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Abstract: The propagation of fake news in online social networks nowadays is becoming a critical
issue. Consequently, many mathematical models have been proposed to mimic the related time
evolution. In this work, we first consider a deterministic model that describes rumor propagation
and can be viewed as an extended logistic model. In particular, we analyze the main features of
the growth curve, such as the limit behavior, the inflection point, and the threshold-crossing-time,
through fixed boundaries. Then, in order to study the stochastic counterparts of the model, we
consider two different stochastic processes: a time non-homogeneous linear pure birth process and a
lognormal diffusion process. The conditions under which the means of the processes are identical to
the deterministic curve are discussed. The first-passage-time problem is also investigated both for
the birth process and the lognormal diffusion process. Finally, in order to study the variability of the
stochastic processes introduced so far, we perform a comparison between their variances.

Keywords: fake news; rumor propagation; growth model; birth processes; diffusion processes;
first-passage-time

MSC: 60J85; 60J70

1. Introduction

Several types of real growth dynamics can be described by mathematical models. The
most simple model is the Malthusian one in which the population size grows in time as
an exponential function. Clearly, this model, in some instances, turns out not to be fully
appropriate since it possesses an infinite limit value. Indeed, for long-term growth, it
is necessary to take into account factors which can slow down or speed up the growth
rate of the population. Aiming to describe these real situations, one can refer to so-called
sigmoidal growth models, characterized by an initial slow growth followed by an explosion
of an exponential-type, which finally flattens out to an equilibrium status, known as the
carrying capacity.

Over the years, several sigmoidal curves have been introduced, such as Gompertz
(see Tan [1]), Korf (introduced for the first time in Korf [2]), logistic (see, for instance, Di
Crescenzo and Paraggio [3]), Bertalanffy–Richards (Richards [4]), and other generalizations
of already existing models (as in Asadi et al. [5], Di Crescenzo and Spina [6], Di Crescenzo
et al. [7,8]). The fields of possible applications of sigmoidal models are various and range
from software reliability (see Erto et al. [9]) to biology (as in Brauer and Castillo-Chavez [10])
and economics (see, for example, Smirnov and Wang [11]).

Recently, S-shaped models have been used to model the spread of rumors in online
social networks (see San Martìn et al. [12]). The attention stimulated by this topic arises
from the global increase in social network usage and the ease of sending messages instanta-
neously. The growth of instantaneous communication has proved to be a fertile ground for
the spread of fake news (see De Martino and Spina [13], Giorno and Spina [14], Figueira
and Oliveira [15]).
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By the term ‘fake news’, we generally mean false or misleading information. The
techniques used to generate fake news have been the subject of many investigations, such
as research reports by the RAND Corporation. Accordingly, in a broad sense, fake news
can be characterized as follows:

(i) Fabrication: the invention of entirely false or misleading information,
(ii) Misappropriation: the misrepresentation of existing facts, events and people,
(iii) Deceptive identities: the employment of misleading source of information,
(iv) Obfuscation: the offering of multiple and contradictory accounts for the same event

in order to confuse the audience,
(v) Conspiracy theories: the proposal of conspiracy plots related to real events/phenomena,
(vi) Selective use of facts: the selection of information in a manipulative way,
(vii) Rhetorical fallacies: reasoning which is logically invalid but cognitively effective,
(viii) Appeals to emotion/authority: the use of messages which elicit emotions.

The diffusion of fake news, whether intentional or accidental, causes disinformation
which may be used for various aims, such as influencing public opinion, instigating hatred,
damaging the image of particular states/companies, etc. Hence, studying the propagation
of rumors and disinformation may be of great interest in order to design countermeasures
and avoid potential impacts on society. The urgency of the matter has prompted various
states, and also private companies, to invest in cybersecurity. In this context, a great deal
of scientific research effort has been invested, especially in relation to the proposal of
stochastic models with effective predictive capabilities (see, for instance, Abraham and
Nair [16], Abimbola et al. [17], Paul and Zhang [18], Alandihallaj et al. [19]). In addition,
the further need to optimize investments in cybersecurity also arises. This topic has been
addressed in the work of Miaoui and Boudriga [20]. In particular, these authors propose a
model that optimizes enterprise investments in cybersecurity using expected utility theory.

The development of suitable mathematical models capable of simulating the prop-
agation of rumors is potentially of considerable value in making strategic choices (see,
for example, Mahmoud [21], Kapsikar et al. [22], Ben Aissa et al. [23]). However, the
development of stochastic models relating to the spread of information is not an easy
task. Indeed, as noted in Raponi et al. [24], the propagation of fake news is a complex
phenomenon influenced by several factors the identification and assessment of which is
challenging. To overcome this difficulty, many models have been proposed in the literature
that have been inspired by epidemiological models. However, although the two contexts
have various similarities, the dissemination of news follows different rules than the dif-
fusion of contagious diseases. Thus, a variety of models in stochastic environments has
been developed which emphasize different aspects of interest. For instance, Esmaeeli and
Sajadi [25] developed a sceptical rumor model for individuals located on a non-negative
integer line, whereas a case illustrating the spread of fake news in a community of finite
size was considered by Mahmoud [21]. Moreover, recent developments in stochastic rumor
propagation modeling can be found in Jia and Cao [26] and Roy and Saha [27].

Nevertheless, although many attempts have been made, a model that includes all
the properties of the real fake-news propagation phenomenon has not yet been reported.
Bearing in mind the complexity of the problems connected to the phenomenon, the aim of
this paper is twofold: (i) to study and enhance a recent growth model for rumor propagation,
(ii) to build and study two stochastic processes that are able to describe the growth model
itself in the presence of random fluctuations. In contrast to stochastic models treated
in [21,25–27], which are based on spatial dynamics on suitable state-spaces and depend on
network topologies, for analysis of point (ii), we focus on time-inhomogeneous settings
involving suitable birth–death and diffusion processes whose means are identical to the
growth model considered in point (i).

Usually, growth models are described by means of differential equations. In order to
make them more realistic, it is possible to introduce a noise term, summarizing random
fluctuations, in the differential equations (see Øksendal [28]) and to consider the resulting
stochastic differential equations (as reported in Román-Román et al. [29] and Di Crescenzo
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et al. [7]). Other investigations have proposed introducing a random environment by
considering special birth–death processes using an expected value which corresponds
to the deterministic growth function (see Di Crescenzo and Spina [6], Di Crescenzo and
Paraggio [3], Giorno and Nobile [30], Ricciardi [31]).

Hence, in the present work, we analyze both of the strategies stimulated by the above
mentioned research lines.

