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Abstract: An edge-weighted consensus-based formation control strategy is presented for mobile
robots. In the edge-weighted strategy, a desired formation pattern is achieved by adjusting gain
weights related to the distance between robots. Moreover, the edge-weighted formation control
exploits the properties of weighted graphs to allow the formation to rotate and adapt its shape to
avoid collision among robots. However, formation patterns are commonly defined by biases with
respect to the centroid of the consensus rather than gain weights. This work proposes to optimize
the gain weights in edge-weighted graphs, given a formation pattern in terms of biases. A multi-
strategy mutation differential evolution algorithm is introduced to solve the optimization problem.
Simulation and real-world experiments are performed considering multi-robot systems composed of
differential drive robots. Additionally, the experimental setup includes Turtlebot3® Waffle Pi robots
and an OptiTrack® motion capture system for control purposes. The experimental results verify the
effectiveness of the proposed approach.

Keywords: edge-weighted control; consensus-based control; differential evolution; evolutionary
algorithms; mobile robots

MSC: 93-10

1. Introduction

Cooperative work is the main advantage of multi-agent systems. A network of
mobile robots is used for many applications, such as search-and-rescue (SaR) operations,
cooperative transportation of objects, collaborative exploration, and mapping, along with
others [1,2]. There is more than one strategy to solve the formation problem. Most of the
time is solved as a consensus problem in which the states of all the agents converge to
a common value [3]. In the case of mobile robots, this value defines the centroid of the
desired formation.

Several works deal with formation problems based on the Laplacian properties [4].
The most common algorithms exploit the following control law ˙̄x = −Lx̄, where x̄ ∈ Rn

corresponds to the position of the ith robot translated by a bias with respect to the centroid
of the formation, and L ∈ Rn×n stands for the Laplacian matrix. One of the main advan-
tages of this approach is that the formation is achieved even in the presence of delays in
the communication if the communication topology is static, undirected, and connected [5].
Different approaches using a bias-based strategy have been proposed. For example, in [6],
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a hybrid technique to drive a group of mobile robots to a desired formation is presented,
and Particle Swarm Optimization is applied for the exploration of unknown environments.
In [7], a full consensus-formation is reached by a switching control law. Other exam-
ples under this strategy use single-integrator dynamics [8], pinning control of complex
networks [9], and persistency of excitation to deal with non-holonomic constraints [10].

Nevertheless, solving the formation problem through a bias-based strategy does not
void collisions while moving in unknown environments [11], and incorporates artificial
potential fields for collision avoidance, producing an unstable behavior in the presence
of communication delays [12]. The weighted graph strategy overcomes these drawbacks.
In [11,13], an edge-weighted graph strategy is implemented to include collision avoidance
among the robots.

This paper extends the results presented in [11], where an edge-weighted formation
control is proposed. In this strategy, the distance between the ith robot and the jth robot is
given by the minimum of the edge-tension function; thus, the choice of a constant gain in
this function defines the desired distance for each couple of robots. However, a desired
formation is usually given in cartesian coordinates rather than in terms of a gain related to
the distance between robots. Optimization algorithms are applied under the edge-weighted
graph scheme to find the best constant gain value corresponding to the desired formation
given in cartesian coordinates.

Evolutionary Algorithms (EAs) have been widely used for intelligent optimization in
many research areas such as electrical and electronics, path planning, trajectory design and
tracking, automation control systems, interdisciplinary applications, and formation con-
trol [14,15]. In [15], the authors discussed the application of EAs to engineering problems.
Particularly, the Differential Evolution (DE) algorithm stands out in the automation control
and engineering civil areas.

Differential Evolution (DE) is commonly used to solve complex optimization prob-
lems [16]. Its flexibility and versatility have promoted several customized variants to solve
real-world problems. Recently, many works have modified the conventional DE algorithm
to enhance its effectiveness and efficiency [17]. In [17], the authors presented a recent
review based on the state-of-the-art DE variants. The strengths and weaknesses of several
DE modifications were carefully reviewed, followed by their potential application in solv-
ing real-world engineering problems. Among the reviewed variants, the multi-strategy
different dimensional mutation differential evolution version stands out for its enhanced
converge speed and exploitation search capacities, overcoming stagnation in local optima
regions [18]. All these benefits motivated the authors to use the multi-strategy mutation
scheme to deal with the drawbacks of conventional DE.

The contributions of this paper are summarized below: Given a desired formation in
cartesian coordinates, it is proposed to optimize the constant gains of the edge-weighted
graph, such that the edge-weight formation control drives the robots to the desired forma-
tion, keeping its capacities of collision avoidance among robots. Based on [18], a multi-
strategy mutation differential evolution (MMDE) algorithm is proposed to solve this prob-
lem. MMDE enhances convergence speed rates and avoids premature convergence of the
conventional DE algorithm. The proposed approach is called the MMDE-based formation
pattern for edge-weighted formation control.

