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Abstract: We develop the method of averaging in Clifford (geometric) algebras suggested by the
author in previous papers. We consider operators constructed using two different sets of anticommut-
ing elements of real or complexified Clifford algebras. These operators generalize Reynolds operators
from the representation theory of finite groups. We prove a number of new properties of these
operators. Using the generalized Reynolds operators, we give a complete proof of the generalization
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1. Introduction

In the present paper, we develop the method of averaging in Clifford (geometric)
algebras suggested by the author in [1–3]. Namely, we introduce generalized Reynolds
operators in Clifford algebras and prove a number of new properties of these operators.
Theorems 1–10 are new. We use generalized Reynolds operators to prove generalized
Pauli’s theorem (see Theorems 11 and 12), which has been formulated for the first time in a
brief report [4] without a proof. The main idea of these theorems is to present an algorithm
to compute the element T that connects two sets of Clifford algebra elements that satisfy
the main anticommutative conditions. The proofs of Theorems 11 and 12 are presented in
this paper for the first time. The results are used in geometry, physics, and engineering,
in particular, for n-dimensional Weyl, Majorana, and Majorana–Weyl spinors, to study
relations between spin and orthogonal groups for the Dirac and the Yangs–Mills equations
in pseudo-Euclidean space and on non-trivial curved manifolds, etc.

This paper is organized as follows. In Section 1, we discuss Reynolds operators and
generalized Reynolds operators in Clifford algebras and representation theory of finite
groups. In Section 2, we prove some auxiliary statements about sets of anticommuting
elements of the Clifford algebra. In Section 3, we prove a number of new properties of
generalized Reynolds operators in Clifford algebras. In Section 4, we consider some other
operators and prove their properties. In Section 5, we prove that these operators are also
related to generalized Reynolds operators in the case of odd dimension. In Section 6, we
use these operators to deduce an algorithm to compute an element that connects two sets
of anticommuting elements of the Clifford algebra. The discussion follows in Section 7.

Let ea be generators of the real Clifford algebra C̀ p,q (or geometric algebra, see,
for example, [5–9]), and eA = ea1a2 ...ak = ea1 ea2 · · · eak are basis elements enumerated
by ordered multi-indices A = a1a2 . . . ak, a1 < a2 < · · · < ak with a length between
0 and n (the element e := e∅ with empty multi-index is the identity element). The indices
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a, a1, a2, . . . take the values from 1 to n. The generators satisfy the main anticommutative
conditions of Clifford algebra

eaeb + ebea = 2ηabe,

where η = (ηab) = diag(1, . . . , 1,−1, . . . ,−1) is the diagonal matrix with its first p entries
equal to 1 and the last q entries equal to −1 on the diagonal, p + q = n. We denote inverses
of generators by

ea := ηabeb = (ea)
−1, a = 1, . . . , n,

and inverses of basis elements by eA := (eA)
−1. We use the Einstein summation convention.

Let us consider the Reynolds operator acting on the Clifford algebra

1
|G| ∑

g∈G
g−1Ug, U ∈ C̀ p,q,

where |G| is the number of elements in a finite subgroup G of the group C̀ ×p,q of all invertible
elements of C̀ p,q. Reynolds operators are widely used in the representation theory of finite
groups (see [10–13]).

In [1], we consider the operator

1
2n ∑

A∈I
eAUeA, (1)

which is the Reynolds operator of the Salingaros vee group [14–18]

Gp,q = {±eA, A ∈ I}, dim Gp,q = 2n+1, (2)

I = {∅, 1, . . . , n, 12, 13, . . . , 1 . . . n}. (3)

Theoperator (1) is a projection onto the center Cen(C̀ p,q) of the Clifford algebra C̀ p,q.
We can consider Reynolds operators acting on C̀ p,q of the Salingaros vee group Gp′ ,q′

of another Clifford algebra C̀ p′ ,q′ ⊂ C̀ p,q. These operators “average” an action of the
Salingaros vee group Gp′ ,q′ on the Clifford algebra C̀ p,q. For example, the operator

1
2
(U + (eA)

−1UeA) (4)

is the Reynolds operator of the group {±e,±eA} of order 4, where (eA)
2 = e or (eA)

2 = −e,
which is isomorphic to the Salingaros vee group G1,0 (or G0,1). This operator is a projection
onto the subset of elements that commute with the generator eA (see [1], Section 6).

More generally, we can consider the operators

1
|S| ∑

A∈S
eAUeA, U ∈ C̀ p,q, (5)

where |S| is the number of elements of some subset S of the set I (3). In particular cases, we
obtain (1) and (4). For some subsets S, the operators (5) are not Reynolds operators. In the
present paper, we consider the following new operators, which generalize (5):

1
|S| ∑

A∈S
βAUγA, U ∈ C̀ p,q, γA := (γA)

−1, (6)

where the elements γA and βA are generated by two different sets of Clifford algebra
elements {γa, a = 1, . . . , n} and {βa, a = 1, . . . , n} that satisfy the main anticommutative
conditions of the Clifford algebras C̀ p,q. If S = I, then the corresponding sets of elements
{±γA, A ∈ I} and {±βA, A ∈ I} form Salingaros vee groups of dimensions 2n+1 or 2n

(see Lemma 1). We call the operators (6) generalized Reynolds operators in the case S = I.
Sometimes we consider operators (6) with subsets S such that the corresponding sets of
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elements {±γA, A ∈ S} and {±βA, A ∈ S} do not form groups (see Section 4) but are
related to generalized Reynolds operators in the case of odd n (see Section 5).

We formulate statements of this paper not only for the case of the real Clifford algebras
C̀ p,q, but also for the case of the complexified Clifford algebras C⊗ C̀ p,q (see, for exam-
ple, [7] (p. 139) and [5] (p. 80)), which are important for applications. It is convenient for
us to use the notation C̀ F

p,q (F = R or C) when results are true for both cases C̀ R
p,q := C̀ p,q,

C̀ C
p,q := C⊗ C̀ p,q.

