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Abstract: Passion fruit, renowned for its significant nutritional, medicinal, and economic value, is
extensively cultivated in subtropical regions such as China, India, and Vietnam. In the production
and processing industry, the quality grading of passion fruit plays a crucial role in the supply chain.
However, the current process relies heavily on manual labor, resulting in inefficiency and high costs,
which reflects the importance of expanding the application of fruit appearance quality classification
mechanisms based on computer vision. Moreover, the existing passion fruit detection algorithms
mainly focus on real-time detection and overlook the quality-classification aspect. This paper proposes
the ATC-YOLOv5 model based on deep learning for passion fruit detection and quality classification.
First, an improved Asymptotic Feature Pyramid Network (APFN) is utilized as the feature-extraction
network, which is the network modified in this study by adding weighted feature concat pathways.
This optimization enhances the feature flow between different levels and nodes, allowing for the
adaptive and asymptotic fusion of richer feature information related to passion fruit quality. Secondly,
the Transformer Cross Stage Partial (TRCSP) layer is constructed based on the introduction of the
Multi-Head Self-Attention (MHSA) layer in the Cross Stage Partial (CSP) layer, enabling the network
to achieve a better performance in modeling long-range dependencies. In addition, the Coordinate
Attention (CA) mechanism is introduced to enhance the network’s learning capacity for both local
and non-local information, as well as the fine-grained features of passion fruit. Moreover, to validate
the performance of the proposed model, a self-made passion fruit dataset is constructed to classify
passion fruit into four quality grades. The original YOLOv5 serves as the baseline model. According
to the experimental results, the mean average precision (mAP) of ATC-YOLOv5 reaches 95.36%, and
the mean detection time (mDT) is 3.2 ms, which improves the mAP by 4.83% and the detection speed
by 11.1%, and the number of parameters is reduced by 10.54% compared to the baseline, maintaining
the lightweight characteristics while improving the accuracy. These experimental results validate the
high detection efficiency of the proposed model for fruit quality classification, contributing to the
realization of intelligent agriculture and fruit industries.

Keywords: computer vision; deep learning; fruit quality classification; passion fruit; YOLOv5

MSC: 68U10

1. Introduction

Quality grading of fruits is an important role in the fruit supply chain [1], as it provides
a uniform language for describing the quality and condition of fruits, reduces waste,
increases efficiency, and enhances quality for fruit producers and consumers. In addition,
quality grading is a part of food supply chain management (FSCM), which covers various
aspects such as production, processing, distribution, and consumption of food products
and reflects the importance of factors such as food quality, safety, and freshness within a
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limited time. For the inedible, defective fruits, their presence during processing and sales
can potentially contaminate other healthy fruits, posing risks to consumer health. It can
also compromise the aesthetic appeal of the fruits, thus affecting consumer purchasing
enthusiasm [2] and resulting in potential economic losses. Regarding the edible, qualified
fruits, they need to undergo further quality grading. The premium-grade fruits are directly
sold as fresh products to consumers with high demands for fruit quality. On the other
hand, fruits of a slightly lower grade may be used as raw materials in the fruit processing
industry, such as for making jam, fruit preserves, or beverage ingredients.

In recent years, with the rapid development of artificial intelligence technology, an in-
creasing number of researchers are focusing on how to apply artificial intelligence tech-
nology to fruit cultivation and production processes [3,4], especially using CNN for fruit
detection and quality [5–7]. Intensification and intelligence in the fruit industry have
become popular trends worldwide. Fruit quality grading is one of the most important
applications in the agricultural field, and the application of deep learning techniques in this
area is receiving more and more attention [8]. Goyal et al. [9] developed a fruit-identification
and quality-detection model based on YOLOv5. Cheng et al. [10] proposed a YOLOv4-
based appearance-grading model for categorizing tomatoes. Shankar et al. [11] combined
hyperparameter optimization and deep transfer learning to propose an automatic classifi-
cation method for fruits. Gururaj et al. [12] explored the use of deep learning techniques to
identify color variations on mango surfaces caused by defects, replacing traditional, costly,
and subjective manual mango quality grading. Koirala et al. [13] developed “MangoY-
OLO”, based on the YOLOv2 and YOLOv3 models, for real-time fruit detection and yield
estimation. More recent studies have continued exploring the use of deep learning for fruit
quality analysis. Patil et al. [14] compared the performance of different machine learning
algorithms, including convolutional neural network (CNN) [15], artificial neural network
(ANN), and support vector machine (SVM) [16], in grading or classifying dragon fruits
based on surface color features. They assessed the performance differences among these
algorithms. Naranjo-Torres et al. [8] conducted a detailed investigation on the application
of automatic detection methods based on CNN in fresh fruit production. It categorized fruit
quality grading into two types: external feature-based and internal feature-based grading.
Compared to the fruits mentioned above, passion fruit has a dark purple surface and the
color difference between the different qualities of the fruit is relatively small, which is a
difficulty for both human classification and deep learning network classification.

Some scholars have proposed the usage of techniques such as neural networks for
different passion fruit detection tasks. Tu et al. [17] conducted research on machine vision
algorithms that automatically detect passion fruit based on surface color features at differ-
ent maturity stages. Tu et al. [18] studied the MS-FRCNN model for estimating passion fruit
production. Lu et al. [19] proposed a 3D analysis of passion fruit surface based on deep
learning. Duangsuphasin et al. [20] designed a passion fruit classification model using con-
volutional neural networks (CNNs). More scholarly research focuses on yield estimation
of passionfruit and maturity detection in complex natural environments [17,21–23], while
there is scarce literature on applying deep learning techniques to quality grading of passion
fruit. Therefore, exploring how to use deep learning technology to replace manual methods
for passion fruit quality grading is a worthwhile research problem for subsequent process-
ing in the passion fruit industry. Based on this situation, we investigated the application of
deep learning technology in the passion fruit production and processing industry. In order
to improve the detection efficiency, an improved APFN is constructed in ATC-YOLOv5,
which integrates adaptive spatial fusion operations and weighted feature-fusion pathways
to prevent the loss of passion fruit features. Moreover, considering the importance of
long-range dependencies in the network learning and detection process, the MHSA layer in
the Transformer block is introduced into the Bottleneck structure, constructing an improved
TRCSP layer, which reduces the parameters and computational requirements. In addi-
tion, coordinate attention blocks are added to the neck to further enhance the attention
to the passion fruit feature information. The objective of this study is to achieve efficient
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quality-classification detection of passion fruits in indoor environments using improved
object-detection algorithms, which can reduce labor costs and the probability of errors due
to subjective factors and provide consumers with higher-quality passion fruit products.