This article is organized as follows: The next section presents the kinematics model
formulation for differential drive non-holonomic robots. Then, the edge-weighted forma-
tion control is described in Section 3. In Section 4, the description of the MMDE algorithm
is provided. Moreover, the proposed MMDE-based formation pattern strategy is presented
with details in Section 5. Simulation experiments and real-world implementation are per-
formed in Section 6. An analysis of the reported results and the future research directions
are given in Section 7. Finally, conclusions are presented in Section 8.
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2. Kinematics Model Formulation

Consider a set of N differential drive non-holonomic robots, like the one depicted in
Figure 1, each of them modeled as the unicycle kinematics (1) under the assumption that
wheels are rolling without slippage, the steering axis is orthogonal to the xy-plane, and the
geometry center Q coincides with the center of mass. The kinematics model is given by

ẋi = cos(θi)vi

ẏi = sin(θi)vi

θ̇i = ωi,

(1)

where xi, yi ∈ R stands as the cartesian coordinates, θi ∈ R is the orientation with respect
to the z-axis, and vi and ωi ∈ R are the linear and angular velocities, respectively. To deal
with the non-holonomic constraints, the input/output linearization feedback in [19] is
employed. Defining point B, from Figure 1, located along the sagittal axis of the robot at a
distance bi from the contact point of the wheel with the ground, the cartesian coordinates
are given by

xb
i = xi + bi cos(θi)

yb
i = yi + bi sin(θi),

(2)

with bi 6= 0. After evaluating the time derivative of (2) yields[
ẋb

i
ẏb

i

]
=

[
cos(θi) −bi sin(θi)
sin(θi) bi cos(θi)

][
vi
ωi

]
= T(θi)

[
vi
ωi

]
, (3)

where the matrix T(θi) is invertible as long as bi 6= 0.

𝜃𝑖

𝑥𝑖

𝑦𝑖

ሶ𝑥𝑖

ሶ𝑦𝑖

𝑏𝑖

𝐵

𝑥𝑖
𝑏

𝑦𝑖
𝑏

Figure 1. Differential drive robot model.

To drive the robot, the input control (ux
i , uy

i ) is designed such as ẋb
i = ux

i and ẏb
i = uy

i .
Then, using the following input transformation[

vi
ωi

]
= T−1(θi)

[
ux

i
uy

i

]
=

[
cos(θi) sin(θi)

− sin(θi)/bi cos(θi)/bi

][
ux

i
uy

i

]
, (4)
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the input/output linearization feedback is achieved

ẋb
i = ux

i

ẏb
i = uy

i

θ̇i = (uy
i cos(θi)− ux

i sin(θi))/bi.

(5)

The communication topology is modeled as an undirected, static, connected, and
weighted graph defined as a pair G = (V , E), where E ⊆ V ×V is the edge set of cardinality
M and V stands for the vertex set of cardinality N. Given a graph the Laplacian matrix,
L ∈ RN×N can be defined as

L = I · I>, (6)

where I ∈ RN×M is the incidence matrix whose components are given by

iij =

{
1 if vertex vi is incident with edge (i, j) ∈ E
0 otherwise,

(7)

an edge (i, j) represents the bidirectional communication between agents i and j. By con-
struction, L1N = 0, such that 1N = [1, · · · , 1]>, L is symmetric, it has a unique zero
eigenvalue, and the rest of its spectrum is strictly positive [20].

3. Edge-Weighted Formation Control

The consensus problem for N agents to drive the robots to a final common state can be
solved with the Laplacian-based feedback method [11]. The feedback control is in the form

żi = − ∑
j∈Ni

wij(z)(zi − zj), (8)

where zi := [xb
i , yb

i ]
>, Ni = {∀vj ∈ V | (i, j) ∈ E} is the Neighbors subset of the ith robot,

and wij(z) is a positive edge-weight function in terms of z := [z>1 , . . . , z>N ]. Defining a
weight matrix as

W(z) = diag({wij(z) | (i, j) ∈ E}) ∈ RM×M, (9)

and the weighted Laplacian matrix as follows

LW (z) = I · W(z) · I>; (10)

then the control law (8) can be recast as

ż = −(LW ⊗ I2)z, (11)

where I2 ∈ R2×2 is an identity matrix, and ⊗ is the Kronecker product.
Regarding collision avoidance, the weight function is designed with a safety distance

parameter δ > 0 among the robots. Therefore, the edge-weight function is defined as

wij(z) = αij

(
− 1

kij
csch2

(
‖zij‖ − δ

kij

)
+ 1

)
, (12)

where αij > 0 defines the inter-robot influence, zij := zi − zj stands for the position error,
and kij > 0 is a constant related to the distance between robots.

