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Abstract: Due to CO2 emissions, humans are encountering grave environmental crises (e.g., rising
sea levels and the grim future of submerged cities). Governments have begun to offset emissions by
constructing emission-trading schemes (carbon-offset markets). Investors naturally crave carbon-
offset options to effectively control risk. However, the research and practice for these options are
relatively limited. This paper contributes to the literature in this area. Specifically, according to
carbon-emission allowances’ empirical distributions, we implement fractal Brownian motions and
jump diffusions instead of traditional geometric Brownian motions. We contribute to extending the
theoretical model based on carbon-offset option-pricing methods. We innovate the carbon-offset
options of Asian styles. We authenticate the options’ stochastic differential equations and analytically
price the options in the form of theorems. We verify the parameter sensitivity of pricing formulas by
illustrations. We also elucidate the practical implications of an emission-trading scheme.

Keywords: carbon offset; emission-trading scheme; carbon-offset investments; carbon-offset options;
jump diffusions; fractal Brownian motions; stochastic differential equations
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1. Introduction
1.1. Alarming Global Warming and Carbon-Offset Options

We humans must accept the unquestionable fact that CO2 does cause global warm-
ing. Even climate scientists were astonished at observing record temperatures at the
poles (e.g., 40 degrees above normal in Antarctica) on 20 March 2022. (Data source: The
Irish Times, https://www.irishtimes.com/news/environment/scientists-astonished-by-
heatwaves-at-north-and-south-poles-1.4831673, 20 March 2022).

The Intergovernmental Panel on Climate Change (IPCC) projects that the global sea
level will rise 0.6 m to 1.1 m by 2100. (Data source: IPCC 2019 report, https://www.ipcc.ch/
2019, 22 December 2021). The rising seas will then engulf numerous major cities (e.g., New
York City by the year 2080 (Data source: JSTOR Daily, https://daily.jstor.org/new-york-
city-underwater/, 6 October 2021) and Shanghai and Guangzhou by 2100 (Data source: JY
International Cultural Communications, https://www.thatsmags.com/guangzhou/post/
29864/shanghai-and-prd-at-risk-of-disappearing-under-rising-sea-levels, 1 November
2019)). More alarmingly, even such pessimistic projections have become too optimistic
under accelerating global warming day by day.

Humans are eagerly trying to combat global warming by restraining CO2 consumption.
Ref. [1] empirically confirms that economic growth increases CO2 emissions, and urges the reduc-
tion. Governments have composed carbon-offset securities to curb CO2 increments while pre-
serving necessary economic growth. Promisingly, the European Union Emission-Trading System
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(EU ETS) was pioneered in 2005 as the first international emission-trading system and has suc-
cessfully launched three phases of action. (Data source: EU ETS, https://ec.europa.eu/clima/eu-
action/eu-emissions-trading-system-eu-ets/development-eu-ets-2005-2020_en#ecl-inpage-10
20, 3 January 2022). Ref. [2] methodically concentrated on the EU ETS and contended that the
public does care about climate.

In particular, investors have applauded European Union Allowances futures and
European Union Allowances options as ground-breaking carbon-offset derivatives. How-
ever, the trading volume of such options is still scant, in the context of 33.31 billion option
contracts being traded worldwide in 2021. (Data source: Statista Incorporation, https://
www.statista.com/statistics/377025/global-futures-and-options-volume/, 9 March 2022).

1.2. Carbon-Offset-Option Literature

The literature on carbon-offset options is also relatively scant. We depict several key
pieces of literature in the green rectangle under the name “carbon-offset options” in the top
part of Figure 1. We categorize similar research into a group and register the main research
methods. For instance, Refs. [2,3] have investigated emission trading, data analysis and
visualization, and carbon-offset investments. We additionally connect different groups’
analogous methods using lines. For example, the group of [2,3] and the group of [4–7]
have both contemplated carbon-offset investments. The group of [8,9] and the group
of [1,10,11] have both conducted empirical research. We will further review the references
later (especially in Section 2).

Under a similar format, we also depict several key pieces of literature for Asian options
in the yellow rectangle. For instance, the group of [12] and the group of [13,14] have both
implemented differential equations. Refs. [15,16] applied analytical methods to derive
pricing formulas.

As the intersection (in the pink shaded area) of the green rectangle and yellow rect-
angle, we depict this paper for Asian carbon-offset options based on jump diffusions
and fractal Brownian motions in the top part of Figure 1. The group of [17], the group
of [18,19], and the group of [13,14] have all harnessed fractal Brownian motions.

Moreover, we briefly present the originality in the bottom part of Figure 1.
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Originality 1: We innovate carbon-offset options of Asian styles by jump diffusions and fractal Brownian motions and verify the following stochastic differential equation:

We next resovle the call option by the equation above and boundary condition
and resovle the put option by the equation above and boundary condition
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Figure 1. The originality and several key pieces of literature [1–19].

1.3. Originality: Innovating and Pricing Carbon-Offset Options of Asian Styles by Jump
Diffusions and Fractal Brownian Motions

Specifically in the area of carbon-offset options, this paper carries the following originality:
First, we innovate the options by justifying the jump-diffusion condition and fractal-

Brownian-motion condition. Refs. [18,19] empirically discovered heavy tails, high peaks,
and thus non-normal distributions for European carbon-offset futures. The discovery con-
tradicts geometric Brownian motion properties (especially normal distributions). Therefore,
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we extend geometric Brownian motions into fractal Brownian motions. The COVID-19
pandemic, astronomical amounts of money worldwide and the liquidity effect, and re-
gional conflicts can bring uncommon volatility and uncertainty to financial markets. For
instance, Refs. [20,21] discerned uncommon volatility in stock markets and bond markets,
respectively. The exceptional volatility can hardly be prescribed by geometric Brownian
motion. Therefore, we append jump-diffusion models. Moreover, we envisage the options
as Asian styles, because the existing carbon-offset options typically belong to European
styles or American styles (see [17,22]). Asia (especially China and Japan) shoulders impor-
tant roles in carbon offset. Meanwhile, the path dependence of Asian options avoids the
risk of exceptional volatility for underlying asset prices on the maturity date, which is not
considered in the existing research on carbon-offset options.

