MDRE) can be used to compute the
state feedback gain of the optimal controller for a general linear system with a quadratic
performance criterion [1]. Over time, Kalman’s discovery proved to be groundbreaking
and is still very relevant today. An optimal controller derived from the MDRE’s solution
is called a linear–quadratic regulator (LQR), and is used throughout academia and
industry to solve a wide array of engineering problems. Nearly every course on control
algorithms teaches the fundamental notions of LQR controllers. Unfortunately, the
MDRE rarely possesses an analytical solution but can almost always be computed
numerically. Motivated to find more accurate and quicker solutions, researchers have
proposed many robust numerical techniques for acquiring the MDRE’s solution since
1960. In the same vein as researchers of the past, this manuscript also explores new
ways of solving the MDRE. The novelty of our work comes from our use of a new
physics-informed neural network (PINN)-based framework to solve the MDRE, called
the Extreme Theory of Function Connections (X-TFC) [2].
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1.1. Related Work

The MDRE arising from a linear–quadratic optimal control problem rarely, if ever,
possesses an analytical solution. Thus, many numerical techniques for acquiring the MDRE
solution have been proposed. Perhaps the simplest way to solve an MDRE numerically
is with a direct integration procedure (e.g., Runge–Kutta or Euler routines). However,
this approach can be relatively slow for large systems and does not always yield accurate
results, especially when the system is stiff [3,4]. Several alternatives to direct integration
involve transforming the MDRE into an equivalent linear differential Hamiltonian sys-
tem: the Kalman–Englar method (the Kalman–Englar method is also referred to as the
automatic synthesis program (ASP) matrix iteration procedure in other works [3,5]) [6],
the Davison–Maki algorithm [7], the Vaughan negative exponential technique [8], and a
Schur approach [9]. Each of these procedures obtains the solution of the MDRE by parti-
tioning the transition matrix of the associated Hamiltonian system in their own unique
way. The Chandrasekhar method [10] instead transforms the MDRE into a different system
of nonlinear differential equations (DEs), but with lesser dimensionality. This method is
particularly efficient when the number of controllers and observers is small [5].

One can use the solution of the matrix algebraic Riccati equation (MARE) to obtain
the infinite-horizon optimal control law if the linear system is time-invariant. However,
reducing the MDRE to an MARE when the linear–quadratic optimal control problem has
finite final time will cause the control algorithm to lose its optimality and induce significant
control inefficiency. Nevertheless, researchers still found ways to employ the MARE to solve
the MDRE. For example, Anderson and Moore found the MDRE solution by transforming
the MDRE into a matrix differential Lyapunov equation (MDLE) based on the positive
definite solution of the MARE [11]. Commonly referred to as the Anderson–Moore method
in the literature (although Anderson and Moore have received much of the credit for
coming up with the idea to solve the MDRE based on transforming it into an MDLE based
on the MARE, the authors of this work recognize that Potter came up with a very similar
method first [12,13]), this method is advantageous because it requires a smaller amount
of computation than others. Conversely, its applicability is narrower than other methods
because it requires stringent invertible conditions. Two studies have been carried out to
improve the Anderson–Moore method by enforcing milder assumptions. The technique
proposed by Radisavljevic transforms the MDLE into a Hamiltonian system containing
algebraic Lyapunov equations [14]. Solutions of the Hamiltonian system are found in terms
of state transition matrices, and clever matrix algebra is used to avoid singular inversions.
Alternatively, the Nguyen and Gajic method transforms the MDRE into an MDLE based on
the negative definite solution of the MARE [15]. Thus, the invertible conditions from the
Anderson–Moore method are replaced with positive semi-definite conditions, which are
easier to deal with.

Researchers in the machine learning community have even explored solving the
MDRE. For example, Balasubramaniam et al. solved the MDRE by approximating its
solution with a neural network [16]. They composed the loss function in their algorithm
as the difference between the derivative of their approximation and the right-hand side
of the MDRE with their approximation substituted in. In other words, the authors used
the residual of the MDRE as the loss function. Following the work of Reference [16], more
complex MDREs from singular, stochastic, and fuzzy systems were quickly solved [17–21].
Each neural network in these studies was trained with the Levenberg–Marquardt algorithm
and validated by comparisons with the Runge–Kutta algorithm. This manuscript also uses
neural networks to solve the MDRE and compares them with the Runge–Kutta algorithm,
but we use a different optimization scheme.

1.2. Contributions and Scope of This Work

Our goal is to improve upon how neural networks can be used to solve the MDRE.
For example, we explicitly state our use of PINNs, which are a class of machine learning
algorithms that have recently been used to solve a plethora of DEs [22,23]. They are better
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at solving such problems than standard neural networks because they incorporate the
DE residuals into the loss function (i.e., taking into account physical laws), allowing the
solution to be found in a data-physics-driven manner. PINNs can even find the solutions
of DEs in a purely physics-driven fashion when no data are available. When the neural
network is fully trained, an analytical representation of the solution is achieved. Indeed,
the aforementioned works that used neural networks to solve the MDRE can be classified
as PINNs, although the authors do not explicitly state their use. In this work, we use a
PINN-based framework called X-TFC to solve the MDRE.

X-TFC is a novel and efficient PINN model that merges neural networks and the
Theory of Functional Connections (TFC) [24]. TFC is a functional interpolation framework
that finds all possible functions satisfying given linear constraints. It has the potential to
be used for many mathematical problems, but it has been heavily used for computing the
solution of DEs. This is because it can analytically embed the constraints of a particular DE
into a closed-form approximation of the solution, called constrained expressions. Exploiting
this trait has allowed TFC to solve a plethora of DEs with machine-level accuracy and in
milliseconds [25,26]. TFC’s constrained expressions are functionals made up of an arbitrary
free function, and the sum of switching and projection function products. Essentially, the
summation terms handle the constraint embedding, while the unknowns within the free
function are optimized to minimize the residual of the DE. In the original formulation of
TFC, a truncated expansion of orthogonal polynomials was selected as the free function.
Using such free functions proved troublesome when solving large-scale partial DEs due to
the curse of dimensionality. X-TFC was developed to overcome this limitation by utilizing
a single-layer feedforward neural network (SLFNN), trained via the Extreme Learning
Machine (ELM) algorithm [27], as the free function. The inclusion of an SLFNN and the
DE residual in a loss function is what allows X-TFC to be considered as a PINN-based
framework. Eventually, it was shown that X-TFC is competitive with TFC when solving
ordinary DEs as well. As a matter of fact, it has already been used to solve several problems
related to optimal control [28,29], which contributed to the motivation of this work.

We use X-TFC to solve the MDRE in two distinct ways: directly and indirectly by
solving the MDLE from Reference [15]. The first approach we employ involves solving the
MDRE directly with X-TFC, where the matrix equations are vectorized to form a system
of first order DEs. Note that the solution of the MDRE is generally referred to as the
Riccati matrix, and by assuming it is symmetric, only its upper triangular elements must
be approximated. Furthermore, the domain of the DEs can be decomposed to provide a
more accurate approximation of the solution. As described in Reference [15], an alternative
technique is to first transform the MDRE into the MDLE based on the anti-stabilizing
solution of the MARE. The MDLE’s solution can then be transformed back into the MDRE’s
solution. Thus, we also explore solving the MDRE indirectly by first solving the MDLE
with X-TFC. Whether solving the MDRE or MDLE, doing so with X-TFC is an improvement
over standard PINNs because the terminal constraint is satisfied exactly with functional
interpolation and X-TFC’s optimization scheme uses least squares, which is much quicker
than those involving learning rates, such as the Levenberg–Marquardt algorithm. Lastly,
one more important contribution of this study is that it is the first X-TFC work to investigate
initializing the input weights and biases of the SLFNN with a deterministic sequence.