2. On Sets of Anticommuting Clifford Algebra Elements

Let us consider a set of Clifford algebra elements

{γa, a = 1, . . . , n} ∈ C̀ F
p,q, γaγb + γbγa = 2ηabe (7)

and the corresponding set

B = {γA, A ∈ I} = {e, γa, γab, γabc, . . . , γ1...n}, a < b < c < · · · , (8)

where γa1 · · · γak is denoted by γa1 ...ak for a1 < · · · < ak. We have the following lemma
(see also [19] (pp. 289–290) and [20] (pp. 127–128)). We present the proof for the convenience
of the reader.

Lemma 1.

1. If n = p + q is even, then the set (8) is linearly independent.
2. If n = p + q is odd, then either

• we have γ1...n = ±e1...n and (8) is linearly independent, or
• we have γ1...n = ±e and (8) is linearly dependent (this is possible only in the case

p− q ≡ 1mod4), or
• we have γ1...n = ±ie and (8) is linearly dependent (this is possible only in case F = C,

p− q ≡ 3mod4).

Note that in the cases F = R when the set (8) is linearly independent, this set is another
basis of C̀ p,q. In the cases when the set is linearly dependent, it is the set of two bases of the
subalgebra of C̀ p,q, which is isomorphic to another Clifford algebra C̀ p′ ,q′ of dimension
2n−1, p′ + q′ = n− 1. For example, in C̀ 2,1 with the set of generators e1, e2, e3, we can take
γ1 = e1, γ2 = e2, γ3 = e12 and obtain the set B = {e, e1, e2, e12, e12, e2,−e1,−e} of two bases
of C̀ 2,0.

Proof. Suppose that the set (8) is linearly dependent. Then there exist not all zero scalars
u, u1, . . . , u1...n such that

ue + u1γ1 + · · ·+ u1...nγ1...n = 0.

At least one scalar is non-zero uB 6= 0 for some multi-index B. Multiplying both sides
of the equation by γB

uB
, we obtain

e + v1γ1 + · · ·+ v1...nγ1...n = 0 (9)

for some other scalars v1, . . . , v1...n. At least one of these scalars is nonzero because e 6= 0.
For any element γA (except γ1...n in the case of odd n and except e in the case of any n),

there exists the element γa such that γA anticommutes with γa (if |A| is even, then we can
take a ∈ A; if |A| is odd, then we can take a /∈ A). Let us choose some γA and some γa
that anticommutes with γA. Multiplying both sides of (9) on the right by γa and on the left
by (γa)−1, we obtain the equation like (9) but with another sign of the term vAγA (the signs
of some other terms may also change). Adding both sides of this new equation and both
sides of (9), we obtain again the equation like (9) but without the term vAγA (and some
other terms) and with other scalars. Further, we repeat this process for other terms.
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In the case of even n, after a finite number of steps, we obtain e = 0, i.e., a contradiction.
Hence, the set (8) is linearly independent.

In the case of odd n, after a finite number of steps, we obtain e + w1...nγ1...n = 0 for
some scalar w1...n, i.e., γ1...n = λe for some scalar λ. We have

(γ1...n)
2 = (−1)

n(n−1)
2 (−1)qe. (10)

If n(n−1)
2 + q is even, which is equivalent to p − q ≡ 1mod4, then γ1...n = ±e.

If n(n−1)
2 + q is odd, which is equivalent to p − q ≡ 3mod4, then γ1...n = ±ie, which

is possible only in the complex case. In other cases, the set (8) is linearly indepen-
dent. Since the conditions (7), it follows that γ1...n is in the center (note that the center
Cen(C̀ F

p,q) = {U ∈ C̀ F
p,q |UV = VU, ∀V ∈ C̀ F

p,q} of C̀ F
p,q is the subspace C̀ 0F

p,q in the
case of even n and the subspace C̀ 0F

p,q ⊕ C̀ nF
p,q in the case of odd n) of the Clifford algebra.

We have γ1...n = ae + be1...n for some scalars a and b. We obtain

(γ1...n)
2 = (a2 + b2(−1)

n(n−1)
2 +q)e + 2abe1...n. (11)

From (10) and (11), we obtain ab = 0. If b = 0, then γ1...n = ae, and we obtain
a contradiction because the set (8) is linearly independent. Hence, a = 0 and b2 = 1,
i.e., γ1...n = ±e1...n.

Let us consider the operator

F(U) =
1
2n ∑

A∈I
γAUγA, γA := (γA)

−1, U ∈ C̀ F
p,q,

where we have a sum over the multi-index A ∈ I (3). Note that in the real case F = R,
if {γA, A ∈ I} is a basis of C̀ p,q, then F is the Reynolds operator of the Salingaros vee
group, see [1].

Let us denote a vector subspace spanned by the elements ea1 ...ak enumerated by the
ordered multi-indices of length k by C̀ kF

p,q. Any Clifford algebra element U ∈ C̀ F
p,q can be

written in the form

U = ue +∑
a

uaea + ∑
a1<a2

ua1a2 ea1a2 + · · ·+ u1...ne1...n, u, ua, . . . , u1...n ∈ F.

We use the projection operator (note that this operation coincides up to a constant
with the trace of the corresponding matrix representation, see [21,22]) π0(U) = u onto the
vector subspace C̀ 0F

p,q (where e ≡ 1). Additionally, we consider the following operator:
πn(U) = u1...n for U ∈ C̀ F

p,q.
If the set {γA, A ∈ I} is linearly independent, then we have (this is proved for the real

case F = R in [1])

F(U) =
1
2n ∑

A
γAUγA =

{
π0(U)e, if n is even;
π0(U)e + πn(U)e1...n, if n is odd.