2. Related Work

Fruit quality classification is important for reducing losses and ensuring consumer sat-
isfaction. Researchers have explored techniques like Red-Green-Blue Dense Scale Invariant
Features Transform Locality-constrained Linear Coding (RGB-DSIFT-LLC) features [17],
Histogram Oriented Gradients (HOG) and color features in outdoor scenes [24], along with
utilizing an electronic nose sensor to classify fruits based on their aroma [25].

Recent advancements in AI technology and deep learning have rapidly advanced
object detection, including the classification of passion fruits based on quality. Compared to
traditional methods, deep learning techniques, particularly convolutional neural networks
(CNNs), consistently demonstrate a superior performance. Fruit quality classification is
transitioning from traditional computer vision (CV) approaches to deep learning methods.
Scholars have already begun applying these techniques to fruit and quality classification.
Gill et al. [26] introduced a high-quality dataset of images containing various classes of
fruits and trained several neural networks (NN) or algorithms such as K-nearest neighbors
(KNN), SVM, random forests (RF), and multilayer perceptrons (MLP) on that dataset for
comparing the differences among different sorting methods. According to their study,
CNN could reach an accuracy of 98.35%, which ranked first, while SVM performed the
worst, with an accuracy of only 86.11%. It should be noted that SVM used to be one of the
most prevailing sorting methods, but it is clear that recently CNN outperforms SVM and
many other traditional classing methods. Joseph et al. [27] compare CNN to other machine
learning methods including KNN, SVM, and decision trees.

These comparisons demonstrate the advantages of CNNs over traditional approaches
for CV and deep learning. CNNs can autonomously learn features, enhancing versatility
and accuracy. Though more computationally demanding than conventional algorithms,
advances in GPUs have enabled the adoption of CNNs. More CV algorithms now utilize
CNN structures. For fruit classification, CNNs achieve a significantly higher accuracy
compared to manual feature engineering.

Object detectors are either one-stage, directly predicting boxes and labels (faster but
less accurate, e.g., YOLO, SSD [28]), or two-stage, using region proposals first before
classification (slower but more robust, e.g., R-CNN [29]).

Among these algorithms, the YOLO series is a family of object-detection models
known for a good performance balance between speed and accuracy, making them suit-
able for edge devices. YOLO [30] was the first version, using a Darknet [31] framework
and framing detection as regression. YOLOv2 [32] improved the accuracy and speed
by adding batch normalization, anchor boxes, multi-scale training, and Darknet-19 ar-
chitecture. YOLOv3 [33] further improved the performance with residual connections,
upsampling, feature pyramids, and Darknet-53. YOLOv4 [34] incorporated techniques
like Cross Stage Partial Networks (CSPNet) [35], Mish activation [36], SAM [37], Path
Aggregation Network (PANet) [38], and DropBlock [39] with Darknet-53/74. YOLOv5 [40]
used PyTorch and introduced auto-anchor generation, mosaic augmentation, label smooth-
ing [41], and EfficientNet-based architecture.

2.1. YOLOv5

YOLOv5 [40] has five different scales of network structure, specifically named YOLOv5n,
YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x, that is, nano (n), small (s), medium (m), large
(l), and extra-large (x) models.
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YOLOv5 takes 640 × 640 pixel images as input and divides them into a grid of cells,
where both the horizontal and vertical pixel counts are multiples of 32. Each cell predicts
bounding boxes, confidence scores reflecting objects, and class probabilities. It supports
augmentations at the test time and model assembly. The backbone uses CSPNet [35], which
reduces duplicate gradients to improve optimization. The neck is based on PANet [38],
generating multi-scale feature maps for detection. Anchor boxes are applied to features to
output vectors with probabilities, scores, and boxes. The head uses anchor boxes to output
these final detection vectors. The loss function combines cross-entropy for classification,
binary cross-entropy for objectness, and a generalized IoU loss for localization. The network
structure of the original YOLOv5 is shown in Figure 1.

Backbone

Neck

Scale �

Scale �

Prediction

Conv 1x1

Conv 1x1

Conv 1x1

�������������

Input

�������������

�������������

�������������

Scale �

�

Figure 1. The network structure of the original YOLOv5 object-detection algorithm.

The following is an additional description of some of the structures in Figure 1. Conv,
BN, and SiLU are the convolution layer, normalization, and activation function, respectively,
which together form the CBS layer. Bottleneck_T refers to the Bottleneck structure with
the residual connection. SPPF refers to the Spatial Pyramid Pooling - Fast (SPPF) layer.
CSP1_X is a Cross Stage Partial (CSP) layer containing X Bottleneck_T. CSP2_X is a CSP
layer containing X Bottleneck without residual connections.

2.2. Data Augmentation

Data augmentation [42] is a technique to increase diversity in the training set by
creating new samples from the original data. This helps improve the model performance
and robustness for computer vision tasks. Augmentation introduces variations while
maintaining representativeness. It increases the training set size, improves generalization,
and reduces the overfitting risk. Useful cases include lacking sufficient data, lacking
diversity in the existing data, and needing robustness to noise or distortions.

