
Citation: Wang, C.; Zhang, L.; Gao,

Y.; Zheng, X.; Wang, Q. A

Cooperative Game Hybrid

Optimization Algorithm Applied to

UAV Inspection Path Planning in

Urban Pipe Corridors. Mathematics

2023, 11, 3620. https://doi.org/

10.3390/math11163620

Academic Editor: Xiaosong Du

Received: 22 July 2023

Revised: 15 August 2023

Accepted: 17 August 2023

Published: 21 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Cooperative Game Hybrid Optimization Algorithm Applied
to UAV Inspection Path Planning in Urban Pipe Corridors
Chuanyue Wang, Lei Zhang *, Yifan Gao, Xiaoyuan Zheng and Qianling Wang

School of Artificial Intelligence and Data Science, Hebei University of Technology, Tianjin 300132, China
* Correspondence: 2007094@hebut.edu.cn

Abstract: This paper proposes an improved algorithm applied to path planning for the inspection
of unmanned aerial vehicles (UAVs) in urban pipe corridors, which introduces a collaborative
game between spherical vector particle swarm optimization (SPSO) and differential evolution (DE)
algorithms. Firstly, a high-precision 3D grid map model of urban pipe corridors is constructed based
on the actual urban situation. Secondly, the cost function is formulated, and the constraints for
ensuring the safe and smooth inspection of UAVs are proposed to transform path planning into an
optimization problem. Finally, a hybrid algorithm of SPSO and DE algorithms based on the Nash
bargaining theory is proposed by introducing a cooperative game model for optimizing the cost
function to plan the optimal path of UAV inspection in complex urban pipe corridors. To evaluate
the performance of the proposed algorithm (GSPSODE), the SPSO, DE, genetic algorithm (GA), and
ant colony optimization (ACO) are compared with GSPSODE, and the results show that GSPSODE is
superior to other methods in UAV inspection path planning. However, the selection of algorithm
parameters, the difference in the experimental environment, and the randomness of experimental
results may affect the accuracy of experimental results. In addition, a high-precision urban pipe
corridors scenario is constructed based on the RflySim platform to dynamically simulate the optimal
path planning of UAV inspection in real urban pipe corridors.

Keywords: UAV inspection; path planning; spherical vector particle swarm optimization; differential
evolution; Nash bargaining theory; urban pipe corridors

MSC: 93C85

1. Introduction

Urban comprehensive pipe corridors are the core infrastructure supporting the normal
operation of the city, which effectively improves the real problems of “road zipper” and
“aerial spider web” in the process of urban construction and brings a lot of convenience to
the daily life of urban residents while improving the aesthetics of the modernized city. It
can be said that urban comprehensive pipe corridors are equivalent to the blood vessels
for the city to transport vitality to ensure that the energy flow and material flow of the
modern city can run more smoothly. However, since the corridors are easily affected by
many factors in the process of operation, it is necessary to actively implement the operation
and maintenance work based on realistic requirements. However, in addition to municipal
pipes in comprehensive pipe corridors, there are other additional auxiliary facilities, such
as fire alarms; fire, monitoring, and the sewage environment are very complex. The
traditional mode of operation and maintenance management work mostly rely on the
manual inspection form, but because of the large scale of the corridors, which contain a few
“inverted rainbow” nodes, this greatly increases the difficulty of manual inspection, not
only threatening the personal safety of the inspectors but also being unable to guarantee
the accuracy of the inspection results [1].

As we all know, UAVs have the advantages of small size, simple mechanical structure,
high safety, low cost, and more, which can be used as an unmanned inspection force to
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inspect narrow indoor spaces and pipe corridors to effectively improve the inspection
efficiency and solve the problems of low efficiency, high labor cost, high labor intensity,
and low safety [2–4]. Facing the intricate urban pipe corridors, the optimal path planning
of UAVs is a necessary condition to ensure the safe and successful implementation of the
inspection process; therefore, this paper proposes to research the path planning of UAV
inspection, aiming to obtain the optimal flight path of UAV inspection in pipe corridors to
provide the theoretical support for safety and accurate inspection.

UAV inspection path planning means that UAV inspection plans a flight path from
the starting point to the target point, as well as satisfying the safety, path distance, fuel
consumption, and other constraints, which is crucial for the smooth execution of inspec-
tion [5,6]. Generally, the optimal path refers to minimizing the distance between UAV
visit locations to reduce the time and fuel. Furthermore, the planned path is required to
guide UAVs to avoid obstacles safely and effectively in the corridors and to meet feasibility
constraints, such as flight time, flight altitude, fuel consumption, turn rate, and climb
angle [7–9].

