
Citation: Shibu, A.; Lee, D.-G.

EvolveNet: Evolving Networks by

Learning Scale of Depth and Width.

Mathematics 2023, 11, 3611. https://

doi.org/10.3390/math11163611

Academic Editors: Vitaly Kober and

Tae Sun Choi

Received: 24 July 2023

Revised: 18 August 2023

Accepted: 18 August 2023

Published: 21 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

EvolveNet: Evolving Networks by Learning Scale of Depth
and Width
Athul Shibu and Dong-Gyu Lee *

Department of Artificial Intelligence, Kyungpook National University, Daegu 41566, Republic of Korea;
athulshibu@knu.ac.kr
* Correspondence: dglee@knu.ac.kr

Abstract: Convolutional neural networks (CNNs) have shown decent performance in a variety of
computer vision tasks. However, these network configurations are largely hand-crafted, which leads
to inefficiency in the constructed network. Various other algorithms have been proposed to address
this issue, but the inefficiencies resulting from human intervention have not been addressed. Our
proposed EvolveNet algorithm is a task-agnostic evolutionary search algorithm that can find optimal
depth and width scales automatically in an efficient way. The optimal configurations are not found
using grid search, and are instead evolved from an existing network. This eliminates inefficiencies
that emanate from hand-crafting, thus reducing the drop in accuracy. The proposed algorithm is a
framework to search through a large search space of subnetworks until a suitable configuration is
found. Extensive experiments on the ImageNet dataset demonstrate the superiority of the proposed
method by outperforming the state-of-the-art methods.

Keywords: convolutional neural network; network scaling; evolutionary computation

MSC: 68T07

1. Introduction

The convolutional neural network (CNN) is one of the most popular networks in
the field of deep learning, showing decent performance in various computer vision tasks,
including classification [1,2], semantic segmentation [3,4], and action recognition [5,6].
They were designed to extract two-dimensional features by taking structured data such
as images as input and then processing them using convolutional operators [7,8]. Stud-
ies [1,9,10] have shown that a larger number of layers results in increased receptive fields
and, therefore, captures more detail of the image. Recent networks have achieved higher
accuracy by increasing the filter bank [11–13]. There have also been cases of improved
block architecture that yielded higher accuracy without significantly increasing the size of
the networks [10,14].

Scaling is a widely used technique to achieve better accuracy and numerous methods
have been utilized to scale networks. Upscaling depth is the most prevalent method, al-
though scaling models by image resolution is also becoming increasingly popular. Figure 1
represents the depth and width of a network. EfficientNet [15] was created by compound
scaling MobileNets [14,16] and ResNet [9] networks, i.e., scaling the network width, depth,
and resolution by fixed coefficients. Network width refers to the number of filter banks
in any layer of a network, depth refers to the number of layers in a network, and the
resolution represents the number of pixels in the input image [15]. Scaling is the increasing
or decreasing of any of these factors, resulting in a change in size and accuracy. Upscaling,
however, could result in the configurations of the upscaled networks being ill-suited to their
tasks because hand-crafting networks lead to human errors and consequent inaccuracies,
resulting in an inefficient network. Filter pruning has long been considered a good alterna-
tive to accelerate deep neural networks, but this does not solve the core inefficiencies in the

Mathematics 2023, 11, 3611. https://doi.org/10.3390/math11163611 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11163611
https://doi.org/10.3390/math11163611
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1128-7401
https://doi.org/10.3390/math11163611
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11163611?type=check_update&version=2


Mathematics 2023, 11, 3611 2 of 14

construction of the network. In other words, the accuracy gain diminishes as networks get
larger because all parameters in a network have different sensitivity to its accuracy.

Figure 1. Configuration of a network. The depth represents the number of layers in a network,
whereas the width of a layer represents the number of filters present in it.

Identifying these superfluous parameters in a network is crucial to the optimization
process. The Lottery Ticket Hypothesis [17] states that any trained dense neural network
contains a subnetwork (called a winning ticket), which, when trained in isolation for at most
the same number of epochs, can match the test accuracy of the original network. Automated
machine learning (AutoML) [18] automated steps in the machine learning pipeline. This
concept has been applied for neural architecture search (NAS) [19–21] to optimize the search
for winning tickets within large networks. However, applying AutoML concepts for NAS
has wider consequences that can be aggravated during the search stage. The No Free Lunch
Theorem [22] posits that no universal optimization algorithm consistently outperforms all
other algorithms across every optimization problem. Therefore, it is necessary to optimize
networks with respect to the tasks at hand.

EfficientNet [15] showed that networks can be optimized by removing all channel
connections in the depth-wise layer, and instead increasing the number of channels to boost
capacity. This reduces the number of parameters, but significantly increases data movement,
resulting in poor performance on hardware accelerators. The final scaling coefficients
are determined by grid search. Grid search optimizes scaled networks by conducting
a complete search over a given subset of the search space [23]. However, the search
cost of using grid search is very expensive when scaling larger networks. Therefore,
scaling algorithms are primarily applied to small networks, and large networks are created
by massively upscaling small networks. The proposed algorithm instead downscales
large networks to generate slightly smaller networks. This is because larger networks
are downscaled from models designed for larger channel connections, which would not
increase the number of channels. Thus, the generated network is similar in both size and
accuracy to the large networks, but is much closer in size to its original network.

Evolutionary algorithms have been found to significantly outperform random and sys-
temic search methods when searching in large search spaces [24]. Over the years, various
multi-objective evolutionary algorithms have been proposed to varying degrees of suc-
cess [25,26]. However, they tend to suffer from a weak global search ability in low inter-task
relevance problems [27] because the cross-over operator is unable to distinguish between
information and noise. This problem can be addressed by introducing multiple search
strategies into the objective function to evolve an efficient network with high accuracy.