(12)

Operator F is a projection F2 = F onto the center of C̀ F
p,q. Note that here and after

we use notation F2(U) := F(F(U)) 6= (F(U))2 and a similar notation for the squares of all
other operators in this paper. In the language of [11], Cen(C̀ p,q) is the “ring of invariants”
of the Salingaros vee group.
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3. Generalized Reynolds Operators

Let us consider two different sets of Clifford algebra elements

{γa, a = 1, . . . , n} ∈ C̀ F
p,q, γaγb + γbγa = 2ηabe, (13)

{βa, a = 1, . . . , n} ∈ C̀ F
p,q, βaβb + βbβa = 2ηabe, (14)

and generalized Reynolds operators

H(U) =
1
2n ∑

A∈I
βAUγA, P(V) =

1
2n ∑

A∈I
γAVβA, U, V ∈ C̀ F

p,q, (15)

where we have the sum over multi-index A ∈ I = {∅, 1, . . . , n, 12, 13, . . . , 1 . . . n} of 2n

terms, βA = βa1 ...ak := βa1 · · · βak for a1 < · · · < ak, γA := (γA)
−1, βA := (βA)

−1. We
consider both operators (15) at the same time because we want to study how they are
related (see Theorem 2).

Theorem 1. We have

βBH(U) = H(U)γB, γBP(V) = P(V)βB, ∀B ∈ I. (16)

The operators H and P are projections:

H2 = H, P2 = P,

where H2(U) := H(H(U)) and P2(U) := P(P(U)).

Proof. We have

βBH(U)γB = βB
1
2n ∑

A
βAUγAγB =

1
2n ∑

A
(βBβA)U(γBγA) =

1
2n ∑

A
βAUγA = H(U).

Thus,

H2(U) =
1
2n ∑

B
βBH(U)γB =

1
2n (2

nH(U)) = H(U).

Proof of the statement for the operator P is similar.

Theorem 2. Let us consider C̀ F
p,q, linearly independent sets {γA, A ∈ I}, {βA, A ∈ I}, and

the operators (15).

1. If n = p + q is even, then

P(V)H(U) = H(U)P(V) = π0(VH(U))e, (17)

where

π0(VH(U)) = π0(H(U)V) = π0(UP(V)) = π0(P(V)U).

2. If n = p + q is odd, then

P(V)H(U) = H(U)P(V) = π0(VH(U))e + πn(VH(U))e1...n, (18)

where

π0(VH(U)) = π0(H(U)V) = π0(UP(V)) = π0(P(V)U),

πn(VH(U)) = πn(H(U)V) = πn(UP(V)) = πn(P(V)U).

Proof. Using (12) and Theorem 1, we obtain
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P(V)H(U) =
1
2n ∑

A
γAVβA H(U) =

1
2n ∑

A
γAVH(U)γA

=

{
π0(VH(U))e, if n is even;
π0(VH(U))e + πn(VH(U))e1...n, if n is odd.

We can similarly obtain

P(V)H(U) =
1
2n P(V)∑

A
βAUγA =

1
2n ∑

A
γAP(V)UγA

=

{
π0(P(V)U)e, if n is even;
π0(P(V)U)e + πn(P(V)U)e1...n, if n is odd.

Further, we use the properties π0(AB) = π0(BA) for arbitrary A, B ∈ C̀ F
p,q (see [21,22])

and πn(AB) = πn(BA) for arbitrary A, B ∈ C̀ F
p,q with odd n = p + q (see [23]).

We use the following notation

I(0) = {A ∈ I, |A| is even}, I(1) = {A ∈ I, |A| is odd}.

Note that the parity of an element γA is not the parity of length of the corresponding
multi-index A. The same element γA may have multi-indices with lengths of different
parity in different representations. In the case γ1...n = ±e, n is odd (see Lemma 1); we have
2n−1 pairs of coincident (up to sign) elements in the set B = {γA, A ∈ I}. In this case,
the same element γ1...n = ±e has a multi-index with even length in one representation (±e)
and multi-index with odd length in another representation (γ1...n).

To prove Theorem 3, we need the following statement.

Lemma 2. Let us consider C̀ F
p,q, p + q = n and the set of elements B = {γA, A ∈ I} with the

property (13). Then, each element of this set (if it is neither e nor γ1...n) commutes with 2n−2

elements of the set B with a multi-index of even length, commutes with 2n−2 elements of the set B
with a multi-index of odd length, anticommutes with 2n−2 elements of the set B with a multi-index
of even length and anticommutes with 2n−2 elements of the set B with a multi-index of odd length.
The element e commutes with all elements of the set B.

1. if n is even, then γ1...n commutes with all 2n−1 elements of the set B with a multi-index of
even length and anticommutes with all 2n−1 elements of the set B with a multi-index of odd
length;

2. if n is odd, then γ1...n commutes with all 2n elements of the set B.

Proof. In [1], we proved the particular case of this statement for the set {eA, A ∈ I}.
In this proof, we did not use the fact that this set is linearly independent (we use only
anticommutative properties of the elements). Hence, the statement is valid for the set
B = {γA, A ∈ I}, which is not always linearly independent (see Lemma 1).

Theorem 3. Let us consider C̀ F
p,q, n = p + q and two sets (13) and (14). Then,

∑
B∈I(0)

H(γB)γ
B =

1
2n ∑

A
∑

B∈I(0)

βAγBγAγB =

{ 1
2 (e + β1...nγ1...n), if n is even;
1
2 (e + β1...nγ1...n), if n is odd,

(19)

∑
B∈I(1)

H(γB)γ
B =

1
2n ∑

A
∑

B∈I(1)

βAγBγAγB =

{ 1
2 (e− β1...nγ1...n), if n is even;
1
2 (e + β1...nγ1...n), if n is odd,

(20)

∑
B

H(γB)γ
B =

1
2n ∑

A
∑
B

βAγBγAγB =

{
e, if n is even;
e + β1...nγ1...n, if n is odd. (21)

Proof. Let us consider the following expressions in the case of even n (we swap all
γB and γA and obtain plus or minus in each case):
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∑
A

βAeγA = e + β1γ1 + · · ·+ β1...nγ1...n = (e + β1γ1 + · · ·+ β1...nγ1...n)e,

∑
A

βAγ1γA = γ1 + β1γ1γ1 + · · ·+ β1...nγ1γ1...n = (e + β1γ1 − · · · − β1...nγ1...n)γ1,

· · ·
∑
A

βAγ1...nγA = γ1...n + β1γ1...nγ1 + · · ·+ β1...nγ1...nγ1...n

= (e− β1γ1 − · · ·+ β1...nγ1...n)γ1...n.