In recent years, researchers have proposed various methods for addressing the issue of
path planning, including graph search methods [10–12], linear programming methods [13],
and heuristic methods [14–17]. The PSO algorithm is a kind of heuristic bionic optimiza-
tion algorithm, which does not require the optimized function to have the properties of
differentiable, derivable, continuous, etc., and it can converge to the global optimal solution
with a large probability, which has a faster computational speed and a better global search
ability compared with traditional optimization algorithms. However, for functions with
multiple local extreme points, it is easy to fall into the local extreme points, resulting in
premature convergence. The PSO algorithm is generally applicable to a class of high-
dimensional optimization problems with multiple local extreme points, which do not need
to be solved with very high accuracy. Therefore, researchers proposed many improved
algorithms, such as adaptive optimization algorithms, hybrid optimization algorithms,
multi-objective optimization algorithms, and so on. Liu, H. et al. proposed a modified
PSO called MPSO. A chaos-based non-linear inertia weight is used to balance capacities
better [18]. Shin, J.-J. et al. [19] proposed an improved particle swarm optimization (PSO)
algorithm used for finding an optimal path, which is composed of pre-processing steps,
multi-swarm PSO algorithm, and post-processing steps [19]. Phung, M. et al. proposed a
new spherical-vector-based particle swarm optimization algorithm (SPSO) by introducing
the correspondence between particle position and speed, turn angle, and pitch angle, and
they evaluated it by comparing it with other optimization algorithms in eight benchmark
test scenarios for validation. The results showed that SPSO can efficiently search for the
configuration space of UAV, which outperforms the other particle swarm optimization
(PSO) variables and other most advanced meta-heuristic optimization algorithms [20]. Xu
proposed a tri-objective optimization problem for planning UAV paths, which considers
the path’s length, height, and turning angle and used a multi-objective PSO algorithm
(MO-PSO) to solve it [21]. Among the many versions of improved algorithms, the hybrid
particle swarm algorithm (HPSO), which is formed by combining the advantages of other
algorithms, is the most favored form of improved algorithm by researchers at present.
Huo et al. proposed a hybrid differential symbiotic organism search (HDSOS) algorithm,
which was proposed by combining the mutation strategy of differential evolution (DE) with
the modified techniques of symbiotic organism search (SOS) to solve the path planning
problem [22]. Abhishek et al. proposed a hybrid path planning algorithm, which combines
PSO with the harmony search algorithm (HSA), which performs well regarding path se-
lection, obstacle avoidance, and path length minimization [23]. Chen et al. proposed an
enhanced version of the chimp optimization algorithm (TRS-ChOA) to solve the UAV path
planning problem in a 3D environment [24]. Hao et al. proposed an improved artificial
potential field method and introduced a collision risk assessment mechanism to solve the
problems of local minimums, unreachable targets, and unreasonable obstacle avoidance
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techniques in traditional artificial potential field method path planning [25]. A comparative
analysis of related work is shown in Table 1.

Table 1. Comparative analysis of related work.

Reference Contributions Limitation

Hao, L. et al. (2020) [18]
This paper proposes a modified PSO called MPSO. A
chaos-based non-linear inertia weight is used to
balance capacities better.

Its convergence and stability lack
theoretical support. There are some
parameters in MPSO, which increase the
difficulty of problem solving.

Shin, J.-J. et al. (2020) [19]

An improved particle swarm optimization (PSO)
algorithm is proposed for finding an optimal path,
which is composed of pre-processing steps,
multi-swarm PSO algorithm, and
post-processing steps.

It is not suitable to include constraints
related to UAV maneuvering; therefore,
this may lead to large errors between the
planned path and the flight path.

Phung, M. et al. (2021) [20]

This paper presents a new algorithm named
spherical-vector-based particle swarm optimization
(SPSO) algorithm, which efficiently searches the
configuration space of the UAV via the
correspondence between the particle position and the
speed, turn angle, and climb/dive angle of the UAV.

The optimization algorithm converges
quickly and easily falls into
local optimum.

Dadvar, M. et al. (2021) [26]

This paper proposes a new algorithm, which uses a
coalition or cooperation model in the game theory to
combine the DE and PSO algorithms to maintain a
balance between the exploration and exploitation
capabilities by preventing population stagnation and
avoiding the local optimum.

Failure to incorporate the maneuvering
characteristics of the UAV into the
algorithm does not further improve its
navigation capabilities.

This work

1. A path planning scheme for UAV inspection in urban pipe corridors is proposed.
2. Considering all grids in the corridors as obstacles, the safety cost function is formulated for

the corridor grid map model.
3. A hybrid algorithm of SPSO algorithms, which incorporate the maneuvering characteristics of

the UAV and DE algorithms based on the Nash bargaining theory, is proposed by introducing
a Nash bargaining cooperation game model, which dramatically increases the searching
ability of the algorithms.

4. A high-precision urban pipe corridor 3D grid map model and scenario based on the RflySim
platform are constructed as an experimental verification environment.