The edge-weight function (12) was designed based on an edge-tension function that
guarantees collision avoidance between agents i and j, if the δ parameter is strictly greater
than the distance ‖zij‖ [11].

The distance between robots i and j is given by

‖zij‖ = δ + kijacsch
(√

kij

)
. (13)
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The selection of the kij values determines the final formation. It means that the edge-
weight control requires the appropriate selection of the kij values to drive the robots to a
desired formation. Thus, given a formation pattern in cartesian coordinates, the goal is to
adjust the kij gain such that

‖hi − hj‖ − ‖zij‖ = 0, (14)

where hi is the desired bias of agent i, and hj is the desired bias of agent j, both biases
defined with respect to the centroid of the desired formation.

This work proposes to solve the problem statement in (14), as an optimization problem.
An objective function to deal with the optimization is described in the next subsection.

For further details of the Laplacian-based feedback method and collision avoidance,
the reader is referred to read [11].

Objective Function Formulation

A candidate solution xn composed of a set of kn
ij gains is defined as

xn = {kn
ij | (i, j) ∈ E}, (15)

where xn ∈ RM, since the cardinality of E defines the dimension of the optimization problem.
Based on the edge-weight graph strategy, each element kn

ij ∈ xn is related to a distance
dn

ij between agents i and j. The distance dn
ij(k

n
ij) is computed as

dn
ij(k

n
ij) = δ + kn

ijacsch
(√

kn
ij

)
. (16)

On the other hand, a desired distance d∗ij between agents i and j can be defined based
on the desired formation pattern in cartesian coordinates. Distance d∗ij is given by

d∗ij = ‖hi − hj‖, (17)

An objective function can be designed such that (d∗ij − dn
ij(k

n
ij)) → 0. Then, an error

en
ij(k

n
ij) = d∗ij − dn

ij(k
n
ij) is defined, ∀(i, j) ∈ E .

Finally, the following objective function f (xn) is proposed

f (xn) =
1
M

e(xn)
Te(xn), (18)

where e(xn) ∈ RM is a set of errors given by e(xn) = {en
ij(k

n
ij) | (i, j) ∈ E}.

The optimization problem is expressed as

arg min
xn

f (xn), subject to kn
ij > 0, ∀ kn

ij ∈ xn, (19)

where each element kn
ij ∈ xn is considered a feasible solution if kn

ij > 0. Otherwise,
unfeasible solutions kn

ij <= 0 cause system instability while performing the formation
control task.

In this work, the MMDE algorithm is used to solve this optimization problem stated
in (19).

4. Multi-Strategy Mutation Differential Evolution

DE is a population-based stochastic algorithm for global optimization [21]. The DE al-
gorithm uses NP D-dimensional parameter vectors

{
xg

1 , xg
2 , · · · , xg

NP

}
, where

xg
n =

{
xg

n1, xg
n2, · · · , xg

nD

}
, and n = 1, 2, · · · , NP denotes the nth individual in the gth

generation. Every individual improves through three principal operations: mutation,
crossover, and selection, performed every generation.
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In conventional DE, the mutation strategy DE/rand/1 is utilized for global optimiza-
tion, but its convergence ability is often insufficient with low convergence speed. On the
other hand, the mutation strategy DE/best/1 is utilized for local optimization, but it suffers
from premature convergence. Based on [18], this work presents the MMDE scheme to
enhance the convergence speed while avoiding premature convergence of the conventional
DE algorithm. The procedure of MMDE to solve minimization problems is shown below.

In the mutation operation, a mutant vector vg
n =

{
vg

n1, vg
n2, · · · , vg

nD

}
is generated for

each individual n according to

vg
n =



xg
best + F

(
xg

r2 − xg
3

)
if 1 ≤ g ≤ G/4

xg
r1 + (1− F)

(
xg

r2 − xg
r3

)
if G/4 < g ≤ G/2

xg
best + (1− F)

(
xg

r2 − xg
3

)
if G/2 < g ≤ 3G/2

xg
r1 + F

(
xg

r2 − xg
r3

)
if 3G/2 < g ≤ G,

(20)

where xg
r1 , xg

r2 , and xg
r3 are randomly selected individuals such as r1, r2, r3 ∈ {1, NP} and

n 6= r1 6= r2 6= r3. The parameter F ∈ [0, 1] is called the amplification factor, and it
controls the amplification of the differential variation (xg

r2 − xg
r3). Moreover, best is the best

individual in the population at generation g, and G is the total number of generations.
As shown in (20), the mutation scheme is divided into four generation units. The first

and the third generation promote exploitation search and speed convergence. The second
and fourth generation units prevent population stagnation in local optima regions [18].