A key concern with regard to disinformation and fake news that has recently emerged
is the need for reassurance on the validity and quality of the news in the face of new pitfalls
that can arise by use of the Web and from the use of artificial intelligence (AI). Major efforts
are, therefore, needed to create a stable alliance between all stakeholders to promote, by any
means, communication and awareness-raising activities aimed at all users so that they are
able to recognize bad information and protect themselves from the dangers that can arise
from it. Therefore, tools pertaining to AI can be fruitfully used to support the collective
efforts of relevant institutions, web companies and communication professionals which
are called upon to implement clear and shared actions to counter disinformation and the
spread of fake news. Hence, identifying and extracting the most appropriate and significant
features from information flows is one of the biggest challenges for AI-based detection.
In this area, examples of recent contributions related to feature extraction and anomaly
detection can be found in Khan et al. [32] and Arunnehru et al. [33].

We focus on the growth model proposed by San Martin et al. [12] for rumor propaga-
tion, postponing consideration of AI-based strategies for future work.

In this paper, our investigation is described along the following novel lines:

(i) analyzing some limit behaviors of the growth function, which is shown to be a suitable
extension of the logistic curve,

(ii) studying the corresponding mean time in which a randomly chosen individual is
reached by the rumor,

(iii) determining the initial specific growth rate, the inflection point, and other related
quantities,

(iv) conducting a sensitivity analysis based on the perturbation on the parameters of the
model,

(v) addressing the related threshold-crossing problem,
(vi) studying and comparing two different stochastic counterparts for the model based on

suitable time-inhomogenous Markov processes, i.e., a linear birth–death process and a
lognormal diffusion process.

Specifically, we provide conditions such that the mean values of these stochastic pro-
cesses are identical to the growth curve, which allows modeling of the diffusion of rumors
in the presence of random fluctuations. Moreover, we provide explicit expressions for
various quantities of interest in applications, such as the conditional mean, the conditional
variance, the index of dispersion, and the Fano factor. Finally, in order to investigate the
variability of the two considered stochastic processes, we perform a comparison of their
variances.

1.1. Relation with Epidemiological Models

Usually, propagation models for rumors are very similar to those used for the spread
of infectious diseases. One of the best-known epidemiological models is the SI model,
according to which the population is divided into two categories, i.e., susceptible and
infected. In this case, the resulting growth curve describing the time evolution of those
infected follows an exponential trend. In other recent studies, various generalizations of
compartmental models have been introduced. For example, in Jin et al. [34] the authors
consider the population to be divided into susceptible, exposed, infected (i.e., reached by
the rumor) and skeptics (SEIZ model). Similarly, in [14] the population is divided into
three classes: ignorant, spreader and stifler. In all the aforementioned studies, the model
which mimics the dynamics of rumor spread is represented by a system of differential
equations (one equation for any compartment). In other studies, researchers have focused
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on analysis of the time evolution of a rumor among the population by considering only
one of the compartments into which the population is divided. This is the case as reported
in [13], where the authors consider a differential equation describing the time evolution
of infected individuals. In particular, the considered differential equation is a logistic
one with a time-dependent growth rate. In the present paper, we consider an existing
model which represents the fraction of the population reached by the rumor. This growth
model embodies both the exponential and the logistic one. Indeed, they can be recovered by
considering the special limit values of the parameters (cf. Section 2 below). Clearly, to have a
more realistic representation of the rumor spread among individuals in a population, it may
be interesting to consider a suitable compartmental model and its stochastic counterpart.
This topic may be the subject of future investigations.

1.2. Plan of the Paper

The paper is organized in detail as follows: In Section 2, we study the main features of
the deterministic model introduced in [12], such as the carrying capacity and the inflection
point. A sensitivity analysis based on perturbation of the parameters and a study related to
the problem of the first-crossing-time of the special threshold are also performed. Moreover,
we analyze the expected time in which a randomly chosen individual is reached by the
rumor. Then, in Section 3, we define a special time-inhomogeneous linear pure birth
process having a mean which corresponds to the deterministic curve of Section 2. For
this process, the transition probabilities, the moment-generating function, the variance,
and some indexes of dispersion, are also determined. The first-passage-time problem
of the pure birth process through constant boundaries is also addressed. Section 4 is
devoted to description of a special lognormal diffusion process having the same mean as
the pure birth process introduced in Section 3. The moments, the mode, and the quantiles
of this process are also provided in closed form. Moreover, we study the first-passage-time
problem by considering particular time-dependent boundaries in order to obtain an explicit
expression for the corresponding probability density function. Finally, in order to provide
a comparison between the stochastic processes introduced previously, since they possess
the same mean, we investigate the ratio between their variances.

2. The Deterministic Model

In San Martín et al. [12], the authors propose a novel mathematical model to represent
the spread of rumors in online social networks. It is assumed that the individuals are linked
either by person-to-person relations or by belonging to the same group. Moreover, in the
considered model, the population is divided into four categories: burned, sender, receiver
and seed.

(i) A burned individual is defined as a person who knows the rumor. Note that when
an individual becomes burned, he/she remains in this state until the end of rumor
propagation.

(ii) A sender is a person who knows the message and texts it to his/her contacts.
(iii) A receiver is an individual who is reached by the rumor.
(iv) Finally, the seed is the set of all the individuals who know the rumor at the beginning

of its propagation.

Note that the aforementioned categories are not mutually disjoint. For example,
a sender is also a burned individual and a receiver may be also be an already burned
individual.

In this work, we focus our attention on the function F(t) that represents the fraction
of burned individuals at the time t ≥ 0. According to Equation (3) of [12] with a = 1 and
b = 0, it is defined as follows

F(t) =
C exp((1 + ε)t)− 1

C exp((1 + ε)t) + 2ε
1−ε

, t ≥ 0, (1)
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where C ≥ 1 and −1 < ε < 1. The positions performed in Equation (3) of [12] correspond
to consider the original time scale (a = 1) and take 0 as the time origin (b = 0). According
to the assumption specified in (i), from Equation (1), we have that the function F(t) is
monotone non-decreasing in t ≥ 0, and satisfies 0 ≤ F(t) ≤ 1 for all t ≥ 0.

Remark 1. From Equation (1), we have that the carrying capacity of the population, obtained as
limt→∞ F(t), is equal to 1. In other terms, the percentage of the population that will eventually be
informed about the rumor is unity.

Moreover, F(t) is the solution of the following differential equation

d
dt

F(t) = 2ε

(
1− ε

2ε
+ F(t)

)
(1− F(t)), t ≥ 0, (2)

with the initial condition due to Equation (1) for t = 0, i.e.,

F(0) =
C− 1

C + 2ε
1−ε

≥ 0. (3)

From the above formulas, we have that the parameter ε is involved both in the
differential Equation (2) and the initial condition (3), whereas the parameter C is only
linked to the initial size of the burned individuals F(0). Clearly, a large value of C, or ε
close to −1, correspond to a large initial size of burned individuals. Figure 1 illustrates the
behavior of F(0), which is decreasing in ε and increasing in C.

Figure 1. F(0) given in (3) as a function of ε and C.