Let us multiply (on the right) both sides of the first equation by e, the second equa-
tion by γ1, . . . , the last equation by γ1...n. Summing equalities with B ∈ I(0) (or B ∈ I(1))
and using Lemma 2 (we must take into account the number of pluses and minuses),
we obtain the statement of this theorem. In the case of odd n, the proof is similar.
Summing (19) and (20), we obtain (21).

Theorem 4. Let us consider C̀ F
p,q, n = p + q, two sets (13) and (14), and the operator H(U) (15).

1. If n is even, then there exists an element U ∈ {γA, A ∈ I} such that H(U) is nonzero. More-
over, we can take U ∈ {γA, A ∈ I(0)} if β1...n 6= −γ1...n and we can take
U ∈ {γA, A ∈ I(1)} if β1...n 6= γ1...n.

2. If n is odd and β1...n 6= −γ1...n, then there exists an element U ∈ {γA, A ∈ I} such
that H(U) is nonzero. Moreover, we can take U ∈ {γA, A ∈ I(0)} and we can take
U ∈ {γA, A ∈ I(1)} at the same time.

Proof. Let n be even. Suppose that for all elements U the operator H(U) = 1
2n ∑A βAUγA

equals zero. It follows from Theorem 3 (see (21)) that

2ne = ∑
B
(∑

A
βAγBγA)γB = ∑

B
0 γB = 0

and we obtain a contradiction. Using (19) and (20), we can similarly prove the statement in
the other cases.

We use Theorems 1, 2, and 4 to prove generalized Pauli’s theorem in Section 6.

4. Some Other Operators

Let us consider the following operators for the sets (13) and (14)

H′(U) =
1
2n (∑

A∈I(0)

βAUγA−∑
A∈I(1)

βAUγA) =∑
A

(−1)|A|

2n βAUγA, U ∈ C̀ F
p,q, (22)

P′(V) =
1
2n (∑

A∈I(0)

γAVβA−∑
A∈I(1)

γAVβA) =∑
A

(−1)|A|

2n γAVβA, V ∈ C̀ F
p,q.

Theorem 5. We have

βB H′(U) = H′(U)γB, γBP′(V) = P′(V)βB, ∀B ∈ I(0),

βBH′(U) = −H′(U)γB, γBP′(V) = −P′(V)γB, ∀B ∈ I(1),

in particular,

βb H′(U) = −H′(U)γb, γbP′(V) = −P′(V)βb, ∀b = 1, . . . , n.

The operators H′ and P′ are projections:
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H′(H′(U)) = H′(U), P′(P′(V)) = P′(V).

Additionally, we have

H(H′(U)) = 0, H′(H(U)) = 0, P(P′(V)) = 0, P′(P(V)) = 0.

Theorem 6. Let us consider C̀ F
p,q and linearly independent sets {γA, A ∈ I}, {βA, A ∈ I}.

1. If n = p + q is even, then

H′(U)P′(V) = P′(V)H′(U) = π0(H′(U)V)e,

where

π0(H′(U)V) = π0(VH′(U)) = π0(P′(V)U) = π0(UP′(V)).

2. If n = p + q is odd, then

H′(U)P′(V) = π0(H′(U)V)e + πn(H′(U)V)e1...n,

where

π0(H′(U)V) = π0(VH′(U)) = π0(P′(V)U) = π0(UP′(V)),

πn(H′(U)V) = πn(VH′(U)) = πn(P′(V)U) = πn(UP′(V)).

Theorem 7. Let us consider C̀ F
p,q, n = p + q and two sets (13) and (14). Then,

∑
B∈I(0)

H′(γB)γ
B =

1
2n ∑

A
∑

B∈I(0)

(−1)|A|βAγBγAγB =

{ 1
2 (e + β1...nγ1...n), if n is even;
1
2 (e− β1...nγ1...n), if n is odd,

∑
B∈I(1)

H′(γB)γ
B =

1
2n ∑

A
∑

B∈I(1)

(−1)|A|βAγBγAγB =

{ 1
2 (e− β1...nγ1...n), if n is even;
1
2 (e− β1...nγ1...n), if n is odd,

∑
B

H′(γB)γ
B = ∑

A
∑
B

1
2n (−1)|A|βAγBγAγB =

{
e, if n is even;
e− β1...nγ1...n, if n is odd.

Theorem 8. Let us consider C̀ F
p,q, n = p + q, two sets (13) and (14), and the operator H′(U) (22).

1. If n is even, then there exists an element U ∈ {γA, A ∈ I} such that H′(U) is nonzero. More-
over, we can take U ∈ {γA, A ∈ I(0)} if β1...n 6= −γ1...n and we can take
U ∈ {γA, A ∈ I(1)} if β1...n 6= γ1...n.

2. If n is odd and β1...n 6= γ1...n, then there exists an element U ∈ {γA, A ∈ I} such that H′(U)
is nonzero. Moreover, we can take U ∈ {γA, A ∈ I(0)} and we can take U ∈ {γA, A ∈ I(1)}
at the same time.

Note that we have the condition β1...n 6= γ1...n in Theorem 8 and the condition β1...n 6=
−γ1...n in Theorem 4 in the case of odd n.

Proof. We omit the proof of Theorems 5–8 because it is similar to the Proof of
Theorems 1–4.

Let us consider the following operators for the sets (13) and (14)

H(0)(U) =
1

2n−1 ∑
A∈I(0)

βAUγA, H(1)(U) =
1

2n−1 ∑
A∈I(1)

βAUγA, U ∈ C̀ F
p,q,

P(0)(V) =
1

2n−1 ∑
A∈I(0)

γAVβA, P(1)(V) =
1

2n−1 ∑
A∈I(1)

γAVβA, V ∈ C̀ F
p,q.
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The corresponding operators in the particular case γA = βA = eA, F = R, are considered
in [2]. We have

H(U) =
1
2
(H(0)(U) + H(1)(U)), H′(U) =

1
2
(H(0)(U)− H(1)(U)),

P(V) =
1
2
(P(0)(V) + P(1)(V)), P′(V) =

1
2
(P(0)(V)− P(1)(V)).

