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Abstract: Using the notions of clique partitions and edge clique covers of graphs, we consider
the corresponding incidence structures. This connection furnishes lower bounds on the negative
eigenvalues and their multiplicities associated with the adjacency matrix, bounds on the incidence
energy, and on the signless Laplacian energy for graphs. For the more general and well-studied set
S(G) of all real symmetric matrices associated with a graph G, we apply an extended version of an
incidence matrix tied to an edge clique cover to establish several classes of graphs that allow two
distinct eigenvalues.
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1. Introduction

Let G = (V, E) be a simple undirected graph with n vertices and m edges. A clique in
G is a subset C ⊆ V such that all vertices in C are pairwise adjacent. An edge clique cover
F of G is a set of cliques F = {C1, C2, . . . , Ck} that together contain each edge of G at least
once. The smallest size of an edge clique cover of G is called the edge clique cover number of
G and is denoted by cc(G). An edge clique cover of G with size cc(G) is called a minimum
edge clique cover of G. A special case of an edge clique cover in which every edge belongs to
exactly one clique is called a clique partition of G. The size of the smallest clique partition
of G is called the clique partition number of G, and is denoted by cp(G). A clique partition
of G with size cp(G) is referred to as a minimum clique partition of G. It is clear that both
cc(G) and cp(G) exist as E forms a clique partition (and hence an edge clique cover) of G.
Further, note that any minimum clique partition does not contain any cliques of order one,
and, by convention, the clique partition number of the empty graph is defined to be zero.
Information concerning clique partitions and edge clique covers of a graph can be found in
the works [1–4].

Before defining the various matrices associated with a graph, we make note of standard
matrix notations: In denotes the n × n identity matrix; O denotes the zero matrix (size
determined by context); J denotes the all ones matrix (size determined by context); and 1I
denotes the all ones vector (size determined by context).

Given a graph G with V = {1, 2, . . . , n} and E = {e1, e2, . . . , em}, the (vertex-edge)
incidence matrix M of G is the n×m matrix defined as follows: the rows and the columns
of M are indexed by V and E, respectively, and the (i, j)-entry of M is 0 if i 6∈ ej and 1
otherwise. Similarly, the adjacency matrix A = A(G) = (aij) is a (0, 1)-matrix of G such
that aij = 1 if ij ∈ E(G) and 0 otherwise. It is well known that [5]

MMT = Q(G), and MT M = A(LG) + 2Im, (1)
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where D(G) = (dij) is the diagonal matrix of vertex degrees (di,i = deg(i) := di, i =
1, 2, . . . , n) and the matrix Q(G) = D(G) +A(G) is known as the signless Laplacian matrix of
the graph G; the line graph, LG, of the graph G is the graph whose vertex set is in one-to-one
correspondence with the set of edges of G, where two vertices of LG are adjacent if and
only if the corresponding edges in G have a vertex in common [6]. Finally, the equations
in (1) imply an important spectral relation between the signless Laplacian matrix Q(G) and
A(LG), see Lemma 6.

As we are also interested in studying more general symmetric matrices associated
with a graph on n vertices, we let S(G) denote the collection of real symmetric matrices
A = (aij) such that for i 6= j, aij 6= 0 if and only if ij ∈ E(G). The main diagonal entries
of any such A in S(G) are not constrained. Observe that for any graph G, both Q(G) and
A(G) belong to S(G).

We denote the spectrum of A, i.e., the multiset of eigenvalues of A, by Spec(A).

In particular, Spec(A) = {λ[m1]
1 , λ

[m2]
2 , . . . , λ

[mq ]
q }, where the distinct eigenvalues of A are

given by λ1 < λ2 < · · · < λq with corresponding multiplicities of these eigenvalues are
m1, m2, . . . , mq, respectively. Further, we consider the ordered multiplicity list of A as the

sequence m(A) = (m1, m2, . . . , mq). For brevity, a simple eigenvalue λ
[1]
k is simply denoted

by λk.
With respect to the set S(G), the parameter q(G) is defined by q(G) = min{q(A) :

A ∈ S(G)}, where q(A) is the number of distinct eigenvalues of A (see [7,8]). The number
q(G) is known as the minimum number of distinct eigenvalues of the graph G. The class of
matrices S(G) has been of recent interest (see [9–11] and the references therein), and there
has been considerable development on the inverse eigenvalue problem for graphs (see [12])
which continues to receive considerable and deserved attention, as it remains one of the
most interesting unresolved issues in combinatorial matrix theory.