Specific techniques include horizontal flipping to introduce new orientations, bright-
ness adjustment [43] for new lighting conditions, and Gaussian blurring [44] to simulate
noise. Horizontal flipping [45] is fast, retains labels, and helps recognize flipped vari-
ants; Perez and Wang [46] proved its effectiveness. Brightness augmentation creates new
lighting scenarios. Gaussian blurring prevents overfitting and improves the robustness
to noise.
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2.3. Coordinate Attention Blocks

The coordinate attention blocks [47] represent a novel attention mechanism strate-
gically devised to enhance deep learning models’ capacity in capturing crucial spatial
information and dependencies within the input data. This innovative approach achieves its
objective by effectively incorporating position details into the channel information, thereby
taking into account the interplay between spatial and channel aspects while effectively
addressing the long-range dependency challenges.

Hou et al. [47] proposed a simple coordinate attention mechanism that can be flex-
ibly plugged into classic mobile networks, such as MobileNetV2 [48], MobileNeXt [49],
and EfficientNet [50], with nearly no computational overhead. The coordinate attention
mechanism is shown in Figure 2.

Input Feature

Feature Embedding

X Avg Pool

Y Avg Pool

H x 1 x C

1 x W x C

H x W x C
( C / r) x 1 x ( W + H )

Concat + Conv2d BN + Non-Linear

H x 1 x C

1 x W x C

Conv2d + Sigmod

Conv2d + Sigmod
H x W x C

Onput Feature

Attention Generation

Coordinate Attention

Figure 2. Coordinate attention mechanism diagram. ‘H’ refers to height, ‘W’ refers to width, and ‘C’
refers to channel. ‘r’ is the reduction ratio for controlling the block size. ‘X Avg Pool’ and ‘Y Avg
Pool’ refer to a one-dimensional horizontal global pool and a one-dimensional vertical global pool,
respectively, and ‘BN’ refers to the BatchNorm operation.

2.4. Bottleneck Transformer Blocks

Bottleneck Transformer Blocks [51], also known as BoTNet in that paper, is a backbone
architecture that incorporates self-attention [52] for multiple computer vision tasks includ-
ing image classification, object detection, and instance segmentation. BoTNet is based on
the idea of replacing the spatial convolutions with global self-attention in the final three bot-
tleneck blocks of a ResNet. The authors show that BoTNet achieves state-of-the-art results
on the COCO [53] Instance Segmentation benchmark [54] and ImageNet [55] classification
benchmark [56] while being faster and more parameter-efficient than previous models.

BoTNet can improve the performance of visual detection tasks by incorporating
self-attention into the bottleneck blocks of a ResNet12. Self-attention can capture long-
range dependencies and global information in an image, which can be useful for tasks
such as object detection and instance segmentation. A BoTNet block can also reduce the
computational cost and memory footprint compared to using self-attention on the entire
feature map. A simplified diagram of the Multi-Head Self-Attention (MHSA) layer is
shown in Figure 3.
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Multi-Head  Self-Attention 

H x W x C

H x W x C

WV: 1 x 1 WK: 1 x 1 WQ: 1 x 1

Softmax

Rw

1 x W x C
Rh

H x 1 x C

H x W x C

Content-content Content-position

H*W x H*WH*W x C

H*W x H*W H*W x H*W

kv q

H x W x C H x W x C

H x W x C

r

qkT qrT

Figure 3. Simplified diagram of Multi-Head Self-Attention (MHSA) layer in the BoTNet. Rh and
Rw are relative position encodings for the height and width of feature maps. q, k, r, v refer to the
query, key, position, and value encodings, respectively, and qkT + qrT refer to attention logits. ⊕ and
⊗ refer to element-wise sum and matrix multiplication, respectively. 1 × 1 represents a pointwise
convolution.’H’ refers to the height, ‘W’ refers to the width, and ‘C’ refers to the channel.

3. Methods
3.1. Overview of ATC-YOLOv5

ATC-YOLOv5 is a model derived from improvements made to YOLOv5. Its exper-
imental detection results surpass those of the original YOLOv5 model. First, APFN [57]
is employed as the main body of the feature-extraction network, enabling adaptive fea-
ture extraction across different scale levels. Combined with BiFPN [58], it is enhanced by
incorporating weighted feature fusion across nodes on both the same and different scale
levels, allowing the fusion of more comprehensive features without incurring excessive
costs. Second, by introducing the MHSA layer in the Transformer block, the CSP layer
is optimized to obtain the TRCSP layer, which reduces the parameter and computational
complexity compared to the original CSP, facilitating the acquisition of more abundant
correlated feature information by the network. Lastly, coordinate attention blocks are inte-
grated into the feature-extraction network, strengthening the network’s feature-extraction
capabilities. The structure of ATC-YOLOv5 is shown in Figure 4.

3.2. Improved Feature Pyramid Network Based on AFPN

In the latest version of YOLOv5, the PANet [38] structure is utilized in the Neck section,
which enables us to obtain outputs from different CSP layers of the backbone network and
performs feature extraction at different scales. In this paper, we introduce APFN [57] as the
main body in the feature-extraction network and combine it with BiFPN [58] to adaptively
extract richer feature information across levels.
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Backbone

Neck Prediction

Conv

Input:

CA

TRCSP

ASFF

CACA
ASFF

TRCSP

CACA
ASFF

CACA
ASFF

WF_Concat

WF_Concat

WF_ConcatCACA
ASFF

TRCSP
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Figure 4. The network structure of ATC-YOLOv5. The backbone is the improved CSP-Darknet53
after adding the TRCSP layer, and the neck part uses the improved Asymptotic Feature Pyramid
Network (APFN). In the backbone and neck, TRCSP is introduced only in the highest level of the
feature layer. MHSA refers to the Multi-Head Self-Attention layer. MHSA Bottleneck refers to the
structure after the introduction of the MHSA layer to the Bottleneck. A description of the rest of the
structure can be found in a paragraph following Figure 1.