Second, we analytically price the options in the form of theorems. The approximate
analytical pricing formula of options is more concise than pricing formulas containing
series terms (as displayed by [23]).

1.4. Paper Structure

The rest of this paper is organized as follows: We review the theoretical background
in Section 2. We instigate the options and gauge the stochastic differential equations in
Section 3. We analytically price the options in Section 4. We elucidate the pricing by an
example in Section 5. We conclude this paper in Section 6.

2. Literature Review: Asian Options and Carbon-Offset Options
2.1. Classic Option Pricing

Ref. [24] seminally lay the foundation of option pricing by assuming that the under-
lying asset follows a geometric Brownian motion. However, researchers later discovered
the assumption’s weakness in practice. Ref. [25] compared and related thee major option-
pricing methods. Ref. [26] stressed the discrepancy between the model of [24] and reality
and modify the model.

To better delineate financial markets, researchers instigated the extensions. For in-
stance, Ref. [27] (pp. 125–130) proposed jump-diffusion models, emphasizing uncommonly
sizable stock-price jumps and prescribing that both continuous and jump processes com-
mand stock prices. Ref. [28] further enlightened the double exponential jump-diffusion
models to overcome leptokurtic features (e.g., heavy tails) and volatility-smile features.

Specifically for jump diffusions, Ref. [29] (pp. 642–643) illuminated jump diffusions
as follows:

dSt = (µ− λθj(t))Stdt + σsStdzt + dpt (1)

where

• (µ− λθj(t))Stdt + σsStdzt basically inscribes geometric Brownian motions (as delin-
eated by [29] (pp. 323–324)).

• dpt inscribes the jumps.
• Stochastic processes {zt} and {pt} are independent.
• For other terms of (1), we will extend (1) into (2) and then explain them in Section 3.
• For notations, we principally track the classic symbols of [29]. For stochastic processes

(e.g., {Xt}), we interchangeably employ Xt and X(t) by trailing the notation tradition
(e.g., Xt of [30] (p. 184) and X(t) of [31] (p. 199)).

Ref. [32] deployed (1) for Asian options.
The B-S model, based on the geometric Brownian motion (as displayed by [24]),

assumes the log-normal property of the underlying asset price, and hardly describes
random walks with skewness. For instance, Refs. [33,34] recognized the underlying
asset peculiarity (e.g., heavy tails) and extended geometric Brownian motions into fractal
Brownian motions. Scholars have further developed other diffusion processes for the
fractal Brownian motion variant, for example, mixed fractal Brownian motion (see [35])



Mathematics 2023, 11, 3614 4 of 22

and sub-mixed fractal Brownian motion (see [36]). Consequently, scholars have gradually
studied derivative prices jointly driven by jump diffusions and fractal Brownian motions
(as displayed by [23]).

Specifically for fractal Brownian motions, Ref. [37] proposed a stochastic integral of
fractal Brownian motions based on the Wick product. However, Ref. [38] first questioned
the use of the Wick product and focused on the basic economic explanation beyond pure
mathematical theories. Ref. [34] implemented the Wick product into the definition of
portfolio value and the attribute of self-financing. Ref. [39] utilized properties of the fractal
Taylor formula to develop the fractal Itô’s formula with the Hurst exponent H ∈ [ 1

2 , 1).
The method is different from the classic method of Wick product (as described by [37]).
Ref. [13] presumed self-similar and long-term dependence characters for the assets, manip-
ulated stochastic differential equations, and analytically assessed options. Ref. [40] utilized
Itô’s lemma and analytically estimated the options by Malliavin calculus. Ref. [41] added
approximative fractal stochastic volatility to the double Heston jump-diffusion model and
deduced the option-pricing formula.

Moreover, researchers have exploited partial differential equations and analytically
valued options. Ref. [42] applied partial differential equations, adopted Mellin trans-
formation, and valued options using Volterra integral equations. Ref. [43] established
monotonous transaction costs, fashioned partial differential equations, and analytically
assessed options.

2.2. Pricing Asian Options

Ref. [29] (p. 626) defined that an Asian option is a kind of option whose value is deter-
mined by the average price of the underlying asset during the option life. Ref. [29] (p. 626)
prescribed the call-option value and put-option value on maturity T as follows:

max(AT − K, 0) max(K− AT , 0)

where

• K is the exercise price;

• AT is the asset’s geometric average price AT = e
1
T
∫ T

0 ln Stdt.

The analytical pricing formula of Asian options has been widely studied by scholars
due to its concise form. Based on [24], Ref. [12] cogitated orthogonal polynomials, calcu-
lated series expansions for option prices, and established the series convergence. Ref. [13]
explored the pricing formula of dual-asset Asian rainbow options under fractal Brownian
motions based on differential equations. Ref. [14] targeted subdiffusive Brownian mo-
tions, executed hedging strategies, and analytically resolved option prices using partial
differential equations. Ref. [15] experimented with double Heston models and evaluated
first-order asymptotic expansions for the geometric Asian option price. Ref. [16] inte-
grated Taylor-series expansions for deriving approximate analytical solutions for arithmetic
Asian options.

2.3. Pricing Carbon-Offset Options
2.3.1. Underlying Assets’ Empirical Distributions and Limitations of Geometric Brownian

A great deal of empirical research analyzes the time series and empirical distribution
characteristics of carbon underlying asset prices.