Using the notions of clique partitions and edge clique covers of a graph we generalize
the conventional vertex-edge incidence matrix M by considering an incidence matrix called
the vertex-clique incidence matrix of a graph. Eigenvalues of graphs and clique partitions
have arisen previously, see, for example, the works [13,14], and for other types of graph
decompositions see [15]. Suppose F = {C1, C2, . . . , Ck} is an edge clique cover of a graph
G with V = {1, 2, . . . , n}. The vertex-clique incidence matrix MF of G associated with
the edge clique cover F is defined as follows: the (i, j)-entry of MF is real and nonzero
if and only if the vertex i belongs to the clique Cj ∈ F. In the particular case when F is
actually a clique partition, the vertex-clique incidence matrix is denoted byMF, and the
(i, j)-entry ofMF is equal to one if and only if the vertex i belongs to the clique Cj ∈ F.
We observe that for any graph G, the vertex-clique incidence matrix corresponding to a
clique partition F preserves several main properties of its vertex-edge incidence matrix. For
instance, in Section 3,MFMT

F = DF +A, where DF = diag(tF
1 , tF

2 , . . . , tF
n), where tF

i is the
number of cliques in F containing the vertex i (this parameter is discussed in more detail in
Section 3). Note that for each i, tF

i ≤ di. This fact enables us to determine lower bounds for
the negative eigenvalues of the graph.

This paper is organized as follows. In Section 2, we provide the necessary notions,
notations, and known results that are needed in the sections containing our main observa-
tions. In Section 3, using the notion of a clique partition F of a graph G, we define a signless
Laplacian matrix of the graph G associated with the clique partition F. A graph PG is
introduced as a generalization for the line graph of G. In Section 3.1, applying this theory of
a vertex-clique incidence matrix, we produce lower bounds for the negative eigenvalues of
the graph. Moreover, we present lower bounds for the negative inertia ν−(G) of a graph G
in terms of its order n and the rank of its vertex-clique incidence matrix. We also provide a
sufficient condition under which the well-known inequality ν−(G) ≤ n− α(G) holds with
equality, where α(G) is the independence number of G. In Section 3.2, we introduce graph
energies associated with a clique partition F of the graph G and study several associated
properties. Moreover, upper bounds for the energies of the graph G and its clique partition
graph and line graph are determined. In Section 4, studies on the vertex-clique incidence



Mathematics 2023, 11, 3595 3 of 26

matrix of a graph associated with an edge clique cover lead to a derivation of some new
classes of graphs with q(G) = 2 (see also Section 4.1).

2. Notations and Preliminaries

In this section, we provide known notions, notations, and results that are used later in
this work.

We begin by introducing the notion of the eigenvalues of a graph. The eigenvalues
λ1, λ2, . . . , λn of the adjacency matrixA(G) (or shortened toAwhen reference to the graph
G is clear from context) of the graph G are also called the eigenvalues of G. The number of
positive (negative) eigenvalues in the spectrum of the graph G is called the positive (negative)
inertia of the graph G, and is denoted by ν+(G) (ν−(G)). The energy of the graph G is
defined as

E(G) =
n

∑
i=1
|λi| . (2)

Further details on various properties of graph energy can be found in [16–20]. Suppose
q1, q2, . . . , qn be the eigenvalues of the matrix Q(G). Then, the signless Laplacian energy of
the graph G is defined as

LE+ = LE+(G) =
n

∑
i=1

∣∣qi −
2m
n
∣∣. (3)

More information on properties of the signless Laplacian energy can be found in [21],
and the energy of a line graph and its relations with other graph energies are studied
in [22,23].

A subgraph H of a graph G is a graph whose vertex set and edge set are subsets of
those of G. If H is a subgraph of G, then G is said to be a supergraph of H. The subgraph
of G obtained by deleting either a vertex v of G or an edge e of G is denoted by G− v and
G − e, respectively. Suppose H is a graph on n vertices. Then, we let Kn\H denote the
graph obtained from the complete graph, Kn, by removing the edges from H (this graph
is also known as the complement of the graph H). An independent set in the graph G is a
set of vertices in G, no two of which are adjacent. The independence number α(G) of G is
the number of vertices in the largest independent set of G. A matching in a graph G, is a
collection of independent edges from G (i.e., no two edges in a matching share a common
vertex from G). Additionally, a matching is referred to as perfect if each vertex from G is
incident with one edge from the matching.

An n× n real symmetric matrix B is a positive semi-definite matrix if all of its eigenvalues
are nonnegative. In this case, we denote B ≥ 0. For real symmetric matrices B and C,
if B− C ≥ 0, then we write B ≥ C.

Lemma 1 ([24]). Let A and B be real symmetric matrices of order n, and assume that A ≤ B.
Then, for all i = 1, 2, . . . , n, λi(A) ≤ λi(B), where λi(M) is the ith largest eigenvalue of a square
matrix M.

The following result was obtained in [5].

Lemma 2 ([5]). If B and C are matrices such that BC and CB are both defined, then BC and CB
have the same nonzero eigenvalues with the same multiplicity.