Unlike the sequential fusion of high-level and low-level features in PANet [38],
APFN [57] employs an asymptotic feature-fusion approach. It first fuses the feature layers
from lower-scale levels and gradually integrates higher-level feature layers. Simultaneously,
an adaptive spatial fusion operation is utilized in the multi-level feature-fusion process
to suppress feature-information conflicts between different scales, allowing better fusion
of feature layers across non-adjacent scales. Building upon some aspects of BiFPN, we
introduce additional feature-fusion pathways between different nodes at the same scale
level in APFN. Considering the varying contributions of feature information between nodes
and to avoid excessive increases in the network parameters or computational complexity,
we also incorporate a weighted feature-fusion method used in BiFPN, which consumes
fewer computational resources, into the additional feature-fusion pathways. Based on the
fast normalized fusion [58], we improve the Concat layer to a Weighted Feature Concat
(WFConcat) layer. The formula for fast normalized fusion is as follows:

O = ∑
i

wi
ε + Σjwj

· Ii (1)

where O represents the output of the weighted feature fusion, Ii represents the individual
inputs of the weighted feature fusion, and w represents the learnable weight. For the form
of w, a multi-dimensional tensor is used in this paper, and ε = 0.0001 represents a small
value that serves to stabilize the values in Equation (1).

With the introduction of the improved APFN, progressive feature fusion is enabled
between layers with both the same and different scales, and additional weighted feature-
fusion pathways are added. This allows the new feature-extraction network to optimize
the flow and fusion of feature information across scale levels and nodes while maintaining
a lower parameter count and avoiding excessive computational overhead. As a result,
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the feature-fusion efficiency and detection accuracy of the network for different qualities of
passion fruit are further improved. The improved AFPN is illustrated in Figure 5.

ASFF

ASFF

WF_Concat

ASFF

WF_Concat

ASFF

WF_Concat

ASFF

Backbone Head

Figure 5. Improved APFN structure diagram. ASFF denotes the adaptively spatial feature-fusion
operation. WF_Concat denotes weighted feature concat.

3.3. Improved CSP Model Based on MHSA Bottleneck

In the YOLOv5 network, the CSP layer is one of the main structures constituting the
backbone network and the feature-extraction network. The CSP structure divides the input
into two branches, with one branch undergoing convolutional operations through the CBS
layer, and the other branch passing through the Bottleneck operation after the convolutional
operation in the CBS layer. Finally, the features from both branches are merged. CSP can be
divided into two types, CSP1_X and CSP2_X, which are applied to the backbone network
and the feature-extraction network. The difference between them lies in the fact that the
CSP1_X structure employs X Bottleneck modules with residual connections, while the
CSP2_X structure uses X Bottleneck modules without residual connections.

The Bottleneck module used in the original CSP structure undergoes 1× 1 convolution
(CBS) and 3 × 3 convolution (CBS) operations, as shown in Figure 6, where Bottleneck_T
with residual connections is applied to the CSP1_X layer, and Bottleneck_F is applied to
the CSP2_X layer. The structure of the Bottleneck is similar to that of residual networks,
but it has a faster computation speed. As an important component in the CSP layer, it not
only performs feature extraction but also resolves the issue of gradient vanishing caused
by network stacking.

Although convolution operations can effectively extract local features, in order to
improve the performance of the network, structures based on convolutional operations
sometimes require multilayer stacking [59], such as the 3 × 3 convolution (CBS) in the
aforementioned Bottleneck. This not only increases the parameters and computational
complexity but also performs poorly in modeling long-range dependencies required for
object-detection tasks. On the other hand, self-attention mechanisms, as important com-
ponents in Transformer blocks [51] for NLP tasks, can learn rich hierarchical correlated
features in long sequences. Therefore, inspired by BoTNet, we replace the 3 × 3 convolu-
tion (CBS) in the Bottleneck of the original CSP layer with the Multi-Head Self-Attention
(MHSA) layer proposed in Transformer [52], resulting in the improved MHSA Bottleneck
module, as shown in Figure 6.
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CBS

CBS

Bottleneck_F

CBS

MHSA

MHSA Bottleneck_F

CBS

CBS

Bottleneck_T

add

CBS

add

MHSA

MHSA Bottleneck_T

( a ) ( b )

Figure 6. Bottleneck diagrams before and after improvement. (a) Bottleneck without residual connec-
tion, (b) Bottleneck with residual connection. CBS refers to a layer that consists of a convolution layer,
normalization, and activation function together. MHSA refers to the Multi-Head Self-Attention layer.

After replacing the Bottleneck module in CSP with the improved MHSA Bottleneck
module, we obtain the improved Transformer Cross Stage Partial (TRCSP) structure. Addi-
tionally, considering that performing self-attention operations multiple times across scale
levels can significantly increase the memory and computational requirements [52], we
only replace the CSP layer with the TRCSP layer in the layers with the highest number of
channels of both the backbone network and the feature-extraction network. Compared to
the original CSP structure, TRCSP reduces the parameters and computational complexity
after applying the improved Transformer Bottleneck module. It enables the network to
achieve a better performance in modeling long-range dependencies, allowing the network
to learn more abundant passion fruit features, which is beneficial for passion fruit quality
classification. The structure of the TRCSP is shown in Figure 7.

CBS CBS

CBS

CBS

Bottleneck * X

CBS

CSP TRCSP

CBS

CBS

MHSA Bottleneck * X

Concat

CBS

Concat

( a ) ( b )

Figure 7. CSP layer diagrams before and after improvement. (a) Original CSP layer, (b) improved
CSP layer. ‘Bottleneck * X’ refers to a combination of X Bottlenecks, and ‘MHSA Bottleneck * X’ refers
to a combination of X MHSA Bottlenecks.