Theorem 9. We have

βBH(0)(U) = H(0)(U)γB, γBP(0)(V) = P(0)(V)βB, ∀B ∈ I(0),

βBH(0)(U) = H(1)(U)γB, γBP(0)(V) = P(1)(V)βB, ∀B ∈ I(1),

βBH(1)(U) = H(1)(U)γB, γBP(1)(V) = P(1)(V)βB, ∀B ∈ I(0),

βBH(1)(U) = H(0)(U)γB, γBP(1)(V) = P(0)(V)βB, ∀B ∈ I(1),

and

H2
(0)(U) = H2

(1)(U) = H(0)(U), P2
(0)(V) = P2

(1)(V) = P(0)(V),

H(1)(H(0)(U)) = H(0)(H(1)(U)) = H(1)(U),

P(1)(P(0)(V)) = P(0)(P(1)(V)) = P(1)(V),

H(0)(H(U)) = H(1)(H(U)) = H(H(0)(U)) = H(H(1)(U)) = H(U),

P(0)(P(V)) = P(1)(P(V)) = P(P(0)(V)) = P(P(1)(V)) = P(V).

Proof. The proof is similar to the proof of Theorem 1.

Using the previous theorems, we obtain the following multiplication tables (see
Tables 1 and 2) for the operators H, H′, H(0), H(1) and the operators P, P′, P(0), P(1).

Table 1. Multiplication table for the operators H, H′, H(0), H(1).

H H(0) H(1) H′

H H H H 0

H(0) H H(0) H(1) H′

H(1) H H(1) H(0) −H′

H′ 0 H′ −H′ H′

Table 2. Multiplication table for the operators P, P′, P(0), P(1).

P P(0) P(1) P′

P P P P 0

P(0) P P(0) P(1) P′

P(1) P P(1) P(0) −P′

P′ 0 P′ −P′ P′

5. Relation between Operators in the Case of Odd n

In this section, we prove that the operators considered in the previous section are
related to the generalized Reynolds operators in the case of odd n.

We need the concept of adjoint multi-indices introduced in the previous work [1] of
the author. We call ordered multi-indices a1 . . . ak and b1 . . . bl adjoint multi-indices if they
have no common indices and they form a multi-index 1 . . . n of the length n. We write

b1 . . . bl = ˜a1 . . . ak and a1 . . . ak = b̃1 . . . bl . We denote the sets of corresponding 2n−1 multi-
indices by IAdj and ĨAdj = I \ IAdj. Therefore, for each multi-index in IAdj, there exists an
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adjoint multi-index in ĨAdj. We have B = {eA | A ∈ I} = {eA | A ∈ IAdj} ∪ {eA | A ∈ ĨAdj}.
For example, IAdj = IFirst, ĨAdj = I\ IFirst = ILast, where IFirst consists of the first (in the order)
2n−1 multi-indices of the set I. In the case of odd n, we can write IFirst = {A ∈ I, |A| ≤ n−1

2 },
ILast = {A ∈ I, |A| ≥ n+1

2 }. In the case of odd n, we can consider the following adjoint sets
IAdj = I(0), ĨAdj = I(1).

Let us consider the following operators in C̀ F
p,q with odd n = p + q for the sets (13)

and (14), and some IAdj, ĨAdj:

HAdj(U) =
1

2n−1 ∑
A∈IAdj

βAUγA, HÃdj(U) =
1

2n−1 ∑
A∈ĨAdj

βAUγA,

H(U) =
1
2
(HAdj(U) + HÃdj(U)), U ∈ C̀ F

p,q.

Using Lemma 1, we conclude that the elements γ1...n and β1...n are equal to the elements
±e and ±e1...n in the case of odd n and F = R, they are equal to the elements ±e, ±ie,
and ±e1...n in the case of odd n and F = C. Thus, we have four (six in the complex case)
different cases

γ1...n = ±β1...n, γ1...n = ±e1...nβ1...n, γ1...n = ±ie1...nβ1...n.

We use notation

HFirst(U) =
1

2n−1 ∑
A∈IFirst

βAUγA, HLast(U) =
1

2n−1 ∑
A∈ILast

βAUγA

in the following theorem.

Theorem 10. Let us consider C̀ F
p,q with odd n = p + q and the sets (13) and (14).

1. If γ1...n = β1...n, then

HAdj(U) = H(U).

In particular, we have

H(U) = H(0)(U) = H(1)(U) = HFirst(U) = HLast(U), H′(U) = 0.

2. If γ1...n = −β1...n, then

H(U) = 0, HAdj(U) = −HÃdj(U).

In particular, we have

H(0)(U) = −H(1)(U) = H′(U), HFirst(U) = −HLast(U).

3. If γ1...n = e1...nβ1...n (in the case p− q ≡ 1mod4), then

HAdj(U) = e1...nHÃdj(U), H(U) =
e + e1...n

2
HAdj(U).

4. If γ1...n = −e1...nβ1...n (in the case p− q ≡ 1mod4), then

HAdj(U) = −e1...n HÃdj(U), H(U) =
e− e1...n

2
HAdj(U).
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5. If γ1...n = ie1...nβ1...n (in the case F = C and p− q ≡ 3mod4), then

HAdj(U) = ie1...nHÃdj(U), H(U) =
e + ie1...n

2
HAdj(U).

6. If γ1...n = −ie1...nβ1...n (in the case F = C and p− q ≡ 3mod4), then

HAdj(U) = −ie1...nHÃdj(U), H(U) =
e− ie1...n

2
HAdj(U).

In particular, we have in Cases 3–6:

HAdj(U) = H(0)(U) = H(1)(U) = HFirst(U) = HLast(U).

Proof. Using Lemma 1, we conclude that the elements β1...n and γ1...n are in the center
of C̀ F

p,q with odd n = p + q. Thus, these elements commute with all elements of C̀ F
p,q.

If β1...n = γ1...n, then

βa1 ...am Uγa1 ...am = β1...nγ1...nβa1 ...am Uγa1 ...am = β ã1 ...am
Uγã1 ...am .