The parameters ε ∈ (−1, 1) and C ≥ 1 allow obtaining different kinds of growth,
including the limit cases ε→ −1 and ε→ 1. Let us now examine some features.

Case no. 1: ε→ −1

If ε→ −1, then Equations (2) and (3) yield the differential problem
d
dt

F(t) = 2(1− F(t))2, t ≥ 0,

F(0) = 1

with trivial constant solution
F(t) = 1, t ≥ 0.

In this case, all the individuals already know the rumor since the beginning.

Case no. 2: ε→ 0
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When ε→ 0, from (2) and (3), we have
d
dt

F(t) = 1− F(t), t ≥ 0,

F(0) = C−1
C

so that
F(t) = 1− 1

C
e−t, t ≥ 0. (4)

In this case, the spread of the rumor among the individuals grows in an (increasingly
concave) exponential way.

Case no. 3: ε→ 1

If ε→ 1, then Equations (2) and (3) give the problem
d
dt

F(t) = 2(1− F(t))F(t), t ≥ 0,

F(0) = 0

which corresponds to the logistic model starting with a vanishing initial solution (for
instance, cf. Remark 2.1 of Albano et al. [35]). In this case, the solution is trivially

F(t) = 0, t ≥ 0,

so that, if no individuals know the rumor at the beginning, then it does not spread in the
population.

Case no. 4: C = 1

If C = 1 then F(0) = 0, so that no individuals know the rumor at the beginning.
However, in this case, Equation (1) is still a non-trivial function of t. Indeed, for ε ∈ (−1, 1),
the rumor can spread among the population, whereas when ε→ 1, the rumor cannot spread
anymore. Moreover, for C = 1, from Equations (2) and (3), we have d

dt F(t)
∣∣
t=0 = 1− ε, so

that, in this case, ε can be viewed as a reversed measure of the initial intensity of rumor
spreading.

In Figure 2, some plots of the function F(t) are provided for different choices of both
the parameters C and ε. The first frame, for C = 1, confirms the remarks stated in Case no.
4, in particular that the initial intensity of rumor spreading is decreasing for ε ∈ (−1, 1).
This behavior is exhibited also for C = 2, as shown in in the second frame of Figure 2,
where it is also evident that F(0) is decreasing in ε due to (3).

ϵ=-0.9

ϵ=-0.5

ϵ=-0.1

ϵ=0

ϵ=0.1

ϵ=0.5

ϵ=0.9

0.5 1.0 1.5 2.0 2.5 3.0
t

0.2

0.4

0.6

0.8

1.0

F(t)

ϵ=-0.9

ϵ=-0.5

ϵ=-0.1

ϵ=0

ϵ=0.1

ϵ=0.5

ϵ=0.9

0.5 1.0 1.5 2.0 2.5 3.0
t

0.2

0.4

0.6

0.8

1.0

F(t)

Figure 2. The function F(t) given in (1) for C = 1 (left) and C = 2 (right), for various choices of ε.

Concerning the complexity of the model, it is not hard to see that the function (1) is
O(g(t)), where g(t) = 1− 1

C e−t, t ≥ 0, corresponds to the growth function obtained in
Equation (4) in the limit as ε→ 0.
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Remark 2. It is worth noting that F(t) may be viewed as the distribution function of a random
variable, say B, having support [0,+∞), which describes the instant in which an individual
randomly chosen in the population is reached by the rumor. Clearly, due to (1) and (3), one has
that B is absolutely continuous if, and only if, C = 1, whereas for C > 1, it is a mixed random
variable, with an atom at 0 (corresponding to the individuals informed at time 0). The corresponding
mean E(B) represents the expected time in which a randomly chosen individual is reached by the
rumor, with

E(B) =
∫ +∞

0
P(B > t)dt =

∫ +∞

0
[1− F(t)]dt

=


1
2ε

log
(

1 +
2ε

C(1− ε)

)
, if ε ∈ (−1, 0) ∪ (0, 1),

1
C

, if ε = 0.

Note that E(B) is decreasing with respect to C; moreover, for C = 1, it is an even convex
function in ε. These comments are confirmed by Figure 3, which shows some plots of E(B).

C=1

C=2

C=3

C=4

-1.0 -0.5 0.5 1.0
ϵ

0.5

1.0

1.5

2.0

E(B)

ϵ=-0.7

ϵ=-0.2

ϵ=0

ϵ=0.2

ϵ=0.7

1.5 2.0 2.5 3.0 3.5 4.0
C

0.4

0.6

0.8

1.0

1.2

E(B)

Figure 3. The expected value E(B) for various choices of C (left) and ε (right).

2.1. A Different Formulation

It has been pointed out in various recent investigations on population dynamics
that problems concerning differential equations of the form (2) can, in some instances, be
expressed in a different way (cf. [3,6–8]). In this vein, the present section is devoted to the
determination of a different formulation of Equation (2), introducing a time-dependent
growth rate. In more detail, in our case, the function (1) can also be viewed as a solution of
the following differential equation

d
dt

F(t) = ξ(t)F(t), t ≥ 0, (5)

where the time-dependent growth rate ξ(t) has the following expression

ξ(t) =
Ce(1+ε)t(1 + ε)2

(Ce(1+ε)t − 1)(2ε + (1− ε)Ce(1+ε)t)
, t ≥ 0. (6)

We note that the growth rate (6) is decreasing in t ≥ 0; this implies that the intensity of
information spread gradually fades over time. Clearly, since the differential Equation (5) is
a reformulation of the same problem described by Equations (2) and (3), the solution F(t)
is still expressed by (1).

Let us now introduce the function

f (ε) :=
C(1− ε)(1 + ε)2

(C + 2ε− Cε)2 ≡
d
dt

F(t)
∣∣∣
t=0

= ξ(0)F(0). (7)
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This function can be viewed as the initial specific growth rate, since it describes the
slope of the tangent to che curve F(t) for t = 0. With respect to its behavior as a function of
ε ∈ (−1, 1), from (7), we have two cases:

(a) if C = 1, and, thus, F(0) = 0, then, f (ε) is linearly decreasing, being f (ε) = 1− ε; in
this case, even if the initial size of burned individuals is 0, the population of burned
individuals grows; such growth is more pronounced for small values of ε;

(b) if C > 1, and, thus, F(0) > 0, then, f (ε) is not monotonic; indeed, f (ε) is increasing
for ε ∈ (−1, εM) and is decreasing for ε ∈ (εM, 1), where

εM =


−1 + 2C−

√
C2 + 6C− 7

C− 2
, if C ∈ (1, 2) ∪ (2,+∞),

1
3

, if C = 2;

hence, at the beginning of the rumor propagation, the speed of the growth of burned
individuals is increasing for small values of ε and decreasing for larger ε. See Figure 4
for some instances of the function f (ε).