The Schur product of two matrices A = (aij) and B = (bij) of the same size is defined
to be A ◦ B = (aijbij). An n × n symmetric matrix A is said to have the Strong Spectral
Property (or A has the SSP for short) if the only symmetric matrix X satisfying A ◦ X = O,
I ◦ X = O and [A, X] = AX − XA = O is X = O (see [25]). The following result is given
in Theorem. 10 [25].
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Lemma 3 ([25]). If A ∈ S(G) has the SSP, then every supergraph of G with the same vertex set
has a matrix realization that has the same spectrum as A and has the SSP.

Given two graphs G and H, the join of G and H, denoted by G ∨ H, is the graph
obtained from G ∪ H, by adding all possible edges between G and H. Suppose G is a
graph with q(G) = 2. Then, among all matrix realizations A in S(G) with two distinct
eigenvalues, we define the multiplicity bi-partition [n− k, k] associated with A if the two
eigenvalues of A have respective multiplicities n− k and k. Further, we define the minimal
multiplicity bi-partition MB(G) to be the least integer k ≤ b n

2 c such that G achieves the
multiplicity bi-partition [n− k, k]. We close this section with two useful results concerning
specific classes of graphs realizing two distinct eigenvalues with respect to the set S(G).

Lemma 4 ([26,27]). Let G be a connected graph on n vertices. Then,

(1) MB(G) = 1 if and only if G is the complete graph, Kn.
(2) MB(G) = 2 if and only if G = (Kp1 ∪ Kq1) ∨ (Kp2 ∪ Kq2) ∨ · · · ∨ (Kpk ∪ Kqk ) for non-

negative integers p1, . . . , pk, q1, . . . , qk with k > 1, and G is not isomorphic to either one of a
complete graph or G = (Kp1 ∪ Kq1) ∨ K1.

Lemma 5 ([28]). If G is a connected graph of order n ∈ {l, l + 1, l + 2} and n1, . . . , nl ∈ N, then
q(G ∨ ∪j∈[l]Knj) = 2, where [l] := {1, 2, . . . , l}.

3. Matrices Associated with a Clique Partition

In this section, we consider the vertex-clique incidence matrix associated with a clique
partition of a graph G. Recall from the introduction that for a given clique partition
F = {C1, C2, . . . , Ck} of G, the matrixMF has (i, j)-entry is equal to one if and only if the
vertex i belongs to the clique Cj ∈ F (see also [13,14]). Observe that when F = E,MF is
simply the conventional incidence matrix of the graph G. For each vertex i ∈ [n] of the
graph G, we define the parameter tF

i = tF
i (G) to be the number of cliques in F containing

the vertex i, that is, tF
i = |{j ∈ [k] : Cj ∈ F, i ∈ Cj}|. We call tF

i (G) the clique-degree of the
vertex i in graph G associated with F, and, without loss of generality, after a re-labelling
of the vertices if necessary, we assume that tF

1 ≥ tF
2 ≥ . . . ≥ tF

n (see also [13]). Given
clique partition F = {C1, C2, . . . , Ck} of G, we consider different possible classes of graphs
as follows:

(i) The graph G is t clique-regular if tF
1 = · · · = tF

n = t, for some positive integer t;
(ii) The graph G is s clique-uniform if |C1| = · · · = |Ck| = s, for some positive integer s;
(iii) The graph G is (s, t) regular if tF

1 = · · · = tF
n = t and |C1| = · · · = |Ck| = s, for positive

integers s, t. Any graph is 2 clique-uniform and any d-regular graph is also d clique-
regular using the trivial clique partition F = E.

Let DF be the n× n diagonal matrix with row and column indexed by the vertex set V
with (i, i)-entry equal to tF

i , that is, DF = diag(tF
1 , . . . , tF

n). It follows that the inner product
of row i and row j (with i 6= j) ofMF equals the number of cliques in F containing the
vertices i and j. By definition of the clique partition F, if i and j are adjacent, then this
number is equal to 1 and otherwise 0. This leads to the following result:

Theorem 1. Let MF be the vertex-clique incidence matrix of G associated with a given clique
partition F. Then MFMT

F = DF +A, where DF = diag(tF
1 , . . . , tF

n) and A is the adjacency
matrix of G.