Carbon financial asset prices have random fluctuations and present fractal features
such as non-normal distribution, peak, and thick tail. Ref. [18] focused on European
carbon-offset futures and portrayed the returns using leptokurtic features (e.g., heavy
tails) and nonzero-skewness features. Ref. [19] also characterized European carbon-offset
futures using heavy tails, high peaks, and thus non-normal distributions, and deduced
the characterization as the cause for multiple-fractal situations. Ref. [44] used the fractal
market hypothesis and evolutionary computing to analyze carbon futures trading and
short-term price prediction.
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Carbon financial asset prices occasionally have exceptional fluctuations and jumping
features. Ref. [45] empirically discovered that the time series of carbon-emission-allowance
price presents jumps and is non-stationary. Ref. [46] confirmed the Markov property
of the carbon allowance price under a non-linear market fundamental model. Ref. [47]
applied the mechanism transformation jump-diffusion model with hidden Markov chains
to capture the jump and fluctuation clustering characteristics of EUA price returns.

Because the leptokurtic features contradict geometric Brownian motion properties
(especially normal distributions) from the existing empirical research, scholars have grad-
ually channeled fractal Brownian motions for carbon-offset derivatives. Jumping and
non-stationary features from carbon-trading markets also contradict geometric Brown-
ian motion properties (especially continuous). Therefore, scholars have harnessed jump-
diffusion processes for carbon-offset derivatives.

2.3.2. Carbon-Offset Option-Pricing Models

The main research on carbon-offset option pricing usually adopts the classic Black–Scholes
model as the basis for construction. Ref. [22] attested that the carbon-emission permit price
driven by geometric Brownian motion is a martingale process in stochastic, continuous,
and infinite time models. Ref. [17] modulated the Black–Scholes model into a mixed fractal
Black–Scholes model and direct power-penalty approaches and nonuniform grid-based
modifications in the problem of American carbon-emission derivative pricing. Ref. [48]
proposed the application of carbon-offset options evaluated through a geometric Brownian
motion model with regime-switching for carbon management, together with the high
volatility of the carbon price dynamic.

2.3.3. Exploring Real Options

Researchers have made promising progress in carbon-offset options. In addition,
the research concentrates on real options. For instance, Ref. [4] constructed real options
for wind power, tuned the main parameters, and dissected the relationship between the
emission-trading scheme and low-carbon-energy investments in China. Ref. [6] aimed
for defer-type real options and abandon-type real options, and executed two-dimensional
binominal lattices in the pricing. Ref. [5] heeded carbon-price fluctuations and, accord-
ingly, fashion real options, and enhanced investment performance. Ref. [7] was aware of
fossil-energy prices and carbon-emission-allowance prices, and conceived real options for
R&D investments.

2.3.4. Innovating Portfolio Selection

Considering the investment demand for carbon offsetting, scholars have proposed a
multi-objective portfolio selection that takes into account both risks and returns. Investors
can build constraints using the carbon-offset measure and operate portfolio selection and
optimization (as experimented by [49]). Ref. [50] took the green innovation index as the
third objective dimension of the portfolio-selection model.

2.3.5. Calibrating GARCH Models for the Volatility

The volatility prediction of underlying assets in the carbon-trading market has been
another concern of researchers. Ref. [8] sampled European Union Allowances option prices
on the European Energy Exchange, measured the volatility using GARCH models, and
forecasted the future prices. Ref. [9] consumed the GARCH-MIDAS models for the volatility
of European Union Allowances futures, contrasted the GARCH-MIDAS models and other
GARCH models, and uncovered the outperformance of the GARCH-MIDAS models.

2.4. Appraising Key Literature
2.4.1. Urgency to Advance Carbon-Offset Options

Ref. [1] confirmed that economic growth increases CO2 emissions, and thus urged
reduction. Ref. [10] reviewed Chinese research and the practice of carbon offset, underscor-
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ing the urgency for carbon-offset markets, and appraising the options. Ref. [11] empirically
verified that options trading increases corporate investments and that the effect is stronger
for corporations with higher information asymmetry difficulties.

2.4.2. Suitability For Jump Diffusions

In addition to global warming, the COVID-19 pandemic has unleashed crises of hu-
manity, economy, and finance. With industry shutdown, loss of employment, and an
unimaginable death toll of almost a million in the US alone by March 2022, the global
economy is falling into recession. Moreover, the astronomical amount of money worldwide
and the liquidity effect, and regional conflicts (e.g., the Russia–Ukraine war) can bring
uncommon volatility and uncertainty to financial markets and put financial stability at
great risk. For instance, Refs. [20,21] discerned uncommon volatility in stock markets
and bond markets during the COVID-19 pandemic. In the carbon-emission trading mar-
ket, Refs. [45,47] empirically discovered the jumping characteristics of carbon-emission
allowance prices. Further research has claimed that the jump-diffusion model (JDM) pro-
posed by [27] is the most suitable dynamic model for EUAs. Therefore, jump-diffusion
models have surfaced as appropriate candidates.

2.4.3. Suitability for Fractal Brownian Motions

Refs. [18,19] empirically unearthed heavy tails, high peaks, and thus non-normal
distributions for European carbon-offset futures and inferred the application of fractal
Brownian motions. Ref. [17] unveiled fractal Black–Scholes models and affirmed the
models’ effectiveness. Ref. [8] reasonably predicted carbon option prices with fractal
Brownian motion considering the fractal characteristics of carbon-offset option prices.