Mathematics 2023, 11, 3611 3 of 14

In this paper, we present a framework to automatically generate the optimal number
of layers and channels for a network without manual interference. We use evolutionary
algorithms to search through the large sample space of possible subnetworks to address
this issue. The proposed method uses evolutionary search to find an optimized subnetwork
that keeps the number of parameters low without compromising accuracy. Instead of
upscaling networks, a collection of layers and channels are downscaled to find the optimal
configuration. The evolved network is built to counteract the lack of expressiveness and
effectiveness that is inherent to hand-crafted and grid-searched networks. Generated
networks counteract these drawbacks by integrating pruning concepts into the creation of
new networks, resulting in more efficient networks.

Our contribution lies in three folds:

• We proposed an algorithm to counter inefficiencies in subnetworks by evolving task-
agnostic networks of ideal depth and width for a given architecture.

• We created a framework to efficiently search through a large sample space of subnet-
works to identify smaller networks without a major loss in accuracy.

• We experimentally showed the superiority of the network generated by the proposed
method on publicly available pre-trained CNNs.

The remainder of this study is organized as follows: Section 3 briefly discusses the
algorithm and its working concept, and Section 4 describes the result of experiments
conducted on networks evolved using the EvolveNet algorithm. We also discuss the
advantages of this algorithm in Section 4.4, and conclude this study in Section 5.

2. Related Works
2.1. Convolutional Neural Networks

CNN is the popular design choice for visual recognition tasks and has gone through
many upgrades over the years. Simonyan et al., 2014 [28] introduced VGG, which used very
small convolution filters and increased the depth of the model to achieve high accuracy.
Szegedy et al., 2015 [29] introduced GoogLeNet, which proposed the idea of an Inception
module to find the optimal local sparse structure in a CNN that can be approximated by its
dense components. He et al., 2016 [9] introduced ResNet stacked layers to fit a residual map-
ping using skip connections, which further improved the accuracy. Howard et al., 2017 [16]
introduced depth-wise separable convolution layers, which separated the filtering and com-
bining operations of the convolution operation, which, in turn, reduced the computational
complexity and model size in MobileNet. Huang et al., 2017 [10] introduced DenseNet,
which connected all layers to combine the feature maps together instead of just the feature
summations, resulting in larger models with higher accuracy. Liu et al., 2022 [1] introduced
ConvNeXt, which improved a standard ResNet by gradually modernizing the architecture
to construct a hierarchical vision transformer using Swin-T [30]. These models have one
thing in common; beyond just the architecture or convolution layers, the depth of the
networks and width of each layer were handcrafted by humans.

2.2. Neural Architecture Search

Searching for optimal network structures has been studied using reinforcement learn-
ing [12,31], gradient-based approaches [32], parameter sharing [33], weight prediction [34],
and genetic algorithms [35,36]. Zoph et al., 2016 [12] uses reinforcement learning to opti-
mize the networks generated from the model descriptions given by a recurrent network.
Baker et al., 2016 [31] introduced MetaQNN, which uses reinforcement learning with a
greedy exploration strategy to generate high-performance CNN architectures. Gradient-
based learning allows a network to efficiently optimize new instances of a task [37].
Liu et al., 2018 [38] introduced DARTS, which formulate tasks in a differentiable manner to
address the scalability of the architecture search. Elsken et al., 2018 [39] introduced LEMON-
ADE, which penalizes excessive resource consumption by approximating the network
morphism operators while generating subnetworks. Wu et al., 2019 [32] introduced FBNets
(Facebook-Berkeley-Nets), which uses a gradient-based method to optimize CNNs created



Mathematics 2023, 11, 3611 4 of 14

by a differentiable neural architecture search framework. Pham et al., 2018 [40] introduced
ENAS, which constructs a large computational graph, where each subgraph represents a
neural network architecture; thus, all subgraphs share parameters, delivering strong empiri-
cal performances while using a lower amount of resources. Chen et al., 2019 [41] introduced
RENAS, which integrates reinforced mutation into the evolutionary search algorithm for
architectural exploration, which efficiently evolves the model. Chen et al., 2021 [42] later
introduced TE-NAS, which ranks the architectures by analyzing the spectrum of the neu-
ral tangent kernel and the number of linear regions in the input space, which imply the
trainability and expressivity of the networks.

Evolutionary algorithms are widely used to deal with complex and non-linear opti-
mization problems [43–45]. It is a common solution for difficult real-world problems where
the sample space is large. Genetic algorithms are used to solve search and optimization
problems using bio-inspired operators [35]. Real et al. [36] uses genetic algorithms to
discover neural network architectures, minimizing the role of humans in the design.

2.3. Network Scaling

Network scaling is necessary to keep up with the growing datasets that have very
large samples and large memory requirements. Network scaling is usually implemented on
network architectures after they are constructed. Residual networks, introduced by He et al.,
2016 [9], were scaled up to ResNet-200, and down to ResNet-18. Zagoruyko et al., 2016 [46]
introduced WideResNet, which is a width-scaled interpretation of the original residual
network, with the number of channels in various layers increased to increase the resolution
of feature maps. Modern CNNs have also been shown to use higher-resolution input
images. Higher accuracies were obtained when using higher-resolution images at 299× 299
by Szegedy et al., 2016 [47], and 331× 331 by Zoph et al., 2018 [13]. Dryden et al., 2019 [48]
exploits parallelism in convolutional layers beyond data parallelism to tackle scaling and
memory issues. However, this does not focus on batch normalization, ReLUs, pooling,
and fully-connected layers, which are also present in conventional networks.