C=1

C=1.5

C=2

C=3

-1.0 -0.5 0.0 0.5 1.0
ϵ

0.2

0.4

0.6

0.8

1.0

1.2
f(ϵ)

Figure 4. The function f (ε), given in (7), for various choices of C.

2.2. The Inflection Point

Let us now focus on the inflection point of the function F(t). In the context of pop-
ulation dynamics, the analysis of the inflection time is of great interest, since this point
represents the instant at which the growth rate of the function is maximum. From (1), by
evaluating the second derivative of F(t), one obtains the following results. For −1 < ε ≤ 0,
the function F(t) has downward concavity for any t ≥ 0, whereas, if 0 < ε < 1, the curve
F(t) is sigmoidal with an inflection point at

tF =
1

1 + ε
log
(

2ε

C(1− ε)

)
. (8)

Note that tF ≥ 0 if, and only if, ε > C/(2 + C). In this case, the size of the population
at the inflection point tF is given by

F(tF) =
3
4
− 1

4ε
≥ 0.

As performed in similar studies, one can approximate the behavior of the curve in
proximity to the inflection point by the tangent line. With this aim, let us now compute the
maximum specific growth rate µ, which is defined as the slope of the tangent to the curve
F(t) at the inflection point tF. Hence, if ε > C/(2 + C), one has

µ :=
d
dt

F(t)
∣∣∣∣
t=tF

=
(1 + ε)2

8ε
,
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so that the line tangent to the curve F(t) at the inflection point has the following expression:

y =
1
8ε

[
(1 + ε)2t− 2(1− 3ε)− (1 + ε) log

(
2ε

C(1− ε)

)]
.

As a consequence, the lag time λ, which denotes the intercept with the t-axis of this
tangent, is given by

λ =
2(1− 3ε)

(1 + ε)2 +
1

1 + ε
log
(

2ε

C(1− ε)

)
.

We note that the lag time represents the initial time of an ideal growth curve, which
increases linearly at a constant rate given by the maximum specific growth rate and reaches
the same size of the original population at the inflection point. In Figure 5, we show the
function F(t) and the corresponding tangent at the inflection point tF for various choices of
the parameters.

**

�(�)

tangent

1 2 3 4 5
t

0.5

1.0

1.5

2.0

2.5

3.0

**

�(�)

tangent

1 2 3 4 5
t

0.5

1.0

1.5

2.0

2.5

Figure 5. The function F(t), with the line tangent to the curve at the inflection point for C = 2, ε = 0.6
(left) and ε = 0.8 (right). The inflection point is shown by the star.

2.3. Sensitivity Analysis

In this section, we analyze how the perturbations on the parameters C > 1 and
−1 < ε < 1 involved in the model influence the behaviour of F(t). In the following,
we denote this function by Fν to emphasize the dependence on a generic parameter ν.
Specifically, starting from Equation (1), we expand Fν+η in a Taylor series evaluated at ν,
with η > 0, for ν = C and ν = ε.

• Perturbation on C

FC+η − FC ≈ η
(1− ε2) e(1+ε)t[

2ε + (1− ε)Ce(1+ε)t
]2 .

The latter term is positive for all t ≥ 0.
• Perturbation on ε

Fε+η − Fε ≈ η
2− Ce(1+ε)t[2 + (ε2 − 1)t][

2ε + (1− ε)Ce(1+ε)t
]2 . (9)

The sign of the right-hand side of (9) is equal to that of the function

h(t) := 2− Ce(1+ε)t[2 + (ε2 − 1)t], t ≥ 0.

For C > 1, we have h(0) = 2(1− C) < 0, the first derivative h′(t) is negative for all
t > 0, and limt→+∞ h(t) = −∞; therefore, from the continuity of h, we have h(t) < 0
for all t ≥ 0. Hence, the right-hand side of (9) is negative for all t ≥ 0.

As an example, in Figure 6, we show the curve F(t) and the effect of the perturbation
η = 0.1 on the parameter C (on the left) and on ε (on the right).
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Figure 6. On the left, the curve F(t) for C = 1.1 (solid) and C = 1.2 (dashed), with ε = −0.5. On the
right, F(t) is plotted for ε = −0.5 (solid) and ε = −0.4 (dashed), with C = 1.1.

2.4. Threshold Crossing Time

In many real contexts, it is of interest to study the time spent by the growth function
below (or above) a specific threshold. Indeed, such a boundary may represent a critical
value related to the dynamics of the modeled population. Hence, in this section, we focus on
analysis of the first-crossing-time of the function F(t) through a specific constant boundary
representing a percentage p ∈ (0, 1) of the whole population. In more detail, we consider θ
defined as follows

θ = θ(p) := inf{t ≥ 0 : F(t) = p}. (10)

Hence, by recalling (1), the equation F(θ) = p yields

θ =
1

1 + ε
log
(

1− ε + 2pε

(1− ε)C(1− p)

)
= tF +

1
1 + ε

log
(

1− ε + 2pε

2ε(1− p)

)
,

where the last equality follows from (8). By Equation (1), we have that F(t) is a continuous
function. Hence, due to Remark 1, the existence of θ is guaranteed if p is larger than the
initial proportion of burned individuals. Indeed, recalling (3), it follows that θ > 0 if, and
only if,

p > F(0) ≡ C− 1
C + 2ε

1−ε

≥ 0,

and θ > tF if, and only if, p > 3ε−1
4ε . In Figure 7, the first-crossing-time θ is shown for

different choices of the parameters. Note that θ is increasing both with respect to p and ε,
with limp→1 θ(p) = +∞ and limε→1 θ(p) = +∞.
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Figure 7. The first-crossing-time θ as a function of p for (left) C = 2, (right) C = 3.
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The determination of θ(p) deserves attention since it represents the time required for
the information to reach the percentage p of the population. In this respect, it is useful to
investigate some cases for given choices of p. Due to (10), one has

θ(p2)− θ(p1) =
1

1 + ε
log

(1− p1)(1− ε + 2p2ε)

(1− p2)(1− ε + 2p1ε)
,

so that, for instance,
θ(3/4)− θ(1/2)
θ(1/2)− θ(1/4)

=
log(2 + ε)

log(3/(2− ε))
> 1.

This implies that, whatever the value of ε, the time required for increasing the informed
percentage from 1/2 to 3/4 is greater to that required for increasing the same from 1/4
to 1/2.