3.4. Coordinate Attention Module in Neck

In response to issues of the traditional attention mechanisms performing poorly in
remote dependency modeling because they use convolutional computation and can only
capture local relationships, a new method called coordinate attention mechanism [47] has
been proposed that performs feature-perception operations along the spatial coordinate
direction. The coordinate attention mechanism consists of two main processes: coordinate
attention embedding and coordinate attention generation. In the process of coordinate
attention embedding, the channel attention is decomposed into two one-dimensional
feature-encoding processes, which perform feature aggregation along the two spatial
directions (the x and y directions). Each channel is encoded along the horizontal coordinate
and vertical coordinate using pooling kernels, resulting in a pair of direction-aware feature
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maps. In the coordinate attention generation process, the obtained feature map tensors from
the two different directions are adjusted in their channel dimensions through convolutional
operations to match the number of channels in the input. Finally, an activation function is
applied to obtain the output of the attention mechanism block. In summary, the process of
coordinate attention can be represented by the following formula:

zh
c =

1
W ∑

0≤i<W
xc(h, i) (2)

where h represents the height parameter of the pooling kernels, zh
c represents the output of

the c-th channel at height h, and xc represents the input of the c-th channel,

zw
c (w) =

1
H ∑

0≤j<H
xc(j, w) (3)

where w represents the width parameter of the pooling kernels and zw
c represents the output

of the c-th channel at width w,

u = δ
(

Conv
([

zh, zw
]))

(4)

where [·, ·] represents the concatenation operation along the spatial dimension, δ represents
a non-linear activation function, u represents the intermediate feature mapping obtained
by combining the feature information horizontally and vertically, and Conv represents
convolutional transformation in Equation (4),

gh = σ
(

Conv
(

uh
))

(5)

gω = σ(Conv(uω)) (6)

where gω represents the tensor with the same channel number as the input obtained by the
transformation of uω, gh represents the tensor with the same channel number as the input
obtained by the transformation of uh, σ represents the sigmoid function, and uh and uw

represent the two tensors obtained by the decomposition of u along the spatial dimension,

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (7)

where yc represents the output of the c-th channel in Equation (7).
In order to improve the network’s ability to locate, recognize, and extract better

feature maps and information for passion fruit quality classification tasks, we have inserted
coordinate attention modules after each adaptive spatial fusion operation in the feature-
extraction network. With the assistance of coordinate attention, the network can adaptively
learn the feature information and fine-grained details of the target objects. It can also
accurately capture the precise position and long-range dependency information of the
objects of interest. This helps the overall model to learn and detect more effectively.

4. Results and Discussion
4.1. Dataset Details

The datasets were created by capturing images of passion fruit using an iPhone 11.
The images were taken indoors with various lighting conditions to maximize the color and
appearance variation. Desk lamps with a high color rendering index (CRI) were primarily
used, along with some fluorescent and natural lighting. In total, 1114 raw HEIC images
(4032 × 3024 resolution) were captured. These were converted to JPEG format and resized
to 640 × 480 for deep learning. Some low-quality images were excluded. The remaining
images were augmented via processing. Yolo-mark was used to label the datasets. In order
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to facilitate compatibility with the YOLO, SSD, and Faster R-CNN [60] formats, annotations
were being stored as extensible markup language (XML) files in the PASCAL VOC format.

The dataset is partitioned into two distinct sub-datasets: a training set with 735 im-
ages and a testing set with 379 images. Then, three data-augmentation techniques were
introduced to the training set, which enlarged the number of images in the training set by
four times. With some minor adjustments, the final training set has 2540 images and the
final test set, 379 images.

The images were divided into four classes: Extra Class, Class I, Class II, and Bad Class
according to the Codex Standard for Passion Fruit (CODEX STAN 316-2014) [61]. This standard
specifies the minimum quality, classification, sizing, tolerances, packaging, and labeling
requirements for commercial passion fruit varieties. It sets quality criteria such as whole, firm,
clean fruit free of defects and damage. Fruits are classified into three classes—Extra, Class I,
and Class II—based on an increasing allowance for defects. The size can be determined by
count, diameter, or weight, but it is not taken into account for the machine learning model
provided, since the users of this passion fruit quality classifier can classify the incoming fruits
by size directly by having the fruit pass through a slideway with a series of different pore
sizes. Tolerances are provided for the percentage of fruit not meeting the class requirements.
A few minor adjustments were made to the official standard to suit our mission. We classified
the fruit based on the rules listed in Tables 1 and 2.

Table 1. Passion fruit classification standard.

Grade Requirements for Each Grade

Extra Class (superior quality) Must be free of defects; only very slight superficial defects are acceptable.
Class I (good quality) The following slight defects are acceptable:

1. a slight defect in shape.
2. slight defects of the skin such as scratches, not exceeding more than 10% of the total surface
area of the fruit.
3. slight defects in colouring.
(The defects must not, in any case, affect the flesh of the fruit)

Class II (average quality) Satisfy the minimum requirements (2) but do not qualify for inclusion in the higher classes.
The following defects are allowed:
1. defects in shape, including an extension in the zone of the stalk.
2. defects of the skin such as scratches or rough skin, not exceeding more than 20% of the total
surface area of the fruit.
3. defects in colouring.
(The passion fruits must retain their essential characteristics as regards the quality, keeping
quality, and presentation)

“Bad” class (NOT ready for sale) A passion fruit will be classified as this grade if it does not meet any of the minimum require-
ments (2)

Table 2. Minimum requirements for the classification of passion fruit.

Classification Details

fresh in appearance (without rotting)
clean, free of any visible foreign matter

practically free of pests and damage caused by them affecting the general appearance
free of abnormal external moisture
the stem/stalk should be present

free of cracking

4.2. Experimental Settings

The server parameters used to conduct our experiments are listed in Table 3.
The batch size was set to 64. In order to keep the dataset consistent in each run (the

data-augmentation techniques involve some random processes) and across all the NN we
ran (different algorithms would apply different data-augmentation techniques), we turned
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off all random data augmentations that were included in the YOLOv5 model itself. Other
parameters were kept the same as the original YOLOv5s.