3. Originating the Options and Verifying the Stochastic Differential Equation
3.1. Initiating Carbon-Offset Options of Asian Styles on the Basis of Jump Diffusions and Fractal
Brownian Motions

We extend the geometric-Brownian-motion assumption of [24] (pp. 640–641), impose
jumps for the underlying asset, and formulate the following fractal Brownian motions with
jump diffusions for the asset (especially carbon-emission allowances):

dSt = (µ− λθj(t))Stdt + σsStdBH
s (t) + j(t)StdNt (2)

where

1. µ is the expectation (as documented by [29] (p. 323)).
2. σs is the volatility (as documented by [29] (pp. 323–324)).
3. On a probability space (Ω,F , P), we define {BH

s (t)} as a fractal Brownian motion
(as documented by [29] (pp. 329–330)) with the Hurst exponent H ∈ [ 1

2 , 1) with the
following property:

Cov
(

BH
s (t), BH

s (s)
)
=

1
2
(
|t|2H + |s|2H − |t− s|2H), f or s ∈ R and t ∈ R

For H = 1
2 , BH

s (t) retreats to Brownian motions.
4. We inherit the formulation of [27] (pp. 128–129) and establish {Nt} as a Poisson

process. λ is the expected jump numbers per unit time.
5. We enrich the jump diffusions by erecting j(t) as the jump multitude. 1 + j(t) comes

from the following log-normal distribution:

ln(1 + j(t)) ∼ N(µj(t), σ2
j(t)
)

(3)
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The distribution is fixed by the variance σ2
j(t) and expectation µj(t) as follows:

µj(t) ≡ ln(1 + θj(t))−
1
2

σ2
j(t) (4)

We denote the expectation of j(t) as follows:

θj(t) ≡ E
(

j(t)
)
= E

(
eln(1+j(t)))− 1 = eµj(t)+

1
2 σ2

j(t) − 1 (5)

6. At time t, if Nt jumps with probability P = λδt, dNt assumes 1 (i.e., dNt = 1) in time
interval [t, t + δt] for sufficiently small δ. For term j(t)StdNt of (2), the underlying
asset’s price changes by St+δt − St = j(t)St.
Otherwise (i.e., Nt does not jump at time t with probability 1− λδt), dNt assumes
0 (i.e., dNt = 0) in time interval [t, t + δt]. For term j(t)StdNt of (2), the underlying
asset’s price does not change. In summary, we reiterate dNt in time interval [t, t + δt]
as follows:

dNt =

{
1, jumps, probability λδt

0, no-jump, probability 1− λδt
(6)

7. Stochastic processes {BH
s (t)}, {Nt}, and {j(t)} are mutually independent at any time t.

8. At last, we pursue [24] (pp. 640–641) and assume the following conditions:

(a) continuous-time option trading,
(b) no-arbitrage opportunity,
(c) identical borrowing and lending interest rate r,
(d) short-sales feasibility,
(e) no dividend during the option life, and
(f) frictionless markets in the form of no transaction cost or tax.

3.2. Verifying the Stochastic Differential Equation and Boundary Conditions

Traditionally for options based on geometric Brownian motions, Ref. [29] (p. 349)
instructs the following stochastic differential equation for the option value Vt:

∂Vt

∂t
+ rSt

∂Vt

∂St
+

1
2

σs
2St

2 ∂2Vt

∂St
2 − rVt = 0 (7)

Investors resolve a specific option by the boundary conditions for (7). For instance,
the condition for European call options on maturity T with exercise price K is as follows:

VT = max(ST − K, 0) (8)

Because we have already extended geometric Brownian motions into fractal Brownian
motions and appended jump diffusions in (2), we correspondingly reckon the counterpart
of (7) in this subsection. Of course, the counterpart is much more complicated.

For St of (2) with time from 0 to t, we institute the following path-dependent stochastic
process {At}:

At = e
1
t
∫ t

0 ln Sτdτ (9)

The option value Vt depends on St, At, and t as follows:

Vt = V(St, At, t) (10)

We then augment (7) in the following theorem:
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Theorem 1. For carbon-offset options of Asian styles based on jump diffusions and fractal Brownian
motions (2), the options’ value Vt is imposed by the following stochastic differential equation:

∂Vt

∂t
+ Hσs

2St
2t2H−1 ∂2Vt

∂St
2 +

At(ln St − ln At)

t
∂Vt

∂At

+λE(Vt+δt −Vt) + (r− λθj(t))St
∂Vt

∂St
− rVt = 0 (11)

where St and the associated terms are introduced in (2); At is introduced in (9).

Proof of Theorem 1.

1. We exploit dynamic-hedging strategies (as outlined by [29] (pp. 422–423)) and build
the following portfolio Πt:

Πt = Vt − χSt (12)

where χ is the weight for St. We trail [29] (pp. 422–423) and assign χ as follows:

χ =
∂Vt

∂St
(13)

The value of Πt changes from time t to time t + δt as follows:

Πt+δt −Πt =
(
Vt+δt − χSt+δt

)
−
(
Vt − χSt

)
=
(
Vt+δt −Vt

)
− χ

(
St+δt − St

)
We consult [29] (p. 349) and rewrite the model above as follows:

∆Πt = ∆Vt − χ∆St (14)

Because [27] (p. 129) tends the no-jump case and jump case at time t for (1), we also
tend the cases for (2) below.

2. For the no-jump case as the simpler situation, we define the event ζ1 as follows:

ζ1 ≡ {Nt does not jump at time t}

We recognize dNt = 0 by the formulation of (2) and notice the following probability
by (6):

P(ζ1) = P(dNt = 0) = 1− λδt (15)

With dNt = 0, we simplify (2) as follows:

dSt = µStdt + σsStdBH
s (t) (16)

On the basis of (9) and (16), we operate fractal Itô’s lemma (as described by [39]
(pp. 4814–4816)) to Vt of (10) as follows:

∆Vt =
(∂Vt

∂t
+ µSt

∂Vt

∂St
+ Hσs

2St
2t2H−1 ∂2Vt

∂St
2 +

At(ln St − ln At)

t
∂Vt

∂At

)
δt

+ σsSt
∂Vt

∂St
δBH

s (t)

We substitute ∆Vt above into (14) as follows:

∆Πt =
( ∂Vt

∂t
+ µSt(

∂Vt
∂St
− χ) + Hσs

2St
2t2H−1 ∂2Vt

∂St
2 +

At(ln St − ln At)

t
∂Vt
∂At

)
δt

+ σsSt(
∂Vt
∂St
− χ)δBH

s (t) (17)
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We have already assigned χ = ∂Vt
∂St

of (13), so the term σsSt(
∂Vt
∂St
− χ)δBH

s (t) becomes 0
for (17). By (13)–(17), we develop ∆Πt as follows:

∆Πt =
(∂Vt

∂t
+ Hσs

2St
2t2H−1 ∂2Vt

∂St
2 +

At(ln St − ln At)

t
∂Vt

∂At

)
δt

For ∆Πt above, we then take the expectation or precisely conditional expectation on
ζ1 as follows:

E(∆Πt|ζ1) =
( ∂Vt

∂t
+ Hσs

2St
2t2H−1 ∂2Vt

∂St
2 +

At(ln St − ln At)

t
∂Vt
∂At

)
δt (18)

3. For the jump case, we define the event ζ2 as follows:

ζ2 ≡ {Nt jumps at time t}

We recognize dNt = 1 by the formulation of (2) and notice the following probability
by (6):

P(ζ2) = P(dNt = 1) = λδt (19)

Due to the jump and jump multitude j(t) (as designated for (2)), we update Vt of (10)
as follows:

Vt+δt = V((1 + j(t))St, At+δt, t + δt) (20)

We substitute (20) into (14) as follows:

∆Πt =
(
V((1 + j(t))St, At+δt, t + δt)−V(St, At, t)

)
− χj(t)St

For ∆Πt above, we postulate (5), still postulate χ = ∂Vt
∂St

of (13), and take the expecta-
tion or precisely conditional expectation on ζ2 as follows:

E(∆Πt|ζ2) = E(Vt+δt −Vt)− θj(t)St
∂Vt

∂St
(21)

4. By the no-jump case and jump case, we manipulate total-expectation law (as described
by [51] (p. 299)) for ∆Πt as follows:

E(∆Πt) = E
(
E(∆Πt|ζ1 ∪ ζ2)

)
= E(∆Πt|ζ1)P(ζ1) + E(∆Πt|ζ2)P(ζ2), by (15) and (19)

= E(∆Πt|ζ1)(1− λδt) + E(∆Πt|ζ2)(λδt), by (18) and (21)

=
( ∂Vt

∂t
+ Hσs

2St
2t2H−1 ∂2Vt

∂St
2 +

At(ln St − ln At)

t
∂Vt
∂At

)
δt(1− λδt)

+
(
E(Vt+δt −Vt)− θj(t)St

∂Vt
∂St

)
(λδt), by rearrangement

=
( ∂Vt

∂t
+ Hσs

2St
2t2H−1 ∂2Vt

∂St
2 +

At(ln St − ln At)

t
∂Vt
∂At

)
δt

− λθj(t)St
∂Vt
∂St

δt + λE(Vt+δt −Vt)δt

− λ
( ∂Vt

∂t
+ Hσs

2St
2t2H−1 ∂2Vt

∂St
2 +

At(ln St − ln At)

t
∂Vt
∂At

)
(δt)2 (22)
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Because [51] (p. 44) posits (δt)2 = 0 for sufficiently small δ, so do we and thus infer
as follows:

λ
(∂Vt

∂t
+ Hσs

2St
2t2H−1 ∂2Vt

∂St
2 +

At(ln St − ln At)

t
∂Vt

∂At

)
(δt)2 = 0

By the zero item above, we advance and rearrange (22) as follows:

E(∆Πt) =
(∂Vt

∂t
+ Hσs

2St
2t2H−1 ∂2Vt

∂St
2 +

At(ln St − ln At)

t
∂Vt

∂At

− λθj(t)St
∂Vt

∂St
+ λE(Vt+δt −Vt)

)
δt (23)

Because [29] (p. 349 and 422–423) sketches the no-arbitrage opportunity and thus
risk-free conditions for Πt of (12) in time interval [t, t + δt], Πt earns interest-rate r
as follows:

E(∆Πt) = rΠtδt (24)

We equate (23) and (24) and finally obtain (11).

We then decipher the call option and put option by indicating the boundary conditions
in the following theorems:

Theorem 2. For carbon-offset options of Asian styles based on jump diffusions and fractal Brownian
motions (2), the call option is decoded by the following stochastic differential Equation (11) and
boundary condition on maturity T:

∂Vt
∂t + Hσs

2St
2t2H−1 ∂2Vt

∂St
2 + At(ln St−ln At)

t
∂Vt
∂At

+λE(Vt+δt −Vt) + (r− λθj(t))St
∂Vt
∂St
− rVt = 0

V(ST , AT , T) = max(AT − K, 0)

where V(ST , AT , T) is based on (10), AT is based on (9), and K is the exercise price.

Proof of Theorem 2. By Theorem 1, the call option satisfies (11). The boundary condition is
that investors harness the option value V(ST , AT , T) = max(AT − K, 0) on maturity T.

Theorem 3. For carbon-offset options of Asian styles based on jump diffusions and fractal Brownian
motions (2), the put option is decoded by the following stochastic differential Equation (11) and
boundary condition on maturity T:

∂Vt
∂t + Hσs

2St
2t2H−1 ∂2Vt

∂St
2 + At(ln St−ln At)

t
∂Vt
∂At

+λE(Vt+δt −Vt) + (r− λθj(t))St
∂Vt
∂St
− rVt = 0

V(ST , AT , T) = max(K− AT , 0)

Proof of Theorem 3. By Theorem 1, the put option satisfies (11). The boundary condition is
that investors harness the option value V(ST , AT , T) = max(K− AT , 0) on maturity T.