Based on the above comparison table, both SPSO and DE algorithms have their own
drawbacks and thus cannot show better performance. The SPSO algorithm introduced
for the UAV path planning problem is developed based on the correspondence between
the intrinsic motion components of the UAV and the search space, but it still suffers
from a tendency to converge prematurely and fall into a local optimum when solving
complex optimization problems, whereas the DE algorithm relies heavily on the test vector
generation strategy and the parameter values used. Above all, this paper proposes a path
planning scheme for UAV inspection in urban pipe corridors, which proposes a hybrid
optimization algorithm GSPSODE combining the SPSO and DE algorithms by applying
a cooperative game model, which can improve the searchability and diversity of the
algorithm, as well as finding the best solution, iteratively optimizing the cost function and
planning the optimal inspection path of the UAV [26]. Therefore, the contributions of this
research are four-fold:

(i) A cost function is formulated to transform path planning into an optimization prob-
lem. Considering all grids in the corridors as obstacles, the safety cost function is
formulated for the corridor grid map model.

(ii) A hybrid algorithm of SPSO and DE algorithms based on the Nash bargaining the-
ory is proposed by introducing a Nash bargaining cooperation game model, which
dramatically increases the searching ability of the algorithms.
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(iii) SPSO, PSO, and DE are introduced in comparative analysis experiments to evaluate
the effectiveness of the GSPSODE algorithm.

(iv) A high-precision urban pipe corridor 3D grid map model and scenario based on the
RflySim platform are constructed as an experimental verification environment for
UAV inspection path planning schemes to evaluate the effectiveness and feasibility of
the path planning scheme generated by the GSPSODE algorithm.

2. Problem Formulation and Model Construction

This paper proposes an urban UAV inspection path planning scheme toward multiple
inspection points, which replaces the manual inspection method in the traditional mode
with UAV inspection. The first step is to construct a high-precision 3D grid map model of
urban pipe corridors using octree and to plan the location information of the inspection
points according to the actual environment of urban pipe corridors. Afterward, the cost
function is formulated, which contains the optimal criteria and constraints associated with
UAV. The optimal solution of the cost function is received through optimization, meaning
the optimal inspection path planned for the UAV, as described below.

2.1. Map of Urban Pipe Corridors

This research is based on urban pipe corridors as the target inspection environment.
The 3D point cloud urban pipe corridor map is obtained with a 3D laser scanner, and then,
the 3D grid map model is constructed accordingly. The map information can generally be
obtained in 3D point cloud format by sensors such as LiDAR and depth cameras, and the
point cloud map can be transformed into an occupied grid map stored in an octree data
structure when a certain spatial resolution is set. Each tree node represents a spatial cube,
which can realize the compression of a point cloud map, and this research applies this type
of map to UAV path planning [27]. The 3D point cloud urban pipe corridor map model is
obtained, as shown in Figure 1.
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Figure 1. Three-dimensional point cloud urban pipe corridor map model.

An octree is a data structure based on the tree hierarchy, which is defined as, except
for the empty tree, any node in the tree having exactly 8 or 0 children. The octree makes full
use of the spatial correlation of the forms, and it takes up far less storage space than direct
storage through an array of three-dimensional voxels. Its main advantage is convenient
management, and it can be convenient to search for a certain small square using the
dichotomous method. Once the depth reaches a certain level, it could almost fit all the 3D
models [28]. An example diagram representing the space occupied by an octree is shown
in Figure 2. The fully occupied squares in Figure 2a are defined in black, the partially
occupied ones in gray, and the unoccupied ones in white, respectively. The structure of an
octree is shown in Figure 2b.
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The transformation of point cloud data into a 3D grid map with an octree structure not
only saves storage space significantly without losing the spatial structure but also improves
computational speed, which contributes to the environment perception of UAV inspection.
The high-precision urban pipe corridor 3D grid map model is shown in Figure 3.
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2.2. Constraints

To ensure smooth and efficient inspection of UAVs in urban corridors, the planned
optimal path must satisfy multiple constraints, such as path length, safety, feasibility,
smoothing cost, etc. The cost function to be optimized is constructed based on multiple
constraints, as follows:
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(I) Path length constraints

The flight path of the UAV is represented by a list of n waypoints, each of which
corresponds to a path node Pij =

(
xij, yij, zij

)
in the urban pipe corridor grid map. The

Euclidean distance between two path nodes is computed as ‖
−−−−→
PijPi,j+1‖, which results in

the cost function F1(Xi) associated with the path length:

F1(Xi) =
n−1

∑
j=1
‖
−−−−→
PijPi,j+1‖. (1)

(II) Safety and feasibility constraints

In addition to path length, the planned paths must avoid obstacles in urban pipe
corridors to ensure the safety of UAV inspection. Figure 4 shows the Euclidean distance
from each path point to its l3−1 neighboring grids, which is used to judge whether the
neighboring obstacles are “too close”, where l represents the safety distance between the
path node and the obstacle. Each grid in the corridor map model is considered an obstacle,
and the entire 3D corridor grid map model will be traversed to judge whether it is located
within the l3−1 neighboring grids of any path point or whether the path is “too close” to
the grid map model, which will produce certain costs F2(Xi), as follows:

F2(Xi) = k∑l
i=1d(Xi). (2)

where k is the penalty coefficient used to control the extent of overclose behavior.
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(III) Smooth constraints

The smoothing cost evaluates the turning rate and climbing rate necessary to generate
feasible paths to reduce the number of turning points in UAV paths. As shown in Figure 5,

the turning angle, φij, is the angle between two consecutive path segments,
−−−−→
P′ijP

′
i,j+1 and

−−−−−−→
P′i,j+1P′i,j+2, projected on the horizontal plane Oxy. Let

→
k be the unit vector in the direction

of the z-axis, and let the climbing angle ψij be the angle between the path segment
−−−−→
PijPi,j+1

and its projection
−−−−→
P′ijP

′
i,j+1 onto the horizontal plane. The projected vector

−−−−→
p′ij p

′
i,j+1, the

turning angle φij, and the climbing angle ψij are computed as shown in Equations (3)–(5).

−−−−→
p′ij p

′
i,j+1 =

→
k ×

(
−−−−→
p′ij p

′
i,j+1 ×

→
k

)
, (3)

φij = arctan

‖
−−−−→
P′ijP

′
i,j+1 ×

−−−−−−→
P′i,j+1P′i,j+2‖

−−−−→
P′ijP

′
i,j+1 ·

−−−−−−→
P′i,j+1P′i,j+2

, (4)
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ψij = arctan

 zi,j+1 − zij

−−−−→
‖P′ijP′i,j+1‖

. (5)
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As shown above, the smooth cost F3(Xi) is computed as

F3(Xi) = a1∑n−2
j=1 φij + a2∑n−1

j=1

∣∣ψij − ψi,j−1
∣∣. (6)

where a1 and a2 are, respectively, the penalty coefficients of the turning and climbing angles.

2.3. Overall Cost Function

By considering the optimality, safety, and feasibility constraints associated with path
Xi, the cost function F(Xi) can be defined as

F(Xi) =
3

∑
k=1

bk Fk (Xi). (7)

where bk is the weight coefficient, and F1(Xi) to F3(Xi) are, respectively, the costs associated
with path length, safety and feasibility restrictions, and smoothness. Xi is the decision
variable, including the list of n waypoints.

3. GSPSODE for UAV Path Planning

With the cost function F(Xi) defined above, path planning becomes an optimization
problem, where the aim is to find the path X∗, which minimizes F(Xi). This section
proposes a new algorithm for solving optimization problems—a hybrid algorithm of SPSO
and DE algorithms using the cooperation model from the game theory to maintain a balance
between the exploration and development capacity by preventing population stagnation
and avoiding the local optimum.

3.1. Nash Bargaining Cooperation Game Model

The Nash bargaining cooperation game aims to bargain for the income generated by
the cooperation to determine the income distribution scheme. When bargaining on an



Mathematics 2023, 11, 3620 8 of 18

issue, two or more parties negotiate an agreement and solution and act on it. How the
cooperation profits are distributed between the parties depends on the balance of power
and the use of skills of the parties. Therefore, it is essential to go through the game of all
parties bargaining and reaching a consensus and cooperation.

SPSO and DE are two players in the state space, which use the Nash bargaining theory
to play a cooperative game to find the best solution. The bargaining problem is formed
by the pair (F, v), where F is a feasible set of allocations, and a closed and convex subset
of R2, v = (v1, v2) is the disagreement point determining the outcome of the two players
if the negotiations have failed. It should be noted that the feasible set F always contains
the disagreement point. Nash presents a unique solution to the bargaining theory based
on five principles, including Pareto optimality, individual rationality, linear invariance,
independence of irrelevant alternatives, and symmetry.

f (F, v) ∈ argmax((x1 − v1)(x2 − v2)),

(x1, x2) ∈ F,

x1 ≥ v1, x2 ≥ v2.
(8)

3.2. Spherical Vector Particle Swarm Optimization (SPSO)

(I) SPSO is one of the PSO variants, which is created by introducing a spherical vector
coordinate system. Each path is encoded as a set of vectors used to describe the
movement of the UAV between neighboring waypoints, as represented by the three
components of magnitude ρ, elevation ψ, and azimuth φ, corresponding to the UAV’s
speed, turn angle, and climb angle. The flight path Ωi is represented by a N × 3D
hyper spherical vector consisting of N nodes. The SPSO algorithm where Ωi is the
position of the particle, and then, ∆Ωi is the velocity increase in that particle, is shown
in Equation (9):

Ωi = (ρi1, ψi1, φi1; ρi2, ψi2, φi2; · · · · · · ; ρiN , ψiN , φiN), N = n− 2,

∆Ωi = (∆ρi1, ∆ψi1, ∆φi1; ∆ρi2, ∆ψi2, ∆φi2; · · · · · · ; ∆ρiN , ∆ψiN , ∆φiN),

ρ ∈ (0, path_length),

ψ ∈ (−π/2, π/2),

φ ∈ (−π, π).