The remaining content of this manuscript is organized as follows. In the forthcoming
section, the MDRE and MDLE are clearly defined. Afterwards, the X-TFC method is
introduced to solve both equations. A theorem that gives the maximum bound of X-TFC’s
generalization error is also given. Next, we present numerical experiments that demonstrate
X-TFC’s ability to acquire the MDRE solution directly and indirectly by solving the MDLE.
We also provide comparisons with the Runge–Kutta 4 (RK4) method of direct integration
and the Lyapunov approach from Nguyen and Gajic (NG) [15], where the Kalman–Englar
(KE) method is used as a benchmark. The results are discussed in detail. Lastly, the paper
is concluded with final thoughts and the outlook for further research.
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2. Problem Statement

Consider the linear time-invariant system

ẋ(t) = Ax(t) + Bu(t); x(t0) = x0, (1)

where x(t) is an n dimensional state vector, A is an n× n matrix, u(t) is an m dimensional
control input vector, and B is an n×m matrix. Furthermore, the initial state is known as
x(t0) = x0. The goal of the optimal control problem associated with this system is to find
the optimal control that minimizes the finite-horizon linear–quadratic cost functional

J = xᵀ(t f )Sx(t f ) +
1
2

∫ t f

t0

(xᵀ(t)Qx(t) + uᵀ(t)Ru(t))dt, (2)

where Q ≥ 0, S ≥ 0, and R > 0 are constant matrices of appropriate dimensions. Further-
more, t0 and t f are the initial and final time, respectively.

2.1. Matrix Differential Riccati Equation

One could solve the optimal control problem via Pontryagin’s Minimum Principle
(PMP) [30], where the Hamiltonian H is derived and minimized to write the control in
terms of the costate vector λ ∈ Rn:

H =
1
2
(xᵀQx + uᵀRu) + λᵀ(Ax + Bu)

0 =
∂H
∂u

= Ru + Bᵀλ→ u = −R−1Bᵀλ.
(3)

The necessary conditions of optimality are then satisfied by solving the following
two-point boundary value problem (TPBVP), considering also the corresponding boundary
and transversality conditions:

ẋ =
∂H
∂λ

= Ax + Bu; x(t0) = x0 (4a)

λ̇ = −∂H
∂x

= −Qx− Aᵀλ; λ(t f ) = Sx(t f ). (4b)

Note that the solution of the above TPBVP is also sufficiently optimal because of the
strengthened Legendre–Clebsch condition (i.e., Huu > 0). Instead of solving the TPBVP,
one can guess the form of the solution to be

λ(t) = P(t)x(t), (5)

which when plugged into Equation (4b) gives

λ̇ = Ṗx + Pẋ

= Ṗx + P
(

A− BR−1BᵀP
)

x

= Ṗx + PAx− PBR−1BᵀPx = −Qx− AᵀPx.

(6)

Simplifying the above equation yields the MDRE,

−Ṗ = PA + AᵀP− PGP + Q; P(t f ) = S, (7)

where
G = BR−1Bᵀ. (8)

The matrix P(t) ∈ Rn×n in the above derivation is known as the Riccati matrix and is
the solution to the MDRE. The MDRE is a system of ordinary DEs with a terminal constraint
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that can be solved backwards in time. When solved, the closed-loop solution of the optimal
control problem can then be determined as

u(t) = R−1BᵀP(t)x(t). (9)

2.2. Matrix Differential Lyapunov Equation

Instead of directly computing the solution of the MDRE, several researchers sought to
find the inverse of the difference between the MDRE solution P and the positive definite
solution of the MARE P+. However, this is problematic when the difference is near singular.
Furthermore, a crucial requirement when P+ is exploited is that PS−P+ must be invertible.
Nguyen and Gajic showed that utilizing the negative definite solution of the MARE P−,
instead of P+, reduces the invertibility requirement to simply S ≥ 0 [15]. Here we merely
provide a general outline of Nguyen and Gajic’s method, which culminated in finding the
solution of an MDLE based on P−. For a more in-depth look at the assumptions, lemmas,
and proofs that reveal how and why the solution of the MDLE based on the negative
definite solution of the MARE solves the MDRE, we redirect the reader to Reference [15].

The MARE is given below,

0 = PA + AᵀP− PGP + Q, (10)

where P+ and P− are guaranteed to exist if (A, B) is completely controllable and (A, Q) is
completely observable. P− can be found by solving the algebraic equation

0 = −Pn A− AᵀPn − PnGPn + Q (11)

for its positive definite solution Pn. It can easily be shown that Pn = −P− is a positive
definite solution of Equation (11). Subtracting Equation (10), with P replaced by P−, from
Equation (7) gives the equation

−Ṗ(t) = (P(t)− P−)A + Aᵀ(P(t)− P−)− P(t)GP(t) + P−GP−. (12)

By introducing the change in variable

P0(t) =
(
P(t)− P−

)−1 (13)

and enforcing the terminal condition from the MDRE, Equation (12) becomes

Ṗ0 = A0P0(t) + P0(t)Aᵀ
0 −G;

P0(t f ) = S0 =
(
S− P−

)−1,
(14)

where
A0 = A−GP−. (15)

It can be seen that real eigenvalues of A0 are greater than zero and Equation (14) is
an MDLE. In addition, the MDLE is easier to solve than the MDRE because it is linear.
Nguyen and Gajic went on to solve the MDLE by using techniques from References [31,32],
which involve using the solution of a matrix algebraic Lyapunov equation and matrix
exponentials. Here, we solve the MDLE with X-TFC. The solution of the MDRE can then be
obtained as

P(t) =
(

P− + P−1
0 (t)

)
. (16)

3. Method

How the PINN and X-TFC methods are used to solve DEs, whether ordinary (ODE) or
partial (PDE), has been well-documented [2,22,23]. The main differences between regular
PINNs and X-TFC are that X-TFC analytically satisfies constraints with X-TFC and uses the
ELM algorithm to train the network. Furthermore, in this work, X-TFC is purely physics-
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based. Only the ODE residuals are used in the loss function. PINNs and X-TFC have
already been compared for solving two-point boundary value problems [28]. The logic can
easily be continued for initial or final value problems (IVPs or FVPs). Likewise, De Florio et
al. demonstrated how X-TFC can be used to solve a general ODE with one Dirichlet/point
constraint [33]. These works outline the general X-TFC process:

1. Write the ODE as a residual.
2. Build the constrained expression approximation for the dependent variable in the

ODE. Use a single-layer feedforward neural network with randomized input weights
and biases (ELM expansion) as the free function.

3. Plug the constrained expression into the residual and discretize the domain to form
an unconstrained algebraic system of equations.

4. Optimize for the unknowns in the free function that minimize the residual with
iterative least squares if the problem is nonlinear or linear least squares if it is linear.