4. Pricing the Options

In the following theorems, we strive to analytically reveal the call-option value and
put-option value.
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Theorem 4. For the carbon-offset options V(St, At, t) of (10) of Asian styles based on jump
diffusions and fractal Brownian motions, the call-option value of Theorem 2 is approximately
calculated as follows:

V(St, At, t) = eτ+ξτ−r(T−t)N(d1)− Ke−r(T−t)N(d2)

where

d1 =
2τ + ξτ − ln K√

2τ
d2 =

ξτ − ln K√
2τ

N(x) =
1√
2π

∫ x

−∞
e−

t2
2 dt

τ =
1
6

λ(µ2
j(t) + σ2

j(t))
(T − t)3

T2 + Hσ2
s (

T2H − t2H

2H
− T2H+1 − t2H+1

(2H + 1)T
+

T2H+2 − t2H+2

2(H + 1)T2 )

ξτ =
t
T

ln
At
St

+ ln St +
(T − t)2

2T
(r− λθj(t) + λµj(t))

+
σs

2(T2H − t2H)

2
− Hσs

2(T2H+1 − t2H+1)

(2H + 1)T

Proof of Theorem 4. Overall, directly computing the term E(Vt+δt −Vt) of Theorem 2 is
difficult, so we approximate the term using the Taylor series, substitute variables three
times, and reckon the option value in the following steps:

1. For the first variable substitution, we substitute St by x and substitute ln(1 + j(t)) by
η as follows:

x = ln St η = ln(1 + j(t)) (25)

Of course, x and η depend on t. Due to the complex computation below, we suppress
t for expression clarity. We total the partial derivatives by the substitution as follows:

∂Vt

∂St
=

1
St

∂Vt

∂x
∂2Vt

∂S2
t
=

1
S2

t
(

∂2Vt

∂x2 −
∂Vt

∂x
)

We transport ∂Vt
∂St

and ∂2Vt
∂S2

t
into (11) as follows:

∂Vt

∂t
+ Hσs

2t2H−1 ∂2Vt

∂x2 + (r− λθj(t) − Hσs
2t2H−1)

∂Vt

∂x

+
At(x− ln At)

t
∂Vt

∂At
+ λE

(
V(η + x, At, t)−V(x, At, t)

)
− rVt = 0 (26)

We focus on η of V(η + x, At, t) for fixed t and introduce V(η + x, At, t) = V(η + x).
We operate the following Taylor series with respect to η and drop the cubic or higher-
moment terms (as traditionally established by [52] (p. 10)):

V(η + x) = V(x) + η
∂Vt

∂x
+

1
2

η2 ∂2Vt

∂x2 + o(η2)

≈ V(x) + η
∂Vt

∂x
+

1
2

η2 ∂2Vt

∂x2 (27)

We then take the expectation of (27) as follows:

E
(
V(η + x)−V(x)

)
≈ ∂Vt

∂x
Eη(η) +

1
2

∂2Vt

∂x2 Eη(η
2) (28)

By (3), (4), and (25), we recognize the expectation of η as Eη(η) = µj(t) and recognize
the variance of η as Dη(η) = σ2

j(t). We gauge Eη(η2) as follows:

Eη(η
2) =

(
Eη(η)

)2
+ Dη(η) = µ2

j(t) + σ2
j(t)
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We substitute Eη(η) and Eη(η2) into (28) as follows:

E
(
V(η + x, At, t)−V(x, At, t)

)
= µj(t)

∂Vt

∂x
+

1
2
(µ2

j(t) + σ2
j(t))

∂2Vt

∂x2 (29)

We further substitute (29) into (26) as follows:

∂Vt

∂t
+ ϕ1(t)

∂2Vt

∂x2 + ϕ2(t)
∂Vt

∂x
+

At(x− ln At)

t
∂Vt

∂At
− rVt = 0 (30)

where

ϕ1(t) =
1
2

λ(µ2
j(t) + σ2

j(t)) + Hσs
2t2H−1 (31)

ϕ2(t) = r− λθj(t) + λµj(t) − Hσs
2t2H−1 (32)

By (25), we reexpress the boundary condition V(ST , AT , T) = max(AT − K, 0) of
Theorem 2 as follows:

V(x, AT , T) = max(AT − K, 0) (33)

2. For the second variable substitution, we perform the following substitution in order
to simplify (30):

Gt =
1
T
(
t ln At + (T − t)x

)
U(Gt, t) = V(x, At, t) (34)

By (34), we rewrite (33) as follows:

U(GT , T) = max(eGT − K, 0) (35)

We calculate the following partial derivatives:

∂Vt

∂x
=

T − t
T

∂Ut

∂Gt

∂2Vt

∂x2 =
(T − t

T
)2 ∂2Ut

∂G2
t

∂Vt

∂At
=

t
TAt

∂Ut

∂Gt

∂Vt

∂t
=

∂Ut

∂t
+

ln At − x
T

∂Ut

∂Gt

We bring the partial derivatives above into (30) as follows:

∂Ut

∂t
+ ϕ3(t)

∂2Ut

∂G2
t
+ ϕ4(t)

∂Ut

∂Gt
− rUt = 0 (36)

where

ϕ3(t) =
(T − t

T
)2

ϕ1(t) ϕ4(t) =
T − t

T
ϕ2(t) (37)

3. For the third variable substitution, we follow [14] and introduce the following substitution:

τ = α(t) ξτ = Gt + β(t) ω(τ, ξτ) = U(Gt, t)eγ(t) (38)

We will configure α(t), β(t), and γ(t) later in this step. We presume α(T) = β(T) =
γ(T) = 0. By (38), we reexpress the boundary condition (35) as follows:

ω(0, ξ0) = max(eξ0 − K, 0) (39)
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Moreover, by (38), we compute the following partial derivatives:

∂Ut

∂t
= e−γ(t)(∂ω

∂τ
α′(t) +

∂ω

∂ξτ
β′(t)−ωγ′(t)

)
∂Ut

∂Gt
= e−γ(t) ∂ω

∂ξτ

∂2Ut

∂G2
t
= e−γ(t) ∂2ω

∂ξτ
2

We bring the partial derivatives above into (36) as follows:

∂ω

∂τ
α′(t) + ϕ3(t)

∂2ω

∂ξτ
2 +

(
ϕ4(t) + β′(t)

) ∂ω

∂ξτ
−
(
r + γ′(t)

)
ω = 0 (40)

By (40), we demand the following equations:

α′(t) + ϕ3(t) = 0 ϕ4(t) + β′(t) = 0 r + γ′(t) = 0 (41)

By (31)–(32) and (37), we solve (41) as follows:

α(t) =
∫ T

t
ϕ3(υ)dυ =

∫ T

t
(

T − υ

T
)

2(1
2

λ(µ2
j(t) + σ2

j(t)) + Hσ2
s υ2H−1)dυ

=
1
6

λ(µ2
j(t) + σ2

j(t))
(T − t)3

T2

+ Hσ2
s (

T2H − t2H

2H
− T2H+1 − t2H+1

(2H + 1)T
+

T2H+2 − t2H+2

2(H + 1)T2 ) (42)

β(t) =
∫ T

t
ϕ4(υ)dυ

=
∫ T

t
(

T − υ

T
)(r− λθj(t) + λµj(t) − Hσs

2υ2H−1)dυ

=
(T − t)2

2T
(r− λθj(t) + λµj(t))

+
σs

2(T2H − t2H)

2
− Hσs

2(T2H+1 − t2H+1)

(2H + 1)T
(43)

γ(t) =
∫ T

t
rdυ = r(T − t) (44)

We convey (42)–(44) into (40) and consider (39) as follows:{
∂ω
∂τ = ∂2ω

∂ξτ
2

ω(0, ξ0) = max(eξ0 − K, 0)
(45)

Equation (45) is a heat equation (as described by [53] (p. 254)). By (34) and (38), we
usher in τ and ξτ (as dictated in Theorem 4) as follows:

τ = α(t) =
1
6

λ(µ2
j(t) + σ2

j(t))
(T − t)3

T2

+ Hσ2
s (

T2H − t2H

2H
− T2H+1 − t2H+1

(2H + 1)T
+

T2H+2 − t2H+2

2(H + 1)T2 ) (46)

ξτ = Gt + β(t) =
1
T
(
t ln At + (T − t) ln St

)
+ β(t)

=
t
T

ln
At

St
+ ln St +

(T − t)2

2T
(r− λθj(t) + λµj(t))

+
σs

2(T2H − t2H)

2
− Hσs

2(T2H+1 − t2H+1)

(2H + 1)T
(47)
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Ref. [53] (p. 254) crack the heat equation and we borrow their solution as follows:

ω(τ, ξτ) =
1

2
√

πτ

∫ +∞

ln K
(ey − K)e−

(y−ξτ )
2

4τ dy

=
1

2
√

πτ

∫ +∞

ln K
ey− (y−ξτ )

2
4τ dy− K

2
√

πτ

∫ +∞

ln K
e−

(y−ξτ )
2

4τ dy

= φ1 − φ2 (48)

We take y−ξτ−2τ√
2τ

= t and calculate φ1 as follows:

φ1 =
1

2
√

πτ

∫ +∞

ln K
ey− (y−ξτ )

2
4τ dy = eτ+ξτ

1√
2π

∫ +∞

− 2τ+ξτ−ln K√
2τ

e−
t2
2 dt

= eτ+ξτ N(
2τ + ξτ − ln K√

2τ
) (49)

We take y−ξτ√
2τ

= t and calculate φ2 as follows:

φ2 =
K

2
√

πτ

∫ +∞

ln K
e−

(y−ξτ )
2

4τ dy =
K√
2π

∫ +∞

− ξτ−ln K√
2τ

e−
t2
2 dt

= KN(
ξτ − ln K√

2τ
) (50)

We transfer (49)–(50) into (48) and compute the following solution of (45):

ω(τ, ξτ) = eτ+ξτ N(
2τ + ξτ − ln K√

2τ
)− KN(

ξτ − ln K√
2τ

) = eτ+ξτ N(d1)− KN(d2) (51)

where

d1 =
2τ + ξτ − ln K√

2τ
d2 =

ξτ − ln K√
2τ

N(x) =
1√
2π

∫ x

−∞
e−

t2
2 dt

4. At last, we revert the three-round variable substitutions (25), (34), and (38) back to
(10) as follows:

V(St, At, t) = V(x, At, t) = U(Gt, t) = e−γ(t)ω(τ, ξτ) (52)

We relocate (44) and (51) to (52) and obtain the pricing formula in Theorem 4 as follows:

V(St, At, t) = e−r(T−t)(eτ+ξτ N(d1)− KN(d2)
)

= eτ+ξτ−r(T−t)N(d1)− Ke−r(T−t)N(d2)

Theorem 5. For the carbon-offset options V(St, At, t) of (10) of Asian styles based on jump
diffusions and fractal Brownian motions, the put-option value of Theorem 3 is approximately
calculated as follows:

V(St, At, t) = Ke−r(T−t)N(−d2)− eτ+ξτ−r(T−t)N(−d1)

Proof of Theorem 5. Overall, we follow the computations and steps of the proof of Theorem 4
as follows:

1. For the first variable substitution, we exactly follow step 1 of the proof of Theorem 4.
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2. For the second variable substitution, we still perform (34) and rewrite the boundary
condition V(ST , AT , T) = max(K− AT , 0) of Theorem 3 as follows:

U(GT , T) = max(K− eGT , 0)

We still designate (37).
3. For the third variable substitution, we still perform (38), obtain (42)–(44), and config-

ure the following heat equation{
∂ω
∂τ = ∂2ω

∂ξτ
2

ω(0, ξ0) = max(K− eξ0 , 0)
(53)

We still assign (46)–(47) and obtain the following solution for (53):

ω(τ, ξτ) =
1

2
√

πτ

∫ ln K

−∞
(K− ey)e−

(y−ξτ )
2

4τ dy

=
K

2
√

πτ

∫ ln K

−∞
e−

(y−ξτ )
2

4τ dy− 1
2
√

πτ

∫ ln K

−∞
ey− (y−ξτ )

2
4τ dy

≡ φ3 − φ4 (54)

We define y−ξτ√
2τ

= t and calculate φ3 as follows:

φ3 =
K

2
√

πτ

∫ ln K

−∞
e−

(y−ξτ )
2

4τ dy =
K√
2π

∫ +∞

ξτ−ln K√
2τ

e−
t2
2 dt

= KN(− ξτ − ln K√
2τ

)