As mentioned above, in the case of F = E, the matrix MF is the incidence matrix
M of G and consequently,MFMT

F = MMT is the signless Laplacian matrix of G, where
we assume, after possibly re-labelling, that the sequence of vertex degrees is ordered as
d1 ≥ d2 ≥ · · · ≥ dn. Notice that in this case, tF

i = di for 1 ≤ i ≤ n. Motivated by this
observation, for any clique partition F we call QF =MFMT

F the signless Laplacian matrix of
the graph G associated with the clique partition F. Since we always have D ≥ DF, it follows
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Q = D +A ≥ DF +A = QF ≥ 0. Now define the clique partition graph PG with k vertices,
where each vertex i corresponds to each clique Ci in F such that each pair of vertices of PG
are adjacent if and only if the corresponding cliques in F have a vertex in common. If F = E,
then PG = LG the line graph of G. The inner product of two columns ofMF is nonzero if
and only if the corresponding cliques have a common vertex. From the definition of a clique
partition, this nonzero value must be 1. These facts immediately yield the following result:

Theorem 2. Let MF be the incidence matrix of G associated with a clique partition F. Then,
MT

FMF = SF +A(PG), where SF = diag(sF
1 , . . . , sF

k ) and sF
i = |Ci| and A(PG) denote the

adjacency matrix of the graph PG.

For the case of F = E, we haveMT
FMF = MT M = 2Im +A(LG), and PG = LG so

sF
i = 2 for 1 ≤ i ≤ k = m.

3.1. Applications of the Vertex-Clique Incidence Matrix to Graph Spectrum

In this section, we develop several results on the spectrum of the graph G and its
clique partition graph PG by the vertex-clique incidence matrix of a graph. Considering
RF =MT

FMF with Lemma 2 we conclude that the nonzero eigenvalues of matrices QF
andRF are the same. This fact leads to the following basic results.

Theorem 3. We have the following.

(i) If 1 ≤ i ≤ min{n, k}, then λi(QF) = λi(RF).
(ii) If min{n, k} = n, then λi(RF) = 0 for n + 1 ≤ i ≤ k.
(iii) If min{n, k} = k, then λi(QF) = 0 for k + 1 ≤ i ≤ n.

Recall that if F = E, thenQF = Q andRF = 2Im +A(LG). Combining these equations
with Theorem 3 leads to the following well-known result [22,29]:

Lemma 6. Let G be a graph of order n with m edges. Then, qi(G) = 2 + λi(LG) for 1 ≤ i ≤
min{n, m}. In particular if m > n then λi(LG) = −2 for i > n, and if n > m then qi(G) = 0 for
i > m.

The following result is obtained by applying Theorem 3 for a (s, t) regular graph G
with the clique partition F.

Theorem 4. Let G be a (s, t) regular graph of order n with a clique partition F of size k.

(i) If 1 ≤ i ≤ min{n, k}, then λi(G)− λi(PG) = s− t.
(ii) If min{n, k} = n, then λi(PG) = −s for n + 1 ≤ i ≤ k.
(iii) If min{n, k} = k, then λi(G) = −t for k + 1 ≤ i ≤ n.

Proof. (i) By Theorem 3 (i), if 1 ≤ i ≤ min{n, k}, then λi(QF) = λi(RF), that is, λi(DF +
A(G)) = λi(SF + A(PG)), that is, λi(tIn + A(G)) = λi(sIk + A(PG)), that is, t +
λi(G) = s + λi(PG).

(ii) By Theorem 3 (ii), if min{n, k} = n then λi(RF) = 0 for n + 1 ≤ i ≤ k, that is,
λi(sIk +A(PG)) = 0 for n + 1 ≤ i ≤ k, that is, λi(PG) = −s for n + 1 ≤ i ≤ k.

(iii) By Theorem 3 (iii), if min{n, k} = k then λi(QF) = 0 for k + 1 ≤ i ≤ n, that is,
λi(tIn +A(G)) = 0 for k + 1 ≤ i ≤ n, that is, λi(G) = −t for k + 1 ≤ i ≤ n.

Example 1. (i) Considering the complete graph Kn and its minimum clique partition F with only
one clique, we haveMF = 1In,MFMT

F = Jn andMT
FMF = [n]. Applying Theorem 4 here we

have tF
i = 1 for 1 ≤ i ≤ n, k = 1 and sF

1 = n, that is, Kn is a (n, 1) regular graph. From this with
Theorem 4 (i) we arrive at 1 + λ1(Kn) = n + λ1(K1), that is, λ1(Kn) = n− 1, and by Theorem 4
(iii), λi(Kn) = −1 for 2 ≤ i ≤ n.
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(ii) Considering the clique partition F =
{

C1 = {1, 2, 6}, C2 = {2, 3, 4}, C3 = {1, 3, 5}, C4 =

{4, 5, 6}
}

for G isomorphic to the complete tripartite graph K2,2,2 (or G ∼= K2,2,2) in Figure 1, we

have sF
i = 3 for i ∈ [4] and tF

j = 2 for j ∈ [6]. Then, G is a (3, 2) regular graph. Moreover,

MF =



1 0 1 0
1 1 0 0
0 1 1 0
0 1 0 1
0 0 1 1
1 0 0 1

, QF =



2 1 1 0 1 1
1 2 1 1 0 1
1 1 2 1 1 0
0 1 1 2 1 1
1 0 1 1 2 1
1 1 0 1 1 2

, RF =


3 1 1 1
1 3 1 1
1 1 3 1
1 1 1 3



and by Theorem 4, we have λi(G) = 1 + λi(PG) for 1 ≤ i ≤ 4 and λi(G) = −2 for i = 5, 6.
From these facts with PG ∼= K4, we arrive at Spec(G) = {4, 0, 0, 0,−2,−2}.