(9)

(II) Consider each path as a volume-less particle in a N × 3D search space, flying in the
search space at a certain speed, which is dynamically adapted according to its own
flight experience and that of its companions. The ith particle is denoted as Ωi = (uk

i1,uk
i2,

. . .,uk
ij), and the best position it experiences is denoted as a 1 × N-dimensional vector

Qi,best. The best position experienced by all particles in the population is denoted as a
1 × N-dimensional vector Qg,best. uk

ij and ∆uk
ij are, respectively, the 1 × 3D spherical

vector
(

ρk
ij, ψk

ij, ϕk
ij

)
and velocity

(
∆ρk

ij, ∆ψk
ij, ∆ϕk

ij

)
. For each generation, the update is

performed according to the following Equation (10):

∆uk+1
ij ← wk∆uk

ij + η1r1i

(
qk

ij − uk
ij

)
+ η2r2j

(
qk

gj − uk
ij

)
,

uk+1
ij ← uk

ij + ∆uk+1
ij ,

Qi,best = (qi1, qi2, . . . , qi,N),

Qg,best =
(
qg1, qg2, . . . , qg,N

)
.

(10)
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(III) To determine Qi,best and Qg,best, it is necessary to map the flight path Ωi in the spherical
vector coordinate system to path Xi used for evaluating the costs. The mapping
ξ: Ω→ X of vector uij =

(
ρij, ψij, φij

)
∈ Ωi to waypoint Pij =

(
xij, yij, zij

)
∈ Xi and

the local and global best positions can be computed as Equations (11) and (12):

xij = xi,j−1 + ρij sin ψij cos φij,

yij = yi,j−1 + ρij sin ψij sin φij,

zij = zi,j−1 + ρij cos ψij.
(11)

Qi,best =

{
Ωi if F(ξ(Ωi)) < F(ξ(Qi,best−1))

Qi,best−1 otherwise
,

Qg,best = argmin
Qi,best

F(ξ(Qi)).
(12)

3.3. Differential Evolution (DE)

Like the genetic algorithm, the differential evolution (DE) [29,30] algorithm is an
optimization algorithm based on the modern intelligence theory, which guides the direction
of the optimization search through the group intelligence generated by cooperation and
competition among individuals within a population. It continuously evolves to retain
suitable individuals and eliminate inferior ones, guiding the search for the optimal solution.

(I) First, a mutation operation is performed to select two individuals from among the
parent individuals to generate a difference vector, which is scaled by a scale factor
and then summed with the base vector Xi1 to generate the experimental individual.

Ui = Xi1 + F(Xi2 − Xi3) (13)

where Xi1 is the base vector, and Xi2 and Xi3 are the two other parents, which are selected
randomly from the population, such that i 6= i1 6= i2 6= i3. F is the scaling factor—a positive
constant amplifying the difference vector.

(II) Then, crossover operations are performed on the parent individuals and the corre-
sponding experimental individuals to generate new offspring individuals. Common
types of crossovers are binomial and exponential, etc.

Xi
′ =

{
Ui i f rj ≤ CR or j = jrand j = 1.2 . . . . . . D
Xi otherwise

(14)

where CR ε [0, 1] is the crossover rate with a prescribed constant; rj is a uniform random
number within the range [0, 1]; and jrand is a randomly selected integer within the range [1, D].

(III) Finally, a selection operation is performed between the parent and offspring individuals,
and individuals meeting the requirements are saved to the next generation population.

3.4. The Proposed Algorithm

The proposed algorithm improves the search by collaborating through a coalition or
cooperation model in the game theory. After a given iteration, the player DE and SPSO
algorithms enter the game environment and play cooperative games based on the Nash
bargaining theory to achieve the best balance or solution in the state space. The flow chart
of the proposed method is given in Figure 6.



Mathematics 2023, 11, 3620 10 of 18

Mathematics 2023, 11, x FOR PEER REVIEW 10 of 19 
 

 

bargaining theory to achieve the best balance or solution in the state space. The flow chart 
of the proposed method is given in Figure 6. 

Parameters and population 
initialization

Evaluating the initial population 
and choosing the best solution

Applying mutations and foming 
a population of mutations vector 

for each individual of the 
population

Performing crossover and 
generating a population of trial 

vectors

Evaluating the individuals and 
updating the next generation 

population

Choosing the best solution

iter = iter+1

Parameters and population 
initialization

Evaluating the initial population, 
choosing the best solution as 

(Qg,best) and obtaining (Qi,best) for 
each particle

Computing the velocity and 
position vectors of each particled

Map Ωi to Xi in Cartesian space

Choosing the best solution as 
(Qg,best) and updating (Qi,best) for 

each particle

iter = iter+1

iter ≤ N
iter ≤ N

The best solution of the first player is compared with 
that of the second player, and finally the best solution 

is selected as the first disagreement point(v1,v2)

Maintaining the elite 
solution and its evaluated 
value in each iteration for 
the second player at M2

Maintaining the elite 
solution and its evaluated 
value in each iteration for 
the second player at M1

Creating M1×M2 Cartesian products using the 
evaluated values of elite solutions of the first and 

second players and is called the feasible set F.