The most cumbersome part of the X-TFC process is building the constrained expression,

yce(t, g(t)) = g(t) +
Nconst

∑
i=1

φi(t)ρi(t, g(t)). (17)

In Equation (17), g(t) is the free function, φi(t) are the switching functions, ρi(t, g(t))
are the projection functionals, and Nconst is the number of linear constraints. The difficulty
in building the constrained expression comes from deriving the switching functions via
the selection of the projection functionals. This step is different for problems of varying
constraints. Nonetheless, the correct switching functions and projection functionals to use
for many constraints of many ODEs have already been published [34]. Moreover, deriving
the switching functions for point constraints, such as the terminal constraints in the MDRE
and MDLE, is very simple. Thus, in this work, we demonstrate how X-TFC can be used
to solve the MDRE and the MDLE specifically. We leave the general formulation of the
method to the aforestated works.

3.1. Solving Matrix Differential Riccati Equation with X-TFC

Although the MDRE is written in compact matrix form, it can be thought of as a
system of first order ODEs. From here on, we adopt Einstein summation notation to show
how X-TFC can be used to solve this system more clearly. Each time-varying element of
the Riccati matrix can be written as Pij(t) ∈ Rn×n where the first and second indices (i and
j in this case) represent the rows and columns of P, respectively. The rest of the matrices
in Equation (7) are written in a similar manner. Thus, the MDRE in Einstein summation
notation becomes

0 = Rij = Ṗij + Pik Akj + AikPjk − PikGkoPoj + Qij;

Pij(t f ) = Sij.
(18)

X-TFC is used to approximate Pij with constrained expressions containing SLFNNs
and transform Equation (18) into an unconstrained optimization problem that can be solved
with iterative least squares.

Since the MDRE only contains one constraint, the constrained expressions that we use
to approximate the Riccati matrix elements are

Pij(t) ≈ gij(t) + φ(t)ρij(t f , gij(t f )). (19)

Note that only one switching and projection function are present in Equation (19).
The amount of φ(t)ρ(t, g(t)) products in a constrained expression is equivalent to the
amount of constraints on the DE. Hence, we require only one switching and projection
function for each MDRE element because they are only constrained once at the end of the
domain t f . Conveniently, φ(t) = 1 when there is only one constraint (see Reference [33]).
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Furthermore, the projection functional for point constraints is simply the difference between
the constraint value and the free function,

ρij(t f , gij(t f )) = Pij(t f )− gij(t f ). (20)

Lastly, the free function is an SLFNN,

gij(t) =
L

∑
k=1

βijkσ(ωkt + bk)

=
{

σ1(t) · · · σL(t)
}

βij1
...

βijL

 = σkβijk,

(21)

where L is the total number of hidden neurons, σ(·) is an activation function, ωk ∈ RL is
the input weight associated with the k-th hidden neuron, and bk ∈ RL is the input biases
associated with the k-th hidden neuron. Since X-TFC computes the unknown solution Pij(t)
via the ELM algorithm, ωk and bk are randomly or deterministically selected and not tuned
during training. Therefore, they are known parameters. The output weights associated
with the k-th hidden neuron are represented by βijk ∈ Rn×n×L and must be optimized.
Note that βijk are elements of a 3D matrix. The first two dimensions (i.e., i and j) represent
the row and column indices of the Riccati matrix element they pertain to, respectively, and
the third dimension (i.e., k) specifies the neuron. The input weights and biases are only
constant vectors because their randomized or deterministic values are the same for every
Riccati element. The activation functions σ(·) must be chosen by the user. Finally, we can
write Equation (19) as

Pij(t) ≈
(

σk(t)− σk(t f )
)

βijk + Sij. (22)

To have better training performance, it is often convenient to map the independent
variable t ∈ [t0, t f ] in the domain z ∈ [−1,+1]. This is accomplished using the following
linear transformation,

z = z0 + c(t− t0) ←→ t = t0 +
1
c
(z− z0), (23)

where c is the mapping coefficient

c =
z f − z0

t f − t0
=

1
t f − t0

. (24)

By the derivative chain rule, the r-th derivative of Equation (21) is

drgij(t)
dtr = crβᵀ

ij
drσ(z)

dzr . (25)

We can now write Equation (22) and its derivative as

Pij(z) ≈
(

σk(z)− σk(1)
)

βijk + Sij

≈ Vkβijk + Sij

(26)

and
dPij(z)

dz
≈ c

dσk(z)
dz

βijk

≈ Dkβijk,
(27)
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respectively. With a change in domain performed and the constrained expression defined,
we can now reduce the MDRE into an unconstrained system of algebraic equations F̃ij,

0 ≈ F̃ij(z, βij·) = Dqβijq +
(

Vqβikq + Sik

)
Akj+

Aki

(
Vqβkjq + Skj

)
−(

Vqβikq + Sik

)
Gko
(
Vpβojp + Soj

)
+ Qij

= Dqβijq + VqBikq Akj + Sik Akj

+ AkiVqBkjq + AkiSkj−
VqBikqGkoVpBojp + VqBikqGkoSoj+

SikGkoVpBojp + SikGkoSo j + Qij.

(28)

A key property of the Riccati matrix is that it is symmetric (i.e., Aij = Aji, for i 6= j).
Therefore, the n× n system of nonlinear algebraic equations shown in Equation (28) can

be reduced to
(
(n + 1) × n

)
/2 equations. We simply solve for the upper triangular

components of P. In order to solve the MDRE numerically, we must discretize z throughout
its entire domain and ensure Equation (28) holds for every discretized point. Equally
spaced points or any quadrature scheme may be chosen (e.g., Chebyshev–Gauss–Lobatto
or Legendre–Gauss–Lobatto points). Equation (28) can then be expressed as loss functions
at each discretization point zd for all d = {0, 1, . . . , N},

Lij(βij·) =



F̃ij(z0, βij·)
...

F̃ij(zd, βij·)
...

F̃ij(zN , βij·)


. (29)

Note that we refer to the discretization points as training points for the rest of this
manuscript in order to follow general PINN terminology. Combining the losses for the
upper triangular part of the Riccati matrix then allows an augmented loss function to
be formed,

L =



L11(β1n·)
...

L1n(β1n·)
L22(β22·)

...
L2n(β2n·)
L33(β33·)

...
L3n(β3n·)

...
Lnn(βnn·)



. (30)

The true solution requires that the above vector should be equal to 0. Thus, the βij·
coefficients can be solved via iterative least squares. The estimate for the unknowns is
updated at each iteration as

Ξa+1 = Ξa + ∆Ξa, (31)
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where Ξ is the augmented vector containing all βij vectors and the a subscript indicates
the current iteration. The ∆Ξa vector is defined by performing linear least squares at each
iteration of the iterative least square procedure,

∆Ξa = −
(
J(Ξa)

ᵀJ(Ξa)
)−1

J(Ξa)
ᵀL(Ξa), (32)

where J is the Jacobian matrix containing the derivatives of the losses with respect to all
unknowns. The Jacobian can be computed numerically or with automatic differentiation
(AD). By providing an initial guess, the iterative process can be started and is repeated
until the Euclidean norm of the augmented loss is less than some prescribed tolerance ε,

‖L(Ξa)‖2 < ε, (33)

or a maximum number of iterations amax has been reached. Once the stopping condition
has been reached, the final Ξa can be plugged into (22) to obtain the solution.