3. EvolveNet

EvolveNet algorithm attempts to build new networks from scratch by evolving an
ideal configuration of layers for a pre-defined architecture. There are four major steps to
EvolveNet: (1) filter training to strengthen the individuality of layers, (2) depth evolution
to find the ideal number of layers, (3) width evolution to compute the ideal width for each
layer, and (4) retraining to fine-tune the evolved network.

Pre-built networks used bottleneck blocks used by EfficientNet. The bottleneck blocks
allow the network to reduce the number of parameters and, consequently, the number of
floating-point operations. This makes the network more compact and efficient. The bottle-
neck operation consists of three operators: a linear transformation followed by a non-linear
transformation, and then another linear transformation. Each bottleneck first expands a
low-dimensional feature map into a high-dimensional feature map using a point-wise con-
volution. A depth-wise convolution then performs spatial filtering on the high-dimensional
tensor. Finally, another point-wise convolution projects the spatially-filtered map back
down into a low-dimensional tensor. We try to change as little about the original network
as possible, so that much of the changes made have been made by evolution and not by
human intervention.

3.1. Filter Training

An initial network N is constructed as a set of layers and filters whose configurations
are ideal as found from existing network architectures as follows:

N = {Lj : j ∈ (0, N)}, (1)

where Lj represents each layer with channel and kernel sizes. N is the total number of
layers, with each group of a layer consisting of N∗ layers. Using the weights θ, the new



Mathematics 2023, 11, 3611 5 of 14

collection of layers is derived into a pseudo network N ∗θ , which is a parameterized subset
of the layers inN , i.e.,N ∗θ ⊆ θ(N ). During each epoch of the training stage, random layers
and filters are chosen to be trained which omits certain layers and filters from N , as shown
in Figure 2. N ∗θ is trained and its cross-entropy loss is computed as follows:

LDt(N
∗
θ ) = −

n

∑
i=1

ti log pi, (2)

where LDt represents the cross entropy loss w.r.t. training data Dt, and ti and pi are the truth
label and softmax probability of class i w.r.t. N ∗θ . This loss is smoothed as a consequence of
cross-entropy and then backpropagated through every layer of N including the omitted
layers as follows:

θ ← θ − β
∂L(Nθ)

∂θ
, (3)

where β is the learning rate, adjusted by the Lambda scheduler [49] to converge quickly
and optimally. This trains the larger network, which will have layers that can efficiently be
recalibrated into smaller networks composed of only a few of its layers without impacting
the overall accuracy. Each layer contributes to the feature map without taking away from
the feature map of the larger network, which is made up of other layers trained in a
similar fashion.

Figure 2. Overview of the filter training step. White and green layers represent the temporary and
permanent layers of the network.

3.2. Evolving Depth

The network Nθ , which is now a collection of layers that have been trained to work
independently of the network, is used to evolve a recalibrated network with ideal depth
configurations. Configurations of the architecture of each block, such as the number of
out-channels, kernel sizes, and strides of each layer, remain the same as before. The depth of
the recalibrated network, i.e., the layers chosen to be trained, are chosen by depth encoding
vectors (DEVs). DEV is a vector generated using genetic algorithms that has the depths
of each layer of the recalibrated network encoded into it as the presence or absence of a
layer in the network. These DEVs generate networks of parameter sizes within preset
constraints, and the computed reward is assigned as the reward of each DEV. Since Nθ

is only a collection of layers strung together to build a network, the recalibrated layer,
the layers of which are chosen by the DEV, shows the various layers that will be present in
the network to be built.

The reward function computes the pre-train accuracy of the generated network.
The networks are then evolved as chromosomes under the same preset constraints to
maximize their rewards, as seen in Algorithm 1. The best chromosomes are chosen, then
mutated, and crossed over to be propagated through to the next chromosome pool. Muta-



Mathematics 2023, 11, 3611 6 of 14

tion is the genetic operation of flipping arbitrary genes in a parent chromosome to generate
offspring. Cross-over is the genetic operation of combining the genetic information of the
two parent genes to generate offspring. In EvolveNet, the mutation is implemented by
giving every gene on a random chromosome a 10% chance to be switched to a random
new gene. Cross-over is implemented by choosing two random chromosomes and then
selecting a gene from either chromosome with a 50% chance of being selected from either
parent. We assume that every genetically modified offspring will not be better than every
parent; hence, the subsequent chromosome pools are selected from the overall pool and not
just the genetically modified pool.

After multiple chromosome pools are generated, the best chromosome is chosen
and the network generated from it has the ideal depth configuration for a network block
architecture for the given task.

Algorithm 1 Algorithm for evolving depth

Hyperparameters: Number of searching epochs Ns, number of fine-tuning epochs N f ,
number of chromosomes in C n , number of chromosomes selected for evolution k
Input: Dtrain: training images that can be split into batches, X f : filter trained network
Functions: reward(dev) computes reward of the network created using dev, mutation
and crossover are evolutionary operations performed on a list of chromosomes,
layers(dev, network) converts n dev into a list of layers using trained network,
create(layers) creates a network from a list of layers, f (model, data) trains model using
given data, ∇ computes gradient of loss of trained network
Output: Depth-evolved network x
C = List of n random devs
Ctop

k = {}
for i = 0 to Ns do

R = [r1,r2,...,rn]
for j = 0 to n do

rj = reward(devj)
end for
Ctop

k .append(C)
sort Ctop

k in descending order of R
Cmu = mutation(Ctop

k [: 10])
Cco = crossover(Ctop

k [: 10])
C = Cmu + Cco
Ctop

k = Ctop
k [:k]