Table 3. Server properties and environmental information.

Parameter Configuration

CPU Intel (R) Xeon (R) Platinum 8358P
GPU NVIDIA RTX3090

CUDA version Cuda 11.3
Python version Python 3.8

Deep learning framework PyTorch 1.11.0
Operating system ubuntu 20.04

4.3. Evaluation Indicator

In this research, we employ precision, recall, mean average precision (mAP), F1 score,
and mean detection time (mDT) as performance-evaluation metrics for the proposed net-
work model. In object detection, AP is typically calculated at various confidence thresholds
to generate a precision–recall (P–R) curve. However, it can be useful to examine the per-
formance of a model at a specific confidence threshold, such as 50%, so we use mAP50
specifically to evaluate the performance. On the other hand, mDT indicates the average
detection time of the model, typically with a unit of ms, which determines its suitability for
real-time detection. The following equations illustrate the calculation methods for precision,
recall, AP, mAP, F1 score, and mDT:

Pc =
TPc

FPc + TPc
(8)

Rc =
TRc

FNc + TPc
(9)

APc = ∑
∫ 1

0
P(Rc)dRc (10)

mAP =
1
N

N

∑
i=1

APi (11)

F1 score =
2× P× R

P + R
(12)

mDT =
1
M

M

∑
i=1

ti (13)

In the context of this research, we denote the precision, recall, and detection class as P,
R, and c, respectively. Furthermore, TP, FN, and FP symbolize true positive, false negative,
and false positive instances, respectively. N represents the total number of classification
classes. M means the count of detected images in a certain time t. In our study, we obtain
the mDT by detecting all the images in the test set, so M is a constant with a value of 379.

4.4. Reasons for Data-Augmentation Applications

We augmented the images by flipping, Gaussian noise, and brightness adjustment. The
illumination conditions under which images are captured in real application scenarios often
vary significantly, leading to variations in brightness levels across different instances of the
same scene. These variations can pose challenges for deep learning models when attempt-
ing to generalize from a limited range of training examples. By incorporating the brightness
data-augmentation technique [43], we intend to expose the model to a more diverse set of
brightness conditions, enabling it to learn representations that are robust to variations in
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illumination. Additionally, the application of brightness data augmentation may alleviate
the need for collecting a larger dataset, potentially reducing the data-acquisition costs and
computational requirements.

Considering that the classification process of passion fruit may take place during con-
veyor belt movement, it is possible that our neural network will have to detect the image in
motion blur. The presence of moving passion fruits poses a challenge to accurately identify
and classify them. This is particularly evident when users aim to capture images before all
the fruits have settled to expedite the image-acquisition process. Additionally, irregularly
shaped or deformed fruits tend to take longer to come to a complete stop, further compli-
cating the detection process. Incorporating Gaussian blur [44] data augmentation during
the training phase enables the network to focus on the relevant features and structures,
leading to improved generalization. It can also contribute to smoother gradients during
training, facilitating optimization and potentially leading to faster convergence.

The accurate detection of passion fruits becomes challenging since there are several
possible scenarios for the classification of passion fruit. To mitigate this issue, we utilize
horizontal flipping [45] data augmentation. The primary motivation behind employing
horizontal flipping data augmentation is to expose the model to diverse orientations of
passion fruits, thereby enabling it to handle variations in real-world scenarios effectively.
By flipping a portion of the images horizontally, we create a new set of training data that
includes both the original and flipped versions. This augmentation strategy effectively
doubles the size of the training dataset, providing the model with more examples to learn
from. Moreover, the presence of flipped passion fruit instances in the dataset encourages the
model to learn features and patterns that are invariant to horizontal flipping. Consequently,
the model becomes more robust to variations in passion fruit placement, as it learns to
recognize the fruits regardless of their orientation. This increased resilience enhances
the model’s performance in detecting passion fruits in diverse settings, contributing to
improved accuracy and reliability in practical applications.

4.5. Ablation Studies

To evaluate and validate the effectiveness of ATC-YOLOv5, we designed ablation
experiments using a self-made passion fruit dataset. The ablation experiments including
various improvement strategies are shown in Table 4, and the corresponding results are
shown in Table 5. For a clear comparison of the model’s performance with different
enhancements, we primarily used the mean average precision (mAP), F1 score, precision
(P), recall (R), number of parameters, mean detection time (mDT), and giga floating-point
operations per second (GFLOPs) as evaluation metrics.

According to the results in Table 5, different schemes of the algorithm showed varying
degrees of improvement compared to the baseline. In the ablation experiment, we first
tested the replacement of FPN in the original network with AFPN. Due to its progressive
feature fusion across different level feature layers, it reduces the impact of the semantic gap
between non-adjacent layers and improves their fusion effectiveness. Specifically, AFPN
fuses the most abstract top-level features extracted from YOLOv5’s backbone. The replace-
ment of AFPN resulted in a 1.35% increase in mAP, a reduction of 9.26% in the network
parameters, and a decrease of 5.06% in GFLOPs.

In addition, based on AFPN’s structure, the iAFPN scheme added modifications to
feature fusion between non-adjacent feature layers of the same level. In AFPN, Adaptively
Spatial Feature Fusion (ASFF) [62] is used for feature fusion. However, the algorithmic
process of ASFF involves softmax, gradient, and backpropagation, which is obviously
more complex than Fast normalized fusion [58] with only one formula in BiFPN. Therefore,
to preserve the network’s ability to learn the contribution differences between different
feature layers without significantly increasing the parameter count, the newly introduced
feature-fusion operation no longer uses adaptive spatial fusion but uses weighted feature
fusion. iAFPN retains the advantages of AFPN in enhancing the fusion of feature layers
between different levels and enables richer feature fusion between layers of the same level.
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Consequently, iAFPN achieves a 2.59% improvement in mAP compared to the baseline,
surpassing AFPN’s mAP results. Moreover, iAFPN only increases the parameter count by
0.09 million and GFLOPs by 0.1 compared to AFPN.