6 4

5

1

2

3

Figure 1. The graph G ∼= K2,2,2.

Now applying the theory of clique partitions and vertex-clique incidence matrices,
we obtain a lower bound for the smallest eigenvalue of a graph. During the review of a
previous version, we were made aware of the work in [15] where the first statement in the
next result can also be found in Corollary 3.1 [15]. We include a proof here for completeness.

Theorem 5. Let G be a graph of order n and let tF
1 be the largest clique-degree of G with a given

clique partition F. Then
λn(G) ≥ −tF

1 . (4)

Moreover, if equality holds in (4), then rank(MF) < n and if rank(MF) < n and G is
clique-regular, then equality holds in (4).

Proof. Since QF = DF +A is a positive semi-definite matrix, we have DF ≥ −A and by
Lemma 1 we arrive at

λi(DF) ≥ λi(−A) for 1 ≤ i ≤ n. (5)

Considering i = 1 we arrive at −λn(G) = λ1(−A) ≤ λ1(DF) = tF
1 , which gives the

required result in (4).
For the second part of the proof, suppose that λn(G) = −tF

1 . Then λn(tF
1 I +A) = 0.

This with the relation 0 ≤ QF = DF +A ≤ tF
1 I +A, gives λn(QF) = 0, that is, rank(MF) =

rank(QF) < n. Now we assume that tF
1 = · · · = tF

n . If rank(MF) < n then rank(QF) < n,
that is, λi(QF) = 0 for 1 + k ≤ i ≤ n, that is, tF

1 + λi(G) = 0 as QF = tF
1 I +A, that is,

λn(G) = −tF
1 with the multiplicity at least n− k.

Corollary 1. All regular bipartite graphs and all clique-regular graphs with n > |F| satisfy the
equality in (4).
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Proof. First we assume that G is a regular bipartite graph. Since G is bipartite, we have
tF
i = di for i ∈ [n] and qn = λn(Q) = 0. On the other hand, since G is regular, we have

tF
1 = · · · = tF

n . These facts with Theorem 5 give the fact that all regular bipartite graphs
satisfies the equality in (4).

Next, assume that G is a clique-regular graph with n > k = |F|. Since rank(MF) ≤
min {n, k} ≤ k < n, the required result is obtained by Theorem 5.

Theorem 5 holds for any clique partition F of G, which leads to the following. However,
during the review of a previous version, we were made aware of the work [13] where a
version of the next result can also be found in Corollary 3.2 [13]. We include a proof here
for completeness.

Corollary 2. Let G be a graph of order n and let tF
1 be the largest clique-degree of G with a given

clique partition F. Then,
λn(G) ≥ −min

F
tF
1 ,

where the minimum is over all clique partitions F of G.

The following example shows that for the equality λn(G) = −tF
1 the graph G need not

be clique-regular.

Example 2. For the graph G given in Figure 2, we have F =
{
{1, 2}, {2, 3}, {1, 3, 4, 6, 7}, {4, 5},

{5, 6}
}

. This gives tF
i = 2 for i ∈ [6] and tF

7 = 1. The graph is the line graph of the graph

H ∼= K1 ∨ (2K2 ∪ K1) of order 6 with 7 edges. Then the smallest eigenvalue of G is λ7(G) =
λ7(LH) = −2 = −tF

1 while tF
1 6= tF

7 .

2 5

3

1

7

6

4

Figure 2. The Graph G.

In the following we provide a lower bound for the negative inertia of a graph G of
order n.

Theorem 6. Let G be a graph of order n. Then,

ν−(G) ≥ n−min
F

rank(MF), (6)

where minimum is over all clique partitions F of G. Moreover, if minF rank(MF) < n, then
−tF

1 ≤ λi(G) ≤ −tF
n for 1 + min

F
rank(MF) ≤ i ≤ n.

Proof. If min
F

rank(MF) = n, then the result in (6) is obvious. Assume that F1 is a clique

partition of G with rank(MF1) = min
F

rank(MF) < n. In this case, since rank(QF1) =

rank(MF1) andQF1 is positive semi-definite matrix, we have λi(QF1) = 0 for 1+ rank(MF1)
≤ i ≤ n. From this and the fact that tF

n + λi(G) ≤ λi(QF1) ≤ tF
1 + λi(G), we have

−tF
1 ≤ λi(G) ≤ −tF

n < 0 for 1 + rank(MF1) ≤ i ≤ n, which gives the required results.
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The following result is obtained by Theorem 6 and the fact rank(MF) ≤ |F|.