A trial vector ug
n =

{
ug

n1, ug
n2, · · · , ug

nD

}
is generated based on the following binomial

crossover operation

ug
nm =

{
vg

nm if rm ≤ CR or m = mrand
xg

nm otherwise,
(21)

where m = 1, 2, 3, · · · , D and CR ∈ [0, 1] is the crossover constant. rm and mrand are uniform
random numbers defined as rm ∈ [0, 1] and mrand ∈ {1, D}. The number mrand ensures
that the trial vector ug

n obtains at least one element from the mutation vector vg
n to avoid

evolutionary stagnation [22].
In the selection operation, the trial vector ug

n is compared to the actual vector xg
n based

on the evaluation of an objective function f . If f (ug
n) yields a better solution than f (xg

n),
then ug

n replaces xg
n. Otherwise, xg

n is retained to the next iteration g + 1. The selection
scheme is defined as

xg+1
n =

{
ug

n if f (ug
n) ≤ f (xg

n)
xg

n otherwise.
(22)

A detailed description of conventional DE and its modifications can be found in [17,21,22].

5. Description of the Mmde-Based Formation Pattern Algorithm

In consensus-based formation control strategies using bias hi, the formation patterns
are defined by translating (in cartesian coordinates) the position of the ith robot with respect
to the centroid of the formation. The advantage of bias-based strategies is the easy proposal
of formation patterns. However, these strategies do not allow the formation to rotate and
adapt its shape to avoid collisions [11].

In edge-weighted formation control, the formation patterns are defined by edge-
weighted values wij(z). Given the appropriate kij values, ∀(i, j) ∈ E , the desired formation
is achieved without the definition of any bias, with the advantage of collision avoidance [11].
However, the choice of kij values can be difficult to propose for some formation patterns.
Moreover, the more edge-weighted values wij the graph contains, the more difficult it will
be to propose the kij values.
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This work proposes to optimize the kij values for the edge-weighted formation control,
∀(i, j) ∈ E , such that each robot i achieves the desired formation defined with cartesian
coordinates.

The description of the proposed approach is illustrated in Figure 2. The MMDE-
based formation pattern scheme consists of two stages: The first stage involves offline
optimization. In this phase, the MMDE algorithm determines the corresponding kij values
based on a desired formation pattern hi with respect to the centroid of the formation.
In the second stage, the edge-weighted control strategy is employed to achieve the desired
formation using the calculated kij values.

Edge-weighted 
formation control

MMDE algorithm
𝐡𝑖

𝑘23

1 2

34

𝑘12

𝑘14

𝑘34

𝑘13

Desired formation pattern 
in Cartesian coordinates.

𝐡2

𝐡3𝐡4

1 2

34

𝑥

𝑦𝐡1 𝑘𝑖𝑗

Offline optimization Online control

Figure 2. Proposed MMDE-based formation pattern scheme.

The following subsections provide a detailed description of the MMDE-based forma-
tion pattern algorithm presented in Figure 2.

Mmde-Based Formation Pattern Algorithm

This work proposes to optimize the objective function (18) using the MMDE algorithm.
The MMDE algorithm requires the initialization of each individual xn in the population.
Usually, individuals are randomly initialized considering lower and upper bounds.

To generate random individuals xn, it is proposed to use the following equation

kn
ij = kmin

ij + r(kmax
ij − kmin

ij ), ∀ kn
ij ∈ xn, (23)

where kmin
ij and kmax

ij are the lower and upper bounds, respectively. Moreover, r ∈ [0, 1] is a

uniform random number. This boundary must be selected such as kmax
ij > kmin

ij > 0.

It is important to notice that some elements kn
ij of the trial vector ug

n may represent
unfeasible solutions due to the impact of the mutation operation. To deal with unfeasible
solutions, it is proposed to follow the next scheme

kn
ij =

{
kmin

ij + r(kmax
ij − kmin

ij ) if kn
ij <= 0

kn
ij otherwise,

∀ kn
ij ∈ ug

n, (24)

where each kn
ij value is randomly computed to make it feasible. A summary of the MMDE

algorithm to adjust the kij values, ∀(i, j) ∈ E for the edge-weighted formation control is
shown in Algorithm 1.
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Algorithm 1 MMDE algorithm to adjust the kij values, ∀(i, j) ∈ E for the edge-weighted
formation control

1: define each bias hi for each robot
2: set G, NP, F ∈ [0, 1] and CR ∈ [0, 1] parameters
3: set safety distance parameter δ and boundary [kmin

ij , kmax
ij ]