Thus, we obtain ∑A βAUγA = 2 ∑A∈IAdj
βAFγA and the first statement of the theorem.

If β1...n = −γ1...n, then analogously βa1 ...am Uγa1 ...am = −β ã1 ...am
Uγã1 ...am and

∑
A

βAUγA = ∑
A∈IAdj

βAUγA + ∑
A∈ĨAdj

βAUγA = 0.

If γ1...n = e1...nβ1...n, then

βa1 ...am Uγa1 ...am = β1...ne1...nγ1...nβa1 ...am Uγa1 ...am = e1...nβ ã1 ...am
Uγã1 ...am .

Thus, we obtain ∑A βAUγA = (e + e1...n)∑A∈IAdj
βAUγA and the third statement of

the theorem.
If γ1...n = −e1...nβ1...n, then βa1 ...am Uγa1 ...am = −e1...nβ ã1 ...am

Uγã1 ...am and

∑
A

βAUγA = (e− e1...n) ∑
A∈IAdj

βAUγA.

If γ1...n = ie1...nβ1...n, then

βa1 ...am Uγa1 ...am = β1...nie1...nγ1...nβa1 ...am Uγa1 ...am = ie1...nβ ã1 ...am
Uγã1 ...am .

Thus, we obtain ∑A βAUγA = (e + ie1...n)∑A∈IAdj
βAUγA.

If γ1...n = −ie1...nβ1...n, then βa1 ...am Uγa1 ...am = −ie1...nβ ã1 ...am
Uγã1 ...am and

∑
A

βAUγA = (e− ie1...n) ∑
A∈IAdj

βAUγA.

This completes the proof.

We use Theorem 10 to prove generalized Pauli’s theorem in Section 6.

6. Using Generalized Reynolds Operators to Prove Pauli’s Theorem in Clifford Algebras

In this section, we show the application of generalized Reynolds operators to prove
generalization of Pauli’s theorem [24] in the case of Clifford algebras of arbitrary dimension.
We use the theorems from the previous sections of this paper.
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Note the following well-known fact. The Clifford algebras C̀ F
p,q with even n = p + q

and C̀ p,q, p − q ≡ 3mod4 are simple. The Clifford algebras C̀ p,q, p − q ≡ 1mod4 and
C⊗ C̀ p,q with odd n = p + q are not simple; they are direct sums of two simple algebras.
The existence (or non-existence) of an element T that connect two different sets of Clifford
algebra elements that satisfy the main anticommutative conditions can be proved using
representation theory. The main idea of the following statements is to present an algorithm
to compute this element T. These statements have been formulated in a brief report [4] of
the author without proof. In this paper, we demonstrate how we can prove them using
generalized Reynolds operators.

We repeat the formulation of the theorems here (Theorems 11 and 12) for consistency
of the presentation. The proof of the theorems is new and shows us the application of the
method of averaging and generalized Reynolds operators.

Theorem 11 ([4]). Let us consider C̀ F
p,q with even n = p + q. Let two sets of Clifford algebra

elements γa, βa, a = 1, 2, . . . , n satisfy conditions

γaγb + γbγa = 2ηabe, βaβb + βbβa = 2ηabe.

Then, the sets {γA, A ∈ I} and {βA, A ∈ I} are linearly independent (in the real case F = R,
they are new bases of C̀ p,q), and there exists a unique (up to multiplication by a real (respectively,
complex) number) element T ∈ C̀ F

p,q such that

γa = T−1βaT, ∀a = 1, . . . , n.

Additionally, we can obtain this element T in the following way:

T = H(U) =
1
2n ∑

A
βAUγA, (23)

where U is an element

• of the set {γA, A ∈ I(0)} if β1...n 6= −γ1...n,
• of the set {γA, A ∈ I(1)} if β1...n 6= γ1...n,

such that H(U) 6= 0.

Proof. To obtain this statement, we use the properties of generalized Reynolds operators,
namely, Theorems 1, 2, and 4. Linearly independence of the sets follows from Lemma 1.
For two arbitrary elements U, V ∈ C̀ F

p,q and elements (15), we have (17) by Theorem 2.
There exists U such that H(U) is nonzero by Theorem 4. Further, we take element V such
that π0(VH(U)) 6= 0 (we can take V from the set of basis elements {eA, A ∈ I}). Therefore,
from (17), we see that T = H(U) is invertible. Using Theorem 1, we obtain γa = T−1βaT,
∀a = 1, . . . , n. We obtain an algorithm to compute the element T (23) from Theorem 4.

Let us prove that T is unique up to multiplication by a constant. Suppose that we have
two elements T1, T2 that satisfy γa = T−1βaT, ∀a = 1, . . . , n. Then, for any a = 1, . . . , n, we
have T−1

1 βaT1 = T−1
2 βaT2. Let us multiply both sides of this equation on the left by T1 and

on the right by (T2)
−1. We obtain [T1T−1

2 , βa] = 0 for a = 1, . . . , n. Using Cen(C̀ F
p,q) = C̀ 0F

p,q
(n is even), we obtain T1 = µT2, where µ 6= 0, µ ∈ F.

To prove Theorem 12, we need Lemmas 3 and 4.

Lemma 3. Let us consider C̀ F
p,q, n = p + q and the set (7).

1. If n = p + q is even, then π0(γa1 ...ak ) = 0, k = 1, . . . , n.
2. If n = p + q is odd, then π0(γa1 ...ak ) = 0, k = 1, . . . , n− 1 and

π0(γ1...n) =

{
0, i f (8) is linearly independent;
±1,±i, i f (8) is linearly dependent.
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Values ±i are possible only in the case of the complexified Clifford algebra.
If n is odd, then πn(γa1 ...ak ) = 0, k = 1, . . . , n− 1 and

πn(γ1...n) =

{
±1, i f (8) is linearly independent;
0, i f (8) is linearly dependent.