Corollary 3. Let G be a graph of the order n and a clique partition F such that n > |F|. Then,
(i) −tF

1 ≤ λi(G) ≤ −tF
n for |F|+ 1 ≤ i ≤ n.

(ii) ν−(G) ≥ n− |F|.

Furthermore, if F is a minimum clique partition of G the next consequence immediately
follows from Corollary 3.

Corollary 4. Let G be a graph of the order n and clique partition number cp(G). If cp(G) < n,
then

(i) −tF
1 ≤ λi(G) ≤ −tF

n for cp(G) + 1 ≤ i ≤ n.
(ii) ν−(G) ≥ n− cp(G).

For any graph G of order n we have [29]

α(G) ≤ min{n− ν−(G), n− ν+(G)}, (7)

where ν− and ν+ are the negative and positive parts of the inertia, respectively of the graph
G. This implies that

ν−(G) ≤ n− α(G). (8)

In the following we present a sufficient condition for which equality in (8) holds.

Theorem 7. Let G be a graph of order n with the independence number α(G) and the clique
partition number cp(G). If F is a clique partition with rank(MF) = α(G), then ν−(G) =
n− α(G). In particular, if cp(G) = α(G), then ν−(G) = n− α(G).

Proof. By Theorem 6 we have ν−(G) ≥ n− rank(MF) = n− rank(QF) = η(QF). This
fact along with (8) gives

η(QF) ≤ ν−(G) ≤ n− α(G). (9)

The assumption that rank(MF) = α(G) is equivalent to η(QF) = n − α(G). This
with (9) gives the first required result.

Without loss of generality, we may assume that the vertex set [α] is a maximum
independent set in G and Ci is a clique of a minimum clique partition Fm containing the
vertex i ∈ [α]. Now inMFm we consider the submatrix induced by the rows and columns
corresponding to the vertex set [α] and the clique set {Ci : i ∈ [α]}, respectively. Obviously,
this square principal submatrix is equivalent to the identity matrix of size α and hence
rank(QFm) ≥ rank(Iα) = α. Since rank(QFm) ≤ cp(G) and using the assumption cp(G) =
α(G) we arrive at rank(QFm) = α = rank(MFm) and, therefore, ν−(G) = n− α(G) by the
first part of the theorem.

The following result is obtained from (5). During the review of a previous version,
we were made aware of the work [13] where the next result can also be found in Theorem
3.1 [13]. We include a proof here for completeness.

Theorem 8. Let G be a graph of order n and the negative inertia ν−. Let tF
i be the ith largest

clique-degree of G with a clique partition F. Then, for 1 ≤ i ≤ ν−, we have

λn−i+1(G) ≥ −tF
i . (10)

Equality holds in (10) if G is a clique-regular graph with ν− = n− |F|.

SinceRF is a positive semi-definite matrix, using a similar argument as in the proof of
Theorem 5, we obtain the following result.
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Theorem 9. Let G be a graph of order n with a clique partition F = {C1, . . . , Ck} and let |Ci| = sF
i

for 1 ≤ i ≤ k such that sF
1 ≥ sF

2 ≥ . . . ≥ sF
k . Then,

λk(PG) ≥ −sF
1 . (11)

Equality holds in (11) if G is a sF
1 clique-uniform graph with k > n.

Proof. SinceRF = SF +A(PG) is a positive semi-definite matrix, we have SF ≥ −A(PG)
and by Lemma 1, it follows that

λi(SF) ≥ λi(−A(PG)) for 1 ≤ i ≤ k. (12)

Considering i = 1 we have −λk(PG) = λ1(−A(PG)) ≤ λ1(SF) = sF
1 , which gives the

required result in (11).
Now assume that G is a sF

1 clique-uniform graph with k > n. By Theorem 3 (ii) with
k > n, we arrive at λi(RF) = 0 for n + 1 ≤ i ≤ k. On the other hand, since sF

1 = · · · = sF
k

we have RF = sF
1 Ik + A(PG), and consequently λi(RF) = sF

1 + λi(PG) = 0. That is,
λi(PG) = −sF

1 for n + 1 ≤ i ≤ k, that is, λk(PG) = −sF
1 with multiplicity at least k− n.

Theorem 9 holds for any clique partition F of G, which gives the following result.

Corollary 5. Let G be a graph of order n with a clique partition F = {C1, . . . , Ck} and let
|Ci| = sF

i for 1 ≤ i ≤ k such that sF
1 ≥ sF

2 ≥ · · · ≥ sF
k . Then,

λk(PG) ≥ −min
F

sF
1 , (13)

where minimum is over all clique partitions F of G.