4: f (xn)← objective function defined in (18)
5: for each individual n ∈ {1, NP} do
6: define individual position xn = {kn

ij | (i, j) ∈ E}
7: /* Perform initialization based on (23) */
8: kn

ij = kmin
ij + r(kmax

ij − kmin
ij ), ∀ kn

ij ∈ xn

9: end
10: for each generation g ∈ {1, G} do
11: for each individual n ∈ {1, NP} do
12: /* Generate the mutant vector vg

n based on (20) */
13: randomly choose r1, r2, r3 ∈ {1, NP} such as n 6= r1 6= r2 6= r3
14: best← find the best individual
15: if 1 ≤ g ≤ G/4 then
16: vg

n = xg
best + F

(
xg

r2 − xg
3

)
17: else if G/4 < g ≤ G/2 then
18: vg

n = xg
r1 + (1− F)

(
xg

r2 − xg
r3

)
19: else if G/2 < g ≤ 3G/2 then
20: vg

n = xg
best + (1− F)

(
xg

r2 − xg
3

)
21: else if 3G/2 < g ≤ G then
22: vg

n = xg
r1 + F

(
xg

r2 − xg
r3

)
23: end
24: /* Generate the trial vector ug

n based on (21) */
25: randomly choose mrand ∈ {1, D}
26: for each dimensional parameter m ∈ {1, D} do
27: randomly choose rm ∈ [0, 1]
28: if rm ≤ CR or m = mrand then
29: ug

nm = vg
nm

30: else
31: ug

nm = xg
nm

32: end
33: end
34: /* Deal with unfeasible solutions kn

ij <= 0, ∀ kn
ij ∈ ug

n based on (24) */
35: if kn

ij <= 0 then

36: kn
ij = kmin

ij + r(kmax
ij − kmin

ij )

37: end
38: /* Perform the selection operation based on (22) */
39: if f

(
ug

n

)
< f

(
xg

n

)
then

40: xg+1
n = ug

n
41: else
42: xg+1

n = xg
n

43: end
44: end
45: end
46: best← find the best individual
47: report the optimal kbest

ij ∈ xbest values related to the best individual
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6. Experimental Results

The applicability of the proposed approach is demonstrated through simulation and
real-world experiments. All parameter settings used for both experiments are provided below.

The settings of the MMDE algorithm are defined as follows: The amplification factor
F = 0.5 and the crossover constant CR = 0.5, as suggested in [17]. Moreover, a total of
G = 150 iterations and N = 30 population members were selected. With respect to the
edge-weight formation strategy settings, the safety distance was set to δ = 0.15, and the
inter-robot influence was fixed to α = 0.05. These parameters were experimentally selected.

For simplicity, the physical parameter bi is set to 0.08 meters for all robots. Additionally,
the linear and angular velocities (vi, ωi) have been bounded to −0.2 ≤ vi ≤ 0.2 and
−0.9 ≤ ωi ≤ 0.9. This saturation is imposed to protect the equipment, especially for
real-world implementations.

All experiments are conducted as follows: First, a desired formation pattern is pro-
vided in cartesian coordinates hi with respect to the centroid of the formation. Then,
the MMDE algorithm optimizes offline the kij values ∀(i, j) ∈ E for the edge-weighted
formation control. Finally, the edge-weighted formation control was performed online to
achieve the desired formation.

For real-world experimentation, up to five Turtlebot3 (Turtlebot3 is a registered trade-
mark of ROBOTIS Inc. USA) Waffle Pi mobile robots have been considered. The Turtlebot3®

Waffle Pi is a modular differential drive mobile robot, compact and customizable, pro-
grammable and ROS-based platform for education, research, and product development
applications [23] (see Figure 3).

Figure 3. Turtlebot3® Waffle Pi. Onboard cubes of silver reflective fabric are used for tracking purposes.

The ROS (ROS is a registered trademark of Open Robotics, Mountain View, CA, USA)
packages of Turtlebot3® provide access to send velocity control inputs and read its odometry.
However, odometry measures lack precision due to the sensor’s tell, terrain conditions,
and slipping. To deal with this problem, it is proposed to use an OptiTrack (OptiTrack is a
registered trademark of NaturalPoint Inc., Corvallis, OR, USA) tracking system to estimate
the poses of the robots with precision, instead of reading the robot’s odometry.

The OptiTrack® system is composed of six cameras Flex3 (OptiTrack Flex 3 is a regis-
tered trademark of NaturalPoint Inc., Corvallis, OR, USA) and a computer with the software
Motive for streaming. Tracking information is sent using ROS® packages. The space for
real-world implementations is presented in Figure 4.

Another computer is used to receive the poses of the robots from the OptiTrack® sys-
tem, and it sends the respective control signals to each Turtlebot3®. The proposed scheme
is programmed on this computer using MATLAB (MATLAB is a registered trademark of
Mathworks Inc., Torrance, CA, USA) and its ROS® toolbox.
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Figure 4. OptiTrack® setup for real-world implementations. The six cameras Flex3® are installed on
the ceiling.