Proof. For any element γA (except γ1...n in the case of odd n and except e in the case of
any n), there exists an element γa such that γA anticommutes with γa (if |A| is even, then
we can take a ∈ A; if |A| is odd, then we can take a /∈ A). We obtain

π0(γA) = π0(−γaγA(γa)
−1) = −π0(γA)

and π0(γA) = 0. Further, we use Lemma 1.
The statement for the operator πn can be proved similarly using the following property:

for any two elements U, V of C̀ F
p,q with odd n = p + q, we have πn(UV) = πn(VU). It

follows from the fact πn([U, V]) = 0 (see [23]).

Lemma 4.

1. Let us consider C̀ F
p,q with odd n = p + q such that p− q ≡ 1mod4, the set (7), and elements

σa = e1...nγa, a = 1, . . . , n

2. Let us consider C⊗ C̀ p,q with odd n = p + q such that p− q ≡ 3mod4, the set (7), and
elements

σa = ie1...nγa, a = 1, . . . , n

In both cases, the elements σa, a = 1, . . . , n satisfy the conditions σaσb + σbσa = 2ηabe.
If {γA, A ∈ I} is linearly independent, then {σA, A ∈ I} is linearly dependent. If {γA, A ∈ I} is
linearly dependent, then {σA, A ∈ I} is linearly independent.

Proof.

(1) Using (7), we obtain

σaσb + σbσa = e1...nγae1...nγb + e1...nγbe1...nγa = 2ηabe

because e1...n ∈ Cen(C̀ F
p,q) and (e1...n)

2 = (−1)
n(n−1)

2 (−1)qe = e because
p− q ≡ 1mod4.

If γ1...n = ±e1...n, then σ1...n = ±(e1...n)
nγ1...n = ±e1...ne1...n = ±e. If γ1...n = ±e,

then σ1...n = ±(e1...n)
nγ1...n = ±e1...ne = ±e1...n. Further, we use Lemma 1.

(2) The proof of the second statement of the lemma is similar to the proof of the first
statement. We have

σaσb + σbσa = ie1...nγaie1...nγb + ie1...nγbie1...nγa = 2ηabe,

because e1...n ∈ Cen(C ⊗ C̀ p,q) and (e1...n)
2 = (−1)

n(n−1)
2 (−1)qe = −e because

p− q ≡ 3mod4.

If γ1...n = ±e1...n, then σ1...n = ±(ie1...n)
nγ1...n = ±ie1...ne1...n = ±ie. If γ1...n = ±ie,

then σ1...n = ±(ie1...n)
nγ1...n = ±ie1...nie = ±e1...n.

Theorem 12 ([4]). Let us consider C̀ F
p,q with odd n = p + q. Suppose that two sets of Clifford

algebra elements γa, βa, a = 1, 2, . . . , n satisfy the conditions

γaγb + γbγa = 2ηabe, βaβb + βbβa = 2ηabe.
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Then, for C̀ F
p,q of signature p− q ≡ 1mod4, the element γ1...n either takes the values ±e1...n

and the set {γA, A ∈ I} is linearly independent or takes the values ±e and then the set is linearly
dependent. The same is for the set {βA, A ∈ I}. We have cases 1–4 below.

For C̀ F
p,q of signature p− q ≡ 3mod4, the element γ1...n either takes the values ±e1...n and

the set {γA, A ∈ I} is linearly independent or takes the values ±ie (this is possible only in the case
F = C) and then the set is linearly dependent. This is the same for the set {βA, A ∈ I}. We have
cases 1–2, 5–6 below.

There exists a unique element T of C̀ F
p,q (up to multiplication by an invertible element of the

center of C̀ F
p,q) such that

1. γa = T−1βaT, ∀a = 1, . . . , n ⇔ β1...n = γ1...n;
2. γa = −T−1βaT, ∀a = 1, . . . , n ⇔ β1...n = −γ1...n;
3. γa = e1...nT−1βaT, ∀a = 1, . . . , n ⇔ β1...n = e1...nγ1...n;
4. γa = −e1...nT−1βaT, ∀a = 1, . . . , n ⇔ β1...n = −e1...nγ1...n;
5. γa = ie1...nT−1βaT, ∀a = 1, . . . , n ⇔ β1...n = ie1...nγ1...n;
6. γa = −ie1...nT−1βaT, ∀a = 1, . . . , n ⇔ β1...n = −ie1...nγ1...n

For all cases, we have γa = (β1...nγ1...n)T−1γaT, a = 1, . . . , n.
Additionally, in the case of the real Clifford algebra C̀ p,q of signature p− q ≡ 1mod4 and

the complexified Clifford algebra C⊗ C̀ p,q of arbitrary signature, the element T, whose existence is
stated in cases 1–6 of the theorem, equals

T = H(0)(U) =
1

2n−1 ∑
A∈I(0)

βAUγ−1
A (24)

where U is an element of the set {γA + γB, A, B ∈ I(0)}.
In the case of the real Clifford algebra C̀ p,q of signature p− q ≡ 3mod4, the element T, whose

existence is stated in cases 1 and 2 of the theorem, equals T = H(0)(U), where U is element of the
set {γA, A ∈ I(0)} such that H(0)(U) 6= 0.

Proof. Linearly independence (or linearly dependence) of the sets follows from Lemma 1.
This implies that we have four cases in C̀ p,q and six cases in C⊗ C̀ p,q.

Cases 3–6 of the theorem are reduced to cases 1 and 2 by Lemma 4. We must change
one of the given sets by the set σa in these cases. Case 2 of the theorem (when we have
β1...n = −γ1...n) is reduced to case 1. We must consider the set σa = −βa for a = 1, . . . , n.
For this set, we have σ1...n = (−1)nβ1...n = −β1...n = γ1...n and obtain γa = T−1σaT
= −T−1βaT.

Thus, we will consider and prove only case 1 of the theorem (when β1...n = γ1...n).
We will consider only the case β1...n = γ1...n = ±e1...n (other cases are reduced to this case
by Lemma 4).