In the case of k > n, we have λi(RF) = 0 for 1 + n ≤ i ≤ k by Theorem 3. Since
sF

k + λi(PG) ≤ λi(RF) ≤ sF
1 + λi(PG), we get −sF

1 ≤ λi(PG) ≤ −sF
k < 0. We summarize

this in the next result.

Theorem 10. Let G be a graph of order n and a clique partition F with |F| = k > n. Then,

(i) −sF
1 ≤ λi(PG) ≤ −sF

k for 1 + n ≤ i ≤ k.
(ii) ν−(PG) ≥ k− n.

The following result follows from (12).

Theorem 11. Let G be a graph of order n with a clique partition F = {C1, . . . , Ck} and let
|Ci| = sF

i for 1 ≤ i ≤ k such that sF
1 ≥ sF

2 ≥ · · · ≥ sF
k . If PG is the corresponding clique partition

graph of G, then for 1 ≤ i ≤ ν−(PG),

λk−i+1(PG) ≥ −sF
i . (14)

Equality in (14) holds if G is a sF
1 clique-uniform graph with ν−(PG) = k− n.

The following concerns the signless Laplacian eigenvalues of a graph.

Theorem 12. Let G be a graph of order n and having a clique partition F with |F| = k and assume
1 ≤ i ≤ min{n, k}.
(i) If G is a t clique-regular graph, then qi(G)− λi(G) ≥ t.
(ii) If G is a s clique-uniform graph, then qi(G)− λi(PG) ≥ s.

Proof. From Section 3, the signless Laplacian matrix Q of G satisfies Q ≥ QF. This fact
with Lemma 1 gives qi(G) ≥ λi(QF), where qi(G) and λi(QF) are, respectively, the ith
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largest signless Laplacian eigenvalue of G and the ith largest eigenvalue of matrix QF.
Using the above analysis combined with Theorem 3 and the facts λi(QF) = t + λi(G) and
λi(RF) = s + λi(PG) implies the required results in (i) and (ii).

3.2. Applications to Energy of Graphs and Matrices

In this section, using the theory of vertex-clique incidence matrices of a graph, we
introduce notions of graph energies, as a generalization of the incidence energy and the
signless Laplacian energy of the graph. Finally, we present upper bounds on energies of a
graph, its clique partition graph and line graph.

The energy E(G) of the graph G defined in (2) has the equivalent expressions as
follows [22]:

E(G) = 2
ν+

∑
i=1

λi = 2
ν−

∑
i=1
−λn−i+1 = 2 max

1≤k≤n

k

∑
i=1

λi = 2 max
1≤k≤n

k

∑
i=1
−λn−i+1 (15)

where ν+ and ν− are, respectively, the positive and the negative inertia of G. Nikiforov [30–32]
proposed a significant extension and generalization of the graph energy concept. The energy
of an r× s matrix B is the summation of its singular values, that is,

E(B) =
s

∑
i=1

σi(B), (16)

where σi(B) denotes the ith singular value of B which is equal to
√

λi(BT B).
Consonni and Todeschini [33] introduced an entire class of matrix-based quantities,

defined as
n

∑
i=1
|xi − x|, (17)

where x1, x2, . . . , xn are the eigenvalues of the respective matrix, and x is their arith-
metic mean.

According to (16) and (17), two types of energies can then be defined for any matrix
B. The incidence energy IE(G) of a graph G is defined to be the energy of the incidence
matrix of G of the type (16), i.e.,

IE(G) = E(M) =
m

∑
i=1

σi(M) =
m

∑
i=1

√
λi(MT M) =

n

∑
i=1

√
λi(MMT) =

n

∑
i=1

√
qi.

Similarly, the vertex-clique incidence energy IEF(G) of G associated with the clique partition
F is defined as the energy of the vertex-clique incidence matrixMF, i.e.,

IEF(G) = E(MF) =
k

∑
i=1

σi(MF) =
k

∑
i=1

√
λi(MT

FMF)

=
n

∑
i=1

√
λi(MFMT

F ) =
n

∑
i=1

√
λi(QF).

Observe

Q−QF = (D +A)− (DF +A) = D−DF = diag(d1 − tF
1 , d2 − tF

2 , . . . , dn − tF
n) ≥ 0.

From the above and using Lemma 1 we have qi = λi(Q) ≥ λi(QF) and, consequently,
we have

IEF(G) =
n

∑
i=1

√
λi(QF) ≤

n

∑
i=1

√
qi = IE(G)

with equality if and only if F = E.
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Moreover,

n

∑
i=1

λi(QF) =
n

∑
i=1

tF
i ,

n

∑
i=1

λ2
i (QF) =

n

∑
i=1

((tF
i )

2
+ tF

i ).