The Nash bargaining theorem is applied to the feasible 
set F and the disagreement point (v1,v2). The unique 

answer (x1*,x2*) is selected as the best answer, which is 
the result of cooperation between two players.

v1 = x2*, v2 = x1*

xi1 = x1*       Iter = 0Pg,best = x2*       Iter = 0

Is the condition of the 
agreement met?

The best solution xbest* among  x1* and x2* 
is selected as the optimal path X*.

The second player:  DEThe first player:  SPSO

Computing fitness of the particle

 
Figure 6. The flow chart of the proposed method. 

(I) The initial populations of the two players, SPSO and DE, are evaluated inde-
pendently by the cost function, and all solutions of the two players are evaluated to 
select the best solution for the first and second players. 

(II) The two better solutions are compared, so that the best solution is chosen as the dis-
agreement point (𝑣ଵ, 𝑣ଶ) in the first round of the game. Since the game has the same 
conditions for both players and is symmetric, the values are equal in the first 
round 𝑣ଵ = 𝑣ଶ. 

Figure 6. The flow chart of the proposed method.

(I) The initial populations of the two players, SPSO and DE, are evaluated independently
by the cost function, and all solutions of the two players are evaluated to select the
best solution for the first and second players.

(II) The two better solutions are compared, so that the best solution is chosen as the
disagreement point (v1, v2) in the first round of the game. Since the game has the
same conditions for both players and is symmetric, the values are equal in the first
round v1 = v2.

(III) In each round of the game, the two players each run N times, and in each iteration,
the best solutions and their evaluation values are stored for the first player in M1 and
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the second player in M2, respectively, which means that N elite solutions are stored in
the sets M1 and M2 for each iteration:

M1 = min(pop1) M2 = min(pop2) (15)

(IV) The feasible set F is the Cartesian product of the best solutions of the two players in
N iterations:

F = M1 ∗M2 = {(x1, x2) | x1 ∈ M1 and x2 ∈ M2} (16)

(V) After N iterations, SPSO and DE enter the game environment and play the cooperative
game based on the Nash bargaining theory, and the unique solution f (F, v) =

(
x∗1 , x∗2

)
is selected as the best solution due to the Pareto optimality property.

f (F, v) = argmax((x1 − v1)(x2 − v2)) (17)

(x∗1 , x∗2) =
{

f (F, v) otherwise
(v1, v2) v1 < x1 and v2 < x2

(18)

(V) x∗1 is the game profit of the first player, which is used as the base vector in the DE mu-
tation operator in the next iteration, resulting in a change in the DE mutation operator.
x∗2 is the second player’s game profit, which acts as the lead particle in SPSO to update
the particle velocity vector in the next iteration, changing the direction of the particle’s
motion. In addition, the only solution in this round of Nash bargaining

(
x∗1 , x∗2

)
is

seen as a point of disagreement (v1, v2) in the next round of Nash bargaining.

Ui = x∗1 + F
(
Xi2 − Xi3

)
(19)

∆uk+1
ij ← wk∆uk

ij + η1r1i

(
qk

ij − uk
ij

)
+ η2r2j

(
x∗2 − uk

ij

)
(20)

v1 = x∗2 , v2 = x∗1 (21)

(VII) If the conditions of the protocol are satisfied, the best value from the two values(
x∗1 , x∗2

)
is chosen as the final solution; otherwise, the game is repeated for the

next round.

Overall, the Nash bargaining theory helps balance this algorithm’s exploration and
exploitation capabilities. Choosing (x1, x2) from the feasible set F allows a thorough
exploration and search of the problem space to find the optimal solution. Moreover,
selecting the disagreement points (v1, v2) also allows for extracting a better solution.

4. Results and Analysis

To evaluate the performance and application feasibility of GSPSODE, set three pipe
corridors with different levels of complexity as the standard scenarios. Digital comparison
experiments are conducted to analyze the results. The inspection paths of UAV are dynami-
cally simulated in the high-precision urban pipe corridor scenario constructed based on the
RflySim platform, as follows.

4.1. Scenario Setup

The scenarios used for the evaluation are based on the urban pipe corridor 3D grid
map model constructed above, and three benchmarking scenarios with different levels
of complexity are generated. In these scenarios, red circles represent the start point of
the UAV path planning; yellow diamonds represent the location of the inspection points,
which need to remain; and green circles represent the end point of the UAV path planning.
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The estimated circumstances of the problem are stationary. For comparison, five well-
established optimization techniques (the SPSO, PSO [19], DE, GA [31], and ACO [32]) were
compared with our proposed GSPSODE algorithm. Table 2 shows the parameter settings
of all algorithms. For fairness, the population size P = 500 for all algorithms, the number of
waypoints N = 25, and the maximum iterations I = 500. All experiments were conducted
on MatlabR2019a version. Pc and Pm are crossover operators and mutation operators in the
genetic algorithm, and α, β, γ and τ0 are the pheromone factors, heuristic function factors,
guiding function factors, and initial pheromone concentrations in the ant colony algorithm.