3.2. Domain Decomposition and Initial Guess

The MDRE can contain terms that lead to a rapid variation in its solution along
the domain depending on the A, B, Q, and R matrices. When this is the case, many
of the numerical methods used for solving the MDRE are unstable and do not calculate
an accurate solution. For example, techniques that rely on transition matrices of the
Hamiltonian system, such as the KE method, require the real eigenvalues of the transition
matrix to not consist of vastly different magnitudes [8]. One way of ensuring the transition
matrix eigenvalues are of similar magnitude is by utilizing a sufficiently small step size
h. Indeed, using a small h can even work with direct integration routines, such as RK4.
However, a small h leads to a longer computation run time. Therefore, a balancing act must
be performed when selecting h such that a suitable numerical accuracy is reached while
not taking too long to obtain it.

In X-TFC, the constrained expression is typically represented by a global SLFNN
across the domain. Thus, X-TFC would be performed in one step with the size h = t f − t0.
When h is large, more neurons are needed to accurately approximate the solution because
the approximation domain is greater. Unfortunately, increasing the number of neurons can
also lead to an ill-conditioned (J(Ξk)

ᵀJ(Ξk)) within Equation (32). The exact amount of
neurons needed to approximate the solution accurately depends on the numerical stability
of the problem. One way to circumvent this issue is by decomposing the domain of the
MDRE into separate subintervals, such that h for each subinterval is small. As with other
state-of-the-art methods, X-TFC can approximate the MDRE solution better over smaller
domain subintervals because the Riccati matrix elements being approximated at the various
training points within a subinterval are of similar magnitudes. The full solution can then
be obtained by solving each subinterval sequentially. Since the MDRE is an FVP, the final
subinterval must be solved first and the preceding intervals next. The terminal condition
is reinitialized for each subinterval by substituting the computed Riccati matrix at the
beginning of the subsequent subinterval. Note that h for each segment is handpicked
beforehand. If X-TFC fails to converge for any subinterval, meaning Equation (33) is not
satisfied, then h should be reduced. Adaptive selection of h during the process is left to
future work. For the reader’s convenience, Figure 1 is a visual representation of the domain
decomposition approach just described, where M is the total number of subintervals and m
represents the current segment.
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Figure 1. FVP domain decomposition diagram.

Each subinterval requires its own initial guess. The initial guess of the Riccati matrix
within each subinterval is plugged into Equation (22), which then allows the initial aug-
mented unknown vector Ξ0 to be computed. As is shown in Figure 1, the initial guess for
each subinterval can be a straight line equivalent to the terminal condition of the subinterval
in question. Alternative initial guesses include the solution of the subsequent subinterval
or the RK4 solution of the current subinterval. X-TFC with an RK4 initial guess can be
classified as a PE(CE)∞ predictor–corrector method [35]. RK4 predicts the solution, and
X-TFC corrects it iteratively until it converges. The smaller the h value for an interval
though, the better a straight line is as an initial guess, and the less necessary RK4 is for
predicting the solution. For the reader’s convenience, Algorithms 1 and 2 are given as a
pseudocode of the X-TFC process for solving the MDRE.

Algorithm 1 X-TFC for Solving the MDRE Directly

Require: A ∈ Rn×n, B ∈ Rn×m, Q ∈ Rn×n ≥ 0, R ∈ Rm×m > 0, S ∈ Rn×n ≥ 0, amax, and ε
1: decompose the domain into M segments with segment lengths equal to h
2: for m = M, M− 1, . . . , 1 do
3: if m = M then
4: P(m)

ij (tm) = Sij

5: else
6: P(m)

ij (tm) = P(m+1)
ij (tm)

7: end if
8: randomize the initial weights and biases to form the SLFNN free function, Equation (21)
9: build the constrained expressions, Equation (22)

10: provide an initial guess of the solution for the current segment
11: obtain Ξ0 using Equation (22)
12: place training points along the segment to form L from Equation (30)
13: Ξ← IterativeLeastSquares(Ξ0,L, amax, ε)

14: obtain P(m)
ij from Ξ using Equation (22)

15: end for
16: combine all segments of the Ricatti matrix, P(m)

ij for m = {M, . . . 1}, to form the complete
solution
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Algorithm 2 Iterative Least Squares

1: procedure IterativeLeastSquares(Ξ0,L, amax, ε)
2: for a = 0, . . . , amax do
3: obtain J(Ξa) of L(aΞa)
4: solve for ∆Ξa using Equation (32)
5: solve for Ξa+1 using Equation (31)
6: if ‖L(Ξa)‖2 < ε then
7: break
8: end if
9: end for

10: end procedure

3.3. Solving Matrix Differential Lyapunov Equation with X-TFC

How we solve the MDLE with X-TFC is nearly identical to the procedure described
for solving the MDRE. Since the Lyapunov matrix P0 is symmetric, we only solve for its
upper triangular matrix too. Furthermore, the upper triangular part is vectorized and the
domain of the MDLE is decomposed into multiple subintervals. In addition, the constrained
expressions for each Riccati matrix element are identical to the constrained expression for
each Lyapunov matrix element. Simply substitute Pij in Equation (22) with P0ij . The main
difference between how X-TFC is implemented to solve the MDLE and the MDRE is that
we use linear least squares to optimize for the unknowns when solving the MDLE, instead
of iterative least squares for the MDRE. Subsequently, X-TFC for solving the MDLE does
not require an initial guess. The MDLE, (14), with the constrained expression substituted in
for the Lyapunov matrix can be reduced to the linear algebraic equation

HΞ = b, (34)

where H ∈ R
n(n+1)N

2 × n(n+1)L
2 and b ∈ R

n(n+1)N
2 . Solving the unknowns is then accomplished

with the linear least squares equation

Ξ =
(

HᵀH
)−1

Hᵀb. (35)

3.4. Generalization Error Bound

A maximum bound on X-TFC’s generalization error for IVPs was stated and proven
in Reference [36] based on the work by Mishra and Molinaro [37]. For the reader’s conve-
nience, we recreate the construction of the theorem and proof here but modify them slightly
to account for FVPs, such as the MDRE and MDLE. Instead of using Equations (7) and (14)
directly, we consider a general FVP made up of a single ODE such as:

dy
dt

= f (y(t), t) ∀ t ∈ [t0, t f ]; y(t = t f ) = y f , (36)

where t is the independent variable, y is the dependent variable to be computed, and f is
an ODE. Note that although we are only considering a single ODE, the following bound
on generalization error can easily be extended to systems of ODEs (e.g., the MDRE and
MDLE). However, our theorem is for IVPs. Thus, the FVP must first be transformed into
an IVP by setting t′ = t f − t, dt′ = −dt, t′0 = t f − t0, and t′f = t f − t f = 0. By also having
f = − f , Equation (36) can then be rewritten as

dy
dt′

= f
(
y(t′), t′

)
∀ t′ ∈ [t′0, t′f ]; y(t′ = t′0) = y f . (37)
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It is assumed that f and f are locally Lipschitz. That is, according to the type of
training points selected in Equation (29), there exists a constant CK ≥ 0 for a compact set
K ⊂ RN+1 such that

| f (tv)− f (ytw)| ≤ CK|tv − tw| (38)

for all tv, tw ∈ K where v, w ∈ d = {0, . . . , N}. Next, the general X-TFC residual, the loss
equation, what training points to select, and the definitions for generalization and training
error must be presented.