Remark 3. We recall that the growth function F(t), given in (1), represents the fraction of burned
individuals in the population. Hence, assuming that the population size is N > 1, due to (1), the
function

F̃(t) := N · F(t) = N · C exp((1 + ε)t)− 1
C exp((1 + ε)t) + 2ε

1−ε

, t ≥ 0, (11)

with C ≥ 1 and −1 < ε < 1, denotes the (approximated) total number of burned individuals at
time t. Making use of Equation (5), it is easy to see that the function F̃(t) satisfies the following
Malthusian-type equation:

d
dt

F̃(t) = ξ(t)F̃(t), t ≥ 0, F̃(0) = N · F(0), (12)

where ξ(t) is given in (6). Due to (11), the main difference between F(t) and F̃(t) lays in the
carrying capacity. Indeed, the carrying capacity for F(t) is 1, whereas the carrying capacity for F̃(t)
is equal to the population size N. Since N can be quite large, this will allow us to consider stochastic
processes with infinite state-space as a stochastic counterpart of the considered growth model, as
specified in Sections 3 and 4 below.

3. A Special Time-Inhomogeneous Linear Pure Birth Process

The introduction of stochasticity in growth equations can be performed in several
ways. A classical approach in this framework is based on the variation of one or more
parameters in the given model (see, for instance, the review article by Karim et al. [36] on
logistic growth equations). However, the need for data-driven and applicable models in
stochastic growth equations implies the criteria leading to stochastic processes whose mean
value is identical to the underlying growth curve. Hence, aiming to introduce a stochastic
counterpart of the model considered in (11), with F(t) given in (1), we focus on a description
of a continuous-time Markov chain having a countable state-space. The latter assumption
is justified by the fact that the size of the population considered in Remark 3 may be large;
consequently, the carrying capacity of F̃(t) may be large as well. For this reason, we refer
to the growth function F̃(t) rather than F(t). Moreover, in order to describe the effect
of environmental perturbations that lead to fluctuations in the experimentally observed
growth curves, hereafter, we introduce a suitable point process whose mean exhibits the
same behavior shown by F̃(t). This approach has been followed in similar growth schemes.
However, in contrast to cases in which the sample-paths of the relevant processes follow
skip-free behavior (as seen e.g., in Section 4 of [6], Section 3 of [3], Section 5 of [5] and
Sections 4 and 5 of [7]), we consider a process having non-decreasing sample-paths, so
that the analogy with the strictly increasing function F̃(t) is more tight. Specifically, we
refer to an inhomogeneous linear pure birth process {M(t); t ≥ 0} having state space
S := {y, y + 1, y + 2, . . . }, for a fixed y ∈ N, with birth rates
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λn(t) := lim
h→0+

1
h
P[M(t + h) = n + 1|M(t) = n] = nλ(t), n ∈ S. (13)

Here, λ(t) is a positive function, integrable on any interval (0, t) for t > 0, that
represents the individual birth rate. The probability of a single birth during an infinitesimal
time-interval after time t is proportional to the current size of the population and to the
time-dependent rate λ(t) representing the individual birth rate at time t. In this context,
M(t) describes the number of burned individuals, i.e., the number of individuals reached
by the rumor within [0, t], and the births correspond to the individual burnings.

The transition probabilities of M(t) are given by (see [1])

Py,x(t) = P[M(t) = x|M(0) = y] =
(

x− 1
y− 1

)
e−yΛ(t)

(
1− e−Λ(t)

)x−y
, t ≥ 0, x ∈ S, (14)

where

Λ(t) :=
∫ t

0
λ(s)ds, t ≥ 0 (15)

is the individual cumulative birth rate over [0, t]. In this case, the probability generating
function has the following expression (see [1]), for any 0 ≤ z ≤ 1 and t ≥ 0,

G(z, t) =
+∞

∑
x=0

Pyx(t)zx =
{

1− (z− 1)[(z− 1)φ(t)− ψ(t)]−1
}y

, (16)

where

ψ(t) := exp
(
−
∫ t

0
λ(τ)dτ

)
, φ(t) :=

∫ t

0
λ(τ)ψ(τ)dτ, t ≥ 0. (17)

We note that ψ(t) and φ(t) are two auxiliary functions which allow expression of the
probability generating function G(z, t) in a more compact manner. Thanks to Equation (16),
it is possible to show that

Ey(t) := E[M(t)|M(0) = y] =
y

ψ(t)
,

Vary(t) := Var[M(t)|M(0) = y] = y
ψ(t) + 2φ(t)− 1

ψ2(t)
,

(18)

for t ≥ 0. The following proposition provides a necessary and sufficient condition so that
the conditional mean of the process M(t) equals the growth curve F̃(t) specified in (11).

Proposition 1. The linear birth process M(t) with transition rates specified in Equation (13) and
initial value M(0) = y, has a conditional mean

Ey(t) = F̃(t), t ≥ 0

if, and only if,
λ(t) = ξ(t), t ≥ 0 (19)

where ξ(t) is given in (6) for

C =
2εy + N − Nε

(1− ε)(N − y)
≥ 1, (20)

with N ∈ S \ {y}.

Proof. The result follows immediately considering that Ey(t) satisfies the differential
equation

d
dt

Ey(t) = λ(t)Ey(t), t ≥ 0,
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with Ey(0) = y, and recalling Equation (12).

With reference to Equation (11), we recall that N represents the size of the carrying
capacity, i.e., the total number of individuals that will eventually be reached by the rumor,
and y is the number of individuals who know the rumor at the beginning of the spread, i.e.,
at t = 0, with y < N. Instead, considering the linear birth process M(t) with birth rates
specified in Equation (13), we note that N represents the mean total number of individuals
eventually reached by the rumor, i.e., limt→+∞ Ey(t) = N, and y = M(0) is the initial state
of the process M(t). Note that, differently from the deterministic growth model whose
initial state (3) may be equal to 0, for the stochastic process M(t), we have M(0) = y > 0.

In the following, we assume that the individual birth rate is fixed as specified in
Equation (19). In this special case, λ(t) is a decreasing and convex function that approaches
0 as t→ +∞, as shown in Figure 8. Hence, due to (15), the function Λ(t) can be expressed
as follows:

Λ(t) = log

N
[
(e(1+ε)t − 1)(ε− 1)N + y(ε− 1− 2εe(1+ε)t)

]
y
[
2ε(y− N) + e(1+ε)t((ε− 1)N − 2εy)

]
, t ≥ 0. (21)

Clearly, due to (14), Equation (21) allows expression of the transition probabilities
of M(t) in a closed form under the conditions specified in Proposition 1. Moreover, the
function Λ(t) has a finite limit when t→ +∞, i.e.,

lim
t→+∞

Λ(t) = log
N
y

.

This can be used in Equation (14) in order to obtain the asymptotic probabilities of
M(t), i.e., limt→+∞ Py,x(t). In Figure 9, we provide some plots of the probability Py,x(t)
obtained by means of Equation (14).
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Figure 8. The individual birth rate λ(t) as in Equation (19) for N = 5, (left) y = 1 and (right) y = 3.
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Figure 9. The transition probabilities Py,x(t) with the individual birth rate λ(t) given in Equation (19),
N = 5, (left) ε = 0.3, y = 1, x = 2, 3, 4, 5 (from top to bottom), (right) ε = −0.5, y = 2, x = 3, 4, 5
(from top to bottom).
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The functions φ(t) and ψ(t) are available in closed form thanks to Equation (17). This
allows us to obtain an explicit expression for the conditional variance of X(t), as shown in
the following proposition.