Table 4. Different combinations for YOLOv5 algorithm improvements in ablation experiments.

Scheme AFPN Improved AFPN Coordinate Attention Module TRCSP

YOLOv5s (baseline)
AFPN-YOLOv5s

√

iAFPN-YOLOv5s
√

iAFPN-CA-YOLOv5s
√ √

iAFPN-TRCSP-YOLOv5s
√ √

ATC-YOLOv5 (ours)
√ √ √

Additionally, in the iAFPN-CA scheme, we introduce the coordinate attention mecha-
nism, which allows the network to accurately capture the precise location and long-range
dependency information of the objects of interest. With almost no parameter consumption,
iAFPN-CA improves mAP by 0.55%. In the iAFPN-TRCSP scheme, we incorporate the
Transformer Cross Stage Partial (TRCSP) layer, which achieves better results in long-range
dependency modeling, into the highest abstract feature layer. Compared to iAFPN-CA,
iAFPN-TRCSP increases mAP by 1.21% and reduces the parameter count and computa-
tional cost by 0.21 million and 0.2, respectively.

ATC-YOLOv5 integrates all the above improvements. Compared to the baseline,
ATC-YOLOv5 achieves a 4.83% increase in mAP, a 2.75% improvement in F1, a 1.25%
improvement in P, a 4.28% improvement in R, a reduction of 0.74 million parameters,
an 11.1% faster mDT, and a decrease of 0.9 in GFLOPs. It is worth noting that although the
iAFPN-TRCSP scheme had the optimal parameters and mDT in the ablation experiment
results, the differences in these parameters between ATC-YOLOv5 and iAFPN-TRCSP are
very small, making ATC-YOLOv5 still a lightweight network with better performance in
terms of accuracy, detection speed, and model size compared to the baseline.

A comparison of the mAP changes between the ATC-YOLOv5 algorithm and the
baseline algorithm during training is shown in Figure 8. The mAP is used as one of the
most important metrics for model evaluation and combines both the precision and recall
factors of the model. According to Figure 8, it can be seen that the training epoch required
for ATC-YOLOv5 to reach the mAP near the highest value is less than that of the baseline
algorithm. Moreover, the final value of the mAP of ATC-YOLOv5 is also higher than that
of the baseline algorithm. This indicates that ATC-YOLOv5 can achieve better detection
accuracy requirements.

Table 5. The results of ablation experiments. The bolded parameters are the most optimal.

Algorithms mAP50/% F1/% P/% R/% Param */M mDT/ms GFLOPs

YOLOv5s (baseline) 90.53 86.55 86.63 86.48 7.02 3.6 15.8
AFPN-YOLOv5s 91.88 87.55 86.53 88.6 6.37 3.6 15
iAFPN-YOLOv5s 93.12 87.74 87.62 87.86 6.46 3.7 15.1
iAFPN-CA-YOLOv5s 93.67 89.00 90.19 87.85 6.47 3.3 15.1
iAFPN-TRCSP-YOLOv5s 94.88 87.32 85.22 89.52 6.26 3.1 14.9
ATC-YOLOv5 (ours) 95.36 89.30 87.88 90.76 6.28 3.2 14.9

* Param: the number of parameters.



Mathematics 2023, 11, 3615 15 of 20

Figure 8. Comparison of mAP results between ATC-YOLOv5 and baseline algorithm.

4.6. Performance Comparison and Analysis

To objectively evaluate the effectiveness of the proposed method, we conducted com-
parative experiments with mainstream object-detection algorithms. The experiments were
conducted in the same environment using identical datasets. The selection of image resolu-
tion holds paramount importance as it significantly influences the structure of the model
network. Opting for high-resolution images amplifies the computational requirements and
training duration, whereas adopting low-resolution images may result in a diminished
training accuracy. Hence, in our comparison experiments, we set different image resolu-
tions for each algorithm to account for these factors. The result of the comparison is listed
in Table 6.

Table 6. Results for different well-known algorithms. The bolded parameters are the most optimal.

Algorithms Input Size mAP50/% F1/% P/% R/% Param */M mDT/ms GFLOPs

YOLOv3 [33] 480 × 640 80.96 81.48 79.34 83.37 97.34 8.4 116.0
Darknet-YOLOv4 [34] 480 × 640 81.56 83.67 79.61 86.85 140.09 10.08 105.8
YOLOv6-s [63] 640 × 640 82.91 79.10 87.42 75.22 18.5 7.38 45.2
YOLOv7-tiny [64] 640 × 640 70.38 69.45 69.63 69.32 6.01 5.8 13.0
YOLOv8-s [65] 640 × 640 87.75 79.98 78.60 81.40 11.13 8.00 28.4
SSD300 [28] 300 × 300 75.24 60.45 87.78 46.17 24.1 8.26 15.3
ATC-YOLOv5 (ours) 640 × 640 95.36 89.30 87.88 90.76 6.28 3.2 14.9

* Param: the number of parameters.

The proposed ATC-YOLOv5 method demonstrates a better performance compared to
other state-of-the-art object-detection algorithms across multiple evaluation metrics.