Residuals. The residual for standard PINN frameworks that solve IVPs such as that in
Equation (37) is

Rθ(t′) =
dyNN(t′, θ)

dt′
+ f

(
yNN(t′, θ), t

)
, (39)

where yNN is the trained PINN output whose derivative can be found with AD and θ ∈ Θ
are an admissible set of tunable parameters (i.e., weights and biases). For X-TFC, the ODE
solution is not solely the result of a trained neural network but is instead a constrained
expression that also contains analytical terms added that satisfy the initial constraints
exactly. Furthermore, the free function g within the constrained expression is always an
SLFNN with the input weights and bias known (i.e., an ELM expansion). Hence, the
tunable parameters within the X-TFC constrained expression are the β output weights. The
general constrained expression for single-order IVPs with point constraints, such as the
MDRE and MDLE elements, can be written as

yCE(t′, β) = g(t′) + y f − g(t′0, β), (40)

where g(t′, β) is an SLFNN. Naturally, the X-TFC residual can the be given as

Rβ(t′) =
dyCE(t′, β)

dt′
+ f

(
yCE(t′, β), t′

)
. (41)

The derivative of yCE is trival, as can be seen in Equations (25) and (27).

Loss function. X-TFC’s objective is to find the unknown β coefficients that minimize the
sum of squared residuals (i.e., the loss function),

Find β∗ ∈ B : β∗ = arg min
β∈B
‖Rβ(t′)‖2

2. (42)

Since the L2 norm can be written as an integral, Equation (42) is equivalent to

Find β∗ ∈ B : β∗ = arg min
β∈B

∫ t′f

t′0
|Rβ(t′)|2dt′. (43)

The integral in Equation (42) can then be approximated numerically via a quadra-
ture rule,

Find β∗ ∈ B : β∗ = arg min
β∈B

N

∑
d=0

wd|Rβ(t′d)|
2, (44)

where wd and t′d are quadrature weights and points for all d = {0, 1, . . . , N} that depend
precisely on the rule selected, e.g., Newton–Cotes and Gaussian formulas [38]. Thus, the
loss function is just the summation within Equation (44),

L (β) =
N

∑
d=0

wd|Rβ(t′d)|
2. (45)

Training Points. The X-TFC training points are equivalent to the quadrature points shown
in Equation (44), t′d for all d = {0, 1, . . . , N}. If a Newton–Cotes points quadrature scheme
is utilized, then the training points can lie within the [t′0, t′f ] domain. However, if a Gaussian
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quadrature scheme is chosen that relies on orthogonal polynomials within specific domains,
then the training points must lie within that same domain. For example, in Section 4, we
use Chebyshev–Gauss–Lobatto (CGL) training points that have the domain [−1, 1]. The
actual domain of the problem and the domain of the training points can easily be switched
back and forth using Equations (23) and (24).

Generalization and Training Error Definitions. X-TFC’s generalization error can be de-
fined as

ε2
G = ‖yCE(t′, β)− y∗(t′)‖2 =

(∫ t′f

t′0
|yCE(t′, β)− y∗(t′)|2dt′

)
, (46)

where y∗(t′) is the true solution. Since the true solution is unknown, we cannot compute
Equation (46). Instead we seek to approximate its maximum bound, which requires the
training error

ε2
T = L (β). (47)

Unlike the generalization error, the training error can be computed from Equation (45)
once the β∗ coefficients have been found. Lastly, a bound on the quadrature error is needed
to determine the bound on the generalization error. According to Reference [37], for any
continuous function with continuous first l derivatives, u ∈ Cl

(
[t′0, t′f ]

)
, the quadrature

rule corresponding to the quadrature weights wd at points t′d for all d = {0, 1, . . . , N}
satisfies ∣∣∣∣∣

∫ t′f

t′0
|u(t′)|2dt̄−

N

∑
d=0

wd|u(t′d)|
2

∣∣∣∣∣ ≤ Cquad(‖u‖Cl )N−α, (48)

where α > 0. Simply substitute in Rβ∗ for u in Equation (48) to determine the quadrature
error bound for X-TFC. A maximum bound on X-TFC’s generalization error is now given
by the following theorem.

Theorem 1. Allow y∗ ∈ Ch
(
[t0, t f ]

)
to be the true solution of the IVP shown in Equation (37),

where the dynamics f are locally Lipshitz. Let yCE(t′, β∗) = yCE be the solution approximated with
X-TFC, corresponding to the loss function shown in Equation (45). Then the maximum bound on
X-TFC’s generalization error is

εG ≤ C1

(
ε2

T + CquadN−α
)1/2

, (49)

where the constant C1 is

C1 =

 e−(1+2CK)
(

t′f−t′0
)
− 1

1− 2CK

1/2

. (50)

Furthermore, the positive constant Cquad is

Cquad = Cquad

(
‖R2‖Ch−1

)
, (51)

which depends on the number of training points, the quadrature scheme used, and the residu-
als evaluated on the training points [37,38]. Note that CK is the Lipshitz constant shown in
Equation (38).

Proof. By Equation (37), the error ŷ = yCE − y∗ satisfies{ dŷ
dt′ = f (yCE, t′)− f (y∗, t′) +R ∀ t′ ∈ [t′0, t′f ]

ŷ(t′ = t′0) = R(t′0)
.
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Here, we denoteR = Rβ∗ for convenience of notation. Multiplying both sides of the
DE above by ŷ gives

ŷ
dŷ
dt′

= ŷ
[

f
(
yCE, t′

)
− f

(
y∗, t′

)]
+ ŷR.

By applying the chain rule to the left-hand side of the above equation, it can be
rewritten as

1
2

dŷ2

dt′
=

1
2

d|ŷ|2
dt

= ŷ
[

f
(
yCE, t′

)
− f

(
y∗, t′

)]
+ ŷR,

which is then bounded by (using multiplicativity and the the triangle inequality)

1
2

d|ŷ|2
dt′

≤
∣∣∣ŷ[ f

(
yCE, t′

)
− f

(
y∗, t′

)]
+ ŷR

∣∣∣
≤ |ŷ|

∣∣∣ f (yCE, t′
)
− f

(
y∗, t′

)∣∣∣+ |ŷ||R|.
From Young’s inequality, the last term can be split up,

1
2

d|ŷ|2
dt′

≤ |ŷ|
∣∣∣ f (yCE, t′

)
− f

(
y∗, t′

)∣∣∣+ 1
2
|ŷ|2 + 1

2
|R|2.

Since f̄ is locally Lipshitz, see Equation (38), we have

1
2

d|ŷ|2
dt′

≤ CK|ŷ|2 +
1
2
|ŷ|2 + 1

2
|R|2.

We then simplify the above equation into

d|ŷ|2
dt′

≤ (1 + 2CK)|ŷ|2 + |R|2.

Integrating over [t0, t̄] for any t′0 ≤ t̄ ≤ t′f gives

|ŷ(t̄)|2 ≤ (1 + 2CK)
∫ t̄

t′0
|ŷ|2dt′ +

∫ t̄

t′0
|R|2dt′,

where ∫ t̄

t′0
|R|2dt′ ≤

∫ t′f

t′0
|R|2dt′.