Proposition 2. The linear birth process M(t) with transition rates (13) and with individual birth
rate (19), with ξ(t) and C given, respectively, in (6) and (20), has conditional variance given by

Vary(t) =
(e(1+ε)t − 1)N(N − y)

y
(
2ε(N − y) + e(1+ε)t(N − εN + 2εy)

)2

×
[
(N(ε− 1)− 2εy)

(
e(1+ε)t − 1

)
(ε− 1)N + y(−1 + ε− 2εe(1+ε)t)

]
, t ≥ 0.

Proof. Determining ψ(t) and φ(t) by means of (17), the result, thus, follows from
Equation (18) after some calculations.

Various plots of the conditional variance Vary(t) are given in Figure 10.
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Figure 10. The conditional variance Vary(t) with λ(t) given in Equation (19), N = 5, (left) y = 1,
(right) y = 3.

Under the assumptions of Proposition 2, it is worth noting that the variance has a
finite limit for t→ +∞; indeed,

lim
t→+∞

Vary(t) =
N(N − y)

y
.

Since the conditional variance Vary(t) has a finite limit as t→ +∞, the corresponding
conditional mean Ey(t) is a significant index for the description of the birth process. Then,
this property is found for other related quantities. Indeed, it is possible to obtain explicit
expressions also for some indexes of dispersion for M(t), such as the Fano factor and the
coefficient of variation. In particular, when the conditions of Proposition 2 are satisfied, the
Fano factor is given by

Dy(t) :=
Vary(t)
Ey(t)

=
N − y

y
[
1 + (1+ε)N

(e(1+ε)t−1)(N−εN+2εy)

] , t ≥ 0. (22)

It is easy to show that Dy(t) is increasing with respect to t; its initial value is given by
Dy(0) = 0 and

lim
t→+∞

Dy(t) =
N
y
− 1 > 0.

Hence, we have that

(i) if y > N/2, then the pure birth process M(t) is underdispersed, i.e., Dy(t) < 1 for any
t ≥ 0,
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(ii) if y < N/2, then the pure birth process M(t) is underdispersed for t < t̃ with

t̃ :=
1

1 + ε
log
(

(1 + ε)Ny
(N(1− ε) + 2εy)(N − 2y)

+ 1
)

,

and M(t) is overdispersed for t > t̃.

In Figure 11, some plots of the Fano factor are provided. Moreover, if the condition

given in Proposition 2 is fulfilled, then the coefficient of variation CVy(t) :=
√

Vary(t)/Ey(t)
can be obtained in closed form for any t ≥ 0. However, we omit the expression for brevity.
Clearly, one has CVy(0) = 0. Moreover, the following limit holds

lim
t→+∞

CVy(t) =

√
N − y

Ny
> 0.

Some plots of the coefficient of variation CVy(t) are provided in Figure 12.

ϵ=-0.9

ϵ=-0.5

ϵ=-0.1

ϵ=0.1

ϵ=0.5

ϵ=0.9

1 2 3 4 5 6 7
t

1

2

3

4

Dy (t)

ϵ=-0.9

ϵ=-0.5

ϵ=-0.1

ϵ=0.1

ϵ=0.5

ϵ=0.9

1 2 3 4 5 6 7
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Dy (t)

Figure 11. The Fano factor (22) with λ(t) given in Equation (19), N = 5, (left) y = 1, (right) y = 3.
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Figure 12. The coefficient of variation CVy(t) with the birth rate λ(t) given in Equation (19), N = 5,
(left) y = 1, (right) y = 3.

Note that the conditional variance Vary(t), the Fano factor Dy(t), and the coefficient of
variation CVy(t) are all increasing in t, and, for large times, they are increasing also with
respect to ε. Hence, for large t and for an increasing number of initial burned individuals,
the considered variability indexes attain large values. Finally, even though the expressions
of the indexes obtained so far are quite cumbersome, it is worth noting that they are
available in useful closed forms.

First-Passage-Time Problem

By analogy with the threshold crossing time problem considered in Section 2.4, in
this section, we refer to the first-passage-time problem of the process M(t). Considering
the initial state M(0) = y ∈ N, we fix a threshold k ∈ N with k > y. Consequently, the
first-passage time of the process X(t) through the boundary k is defined as follows

Ty,k := inf{t ≥ 0 : M(t) = k}, M(0) = y. (23)
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Thus, Ty,k represents the first (random) instant in which k individuals are reached by
the rumor, when the initial number of informed ones is y > 0. The probability density
function of Ty,k is denoted by gy,k(t). Since the sample paths of the pure birth process M(t)
are non-decreasing over the state space S, it is easy to show that, for t > 0,

gy,k(t) = (k− 1)λ(t)Py,k−1(t) = (k− 1)λ(t)
(

k− 2
y− 1

)
e−yΛ(t)

(
1− e−Λ(t)

)k−1−y
, (24)

with k > y, λ(t) defined in Equation (19) and Λ(t) given in Equation (15). In general, the
first-passage time (23) is finite w.p. less than unity. However, from (24), we have

lim
N→+∞

P(Ty,k < +∞) = lim
N→+∞

∫ +∞

0
gy,k(t)dt = 1.

This is in accordance with the fact that the pure birth process with a countable state
space is a suitable stochastic counterpart of the growth function F̃(t) when the population
size N of the model (1) is large.

Moreover, we have that Py,k−1(0) = 0, for k− 1 6= y. Hence, due to Equations (19) and
(24), the initial value of the first-passage-time probability density function is given by

lim
t→0

gy,k(t) =

y λ(0) = y
C(1 + ε)2

(C− 1)(2ε + (1− ε)C)
, if k = y + 1

0, if k > y + 1.

Let I denote the indicator function. Some plots of the expected value ηy,k := E(Ty,k ·
I(Ty,k < +∞)) are given in Figure 13 for different values of the parameters. In this case,
such an expectation is non-monotonic with respect to k, being increasing (decreasing) for
small (large) values of k. Moreover, it is monotonic increasing with respect to ε for small
values of k.
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Figure 13. The expected value of the first passage time Ty,k for y = 2, (left) N = 50 and (right)
N = 100.