In terms of accuracy, ATC-YOLOv5 achieves the highest mean average precision
(mAP50) of 95.36%, outperforming the next-best method YOLOv8-s by 7.61%. This indicates
the effectiveness of the proposed improvements to YOLOv5 in enhancing the detection
accuracy. In addition to accuracy improvements, ATC-YOLOv5 also has efficiency gains
compared to prior arts. It obtains the fastest mean detection time per image of just 3.2 ms,
which is over two times faster than the next-fastest approach SSD300. Remarkably, ATC-
YOLOv5 accomplishes these accuracy and speed improvements with a comparable model
size of 6.28 million parameters. It even has fewer parameters than top performers like
YOLOv8-s and Darknet-YOLOv4. The only method with fewer parameters is the highly
compact YOLOv7-tiny. However, this comes at a huge reduction in accuracy.
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On the other hand, the classification criteria include a variety of factors; thus, some pas-
sion fruits may be similar in color but belong to different quality classes due to differences
in skin quality or shape. The common appearance features of fruit [1] used for computer
vision include color features, morphological features, and texture features. Different fea-
tures have different reflections on the quality of the fruit, and they may be more complex
when combined, which makes it difficult for the model to recognize and learn. For example,
due to the close resemblance in appearance between Class I and Extra Class passion fruits,
the only difference lies in the slightly less vibrant color and surface skin defects of Class
I compared to the Extra Class. As a result, the baseline algorithm is prone to confusion
between the two categories, as shown in Figure 9a, where it mistakenly identifies the Extra
Class passion fruit as Class I. Similarly, for the passion fruits that should be classified as
Class II, the main distinguishing factor is the darker purple color. However, the baseline
algorithm tends to misclassify the passion fruit in Figure 9c, which also has a dark color,
as Class II. In reality, this type of passion fruit exhibits a greenish color and other defects,
indicating that it is unripe or rotten and should be categorized as the disqualified Bad
Class. In contrast, both Figure 9b,d of ATC-YOLOv5’s detection results produce accurate
identifications, showcasing the advantage of ATC-YOLOv5 in distinguishing the detailed
features of similar-looking passion fruits.

( a ) ( b )

( c ) ( d )

Figure 9. The detection results of passion fruit quality grading. (a,c) are the detection results of
YOLOv5 (baseline). (b,d) are the detection results of ATC-YOLOv5 (ours).

The results validate the effectiveness of the proposed improvements in ATC-YOLOv5,
enabling superior accuracy and speed with an efficient model size. The method advances
state-of-the-art object detection across multiple competitive benchmarks.

To intuitively demonstrate the advantages of ATC-YOLOv5, we also present its feature
attention effect in the form of heatmaps, as shown in Figure 10.
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( a ) ( b ) ( c )

Figure 10. When the appearances are more similar, the network’s classification of Extra class passion
fruit and the heatmap results. (a) Input image. (b) Detection and heatmap results of YOLOv5
(baseline). (c) Detection and heatmap results of ATC-YOLOv5 (ours).

Based on Figure 10, it can be observed that the baseline algorithm mistakenly identifies
the Extra Class as Class I during detection, and due to their similarity, the network’s
attention is also scattered between the two. On the other hand, ATC-YOLOv5 can correctly
distinguish between Class I with minor skin defects and the ExtraClass with almost no skin
defects, and the network’s attention is mostly focused on the correct targets.

One of the additional improvement directions of ATC-YOLOv5 is network lightweight-
ness. In the context of smart agriculture and automated fruit production, if ATC-YOLOv5
is used for passion fruit quality grading tasks, it is likely to be deployed on automated
sorting machines or robots [66], which imposes certain requirements on the network’s size,
detection speed, and computational efficiency. Among the introduced improvements in this
study, both iAFPN and TRCSP can increase the mAP while reducing the number of param-
eters and GFLOPs. Additionally, TRCSP reduces the use of convolution layers, resulting in
a better mDT compared to the baseline, enabling faster detection with fewer computational
resources. In contrast, Cheng et al. [10] constructed an appearance-grading model based on
the YOLOv4 algorithm for tomato grading, but they did not consider the lightweightness of
the model in their experiments. Tu et al. [17] proposed a network that achieved a detection
accuracy of 92.71%, but the detection speed per image was still 72.14 ms, leaving room
for optimization in terms of detection speed. Overall, the improvements introduced in
ATC-YOLOv5 make it more suitable for deployment on hardware devices or robots.

Although the proposed ATC-YOLOv5 has achieved excellent results in terms of ac-
curacy and lightweightness, it still has some limitations, which provide opportunities
for future research directions. For instance, the network training is simulated under the
conditions of passion fruit transportation, sorting, or production processes, which may
limit its detection performance for unpicked passion fruit in the cultivation environment.
Therefore, future work could focus on improving the model’s environmental generalization
ability to adapt to various background environments.

5. Conclusions

To achieve the quality grading and classification of passion fruit based on its appear-
ance, this paper proposes ATC-YOLOv5, a lightweight passion fruit quality classification
algorithm, built upon YOLOv5. The iAFPN is obtained by improving the AFPN, which
introduces multiple weighted feature-fusion pathways. The original YOLOv5’s FPN struc-
ture is replaced with the enhanced iAFPN, and the fusion between non-adjacent feature
layers with significant semantic gaps is optimized. The TRCSP layer is created by incorpo-
rating the MHSA layer into the CSP layer, thereby replacing the CSP layer in the highest
feature level of the network. The coordinate attention mechanism is integrated to assist in
feature extraction. According to the experimental results, the mAP of ATC-YOLOv5 reaches
95.36%, the mDT is 3.2 ms, the number of parameters is 6.28 million, and the GFLOPs
are 14.9. Compared to the baseline or other object-detection algorithms, ATC-YOLOv5
achieves a 4.83% increase in mAP and an 11.11% improvement in detection speed, while
reducing the parameters and GFLOPs by 10.54% and 5.7%, respectively. ATC-YOLOv5’s
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better detection accuracy and lightweight network features provide the basis for its appli-
cation in the detection and grading of other fruits. This study was trained and tested on
a self-made passion fruit dataset that supports the development of intelligent agriculture
and fruit production. In future work, we will focus on further improving the algorithm’s
detection performance in different environments and enhancing its compatibility with
robots or drones.
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