Therefore,

|ŷ(t̄)|2 ≤ (1 + 2CK)
∫ t̄

t′0
|ŷ|2dt′ +

∫ t′f

t′0
|R|2dt′.

Applying the integral form of the Grönwall’s inequality gives

|ŷ(t̄)|2 ≤ e(1+2CK)(t̄−t′0)
∫ t′f

t′0
|R|2dt′ (52)

and by integrating over [t′0, t′f ] in dt̄ we obtain

ε2
G =

∫ t′f

t′0
|ŷ(t̄)|dt̄ ≤

(
e−(1+2Ck)(t̄−t′0) − 1

1 + 2CK

)(∫ t′f

t′0
|R|2dt′

)
.

Then via Equation (48),

ε2
G =

∫ t′f

t′0
|ŷ(t̄)|dt̄ ≤

 e−(1+2Ck)
(

t′f−t′0
)
− 1

1 + 2CK

( N

∑
d=0

wd|R(t′d)|
2 + Cquad

(
‖R‖2

Ch−1

)
N−α

)
.
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Using εT = L(β) and Equation (45) then gives

ε2
G ≤

 e−(1+2Ck)
(

t′f−t′0
)
− 1

1 + 2CK

(ε2
T + Cquad

(
‖R‖2

Ch−1

)
N−α

)
.

Lastly, square rooting both sides gives

εG ≤ C1

(
ε2

T + CquadN−α
)1/2

with

C1 =

 e−(1+2CK)
(

t′f−t′0
)
− 1

1− 2CK

1/2

,

and
Cquad = Cquad

(
‖R2‖Ch−1

)
,

which completes the proof.

Theorem 1 sets the maximum bound on the generalization error in terms of training
and quadrature errors. The training error is computed once the training is completed.
As long as X-TFC is well trained, i.e., the training error is small, the bound Equation (49)
implies that the generalization error will be small for a large enough number of training
points. Assuming the solution is smooth, which it is if it is locally Lipshitz on the domain
being approximated, then the main way of bringing the training error as low as possible
involves increasing the amount of neurons in the network. Just remember that if too many
neurons are required, such that the matrix being inverted in the least squares step is ill-
conditioned, splitting the domain into subintervals is needed. Perhaps the most confusing
aspect of Theorem 1 is what training points to select. Specifically, which ones are chosen
determines the CquadN−α product in Equation (49), i.e., the quadrature error bound from
Equation (48). For example, when CGL training points are used, as in this manuscript, the
quadrature error bound is∣∣∣∣∣

∫ t′f

t′0
|u(t′)|2dt̄−

N

∑
d=0

wd|u(t′d)|
2

∣∣∣∣∣ ≤ (t′f − t′0)
‖u(N+1)(t′)‖∞

2N(N + 1)!
. (53)

Note that u(t′) in Equation (53) is any continuous function and in the context of X-TFC
would be the residual. Thus, if the residual is small, meaning the training error is small, the
generalization error should be too. The superscript (N + 1) refers to the N + 1-th derivative.
The CquadN−α product in Equation (48) is just a generalization that can be used for the error
of all quadrature schemes. The exact expression depends on the training points selected.

4. Numerical Example and Discussion

We used a fifth order fluid catalytic reactor example [39] to analyze X-TFC’s ability
to solve the MDRE and MDLE. This example was selected because it was also used by
Nguyen and Gajic [15]. Thus, a fairer comparison with their approach is easier to draw.
Matrices A and B are given by

A =


−16.00 −0.39 27.20 0 0

0.01 −16.99 0 0 12.47
15.11 0 −53.60 −16.57 71.78
−53.36 0 0 −107.20 232.11

2.27 69.10 0 2.273 −102.99

 (54)
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and

B =


11.12 −12.60
−3.61 3.36
−21.91 0
−53.60 0
69.10 0

. (55)

The cost weighting matrices are Q = I and R = I, where I is the identity matrix.
Furthermore, the terminal position penalty matrix is given as

S =


0.05 0 0 0 0

0 0.05 0 0 0
0 0 0.01 0 0
0 0 0 0.01 0
0 0 0 0 0.01

. (56)

Lastly, the final time was t f = 0.5 s. The X-TFC method for solving this problem’s
MDRE and MDLE was coded by us in MATLAB® R2021a and run with an Intel Core
i7-9700 CPU PC with 64 GB of RAM. In addition, the open-source MATLAB AD software
called ADiGator [40] was used to compute the Jacobians.

Multiple hyperparameters were tuned while testing X-TFC’s ability to solve the MDRE
and MDLE. Examples include the type of activation function, the number of neurons, the
input weight and bias distributions, the number of training points, and the subinterval
period length. The activation functions tested included those that are common in the
literature (e.g., sigmoid, hyperbolic tangent, Gaussian, rectified linear unit, etc.). Eventually,
we found that the gaussian activation seemed to perform the best. Likewise, 15 neurons
were found to be suitable for the SLFNN in the constrained expression of each subinterval.
Furthermore, 20 CGL points were used to discretize the domain along each subinterval
(i.e., training points). The CGL points are not equidistant and provide more points near
the domain’s boundary. It was found that the gradients of the MDRE and MDLE solutions
were the sharpest near the terminal end of the domain. Thus, utilizing the CGL points for
training points instead of equidistant points enabled a better approximation near the end
of the domain (i.e., the Runge phenomenon was avoided).

The input weight and bias distributions were tested with a randomized uniform
distribution and a deterministic low-dispersion one-dimensional Halton sequence. The
robustness of the X-TFC algorithm was shown by performing a 100-run Monte Carlo
simulation where the uniform input weights and biases varied. On the other hand, the
deterministic Halton sequence typically covers a bounded region more uniformly and
densely when few points are used (remember, we only have 15 neurons in each SLFNN).
Thus, we hypothesized that distributing the input weights and biases with a Halton
sequence may exude a more accurate solution, and we wished to test it. Whether a uniform
distribution or Halton sequence was used, the input weights and biases were bounded by
[−1, 1] and [0, 1], respectively.

Considerable time was taken exploring the size of a subinterval h. As expected,
larger subintervals meant the X-TFC constrained expressions failed to approximate the
MDRE and MDLE solutions accurately. Indeed, a global constrained expression with

large N and L values resulted in singular
(
J(Ξk)

ᵀJ(Ξk)
)

and
(

HᵀH
)

matrices within
Equations (32) and (35). A subinterval period of h = 0.001 s, N = 20, and L = 15 provided
near-perfect results. The MDRE and MDLE trajectories when such a value of h was used
are presented in Figures 2 and 3. The predicted values of the PINN, once it was trained,
are also shown in those two figures. As one can see, the predicted values at various
time instances (i.e., test points never seen before by the PINN during training) for both
the Riccati and Lyapunov diagonal elements match up with the trained solution. This is
important because the main benefit of using X-TFC to solve the MDRE or MDLE is that
the combined constrained expressions represent a closed-form analytical expression of the
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solution once trained and Theorem 1 is confirmed. Many other methods that numerically
solve the MDRE or MDLE require interpolation between the discretization points (e.g., KE,
RK4, and NG). One other thing worth mentioning is that a straight line initial guess similar
to what is shown in Figure 1 was used to generate Figures 2 and 3.