end for
[l1,l2, ... ,ln] = layers(Ctop

k [0], X f )
x = create([l1,l2, ... ,ln])
for i = 0 to N f do

x += ∇f(x,Dtrain)
end for

3.3. Evolving Width

The best DEV after depth evolution is used to build a recalibrated network for width
evolution, as explained in Algorithm 1. The recalibrated network is then used to compute
rewards for the networks derived from it using the width encoding vectors (WEVs). Unlike
DEVs, each WEV is injectively mapped to a network of specific depth and layers of out-
channels, i.e., the networks created by every WEV are unique to each element in it and also
to the DEV it is evolved from. As shown in Figure 3, 50 WEVs are built from the recalibrated
network, and their rewards are computed. Each gene of a chromosome, represented by
the WEV, is encoded with the ratio of channels of each layer compared to the original.
The individual genes chosen do not matter, as this evolution is used to resolve the size
of the final network, not the specific configuration. The size of each chromosome is



Mathematics 2023, 11, 3611 7 of 14

dependent on the size of the recalibrated network. At every step before evolution, random
chromosomes are used to generate sub-networks for the recalibrated network, and their
reward is computed agnostic to the training dataset. The chromosomes with the highest
rewards are mutated and crossed over, and the subsequent chromosome pool is created by
selecting the best chromosomes from a pool of the parents and their offspring.

Figure 3. Overview of width evolution. White layers denote the layers omitted by DEVs, whereas
the width of green and red channels denotes the channels selected and omitted by WEV.

The chromosome with the highest reward from the final chromosome pool is used to
derive the final network from the recalibrated network. The final derived network has had
its depth and width evolved to be ideal for the given task and architecture.

3.4. Retraining

Once the final configurations of the network have been evolved, the derived network
is retrained to achieve competitive accuracy with minimum parameters. The final network
is a subnetwork; hence, according to Frankle et al., it has to be trained to achieve similar
accuracy. The number of retraining epochs is determined by the network whose architecture
is used to build Nθ , i.e., EfficientNet [15]. The number of layers and their configurations
have been determined by the DEV, whereas the number of channels in each specific layer
is determined by the WEV. Each unique value of DEV and WEV thus generate a unique
network. Thus, unlike in EfficientNet, where the network configuration was found using
grid search, the channel configurations of the final network here are selected by evolutionary
computation without manual influence.

4. Experiments

In this section, we demonstrate the superiority of networks generated by EvolveNet.
We compare the results obtained with other major state-of-the-art models. Lastly, we discuss
the impact of various hyperparameters to understand their impact on the proposed method.

4.1. Experimental Settings

The generated networks were trained on ImageNet dataset [50] for image classification
tasks. The kernel sizes were selected after conducting ablation studies and the best results
were found for kernels of sizes 1× 1 and 3× 3. In other words, the ideal resolution was
hand-crafted. The data augmentation involves random cropping after randomly resizing
from 256× 256 to 224× 224. The images are also randomly rotated and flipped to further
augment the data. Experiments were conducted on four NVIDIA RTX A6000 GPUs with
40 workers and a batch size of 512.



Mathematics 2023, 11, 3611 8 of 14

4.2. Evaluation Protocol

We measured the Top-1 and Top-5 accuracies, as well as the number of parameters,
to evaluate the evolved networks, and compared them to existing state-of-the-art networks.
The primary aim of this experiment is to showcase an improvement in the performance
and efficiency of a network before and after the depth and width have evolved. Accuracy
is the proportion of images that have been labeled correctly. For each image, the network
computes the probability of them being classified into each label. Top-1 accuracy is the
proportion of images in which the predicted label is the same as the actual label. Top-5
accuracy is the proportion of images where the actual label is present as at least one of
the top five predictions. A fewer number of parameters result in a more streamlined and
efficient network.

4.3. Experimental Results

We present the performance of different networks created using EvolveNet. The net-
works have been created by setting the parameter size as a constraint and generating
networks with an ideal network configuration. The generated networks have been called
EvolveNet-XS (Extra small EvolveNet), EvolveNet-S (Small EvolveNet), EvolveNet-M
(Medium EvolveNet), and EvolveNet-L (Large EvolveNet). These networks are then
compared with state-of-the-art methods of similar size.

4.3.1. Performance against Very Small Networks

A set of very small state-of-the-art networks, including DenseNet121 [10], HRFormer-
T [51], EfficientNetB1 [15], and EfficientNetV2B1 [52], are selected for comparing to EvolveNet-
XS. Table 1 presents the result of the comparison with those networks. EvolveNet-XS
shows Top-1 and Top-5 accuracy of 80.4% and 95.1%, respectively, with 7.8 M parameters.
Overall, it shows competitive performance compared to other methods with the least
number of parameters. It outperforms DenseNet121 and HRFormer-T by 5.4% and 1.9%
in Top-1 accuracy. Additionally, it has 0.3 M fewer parameters compared to DenseNet121.
EvolveNet-XS shows comparable performance to the EfficientNetB1 and EfficientNetV2B1.
The difference in number of parameters between EfficientNetB1 and EvolveNet-XS is
only 0.1 M. However, EvolveNet-XS shows a gain of 1.3% and 0.7% in Top-1 and Top-5
accuracies, respectively. It outperforms EfficientNetV2B1 by small margins of 0.6% and
0.1% in Top-1 and Top-5 accuracies, respectively, in spite of having 0.4 M fewer parameters.