6.1. Simulation Experiments

The simulation experiments were carried out using a network of four robots inter-
connected as illustrated in Figure 5, where the dimensionality of the problem is D = 6.
Moreover, two tests were performed called Simulations 1 and 2 Simulation 2. The desired
formation patterns for the considered tests are shown in Figure 6.

1 2

4 3

𝑘12

𝑘23

𝑘34

𝑘14
𝑘24𝑘13

Figure 5. Communication topology among robots for simulation experiments. Each kij value must be
adjusted to define a desired formation.
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(b)
Figure 6. Desired formation patterns in cartesian coordinates hi used for simulation. The xy frame
represents the centroid of the formation pattern. (a) Formation pattern for Simulation 1. (b) Formation
pattern for Simulation 2.

Table 1 reports the optimal kij values of both simulation tests. In the case of Simula-
tion 1, the values k13 = k23 and k14 = k24 were expected to be equal due to the shape of its
desired formation pattern (see Figure 6). Similarly, the values k14 = k23 and k13 = k24 were
expected to be the same for Simulation 2.
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Table 1. Optimization results of MMDE. The table reports the optimal kij values. Moreover, fbest is
the objective function evaluation at the final generation.

Test k12 k13 k14 k23 k24 k34 fbest

Simulation 1 3.9042 4.8638 1.9926 4.8638 1.9926 1.0356 1.7184 × 10−25

Simulation 2 1.0356 7.7565 4.8638 4.8638 7.7565 8.7243 1.5517 × 10−24

Table 1 also shows the objective function evaluation at the final generation called
fbest. The performance of MMDE is similar in both tests. After a total of 150 generations,
the algorithms report an objective function evaluation of 1.7184× 10−25 and 1.5517× 10−24,
for Simulations 1 and 2 2, respectively. The reported fbest values are small enough to
consider the kij values optimal for the edge-weighted formation control.

The convergence curves results for simulation experiments are illustrated in Figure 7.
These results exhibit the fast convergence speed of the MMDE algorithm. Moreover,
the algorithm also demonstrates its exploitation search capability.
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Figure 7. Convergence curve results of simulations. The fitness value represents the objective
function evaluation. (a) Convergence curve of Simulation 1. (b) Convergence curve of Simulation 2.

As it may be appreciated from Figure 8, the robots converge to the desired formation
pattern for Simulation 1. Figure 8a reports the position trajectories of each robot, in cartesian
coordinates. Additionally, the achieved formation pattern is drawn in Figure 8b. Notice
that the formation shape rotates to avoid collision among robots, reaching the desired
formation from Figure 6a.
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Figure 8. Results of position trajectories and achieve formation pattern, in cartesian xy-plane of
Simulation 1. The initial robot’s positions are identified with asterisk markers. m: meters. (a) Position
trajectories of Simulation 1. (b) Achieved formation of Simulation 1.



Mathematics 2023, 11, 3633 12 of 19

The formation control results along time of Simulation 1 are reported in Figure 9.
The position trajectories show smooth displacements (see Figure 9a). The control signals
are also smooth, as can be seen in Figure 9b. Moreover, the robot reached its formation
after 30 s.
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Figure 9. Results of position trajectories and input control signals, along time of Simulation 1. m: meters,
s: seconds. (a) Position trajectories of Simulation 1. (b) Input control signals of Simulation 2.

Cartesian paths followed by the robots reached the desired formation (see Figure 10a).
Notice that Robot 2 and Robot 3 avoid a possible collision. Moreover, the achieved forma-
tion in Figure 10b is the one expected in Figure 6b. As can be observed, the final formation
is rotated since the formation adapts its shape to avoid collisions.
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Figure 10. Results of position trajectories and achieve formation pattern, in cartesian xy-plane of
Simulation 2. The initial robot’s positions are identified with asterisk markers. m: meters. (a) Position
trajectories of Simulation 2. (b) Achieved formation of Simulation 2.

Figure 11 presents the results of Simulation 2, which are the position trajectories and
the input control signals along time. Both the position displacements and the control signals
of each robot are smooth, as shown in Figure 11a and Figure 11b, respectively. In this case,
the robots reached the desired formation after 25 s.



Mathematics 2023, 11, 3633 13 of 19

0 10 20 30 40 50 60

time (s)

-2

-1

0

1

2

m

Position trajectories along time

(a)

0 10 20 30 40 50 60

time (s)

-1

-0.5

0

0.5

1

ra
d

/s
, 

m
/s

Input control signals along time

(b)

Figure 11. Results of position trajectories and input control signals, along time of Simulation 2. m:
meters, s: seconds. (a) Position trajectories of Simulation 2. (b) Input control signals of Simulation 2.