0 0.1 0.2 0.3 0.4 0.5

0

0.02

0.04

0.06

0.08

0.1

Figure 2. The computed Ricatti matrix diagonal elements. Crossmarks indicate predictions at
test points.

0 0.1 0.2 0.3 0.4 0.5

0

5

10

15

20

Figure 3. The computed Lyapunov matrix diagonal elements. Crossmarks indicate predictions at
test points.

Since our numerical example is taken from Reference [15], we decided to use an
identical benchmark as well: the Kalman–Englar (KE) method. More specifically, we
computed the L1-normwise errors ‖Pexact(t) − P(t)‖/Pexact(t). For comparison, these
errors were computed from six methods: X-TFC to solve the MDRE with the weight
and biases uniformly distributed (PI-MDRE unif.), X-TFC to solve the MDLE with the
weight and biases uniformly distributed (PI-MDLE unif.), X-TFC to solve the MDRE
with the weight and biases picked from the Halton sequence (PI-MDRE halt.), X-TFC
to solve the MDLE with the weight and biases picked from the Halton sequence (PI-
MDLE halt.), the Lyapunov approach from Nguyen and Gajic (NG), and the Runge–Kutta
4 method (RK4). When the input weights and biases are uniformly distributed, they are
effectively randomized, and the algorithm’s performance will vary between runs. Hence,
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we performed a Monte Carlo simulation where the uniform distribution varied the input
weights and biases. Since the Halton sequence is deterministic, a Monte Carlo simulation
was not necessary to quantify its performance. Figures 4 and 5 show the L1-normwise errors
of the methods when the subinterval time span was selected as h = 0.01 and h = 0.001 s,
respectively.

Figure 4. The L1-normwise errors between various numerical methods and the KE benchmark for
solving the MDRE when the time horizon equaled 0.01 s. The PI-MDRE unif. and PI-MDLE unif.
lines are the means from 100 Monte Carlo simulations where the input weights and biases were
randomized each time. The boundary of the shaded regions represent the minimum and maximum
of the errors from those simulations.

Figure 5. The L1-normwise errors between various numerical methods and the KE benchmark for
solving the MDRE when the time horizon equaled 0.001 s. The PI-MDRE unif. and PI-MDLE unif.
lines are the means from 100 Monte Carlo simulations where the input weights and biases were
randomized each time. The boundary of the shaded regions represent the minimum and maximum
of the errors from those simulations.

We can see from Figure 4 that the NG method is more consistently close to the KE
method when h = 0.01 s. The RK4 and PI-MDRE errors are larger near t f but decrease
below the NG errors once the MDRE solution approaches a straight line near t0. The
PI-MDLE errors follow the same trend, except that they mirror the NG error once they are
at the same magnitude. Since the PI-MDLE methods approximate the MDLE used in the
NG method, this is no surprise. The PI-MDLE errors remain better than RK4’s throughout
the entire time domain, while the PI-MDRE unif. errors can be higher than RK4’s. However,
if the weight and biases are selected with the Halton sequence, X-TFC is more accurate
than RK4 when h = 0.01 s.
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If h = 0.001, then X-TFC starts to really shine in terms of accuracy. The PI-MDRE unif.’s
maximum and PI-MDRE halt. errors were both better than the RK4 and NG errors. The PI-
MDLE unif. and PI-MDLE halt. errors were only a slight improvement over NG’s. They did
not vary as much between time increments, and their magnitude was slightly lower than
the NG method. As can be seen from Figures 2 and 3, the sharpest Riccati and Lyapunov
matrix solutions are near t f . This explains why the errors for most of the methods when
h = 0.01 and RK4 when h = 0.001 were at their worst. Interestingly, the sharp gradients
were well approximated by X-TFC for solving the MDRE directly with h = 0.001. If one
wishes to approximate the gradients of the MDRE the most consistently, then using the
Halton sequence to sample the input weights and biases would be recommended.

The PI-MDLE errors may not have been as low as those for PI-MDRE, but using X-TFC
to compute the MDLE and transforming the Lyapunov solution into the Riccati solution via
Equation (16) was faster than solving the MDRE with X-TFC directly. This was because the
MDLE is linear, while the MDRE is nonlinear. Thus, X-TFC for computing the MDRE on
each subinterval requires multiple iterations of classic linear least squares, while computing
the MDLE only needs one. This benefit overcame the extra time-consuming computation
needed to obtain the MDRE solution from the MDLE solution. Even if we provide an
excellent initial guess to the nonlinear X-TFC solver, the computation still will not achieve
the quickness of a linear X-TFC solver. This can be seen in Table 1, which shows statistics on
the number of iterations it took for PI-MDRE halt. to converge for each subinterval when a
straight line and RK4’s solution were used as an initial guess. Note that the input weights
and biases were sampled from the Halton sequence for obtaining these measurements, and
an h = 0.001 s was used. All statistics were higher/worse when a nonideal initial guess
was used.

Table 1. Iteration statistics for PI-MDRE halt. with h = 0.001 when the initial guess varied.

Initial Guess Straight Line RK4

mean (iter.) 9.1800 2.2280
std (iter.) 1.4169 0.7518
min (iter.) 7 2
max (iter.) 24 6

The amount of time it took for the various methods to come up with a solution at
the training points (i.e., discretization points) and find a solution at the test points (i.e.,
prediction) is shown in Table 2. The PI-MDRE halt. measurement involved using RK4 as
an initial guess. MATLAB’s timeit routine was used to record all run times. Furthermore,
MATLAB’s interpn routine, which performs linear interpolation on a vector, was used to
compute the KE, NG, and RK4 predictions. We developed our own MATLAB functions
to perform PI-MDRE halt. and PI-MDLE halt. prediction. They just consisted of plugging
the computed unknowns back into the constrained expressions at the necessary time point.
It must also be mentioned that we developed the code for carrying out the training of all
methods, and certain coding inconsistencies might warrant the Table 2 comparison to not
be utterly fair between the KE, NG, and RK4 methods. Nonetheless, it is very apparent that
the PI-MDRE halt. and PI-MDLE halt. runs are not as fast as the state-of-the-art methods.
The inversion performed by the least squares step in X-TFC is costly for this numerical
example. Still, once the SLFNN is trained, X-TFC can predict the MDRE solution faster
than MATLAB’s built-in interpn routine.

Table 2. Run time comparison when h = 0.001.

Method KE NG RK4 PI-MDRE
halt.

PI-MDLE
halt.

Training (s) 0.4159 1.0894 0.7744 17.5804 1.9576
Prediction (s) 8.0094× 10−4 7.8794× 10−4 7.9004× 10−4 5.9437× 10−5 7.6538× 10−5
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As one can see, the PI-MDRE halt. training time was exceptionally high compared to
the other methods. Even though the iterative least squares performed for each subinterval
were computationally expensive, it was not the main driving force behind PI-MDRE halt.’s
high run time. The calculation of the Jacobians via AD with ADiGator ended up being the
most computationally expensive, as is shown in Table 3. Note that “accumulated” in the
table implies all time measurements for each subinterval were summed together. A quicker
run time for finding the MDRE solution with X-TFC directly could be achieved by deriving
expressions for the Jacobians analytically. We used AD for prototype reasons.