The discrete process considered in this section provides a suitable proposal for de-
scribing the growth of rumor spreads, thanks to the results of Proposition 1. However,
when the population size N is very large, the information concerning the process M(t) is
not very manageable, so that the adoption of an alternative process is recommended. For
instance, it is appropriate to consider a stochastic process with continuous state-space that,
as seen for M(t), possesses a mean which is identical to the growth curve. For this reason,
in the following section, we focus on a diffusion process that will constitute an alternative
tractable model for the description of the rumor spreads.
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4. A Special Lognormal Diffusion Process

Let us consider a non-homogeneous diffusion process {X(t); t ≥ 0}, with state-space
R+ and infinitesimal moments

A1(x, t) = ξ(t)x, A2(x) = σ2x2, t ≥ 0, x ∈ R+, (25)

where ξ(t) is defined in Equation (6), and σ > 0. The statistical properties of X(t), in-
cluding the infiniteness of its state-space, make it an ideal candidate for the description
of growth phenomena in the presence of high environmental variability, in agreement
with Remark 3. In addition, we note that the considered non-homogeneous diffusion
process can be regarded as a diffusive approximation of a special birth–death process with
quadratic transition rates (see Section 5.2 of [7]). With reference to (25), note that X(t) is
a lognormal diffusion process with a time-dependent drift, and it is the solution of the
following stochastic differential equation

dX(t) = ξ(t)X(t)dt + σX(t)dW(t), t > 0, X(0) = X0,

where W(t), t ≥ 0, is a standard Wiener process independent from the initial condition
X(0) = X0. By means of Itô’s formula, the resulting process can be expressed as follows

X(t) = X0 exp
(
Ξ(0, t) + σW(t)

)
, t ≥ 0, (26)

where, for ξ(t) defined in (6), for t ≥ s, one has

Ξ(s, t) : =
∫ t

s
ξ(τ)dτ − σ2

2
(t− s)

= log

(
2ε− Ce(1+ε)s(ε− 1)

1− Ce(1+ε)s

)
− log

(
2ε− Ce(1+ε)t(ε− 1)

1− Ce(1+ε)t

)
− σ2

2
(t− s).

(27)

In both cases, if X0 has a lognormal distribution Λ1
(
µ0, σ2

0
)
, or if P(X0 = x0) = 1,

then, the random vector (X(t1), . . . , X(tn))T has an n-dimensional lognormal distribution
Λn(~ε, Σ), where~ε = (ε1, . . . , εn)T ∈ Rn and Σ =

(
σi,j
)

i,j ∈ Rn×n with

εi = µ0 + Ξ(0, ti), σij = σ2
0 + σ2 min(ti, tj), i, j = 1, . . . , n.

From the joint probability density function of (X(t1), . . . , X(tn))T , it is possible to
obtain the transition probability density function of X(t) given X(s) = y, for 0 ≤ s < t. In
more detail, for x, y ∈ R+ and 0 ≤ s < t, one has

f (x, t|y, s) :=
d
dt

P(X(t) ≤ x|X(s) = y)

=
1

x
√

2πσ2(t− s)
exp

(
− (log(x/y)− Ξ(s, t))2

2σ2(t− s)

)
,

(28)

where Ξ(s, t) is defined in Equation (27). It is easy to note that [X(t)|X(s) = y] follows a
lognormal distribution with parameters log y + Ξ(s, t) and σ2(t− s), i.e.,

[X(t)|X(s) = y] ∼ Λ1

(
log y + Ξ(s, t), σ2(t− s)

)
, s < t.

Since the conditional distribution of X(t) is available in closed form, it is possible
to obtain some of the most relevant characteristics of this process, as shown below. The
conditional n-th moment of the process X(t) given X(s) = y ∈ R+ for 0 ≤ s < t is
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E(X(t)n|X(s) = y) = yn


(

2ε− Ce(1+ε)s(ε− 1)
)
(1− Ce(1+ε)t)(

2ε− Ce(1+ε)t(ε− 1)
)
(1− Ce(1+ε)s)

n

exp
(

n(n− 1)
2

σ2(t− s)
)

, (29)

for any n ∈ N. Consequently, the unconditional n-th moment of the process X(t), t ≥ 0,
can be expressed as follows

E(X(t)n) = (E(X0))
n

(
(2ε− C(ε− 1))(1− Ce(1+ε)t)(
2ε− Ce(1+ε)t(ε− 1)

)
(1− C)

)n

exp
(

n(n− 1)σ2t
2

)
(30)

for any n ∈ N. From Equations (29) and (30), one can obtain the expression of the condi-
tional and the unconditional expected value of the process X(t), i.e.,

E(X(t)|X(s) = y) = y

(
2ε− Ce(1+ε)s(ε− 1)

)
(1− Ce(1+ε)t)(

2ε− Ce(1+ε)t(ε− 1)
)
(1− Ce(1+ε)s)

, t ≥ s, (31)

and

E(X(t)) = E(X0)
(2ε− C(ε− 1))(1− Ce(1+ε)t)(
2ε− Ce(1+ε)t(ε− 1)

)
(1− C)

, t ≥ 0, (32)

respectively. Note that both the conditional mean (31) and the unconditional mean (32) have
the same form of the function F̃(t) given in Equation (11), with C defined in Equation (20).
Hence, the lognormal diffusion process X(t), introduced in Equation (26), as the pure
birth process considered in Section 3, has the conditional mean and the unconditional
mean identical to the corresponding deterministic function F̃(t). This allows the process
X(t) to describe a continuous-time rumor spread subject to random fluctuations included
in the infinitesimal variance A2(x) given in Equation (25). In this way, the mean of the
process corresponds to the growth function F̃(t), but the sample paths of X(t) are not
strictly increasing. This instance is suitable to model real situations in which the diffusion
of the rumor may endure abrupt slowdowns or accelerations over the time due to rough
environmental perturbations.

Moreover, the conditional mode of the process X(t) given X(s) = y, for t ≥ s ≥ 0 is
given by

Mo(X(t)|X(s) = y) = y

(
2ε− Ce(1+ε)s(ε− 1)

)
(1− Ce(1+ε)t)(

2ε− Ce(1+ε)t(ε− 1)
)
(1− Ce(1+ε)s)

· exp
(
−σ2(t− s)

)
,

whereas the unconditional mode is

Mo(X(t)) = eµ0
(2ε− C(ε− 1))(1− Ce(1+ε)t)(
2ε− Ce(1+ε)t(ε− 1)

)
(1− C)

· exp
(
−σ2

0 − σ2t
)

, t ≥ 0.

The α-quantiles of the process X(t) can also be determined. In more detail, the
conditional α-quantile for t ≥ s ≥ 0 is given by

Cα(X(t)|X(s) = y) = y

(
2ε− Ce(1+ε)s(ε− 1)

)
(1− Ce(1+ε)t)(

2ε− Ce(1+ε)t(ε− 1)
)
(1− Ce(1+ε)s)

· exp
(

zα

√
σ2(t− s)

)
,

and the unconditional α-quantile is

Cα(X(t)) = eµ0
(2ε− C(ε− 1))(1− Ce(1+ε)t)(
2ε− Ce(1+ε)t(ε− 1)

)
(1− C)

· exp
(

zα

√
σ2

0 + σ2t
)

, t ≥ 0,
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where zα denotes the α-quantile of a standard normal random variable. In Figure 14, we
provide some plots of the conditional expected value, of the conditional variance, of the
conditional mode, and of the conditional coefficient of variation of X(t) given X(s) = y.
Note that the variance and the coefficient of variation are increasing with respect to t.
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Figure 14. (Top-left) The conditional mean E(X(t)|X(s) = y), (top-right) the conditional variance
Var(X(t)|X(s) = y), (bottom-left) the conditional mode Mo(X(t)|X(s) = y) and (bottom-right) the
conditional coefficient of variation CV(X(t)|X(s) = y), for s = 0, y = 1, C = 10, σ2 = 0.25 and
different choices of ε.