Let us consider arbitrary elements U, V ∈ C̀ F
p,q and expressions (15). Then, we have

(16) and (18) by Theorems 1 and 2. We must prove that there exist elements H(U) and V
such that π0(VH(U))e + πn(VH(U))e1...n is invertible. Then, from (18), we will see that
T = H(U) is invertible, and from (16), we will obtain γa = T−1βaT. We have

(π0(VH(U))e + πn(VH(U))e1...n)(π0(VH(U))e− πn(VH(U))e1...n)

= (π2
0(VH(U))− π2

n(VH(U))(−1)
n(n−1)

2 (−1)q)e = (π2
0(VH(U))± π2

n(VH(U)))e,

where sign “+” is in the case p− q ≡ 3mod4 and sign “−” is in the case p− q ≡ 1mod4.

(I) Let us consider the case p − q ≡ 1mod4. We must choose elements H(U) and V
such that π0(H(U)V) 6= ±πn(H(U)V). By Theorem 4, there exists the element U ∈
{γB, B ∈ I(0)} such that H(U) 6= 0. Since {γA, A ∈ I} is a basis, H(U) can be written
in the form H(U) = ∑A hAγA, hA ∈ F.
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If there exists a multi-index C such that hC 6= 0 and hC̃ 6= ±hC (where C̃ and C are
adjoint multi-indices, see the previous section and [1]), then we can take V = γC. Using
Lemma 3, we obtain

π0(H(U)V) = hC 6= ±hC̃ = ±πn(H(U)V).

If there is no such index C, then H(U) can be represented in the form

H(U) =
k

∑
j=1

λjγAj(e + e1...n) +
l

∑
j=1

µjγBj(e− e1...n), λj, µj 6= 0, (25)

where all multi-indices Aj and Bj are different and any two of them do not constitute the
full multi-index 1 . . . n.

Using Theorem 3, we obtain ∑B∈I(0) H(γB)γ
B = e. We have at least one U ∈ {γB, B ∈

I(0)} such that k 6= 0 and at least one U ∈ {γB, B ∈ I(0)} such that l 6= 0. Therefore, there
exists the element U ∈ {γA + γB, A 6= B, A, B ∈ I(0)} such that k, l 6= 0 in (25). Taking (25)
and the element

V =
k

∑
j=1

1
λj

γAj +
l

∑
j=1

1
µj

γBj ,

we obtain

H(U)V = k(e + e1...n) + (
k

∑
i,j=1,i 6=j

λj

λi
γAj γ

Ai +
k

∑
j=1

l

∑
i=1

λj

µi
γAj γ

Bi )(e + e1...n)

+l(e− e1...n) + (
l

∑
j=1

k

∑
i=1

µj

λi
γBj γ

Ai +
l

∑
i,j=1,i 6=j

µj

µi
γBj γ

Bi )(e− e1...n),

and k + l = π0(H(U)V) 6= ±πn(H(U)V) = ±(k− l).

(II) Let us consider the case p − q ≡ 3mod4. We must choose elements H(U) and V
such that π2

0(VH(U)) + π2
n(VH(U)) 6= 0. By Theorem 4, we always have element

U ∈ {γA, A ∈ I(0)} such that H(U) 6= 0. We can always take element V ∈ {eA, A ∈ I}
such that π0(VH(U)) 6= 0 or πn(VH(U)) 6= 0. In the case of the real Clifford algebra,
the theorem is proved.

In the case of the complexified Clifford algebra, we must choose elements H(U) and V
such that π0(H(U)V) 6= ±iπn(H(U)V). Further proof is similar to the proof of the case
p− q ≡ 1mod4, but we consider the elements

H(U) =
k

∑
j=1

λjγAj(e + ie1...n) +
l

∑
j=1

µjγBj(e− ie1...n), λj, µj 6= 0 (26)

instead of the elements (25).
Proof of uniqueness of element T = H(U) up to multiplication by an invertible

Clifford algebra element is similar to the proof of uniqueness in the case of even n.
According to the proof above, we can find element T in different cases in the following

form (up to multiplication by a nonzero constant):

1. β1...n = γ1...n ⇒ T = ∑A βAUγA,
2. β1...n = −γ1...n ⇒ T = ∑A(−1)|A|βAUγA,
3. β1...n = e1...nγ1...n ⇒ T = ∑A∈I(0) βAUγA + e1...n ∑A∈I(1) βAUγA,

4. β1...n = −e1...nγ1...n ⇒ T = ∑A∈I(0) βAUγA − e1...n ∑A∈I(1) βAUγA,

5. β1...n = ie1...nγ1...n ⇒ T = ∑A∈I(0) βAUγA + ie1...n ∑A∈I(1) βAUγA,

6. β1...n = −ie1...nγ1...n ⇒ T = ∑A∈I(0) βAUγA − ie1...n ∑A∈I(1) βAUγA.
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Using Theorem 10, we conclude that all these elements T equal (24) up to multiplication
by a nonzero constant.

7. Discussion

In this paper, we develop the method of averaging in Clifford algebra suggested by the
author in [1,2]. We consider specific operators (generalized Reynolds operators) in Clifford
algebras and study their properties (see Sections 3–5). These operators allowed us to
deduce an algorithm to compute elements that connect two different sets of Clifford algebra
elements that satisfy the main anticommutative condition of Clifford algebra (see Section 6).

The results obtained in this paper are used in geometry, physics, engineering, and
other applications. We use the results in the study of n-dimensional Weyl, Majorana, and
Majorana–Weyl spinors [25] and in the theory of spin groups [26,27]. Using the algorithm
from this paper, the method of calculating of elements of spin groups is presented. Some
modification of this algorithm using zero divisors is discussed in [28,29] by other authors.
The results of this paper are also used in problems related to the Dirac equation and
spinors [30–32], the Higgs model [33], and applications of Riemannian geometry [34].
Note the other possible applications of the results in geometry, engineering, physics, and
analysis [35–38]. We use generalized Reynolds operators in the proof of the local Pauli’s
theorem [39] when both sets of Clifford algebra elements depend on the point of Euclidean
space. These operators can be used to study the same question and other problems for
the Dirac and the Yang–Mills equations on non-trivial curved manifolds. The technique
developed in this paper can be generalized to the case of other algebraic (for example,
to matrix algebras using the Cartan–Bott 8-periodicity) and geometric structures (the
Atiyah–Kähler algebras [40–45] and the algebra of h-forms [46–48], which are geometric
generalizations of the Clifford algebras).
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