Table 1. Performance Against Very Small Networks on ImageNet Dataset

Model Top-1 Accuracy Top-5 Accuracy #Parameters

EfficientNetB1 [15] 79.1% 94.4% 7.9 M
HRFormer-T [51] 78.5% - 8.0 M
DenseNet121 [10] 75.0% 92.3% 8.1 M

EfficientNetV2B1 [52] 79.8% 95.0% 8.2 M
EvolveNet-XS 80.4% 95.1% 7.8 M

4.3.2. Performance against Small Networks

Table 2 presents the results of the EvolveNet-S network compared to small networks, in-
cluding EfficientNetB2 [15], and EfficientNetV2B1 [52]. EvolveNet-S shows Top-1 and Top-5
accuracy of 81.1% and 95.6%, respectively, with 8.6 M parameters. It shows competitive
performance against those networks with the least number of parameters, outperforming
LeViT-128 and ConViT-Ti+ by 1.5% and 4.4%, respectively, in Top-1 accuracy while using
0.2 M and 1.4 M parameters lower. EfficientNetV2B1 has 10.2 M parameters with Top-1 and
Top-5 accuracy of 80.5% and 95.1%, respectively. Although EvolveNet-S outperforms it by a
small margin of 0.6% and 0.5% in Top-1 and Top-5 accuracy, respectively, it has 1.6 M fewer
parameters than EfficientNetV2B1. Similarly, EvolveNet-S outperforms EfficientNetB2 by



Mathematics 2023, 11, 3611 9 of 14

a small margin of 0.7% in Top-5 accuracy. It also shows a decent gain of 1.0% in Top-1
accuracy with 0.6 M fewer parameters compared to EfficientNetB2.

Table 2. Performance Against Small Networks on ImageNet Dataset

Model Top-1 Accuracy Top-5 Accuracy #Parameters

LeViT-128 [53] 79.6% - 8.8 M
EfficientNetB2 [15] 80.1% 94.9% 9.2 M

ConViT-Ti+ [54] 76.7% - 10.0 M
EfficientNetV2B2 [52] 80.5% 95.1% 10.2 M

RevBiFPN [55] 79.0% - 10.6 M
EvolveNet-S 81.1% 95.6% 8.6 M

4.3.3. Performance against Medium-Sized Networks

A set of medium-sized networks, including DenseNet169 [10], TinyNet [56], Efficient-
NetB3 [15], and EfficientNetV2B3 [52], are selected for comparing EvolveNet-M network.
Table 3 shows the results for EvolveNet-M compared to these networks. It shows top-1 and
top-5 accuracy of 82.8% and 96.3%, respectively. Overall, it outperforms other networks by
a decent margin, with fewer parameters. It outperforms SAMix ResNet-18, which has 0.4 M
more parameters, by 10.5%. DenseNet169, with 14.3 M parameters, and shows 76.2% and
93.2% of Top-1 and Top-5 accuracy, respectively. However, EvolveNet-M, with 3 M fewer
parameters, outperforms it by a significant margin of 6.6% and 3.1% in Top-1 and Top-5
accuracies. Similarly, it outperforms TinyNet by 3.4% and 1.8% in Top-1 and Top-5 accuracy,
respectively, despite having 0.6 M fewer parameters. EvolveNet-M shows comparable
performance with EfficientNetB3 and EfficientNetV2B3 in Top-5 accuracy. It outperforms
them by a small margin of 0.6% and 0.5%. However, EvolveNet-M has 1 M and 3.2 M fewer
parameters, respectively. Additionally, the Top-1 accuracy of EvolveNet-M is 1.2% and
0.8% higher than EfficientNetB3 and EfficientNetV2B3, respectively.

Table 3. Performance Against Medium-sized Networks on ImageNet Dataset

Model Top-1 Accuracy Top-5 Accuracy #Parameters

SAMix ResNet-18 [57] 72.33% 91.8% 11.7 M
Densenet169 [10] 76.2% 93.2% 14.3 M

TinyNet [56] 79.4% 94.5% 11.9 M
EfficientNetB3 [15] 81.6% 95.7% 12.3 M

EfficientNetV2B3 [52] 82.0% 95.8% 14.5 M
EvolveNet-M 82.8% 96.3% 11.3 M

4.3.4. Performance against Large Networks

For the comparison of EvolveNet-L, a collection of larger networks with a significantly
large number of parameters is selected. These include Xception [58], ConNeXtTiny [1], Con-
vNeXtSmall [1], NASNETLarge [13], and EfficientNetB4 [15]. The results of EvolveNet-L
compared to the above networks are presented in Table 4. EvolveNet-L outperforms other
networks with a decent margin in Top-1 accuracy, with the least number of parameters.
It shows Top-1 and Top-5 accuracy of 83.2% and 96.5%, respectively, with 17.6 M param-
eters. The performance of EfficientNetB4, with Top-1 and Top-5 accuracy of 82.9% and
96.4%, respectively, is comparable to EvolveNet-L. However, EvolveNet-L has significantly
fewer parameters compared to EfficientNetB4. With 1.9 M fewer parameters, EvolveNet-L
outperforms it by 0.3% and 0.1% in Top-1 and Top-5 accuracy, respectively. EvolveNet-L
has significantly fewer parameters than NASNETLarge. In spite of having 71.3 M fewer
parameters, it outperforms NASNETLarge by 0.7% and 0.5% in Top-1 and Top-5 accuracy,
respectively. Similarly, with 32.6 M fewer parameters, it outperforms ConvNeXtSmall by
0.9% in Top-1 accuracy. EvolveNet-L outperforms ConvNeXtTiny by a decent margin of
1.9% in Top-1 accuracy despite having 11 M fewer parameters. Xception has 22.9 M pa-



Mathematics 2023, 11, 3611 10 of 14

rameters and shows Top-1 and Top-5 accuracy of 79.0% and 94.5%, respectively. However,
EvolveNet-L, with 5.3 M fewer parameters, outperforms it by a decent margin of 4.2% and
2.0% in Top-1 and Top-5 accuracy, respectively.