We define y−ξτ−2τ√
2τ

= t and calculate φ4 as follows:

φ4 =
1

2
√

πτ

∫ ln K

−∞
ey− (y−ξτ )

2
4τ dy = eτ+ξτ

1√
2π

∫ +∞

2τ+ξτ−ln K√
2τ

e−
t2
2 dt

= eτ+ξτ N(−2τ + ξτ − ln K√
2τ

)

We restore φ3 and φ4 above back to (54) and obtain the following solution for (53):

ω(τ, ξτ) = φ3 − φ4 = KN(− ξτ − ln K√
2τ

)− eτ+ξτ N(−2τ + ξτ − ln K√
2τ

)

= KN(−d2)− eτ+ξτ N(−d1) (55)

4. At last, we revert the three-round variable substitutions (25), (34), and (38) back to
(10) and obtain (52). We relocate (44) and (55) to (52) and obtain the pricing formula
in Theorem 5 as follows:

V(St, At, t) = e−r(T−t)ω(τ, ξτ) = e−r(T−t)(KN(−d2)− eτ+ξτ N(−d1)
)

= Ke−r(T−t)N(−d2)− eτ+ξτ−r(T−t)N(−d1)

5. Illustrations

In this section, we postulate the following option parameters and dissect the parameter
sensitivity by individually attuning one parameter:
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T = 1.5 K = 100 S0 = 100 σs = 0.20 r = 0.020

λ = 1 H = 0.7 µj(t) = 0.13 σj(t) = 0.15 (56)

where the Hurst exponent H is set in the parameter range [ 1
2 , 1) of [39]. For default

parameter assumptions, see [17] (p. 5) for setting the exercise price K and the interest-rate r.
See ref. [22] (p. 455) for the setting range of the expectation and volatility of underlying
asset prices.

At the beginning with time t = 0, we calculate the call-option value of Theorem 4
as follows:

V(S0, A0, 0) = eτ+ξτ−rT N(d1)− Ke−rT N(d2) (57)

We also calculate the put-option value of Theorem 5 as follows:

V(S0, A0, 0) = Ke−rT N(−d2)− eτ+ξτ−rT N(−d1) (58)

By Theorem 4 and (56)–(58), we reckon the following parameters:

θ = e0.13+0.5×0.152
− 1 = 0.1517

τ =
1× (0.132 + 0.152)× 1.5

6

+ (
1

2× 0.7
− 1

2× 0.7 + 1
+

1
2× 0.7 + 2

)× 0.7× 0.22 × 1.52×0.7 = 0.0391

ξτ = ln 100 +
(0.02− 1× 0.1517 + 1× 0.13)× 1.5

2

+ (
1
2
− 0.7

2× 0.7 + 1
)× 0.22 × 1.52×0.7 = 4.6186

d1 =
2× 0.0391 + 4.6186− ln 100√

2× 0.0391
= 0.3276

d2 =
4.6186− ln 100√

2× 0.0391
= 0.0480

By (57) and the parameters above, we calculate the call-option value at time t = 0
as follows:

V(S0, A0, 0) = e0.0391+4.6186−0.02×1.5 × N(0.3276)− 100× e−0.02×1.5 × N(0.0480)

= 13.8878

By (58) and the parameters above, we calculate the put-option value at time t = 0
as follows:

V(S0, A0, 0) = 100× e−0.02×1.5 × N(−0.0480)− e0.0391+4.6186−0.02×1.5 × N(−0.3276)

= 8.6573

We then modify interest rate r by r = 0.020, r = 0.025, r = 0.030, r = 0.035, and
r = 0.040 but hold other parameters of (56) unchanged. We depict the effect on the call-
option value in Figure 2. We illustrate the underlying asset price (2) at time t = 0 in the
horizon axis and the option value (57) at time t = 0 in the vertical axis. We portray the
value for r = 0.020 by a solid red curve and the value for r = 0.040 by a solid green curve.
Under the same figure format, we depict the effect on the put-option value (58) at time
t = 0 in Figure 3.

Under the same figure format, we also modify Hurst exponent H and depict the effect
on the call-option value and on the put-option value in Figures 4 and 5. Furthermore, we
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modify expected jump numbers λ and depict the effect on the call-option value and on the
put-option value in Figures 6 and 7.
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Figure 2. Modifying interest rate r and observing the effect on the call-option value.
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Figure 3. Modifying interest rate r and observing the effect on the put-option value.
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Figure 4. Modifying Hurst exponent H and observing the effect on the call-option value.
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Figure 5. Modifying Hurst exponent H and observing the effect on the put-option value.
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Figure 6. Modifying expected jump numbers λ and observing the effect on the call-option value.
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Figure 7. Modifying expected jump numbers λ and observing the effect on the put-option value.

We have deposited the data and codes for this paper at Harvard Dataverse https:
//doi.org/10.7910/DVN/O4VXBD.

https://doi.org/10.7910/DVN/O4VXBD
https://doi.org/10.7910/DVN/O4VXBD
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6. Conclusions
6.1. Future Directions

In future studies, we can design the terms of carbon-offset option contracts based
on underlying assets such as the carbon-emission allowance or the carbon-neutral index,
including the contract type, expiration date, strike price, and other terms of the carbon-
offset option, to provide a reference for launching carbon options in the carbon-emission
trading market. In addition, we can also analyze the time series of the underlying asset
price of carbon-offset options based on the historical data from the carbon-emission trading
market, estimate the volatility of carbon-offset options through the GARCH model, and
then use our pricing model to calculate the initial price of carbon-offset option contracts.

6.2. Concluding Remarks

Our Asian-style carbon-offset option-pricing model considers the fractal and jump
characteristics of carbon financial underlying assets and provides a theoretical reference for
pricing. With the implementation of the double carbon policy, the carbon-emission trading
market can explore carbon-offset option financial derivatives, improve market activity, and
enrich the trading variety system.
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