Table 2. Parameters used in the experiments.

Algorithm Parameters

GSPSODE MaxIter = 1000, MaxFES = 2000
SPSO ω = 1, η1 = 1.5, η2 = 1.5
PSO ω = 1, η1 = 1.5, η2 = 1.5
DE CR = 0.9, F = 0.5, r = 0.98
GA Pc = 0.2, Pm = 0.2

ACO α = 10, β = 1, γ = 1, τ0 = 1.2

4.2. Comparative Analysis

The top view of the inspection paths generated is shown in Figure 7. All algorithms
can generate feasible paths, which satisfy the constraints, but the optimality varies with
different scenarios. The GSPSODE algorithm plans the smoothest and shortest paths in
most cases, while paths generated by the DE algorithm consist of only a few line segments
and sharp turns. In the path planning of three different scenarios, the GSPSODE algorithm
has the best performance. Compared with the other algorithms, the path planned by
GSPSO is smoother, and the planned path length is the shortest. The GA algorithm has
the worst performance, and the planned path is very uneven. Compared with the GA
algorithm, the PSO and DE algorithms have a better overall effect, but the planned path is
slightly worse when avoiding obstacles. The smoothness of the path planned by the ACO
and SPSO algorithms is improved compared with other comparison algorithms, but the
turning angle is still not smooth enough when facing the inspection point, and the turning
angle is relatively large.

In each comparison, all algorithms are run 10 times to find the mean and standard
deviation values. The optimum, mean, and standard deviation values of the fitness obtained
by the six algorithms for path planning in three scenarios with different levels of complexity
are shown in Table 3. The GSPSODE algorithm shows the best performance in every
scenario; optimal fitness values are obtained, and the convergence stability standard
deviation value is the smallest, which is because GSPSODE effectively improves the effects
of some particles being far from the local optimum and the bad overall convergence of the
algorithm. The optimal fitness values of the six algorithms are also affected by the pipe
corridors’ complexity. For example, Scene 2 has few obstacles, and the regular pipe corridor
grid model makes the inspection points easy to recognize, so the smallest fitness values are
obtained through iteration. However, many obstacles are set in Scene 3, and the inspection
points are all located in narrow places, making path planning more complex. Hence, the
fitness values of the planned inspection path are larger.

Figure 8 shows the fitness value iterations of the six algorithms in three scenarios, and
the fitness values of each algorithm during the iterations are helpful for further comparative
analysis. As can be seen, all algorithms converge well, with slight differences in their
minimum fitness values, and GSPSODE can obtain the optimal solution first, and the
fitness values of GSPSODE in the three scenarios are lower than those of the other five
algorithms, followed by SPSO. In Figure 8a, GSPSODE and ACO converge rapidly early
on and converge to an optimal value of about 50 iterations. The comparison with the final
results shows that GSPSODE has the highest accuracy, followed by ACO. It is also found
that GSPSODE converges to the optimal value very quickly at the beginning of the iteration,
which proves that the proposed search strategy can accelerate the convergence speed and
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improve the convergence accuracy. In Figure 8b, GSPSODE performs better than other
algorithms and rapidly converges to the optimal value. As can be seen in Figure 8c, DE
outperforms both GSPSODE and SPSO at the beginning of the iteration. However, as the
iteration begins, GSPSODE and SPSO rapidly converge to a minimum value.
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4.3. RflySim Simulation

To evaluate the effectiveness of the generated paths for actual UAV operations, a high-
precision 3D urban pipe corridor simulation scenario is conducted based on the RflySim
platform to dynamically demonstrate the path planning effect of UAV inspection in urban
corridors, showing that the GSPSODE algorithm can plan feasible, safe, and optimal paths
for UAV inspection.

The RflySim platform is a UAV flight control ecosystem released by the Reliable Flight
Control Group at Beihang University. In Ref [33], a comparison between the multi-wing
flight entity experiment and the simulation experiment based on the RflySim platform
validates the high accuracy level of the platform’s simulation. The platform underwent
quantitative analysis tests and comparison experiments with fault injection, and its credibil-
ity was above 90%, which fully confirms the high fidelity and practicality of the platform
(with 60% representing the lowest value in the accuracy confidence interval).
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Table 3. Fitness values of the six algorithms in the three scenarios.