6.2. Real-World Experiments

Two tests were performed in real-world experiments called Experiment 1 and Experi-
ment 2. Experiment 1 considers a network of three robots interconnected as illustrated in
Figure 12a, and Experiment 2 considers five interconnected robots, as shown in Figure 12b.
Notice that the dimensionality of these tests is quite different since D = 3 in Experiment 1,
while D = 10 in Experiment 2. Moreover, the desired formation patterns for Experiments
A and B, are included in Figure 13a and Figure 13b, respectively.
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Figure 12. Communication topology among robots for real-world experiments. Each kij value
must be adjusted to define a desired formation. (a) Communication topology for Experiment 1.
(b) Communication topology for Experiment 2.

𝑦

𝑥

12

3

𝐡3 = 0 1 𝑇

𝐡1 = 1 −1 𝑇𝐡2 = 0 −1 𝑇

(a)

𝑦

𝑥

1

4 3

5

𝐡2 = 0 0 𝑇

𝐡1 = 0.75 0.75 𝑇𝐡5 = −0.75 0.75 𝑇

𝐡4 = −0.75 −0.75 𝑇

2

𝐡3 = 0.75 −0.75 𝑇

(b)
Figure 13. Desired formation patterns in cartesian coordinates hi used for real-world experiments.
The xy frame represents the centroid of the formation pattern. (a) Formation pattern for Experiment 1.
(b) Formation pattern for Experiment 2.
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Table 2 reports the optimal kij values of Experiment 1. In this case, k12 6= k13 6= k23 as
expected (see Figure 13a). The result fbest = 1.6435× 10−34 is smaller than the previous
tests since the formation pattern is easier with lower dimensionality.

Table 2. Optimization results of MMDE in Experiment 1. The table reports the optimal kij values.
Moreover, fbest is the objective function evaluation at the final generation.

k12 k13 k23 fbest

0.9414 4.6514 3.7149 1.6435 × 10−34

Table 3 shows the optimal kij values of Experiment 2. The obtained results are
k13 = k15 = k34 = k45, k12 = k23 = k24 = k25, and k14 = k35, as required by the de-
sired formation pattern in Figure 13b. Notice that fbest = 1.1843 × 10−16 is the most
significant result among tests since the required formation pattern is more challenging to
solve. However, the optimal kij values are still small enough for the formation control task.

Table 3. Optimization results of MMDE in Experiment 2. The table reports the optimal kij values.
Moreover, fbest is the objective function evaluation at the final generation.

k12 k13 k14 k15 k23 fbest

1.0563 2.0904 4.1825 2.0904 1.0563

1.1843 × 10−16k24 k25 k34 k35 k45

1.0563 1.0563 2.0904 4.1825 2.0904

The convergence curve results for real-world experiments are illustrated in Figure 14.
As can be seen, the convergence curve looks similar in both tests. These curves are also
similar to the simulation experiment results (see Figure 7). However, previous objec-
tive function evaluations suggest that more generations are required for more complex
communications topologies.
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Figure 14. Convergence curve results of real-world experiments. The fitness value represents the
objective function evaluation. (a) Convergence curve of Experiment 1. (b) Convergence curve of
Experiment 2.

Figure 15 illustrates that robots reached the desired formation pattern for Experiment 1.
In this case, Figure 15a shows that position trajectories in the plane are smooth. Moreover,
there was no risk of collision. However, the edge-weight control still rotates the center of
the formation to best achieve the desired formation pattern (see Figure 15b).
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Figure 15. Results of position trajectories and achieve formation pattern, in cartesian xy-plane of
Experiment 1. The initial robot’s positions are identified with asterisk markers. m: meters. (a) Position
trajectories of Experiment 1. (b) Achieved formation of Experiment 1.

Figure 16 presents the position trajectories and input control signals along time of
Experiment 1. As it may be appreciated from Figure 16a, trajectories reached the forma-
tion pattern around 20 s. Clearly, the control signals start saturated, but after 10 s their
performance becomes smooth (see Figure 16b).
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Figure 16. Results of position trajectories and input control signals, along time of Experiment 1. m:
meters, s: seconds. (a) Position trajectories of Experiment 1. (b) Input control signals of Experiment 1.

Regarding Experiment 2, the formation pattern results are provided in Figure 17. In this
case, the initial positions of robots 2 and 4 are proposed in a way that their trajectories cross
to show that the controller avoids the collision. However, the cartesian path followed by
the robots reported that the collision is avoided (see Figure 17a). Moreover, the formation
pattern is achieved successfully, as illustrated in Figure 17b.
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Figure 17. Results of position trajectories and achieve formation pattern, in cartesian xy-plane of
Experiment 2. The initial robot’s positions are identified with asterisk markers. m: meters. (a) Position
trajectories of Experiment 2. (b) Achieved formation of Experiment 2.