Table 4. Performance Against Large Networks on ImageNet Dataset

Model Top-1 Accuracy Top-5 Accuracy #Parameters

Xception [58] 79.0% 94.5% 22.9 M
ConvNeXtTiny [1] 81.3% - 28.6 M

ConvNeXtSmall [1] 82.3% - 50.2 M
NasNetLarge [13] 82.5% 96.0% 88.9 M
EfficientNetB4 [15] 82.9% 96.4% 19.5 M

EvolveNet-L 83.2% 96.5% 17.6 M

4.4. Discussion

We have experimentally shown that the networks generated by the depth and width en-
coding vectors evolved using the EvolveNet method consistently show better performance
when compared to EfficientNet, while maintaining their architecture. The improvement is
significant, and the generated network can still be pruned using the same methods that are
used on EfficientNet and other similar CNNs. Hence, it can be inferred that the architecture
computed by evolution outperforms the architectures computed using the grid-search
method. MobileNetV2 introduced inverted residuals and bottlenecks and improved the
accuracy of MobileNetV1 using the new architecture. EfficientNet was an improvement
on the MobileNetV2 architecture, where the accuracy of the network was improved by
scaling the width, depth, and resolution of MobileNetV2 using grid-search. By evolving
networks with higher accuracy and efficiency, EvolveNet has experimentally proven that
hand-crafting and grid search are not ideal methods to build networks. Pruning algorithms
have shown that a randomly initialized dense network contains multiple sub-networks
with fewer parameters and comparable accuracies. However, most pruning algorithms
limit themselves by trying to reduce the number of parameters. Since the proposed al-
gorithm evolves networks to emphasize ideal configurations while maximizing rewards,
the focus is placed on accuracy, and efficiency is taken care of as a consequence of it. This
allows for high accuracies on a relatively smaller network.

The generated network is also independent of the original network, but given the orig-
inal network and the depth and width encoding vectors, the network can be regenerated.
The generated network is injectively mapped to each DEV and WEV and the number of
layers in the larger network. Therefore, changing any of these encoding vectors will signifi-
cantly change the final network. The number of randomly generated layers, from which
recalibrated networks are generated, is a hyperparameter used to control the size of the
final network, but it has no other bearing on the evolution of the final network. This can be
seen in Table 5. Before evolving the width of the final network, the number of out-channels
in each layer is equal to the number of out-channels in MobileNetV2. The structure is the
same as that of each block in EfficientNet and MobileNetV2. There is one fixed-out channel
for each block layer, but the number of additional blocks is determined by the network
encoding vector.



Mathematics 2023, 11, 3611 11 of 14

Table 5. Each layer used in the evolved model. DEVi represents the i-th element of the depth
encoding vector, which indicates the number of layers, and n represents the number of classes.

Input Operation Out-Channels #Layers

2242 × 3 Conv2D 32 1
1122 × 16 Bottleneck 24 DEV0
1122 × 16 Bottleneck 24 1
562 × 24 Bottleneck 32 DEV1
562 × 24 Bottleneck 32 1
282 × 32 Bottleneck 64 DEV2
282 × 32 Bottleneck 64 1
142 × 64 Bottleneck 96 DEV3
142 × 64 Bottleneck 96 1
142 × 96 Bottleneck 160 DEV4
142 × 96 Bottleneck 160 1
72 × 160 Bottleneck 320 DEV5
72 × 160 Bottleneck 320 1
72 × 320 Conv2D 1280 1

72 × 1280 AvgPool - 1
1122 × 32 Conv2D n 1

5. Conclusions

In this study, we described a simple evolutionary algorithm to evolve ideal depths
and widths that are task-agnostic for a given architecture. We also experimentally proved
its superiority over networks where the architecture was hand-crafted or grid-searched.
EvolveNet is dependent on the architectures of individual blocks in a network, but not
the network as a whole. The architecture used can be replaced with better-performing
architectures, but the hyperparameters of the algorithm, such as the initial number of
layers and range of number of parameters for the output network, should be adjusted
appropriately. In future, further research can be conducted on improving the algorithm for
the selection of chromosomes. This algorithm can also be applied to networks that process
other datasets such as those using speech patterns, human-object interactions, actions etc.
Some constraints are more important to the overall schema than others, so treating them
as the same would cause inefficiencies in the recalibrated network. EvolveNet can be
made more robust with more experiments to understand the importance of the various
hyperparameters that make it function.

Author Contributions: This research was conceptualized and the methodology and software were
written by A.S. It was then validated and formally analyzed by D.-G.L. The writing was drafted,
reviewed, and edited by A.S. under the supervision of D.-G.L. The project was administered and
funding was secured by D.-G.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korean Government (MSIT) (No. 2021R1C1C1012590), (No. 2022R1A4A1023248),
Project BK21 FOUR, and the Information Technology Research Center (ITRC) support program
supervised by the Institute of Information Communications & Technology Planning & Evaluation
(IITP) grant funded by the Korean Government (MSIT) (IITP-2023-2020-0-01808).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The Imagenet dataset can be found at: https://www.image-net.org/
download.php, accessed on 22 July 2023.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

https://www.image-net.org/download.php
https://www.image-net.org/download.php


Mathematics 2023, 11, 3611 12 of 14

References
1. Liu, Z.; Mao, H.; Wu, C.Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A convnet for the 2020s. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 11976–11986.
2. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,

60, 84–90. [CrossRef]
3. Sultana, F.; Sufian, A.; Dutta, P. Evolution of image segmentation using deep convolutional neural network: A survey. Knowl.-Based

Syst. 2020, 201, 106062. [CrossRef]
4. Kumar, S.; Kumar, A.; Lee, D.G. Semantic Segmentation of UAV Images Based on Transformer Framework with Context

Information. Mathematics 2022, 10, 4735. [CrossRef]
5. Duan, H.; Zhao, Y.; Chen, K.; Lin, D.; Dai, B. Revisiting skeleton-based action recognition. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 2969–2978.
6. Lee, D.G.; Lee, S.W. Human activity prediction based on sub-volume relationship descriptor. In Proceedings of the 2016 23rd

International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; IEEE: Piscataway, NJ, USA, 2016;
pp. 2060–2065.