Algorithm Evaluation Scores Scene 1 Scene 2 Scene 3

GSPSODE

Best 5.68 × 104 4.69 × 104 6.70 × 104

Mean 5.70 × 104 4.70 × 104 6.70 × 104

Std 24.58 35.46 30.77
Runtimes(s) 151.25 122.16 166.58

SPSO

Best 5.72 × 104 4.72 × 104 6.95 × 104

Mean 5.73 × 104 4.75 × 104 6.97 × 104

Std 63.38 88.25 240.13
Runtimes(s) 102.12 98.31 117.40

PSO

Best 5.95 × 104 4.74 × 104 7.14 × 104

Mean 5.96 × 104 4.76 × 104 7.16 × 104

Std 94.23 207.91 274.21
Runtimes(s) 96.12 81.20 112.64

DE

Best 5.79 × 104 4.79 × 104 7.17 × 104

Mean 5.80 × 104 4.83 × 104 7.20 × 104

Std 102.73 132.53 310.13
Runtimes(s) 80.28 72.61 105.83

GA

Best 6.02 × 104 4.94 × 104 7.20 × 104

Mean 6.05 × 104 4.97 × 104 7.24 × 104

Std 120.63 191.38 361.75
Runtimes(s) 161.19 149.83 180.66

ACO

Best 5.72 × 104 4.77 × 104 7.09 × 104

Mean 5.75 × 104 4.80 × 104 7.13 × 104

Std 89.17 62.14 100.62
Runtimes(s) 79.12 63.13 103.52

The core value of the platform is reflected in the ring simulation of the software and
hardware, including the distinctive CopterSim, the visual system plug-in, the developed
model, etc. The composition of the software platform is shown in Figure 9.

This research constructs a high-precision 3D urban pipe corridor simulation scenario
based on the RflySim platform, which contains three urban pipe corridors with different
complexities, including stairs, power cables, pipes, communication fiber optic cables,
monitoring equipment, firefighting, ventilation equipment, and other obstacles. Compared
to the path planning global overview map, the dynamic simulation of UAV inspection
path planning in the urban pipe corridor environment can give a strong visual impact.
The path planning problem in this case study is static; the initial conditions, such as initial
position, inspection stopping point, and termination position, are given; and the grids
in the map model of the city pipeline corridor are used as the spatial constraint in the
boundary conditions. The optimal inspection path point data information of the UAV is
obtained through the optimization algorithm and transmitted to the RFlySim platform for
dynamic simulation.

Figures 10 and 11 show the path planning effects of stairs and avoiding stairs obstacles
in Scenes 1 and 3, respectively. The flight paths planned by the GSPSODE algorithm are
collision-free and smooth, and UAV inspection is able to follow the planned paths success-
fully. The excellent match between the planned paths and the flight paths demonstrates the
effectiveness of GSPSODE and the accuracy of the RflySim platform. In Scene 1, the UAV
needs to inspect a staircase, and GSPSODE is able to generate a path, which smoothly navi-
gates the stairs, avoiding any collisions with the walls or the stairs themselves. The UAV is
able to follow the planned path accurately, ensuring a thorough inspection of the staircase.
In Scene 3, the UAV needs to avoid the stairs obstacle, and GSPSODE is able to generate a
path, which safely navigates around the obstacle while still ensuring a smooth and efficient
flight path. The UAV is able to follow the planned path successfully, avoiding any collisions
with the obstacle. The results demonstrate the effectiveness of GSPSODE in generating
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collision-free and smooth flight paths for inspection tasks in complex environments. The
accuracy of the RflySim platform is also demonstrated by the excellent match between the
planned paths and the flight paths. The combination of the GSPSODE algorithm and the
RflySim platform provides a powerful tool for inspection tasks in various industries, such
as construction, infrastructure, and search and rescue.
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5. Conclusions

This paper proposes research on path planning for UAV inspection in urban pipeline
corridors based on the GSPSODE algorithm, which mainly proposes constraints used to
construct the objective function, improves the optimization algorithm used to optimize
the objective function, and applies it to the path planning of UAV inspection in urban
underground pipeline corridors. A hybrid optimization algorithm GSPSODE, combining
the respective advantages of the SPSO algorithm and the DE algorithm, is proposed, where
the two algorithms act as two players in a cooperative game based on the Nash negotiation
theory in an attempt to maximize the profit gained by both parties, maintain the balance
between exploration and exploitation capabilities, avoid local optimality, and increase the
diversity of the proposed algorithms. In fact, the game environment creates a competitive
environment between the algorithms, which greatly improves the searchability of the
algorithms. The experimental results show that the proposed algorithm outperforms the
classical DE algorithm and other algorithms, such as PSO, SPSO, GA, and ACO, and
the creation of a game between two algorithms, DE and SPSO, in the search space can
improve the efficiency of the GSPSODE algorithm. In our future work, an important
issue should be addressed to improve the performance of GSPSODE. We will further
focus on the search efficiency and accuracy by adjusting the parameters and further study
dynamic path planning in unknown environments. Moreover, regarding large-scale urban
underground pipe corridors, further adjustments can be considered to further improve
the signal transmission, navigation and positioning, image recognition, infrastructure and
infrared temperature measurement, and other intelligent functions to build a multi-UAVs
pipe corridor inspection system, so as to build a modern smart city.
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