Table 3. Training run time profile for PI-MDRE halt. when h = 0.001.

Accumulated least squares run time (s) 2.6389
Accumulated AD run time (s) 13.5947
Other run times (s) 1.3504
Total run time (s) 17.5804

4.1. Varying Subinterval Length

A key question remains: can the execution time of X-TFC be improved while main-
taining its accuracy if the subinterval lengths vary? In short, the answer is yes. We decided
to keep the subinterval lengths at h = 0.01 s between t ∈ [0, 0.4] and h = 0.001 s between
t ∈ [0.4, 0.5], where the solution gradients are the sharpest. As Figure 6 shows, both the
PI-MDRE halt. and PI-MDLE halt. errors are similar to when h = 0.001 s for the entire
domain (i.e., see Figure 5). Table 4 shows that the prediction time with a varying subinterval
length remains practically unchanged, but the training times are reduced by more than half
when compared with Table 2. The computation time from using X-TFC to solve the MDLE
is even competitive with the state-of-the-art numerical methods. Using X-TFC to solve
the MDRE is still not competitive in terms of computation time because of the iterative
nature of the algorithm. However, Table 5 shows that its accumulated least squares run
time is only about a second. More efficient coding practicing and analytic computation of
the Jacobians could drastically reduce PI-MDRE’s total run time to the order of a single
second, or even lower, making it as quick as the other state-of-the-art methods.

0 0.1 0.2 0.3 0.4 0.5

10
-16

10
-14

10
-12

10
-10

Figure 6. The L1-normwise errors between various numerical methods and the Kalman–Englar
benchmark for solving the MDRE when h = 0.001 s from t ∈ [0.4, 0.5] and h = 0.01 s from t ∈ [0, 0.4].

Table 4. Run time comparison when h = 0.001 from t ∈ [0.4, 0.5] and h = 0.01 from t ∈ [0, 0.4].

Method KE NG RK4 PI-MDRE
halt. PI-MDLE halt.

Training (s) 0.1147 0.3095 0.2142 7.6390 0.3048
Prediction (s) 3.1583× 10−4 2.6559× 10−4 2.7389× 10−4 5.5233× 10−5 7.5128× 10−5
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Table 5. Training run time profile for PI-MDRE halt. when h = 0.001 from t ∈ [0.4, 0.5] and h = 0.01
from t ∈ [0, 0.4].

Accumulated least squares run time (s) 1.1986
Accumulated AD run time (s) 5.9965
Other run times (s) 0.4439
Total run time (s) 7.6390

4.2. Advantages and Disadvantages of X-TFC Compared with State-of-the-Art Methods

The previous numerical study compared solving the MDRE with X-TFC directly and
indirectly with the KE, NG, and RK4 methods. How well they compared with X-TFC
in terms of accuracy (using the KE method as a benchmark) and computation time was
discussed in detail. Here they are summarized for clarity.

The main advantage of using X-TFC to solve the MDRE directly is that its error is
consistently near machine-level throughout the domain when the subinterval length is
suitably small, along subintervals that contain sharp gradients, and when the Halton
sequence is used to initialize the input weights and biases. If the input weights and biases
are randomized, then the solution obtained may be worse than the NG method along
subintervals that contain sharp gradients. However, our results show it is still better than
the RK4 method. Thus, PI-MDRE halt. is the most accurate between the NG and RK4
methods, as long as the the subinterval length is small. When the subinterval length is
large, the NG method is the most accurate. The main disadvantage of using X-TFC to solve
the MDRE directly is that its computation run time during training is one to two orders
of magnitude higher than the state-of-the-art methods. This is due to the iterative nature
of the algorithm and the Jacobian computations with AD. Future work should involve
computing the Jacobians analytically.

Solving the MDRE indirectly with X-TFC by solving the MDLE significantly speeds up
training time. Its training time is even more competitive with the state-of-the-art methods
than when solving the MDRE directly. Regardless, solving the MDRE indirectly with X-TFC
is only slightly more accurate than the NG method when a small subinterval length is used
(i.e., less standard deviation throughout the domain, see Figure 5). Thus, if one is using
X-TFC to solve the MDRE, one should do so directly if accuracy is the primary concern
and indirectly if computational speed is needed. Still, though, the training speed achieved
appears to not be better than the state-of-the-art methods. Although X-TFC, whether
solving the MDRE directly or indirectly, is not as fast during training as the state-of-the-art
methods, it is faster when predicting the solution on points not seen during training. This
is possible because X-TFC gives a closed-form solution. The solution provided by the
state-of-the-art methods is not closed-form and requires interpolation to generalize.

One way that was explored in which the speed of X-TFC for solving the MDRE can
be improved while still maintaining machine-level accuracy is by varying the subinterval
lengths. Large subintervals during regions of the domain where the solution is the most
smooth allows for fewer computations to be performed, which speeds up run time. Since
the solution on those subintervals is very smooth, it is still well approximated with small
SLFNN. For regions of the domain where the solution is not very smooth, containing
relatively sharp gradients, a small subinterval is still needed to achieve machine-level accu-
racy throughout the domain of the solution. Indeed, future work will involve adaptively
determining the subinterval length such that it can be as large as possible while keeping
the accuracy as low as possible.

5. Conclusions

How X-TFC, a PINN with functional interpolation, can be used to solve the MDRE
directly and indirectly by solving an MDLE has been shown. In addition, comparisons
between each proposed approach and several other methods (e.g., KE, NG, and RK4)
have been made. The purpose of the comparison was to determine the accuracy and
computational efficiency of both proposed approaches. Employing X-TFC to solve the
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MDRE directly yielded the best accuracy amongst all other approaches when the time
domain was decomposed into short intervals and the hyperparameters of the network
were initialized with a deterministic sequence. When X-TFC was used to solve the MDRE
indirectly by solving the MDLE, the accuracy of the former proposed approach could not
be matched but was still slightly better than the NG method. It is also worth mentioning
that the testing error of the proposed approaches was low, validating the maximum bound
estimate on X-TFC’s generalization error.

Using X-TFC to solve the MDLE was much quicker than solving the MDRE directly.
Both proposed approaches were not as quick as the state-of-the-art methods during training
with a fixed subinterval length. However, when the subinterval length was varied, such
that it was shorter during steeper solution gradients and larger otherwise, using X-TFC to
solve the MDLE was nearly as quick as the other approaches. X-TFC for solving the MDRE
directly still could not match the speed of the state-of-the-art methods, but computing
the Jacobians analytically could reduce its run time more. Even though both proposed
approaches did not achieve quicker training times, both achieved quicker run times while
predicting the solution than the state-of-the-art methods. Therefore, if a control engineer
wishes to design a Riccati controller offline at several points and then predict the control
between those points online, X-TFC can be a suitable option. However, solving the MDRE
in real time with X-TFC to formulate a closed-loop controller may not be quick enough
for many optimal control problems. Future work will attempt to see if adaptively varying
the subinterval length fixes this issue. Another option would be to solve the linear TPBVP,
shown as Equation (4), with X-TFC. Solving the linear TPBVP will likely be quicker because
fewer DEs are present in the TPBVP than are in the MDRE. Furthermore, the domain may
not need to be decomposed and solved sequentially. Naturally, X-TFC’s ability to solve this
TPBVP will be investigated in future research.
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