7. Zhang, Q.; Zhang, M.; Chen, T.; Sun, Z.; Ma, Y.; Yu, B. Recent advances in convolutional neural network acceleration.
Neurocomputing 2019, 323, 37–51. [CrossRef]

8. Liu, Y.; Pu, H.; Sun, D.W. Efficient extraction of deep image features using convolutional neural network (CNN) for applications
in detecting and analysing complex food matrices. Trends Food Sci. Technol. 2021, 113, 193–204. [CrossRef]

9. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

10. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

11. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500.

12. Zoph, B.; Le, Q.V. Neural architecture search with reinforcement learning. arXiv 2016, arXiv:1611.01578.
13. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition. CVPR, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 8697–8710.

14. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 4510–4520.

15. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning. PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.

16. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

17. Frankle, J.; Carbin, M. The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv 2018, arXiv:1803.03635.
18. Hutter, F.; Kotthoff, L.; Vanschoren, J. Automated Machine Learning: METHODS, Systems, Challenges; Springer Nature: Cham,

Switzerland, 2019.
19. Elsken, T.; Metzen, J.H.; Hutter, F. Neural architecture search: A survey. J. Mach. Learn. Res. 2019, 20, 1997–2017.
20. Yu, K.; Sciuto, C.; Jaggi, M.; Musat, C.; Salzmann, M. Evaluating the search phase of neural architecture search. arXiv 2019,

arXiv:1902.08142.
21. Mellor, J.; Turner, J.; Storkey, A.; Crowley, E.J. Neural architecture search without training. In Proceedings of the International

Conference on Machine Learning. PMLR, Virtual, 18–24 July 2021; pp. 7588–7598.
22. Ho, Y.C.; Pepyne, D.L. Simple explanation of the no free lunch theorem of optimization. In Proceedings of the 40th IEEE

Conference on Decision and Control (Cat. No. 01CH37228), Orlando, FL, USA, 4–7 December 2001; IEEE: Piscataway, NJ, USA,
2001; Volume 5, pp. 4409–4414.

23. Liashchynskyi, P.; Liashchynskyi, P. Grid search, random search, genetic algorithm: A big comparison for NAS. arXiv 2019,
arXiv:1912.06059.

24. Godefroid, P.; Khurshid, S. Exploring very large state spaces using genetic algorithms. In Proceedings of the Tools and Algorithms
for the Construction and Analysis of Systems: 8th International Conference, TACAS 2002 Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2002, Grenoble, France, 8–12 April 2002; Proceedings 8; Springer:
Berlin/Heidelberg, Germany, 2002; pp. 266–280.

25. Zhang, T.; Qi, W.; Zhao, X.; Yan, Y.; Cao, Y. A local dimming method based on improved multi-objective evolutionary algorithm.
Expert Syst. Appl. 2022, 204, 117468. [CrossRef]

26. Zheng, W.; Sun, J. Two-stage hybrid learning-based multi-objective evolutionary algorithm based on objective space decomposi-
tion. Inf. Sci. 2022, 610, 1163–1186. [CrossRef]

27. Chen, Q.; Ma, X.; Yu, Y.; Sun, Y.; Zhu, Z. Multi-objective evolutionary multi-tasking algorithm using cross-dimensional and
prediction-based knowledge transfer. Inf. Sci. 2022, 586, 540–562. [CrossRef]

28. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.

http://doi.org/10.1145/3065386
http://dx.doi.org/10.1016/j.knosys.2020.106062
http://dx.doi.org/10.3390/math10244735
http://dx.doi.org/10.1016/j.neucom.2018.09.038
http://dx.doi.org/10.1016/j.tifs.2021.04.042
http://dx.doi.org/10.1016/j.eswa.2022.117468
http://dx.doi.org/10.1016/j.ins.2022.08.030
http://dx.doi.org/10.1016/j.ins.2021.12.014


Mathematics 2023, 11, 3611 13 of 14

29. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

30. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted
windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October
2021; pp. 10012–10022.

31. Baker, B.; Gupta, O.; Naik, N.; Raskar, R. Designing neural network architectures using reinforcement learning. arXiv 2016,
arXiv:1611.02167.

32. Wu, B.; Dai, X.; Zhang, P.; Wang, Y.; Sun, F.; Wu, Y.; Tian, Y.; Vajda, P.; Jia, Y.; Keutzer, K. Fbnet: Hardware-aware efficient convnet
design via differentiable neural architecture search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 10734–10742.

33. Cai, H.; Zhu, L.; Han, S. Proxylessnas: Direct neural architecture search on target task and hardware. arXiv 2018, arXiv:1812.00332.
34. Brock, A.; Lim, T.; Ritchie, J.M.; Weston, N. Smash: One-shot model architecture search through hypernetworks. arXiv 2017,

arXiv:1708.05344.
35. Xie, L.; Yuille, A. Genetic cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29

October 2017; pp. 1379–1388.
36. Real, E.; Moore, S.; Selle, A.; Saxena, S.; Suematsu, Y.L.; Tan, J.; Le, Q.V.; Kurakin, A. Large-scale evolution of image classifiers.