4.1. First-Passage-Time Problem

This section is devoted to the study of the first-passage-time (FPT) of the diffusion
process X(t), defined in Equation (26), through special time-dependent boundaries. The
relevance of the FPT problem for diffusion processes modeling growth phenomena is
well-known in the literature. In this framework, for brevity, we limit ourselves to recalling
the recent results obtained in this area in Albano et al. [37], where the FPT problem is faced
for two stochastic forms of a general growth model in the presence of time-varying single
or paired barriers.

Considering a continuous positive function S(t), t ≥ 0, by analogy with Ty,k in (23),
the FPT of the process X(t) through the boundary S(t) > 0 conditional on the initial state
x0 is defined as

Tx0 :=

{
inf{t ≥ t0 : X(t) > S(t)|X(t0) = x0}, x0 < S(t0)

inf{t ≥ t0 : X(t) < S(t)|X(t0) = x0}, x0 > S(t0).

Let us denote by g(S(t), t|x0, t0) the probability density function of Tx0 . Determining
an explicit expression for the density g(S(t), t|x0, t0) is, in general, a hard task, since the
function g(S(t), t|x0, t0) is the solution of a Volterra integral equation (see for example
Gutiérrez et al. [38]). However, it can be expressed in a closed form by considering special
choices of the threshold S(t). In more detail, by considering the results given in [38], if

S(t) = eA+Bt 2ε + Ce(1+ε)t(1− ε)

Ce(1+ε)t − 1
, t ≥ 0, (33)
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with A, B ∈ R, then the FPT density is expressed in terms of the transition probability
density function of X(t), given in (28), i.e.,

g(S(t), t|x0, t0) = f (S(t), t|x0, t0)S(t)

∣∣∣log x0
S(t0)

∣∣∣
t− t0

=

∣∣∣log x0
S(t0)

∣∣∣√
2πσ2(t− t0)3

exp

−
(

log S(t)
x0
− Ξ(t0, t)

)2

2σ2(t− t0)

, t ≥ t0 ≥ 0,

(34)

where S(t0) 6= x0 and Ξ(s, t) are defined in Equation (27). Some examples of the threshold
(33) and the density g(S(t), t|x0, t0) given in (34) are plotted in Figure 15.
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Figure 15. (Left) The boundary S(t) and (right) the corresponding probability density function
g(S(t), t|x0, t0) for A = 1, B = 0.5, C = 10, σ2 = 0.25, t0 = 0, N = 1000 and different choices of ε.

4.2. Comparison between the Stochastic Growth Models

We note that the birth process and the diffusion process studied, respectively, in
Sections 3 and 4, share the same mean. Hence, both processes are suitable to describe ‘ran-
domized’ growth pertaining to the spread of a rumor among the members of a population.
Consequently, it is appropriate to perform a comparison between the variances of the two
processes in order to investigate their variability. To this end, we take into account the
following ratio, for any t ≥ 0

r(t) :=
Var(X(t)|X(0) = y)

Vary(t)

=
(eσ2t − 1)(ε− 1)2Ny3

(
2ε(y− N) + e(1+ε)t((ε− 1)N − 2εy)

)2

(e(1+ε)t − 1)(N − y)((ε− 1)N − 2εy)(−2N + y + εy)2

× 1(
(e(1+ε)t − 1)(ε− 1)N + (ε− 1− 2e(1+ε)tε)y

)(
2ε(y− N) + e(1+ε)t(N(1 + ε)− 2εy)2

) ,

(35)

where Var(X(t)|X(0) = y) is the conditional variance of the diffusion process (26) and
Vary(t) is the conditional variance of the birth process introduced in Section 3. As can be
deduced from Figure 16, for large values of t, the ratio r(t) is greater than 1. Hence, in
the presence of the same parameters and the same initial values, the variance of the birth
process, with birth rate λ(t) given in Equation (19), is smaller than the variance of the
lognormal diffusion process with infinitesimal moments (25). This leads to the conclusion
that the considered birth process has less variability in the modeling of the rumor spreads.
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Figure 16. The ratio r(t) given in (35) for σ2 = 0.25, N = 10, y = 2 and different choices of ε.

5. Conclusions

The study of fake news propagation has become crucial, especially with reference to
online social networks,where control mechanisms are very difficult to implement. Several
attempts have been made to provide manageable functions describing the time evolution
of rumor spread. We started by considering the model introduced by San Martìn et al. [12]
and we studied it from a deterministic point of view. Then, we analyzed the behavior
of the curve by making different choices of the parameters, showing the flexibility of the
proposed model. The stochastic counterparts of the growth function were also considered.
In detail, we introduced a time non-homogeneous linear pure birth process and a lognormal
diffusion process with time-dependent drift. We analyzed the conditions under which the
means of such processes correspond to the deterministic growth curve. The first-passage-
time problem was also addressed. Furthermore, in order to analyze the variability of the
processes, we performed a comparison between their variances, noting that, for large times,
the variance of the birth process was smaller than the variance of the diffusion process.

In Remark 1, it was pointed out that the carrying capacity of the model (1) is unity.
This can be viewed, in a sense, as a limitation of the growth model since, in various contexts,
only a fraction of the population is eventually informed by the news. However, this feature
makes the model particularly appropriate for describing the diffusion of news in closed
communities or in restricted environments, for example, in homogeneous groups in social
networks, where it is expected that all members will be reached by the rumor.

This study should be viewed as a first step to the construction of stochastic generaliza-
tion of growth models for the spreading of fake news. Clearly, the present study can be
improved in the future. For instance, it will be useful to adopt stochastic schemes similar to
epidemiological models, such as SIR or SIS models, to describe not only the evolution of
spreaders, but also of the other components of the population. Moreover, the investigation
should be extended along the following lines:

(a) application of the considered models to real data for prediction purposes;
(b) new growth models for the percentage of burned, i.e., informed individuals, based on

suitable compartmental models;
(c) new stochastic processes finalized to describe the diffusion of rumors subject to

randomness;
(d) constructing more general birth–death processes to model the spread of rumors also

in the presence of individuals prone to forgetting the rumors;
(e) adopting AI-based strategies for detecting disinformation and fake news.

The above sketched proposals can be the subject of future research.
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