Figure 18 reports the formation control results along time of Experiment 2. The desired
formation is reached after 30 s. Figure 18a shows that the robots converge smoothly to
the desired formation pattern at around 30 s. However, input control signals reported in
Figure 18b are not smooth as previous tests. Although this test is more complex than the
previous ones, many drawbacks of the real-world implementations arose, such as non-
modeled dynamics, external perturbations, robot wear conditions, and imperfections in the
surface. Moreover, ROS® packages pass through a local network via Wi-Fi communications
involving loss of packages and delays. Despite all these drawbacks, the control strategy
succeeds in achieving the required formation.
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Figure 18. Results of position trajectories and input control signals, along time of Experiment 2.
m: meters, s: seconds. (a) Position trajectories of Experiment 2. (b) Input control signals of Experiment 2.

Finally, the results of the real-world implementations using Turtlebot3® Waffle Pi
robots are included in Figure 19. The achieved formations patterns are highlighted with
green lines which approximate the reached formations.
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(a) (b)
Figure 19. Achieved formation pattern in the real-world implementation using Turtlebot3® Waffle Pi
robots. Green lines approximate the reached formation pattern. Each number indicates the ith robot.
(a) Achieved formation of Experiment 1. (b) Achieved formation of Experiment 2.

7. Discussion

Desired formation patterns are often given in cartesian coordinates instead of provid-
ing gain weights since cartesian coordinates are easier to define with respect to the center of
the formation. The formation pattern choosing the gain weights in edge-weighted graphs
can be complicated, especially for complex robot networks. The proposed MMDE-based
formation pattern algorithm has successfully provided optimal gain weights given cartesian
coordinates, which was the main contribution of the paper.

It has been shown that the edge-weighted formation control exploits the properties
of weighted graphs to allow the formation to rotate and adapt its shape to avoid collision
among robots.

Moreover, all experiments were performed based on a complete graph topology.
However, not all the vertices are required to be connected, since the communication
topology only requires an undirected, static, connected, and weighted graph [11]. It is let
as a future work to study the impact of the MMDE-based formation pattern, varying the
vertices connections.

The performance of the edge-weight control scheme was admirable in real-world
implementations since ROS® packages pass through a local network via Wi-Fi communica-
tions involving loss of packages and delays. Additionally, the results of simulations and
real-world experiments indicate that the robots reached the desired formation patterns with
smooth trajectories in the xy-plane. However, the input control signals of the experiments
were not as smooth as in the simulation. This is mainly due to non-modeled dynamics,
external perturbations, loss of packages, and other drawbacks of the physical implementa-
tions which are not considered in simulated scenarios. Despite all these inconveniences,
the edge-weight control performs well.

In this work, the MMDE-based formation pattern algorithm is performed offline,
while the edge-weighted formation control drives the mobile robots online. It is left to
future work to propose an online optimization-based formation pattern. In this manner,
the desired formation pattern can be changed during online operation.

Moreover, the collision avoidance capacities of edge-weighted formation control can
be combined with pin control of complex networks, adding a dynamic topology without
restricting complete graph connection in complex networks [9].

8. Conclusions

This paper addressed an edge-weighted consensus-based formation control for dif-
ferential drive robots. An MMDE-based formation pattern algorithm was proposed to
provide the gain weights in edge-weighted graphs, given a desired formation in cartesian
coordinates. Then, the edge-weighted formation control drives the mobile robots to the
desired formation control, based on the adjusted gain weights. Simulation and real-world
experiments were performed to verify the effectiveness and applicability of the proposed
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approach. Experiments considered a communication topology for multi-robot systems
composed of three, four, and five mobile robots.

For the MMDE-based formation pattern algorithm, MMDE demonstrated its exploita-
tion capacities with fast learning rates. MMDE has provided objective function evaluations
below to 1.1843 × 10−16 for a network of five robots, which was the most challenging ex-
periment. The smaller the objective function evaluations, the better precision the formation
achieved will have.

Moreover, the reported optimal gain weights were adequate in all experiments. With re-
spect to the edge-weighted formation control, the simulation and real-world implementa-
tion demonstrates the capacity of the control scheme to avoid collision among robots.

The applicability of the proposed method was tested with an experimental setup
composed of an OptiTrack® motion capture system and up to five Turtlebot3® Waffle Pi.
The main difference between simulation and real-world experiments was the computed
control signals. The control signals results of real experiments were not smooth as the
simulation results, due to non-modeled dynamics, external perturbation, imperfection in
the surface, and robot wear conditions. However, mobile robots converge to the desired
formation pattern performing smooth position trajectories in the xy-plane.

Finally, besides using different robots in the network topology, more future studies
can be proposed, including trajectory tracking in formation with collision avoidance in the
presence of dynamic objects.
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