In Proceedings of the International Conference on Machine Learning. PMLR, Sydney, NSW, Australia, 6–11 August 2017;
pp. 2902–2911.

37. Tancik, M.; Mildenhall, B.; Wang, T.; Schmidt, D.; Srinivasan, P.P.; Barron, J.T.; Ng, R. Learned initializations for optimizing
coordinate-based neural representations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 2846–2855.

38. Liu, H.; Simonyan, K.; Yang, Y. Darts: Differentiable architecture search. arXiv 2018, arXiv:1806.09055.
39. Elsken, T.; Metzen, J.H.; Hutter, F. Efficient multi-objective neural architecture search via lamarckian evolution. arXiv 2018,

arXiv:1804.09081.
40. Pham, H.; Guan, M.; Zoph, B.; Le, Q.; Dean, J. Efficient neural architecture search via parameters sharing. In Proceedings of the

International Conference on Machine Learning. PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 4095–4104.
41. Chen, Y.; Meng, G.; Zhang, Q.; Xiang, S.; Huang, C.; Mu, L.; Wang, X. Renas: Reinforced evolutionary neural architecture search.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June
2019; pp. 4787–4796.

42. Chen, W.; Gong, X.; Wang, Z. Neural architecture search on imagenet in four gpu hours: A theoretically inspired perspective.
arXiv 2021, arXiv:2102.11535.

43. Mallipeddi, R.; Suganthan, P.N.; Pan, Q.K.; Tasgetiren, M.F. Differential evolution algorithm with ensemble of parameters and
mutation strategies. Appl. Soft Comput. 2011, 11, 1679–1696. [CrossRef]

44. Nguyen, B.M.; Thi Thanh Binh, H.; The Anh, T.; Bao Son, D. Evolutionary algorithms to optimize task scheduling problem for the
IoT based bag-of-tasks application in cloud–fog computing environment. Appl. Sci. 2019, 9, 1730. [CrossRef]

45. Bäck, T.; Schwefel, H.P. An overview of evolutionary algorithms for parameter optimization. Evol. Comput. 1993, 1, 1–23.
[CrossRef]

46. Zagoruyko, S.; Komodakis, N. Wide residual networks. arXiv 2016, arXiv:1605.07146.
47. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition. CVPR, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.
48. Dryden, N.; Maruyama, N.; Benson, T.; Moon, T.; Snir, M.; Van Essen, B. Improving strong-scaling of CNN training by exploiting

finer-grained parallelism. In Proceedings of the 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
Rio de Janeiro, Brazil, 20–24 May 2019; IEEE: Piscataway, NJ, USA,2019; pp. 210–220.

49. Lewkowycz, A. How to decay your learning rate. arXiv 2021, arXiv:2103.12682.
50. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of

the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; IEEE: Piscataway, NJ,
USA, 2009; pp. 248–255.

51. Yuan, Y.; Fu, R.; Huang, L.; Lin, W.; Zhang, C.; Chen, X.; Wang, J. Hrformer: High-resolution transformer for dense prediction.
arXiv 2021, arXiv:2110.09408.

52. Tan, M.; Le, Q. Efficientnetv2: Smaller models and faster training. In Proceedings of the International Conference on Machine
Learning. PMLR, Virtual, 18–24 July 2021; pp. 10096–10106.

53. Graham, B.; El-Nouby, A.; Touvron, H.; Stock, P.; Joulin, A.; Jégou, H.; Douze, M. Levit: A vision transformer in convnet’s
clothing for faster inference. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC,
Canada, 10–17 October 2021; pp. 12259–12269.

54. d’Ascoli, S.; Touvron, H.; Leavitt, M.L.; Morcos, A.S.; Biroli, G.; Sagun, L. Convit: Improving vision transformers with soft
convolutional inductive biases. In Proceedings of the International Conference on Machine Learning. PMLR, Virtual, 18–24 July
2021; pp. 2286–2296.

http://dx.doi.org/10.1016/j.asoc.2010.04.024
http://dx.doi.org/10.3390/app9091730
http://dx.doi.org/10.1162/evco.1993.1.1.1


Mathematics 2023, 11, 3611 14 of 14

55. Chiley, V.; Thangarasa, V.; Gupta, A.; Samar, A.; Hestness, J.; DeCoste, D. RevBiFPN: The Fully Reversible Bidirectional Feature
Pyramid Network. arXiv 2022, arXiv:2206.14098.

56. Han, K.; Wang, Y.; Zhang, Q.; Zhang, W.; Xu, C.; Zhang, T. Model rubik’s cube: Twisting resolution, depth and width for tinynets.
Adv. Neural Inf. Process. Syst. 2020, 33, 19353–19364.

57. Li, S.; Liu, Z.; Wu, D.; Liu, Z.; Li, S.Z. Boosting discriminative visual representation learning with scenario-agnostic mixup. arXiv
2021, arXiv:2111.15454.

58. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Related Works
	Convolutional Neural Networks
	Neural Architecture Search
	Network Scaling

	EvolveNet
	Filter Training
	Evolving Depth
	Evolving Width
	Retraining

	Experiments
	Experimental Settings
	Evaluation Protocol
	Experimental Results
	Performance against Very Small Networks
	Performance against Small Networks
	Performance against Medium-Sized Networks
	Performance against Large Networks

	Discussion

	Conclusions
	References