Applying the fact that the diagonal entries are majorized by the eigenvalues of QF

and by a similar method given in [34] it can be shown that ∑n
i=1

√
λi(QF) ≤ ∑n

i=1

√
tF
i .

Considering the energy of the matrix QF of the type (17) gives

E(QF) =
n

∑
i=1

∣∣λi(QF)− t
∣∣, (18)

where t =
∑n

i=1 tF
i

n . The energy E(QF) can be viewed as a generalization of the signless
Laplacian energy LE+(G) of G which is defined in [21] as follows:

LE+(G) = E(Q) =
n

∑
i=1
|qi −

2m
n
|.

Due to the similarity of the definitions for signless Laplacian energy LE+(G) and
E(QF) it follows that in most cases, results derived about LE+(G) can be generalized to
E(QF). For example, from Lemma 2.12 in [22] for LE+(G), we obtain the following:

E(QF) = max
1≤j≤n

{
2

j

∑
i=1

λi(QF)− 2j t

}
= 2

τ

∑
i=1

λi(QF)− 2t τ, (19)

where τ is the largest positive integer such that λτ(QF) > t.
Using a method similar to the proof of Corollary 5 in [35] for QF − t I = DF − t I +A,

we have E(QF)− E(G) ≤ ∑n
i=1 |tF

i − t|.
In the next result, we show that for a clique-regular graph G associated with a clique

partition F, E(QF) = E(G).

Theorem 13. If G is a clique-regular graph associated with a clique partition F, then E(QF) = E(G).

Proof. Suppose that G is t clique-regular. Then,

E(QF) =
n

∑
i=1

∣∣∣∣∣λi(QF)−
∑n

i=1 tF
i

n

∣∣∣∣∣ = n

∑
i=1
|λi(QF)− t|

=
n

∑
i=1
|λi(DF +A(G))− t| =

n

∑
i=1
|λi(tI +A(G))− t|

=
n

∑
i=1
|λi(G)| = E(G).

Note that for any t clique-regular graph G, we have IEF(G) = ∑n
i=1

√
λi(QF) =

∑n
i=1
√

t + λi. Next, we show that for a clique-uniform graph G we have E(RF) = E(PG).

Theorem 14. If G is a clique-uniform graph with the clique partition graph PG, then E(RF) = E(PG).
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Proof. Suppose that G is a s clique-uniform graph. Then,

E(RF) =
k

∑
i=1

∣∣∣λi(RF)−
∑k

i=1 sF
i

k

∣∣∣ = k

∑
i=1
|λi(RF)− s|

=
k

∑
i=1
|λi(SF +A(PG))− s| =

k

∑
i=1
|λi(sI +A(PG))− s|

=
k

∑
i=1
|λi(PG)| = E(PG).

Note that for any s clique-uniform graph G with the clique partition graph PG, we have

IEF(G) =
n

∑
i=1

√
λi(QF) =

k

∑
i=1

√
λi(RF) =

k

∑
i=1

√
s + λi(PG).

In [22] Theorem 3.3, a relation between the energy of the line graph E(LG) and the
signless Laplacian energy LE+(G) of G is given. In the following, we generalize this result
by using the notion of clique partition of a graph and we provide a comparison between
the energy of the clique partition graph E(PG) of PG and E(QF). For this, we need the
following lemma, which is obtained from Theorem 3 and is a generalization of Lemma 6.

Lemma 7. Let G be an s clique-uniform graph of order n associated with a clique partition F where
|F| = k. Then, λi(QF) = λi(PG) + s, for i ∈ {1, . . . , min{n, k}}.

Theorem 15. Let G be an s clique-uniform graph of order n associated with a clique partition F
where |F| = k.

(i) If k < n, then E(PG) ≤ E(QF) +
2ks
n − 2s.

(ii) If k > n, then E(PG) ≥ E(QF) +
2ks
n − 2s.

(iii) If k = n, then E(PG) = E(QF).

Proof. (i)Let ν+ = ν+(PG) ≤ k < n. By Lemma 7 we have

ν+

∑
i=1

λi(PG) =
ν+

∑
i=1

(λi(QF)− s) =
ν+

∑
i=1

λi(QF)− sν+.

On the other hand, from (15) we have

E(PG) = 2
ν+

∑
i=1

λi(PG) = 2
ν+

∑
i=1

λi(QF)− 2sν+ − 2ν+
∑n

i=1 tF
i

n
+ 2ν+

∑n
i=1 tF

i
n

≤ E(QF)− 2sν+ + 2ν+
ks
n

as (19) ,
n

∑
i=1

tF
i = ks

= E(QF) + 2ν+
(

ks
n
− s
)

as ν+ ≥ 1, k < n

≤ E(QF) +
2ks
n
− 2s.
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(ii)Recall that τ is the largest positive integer such that λτ(QF) ≥ t = ks
n and let

τ < n < k. Again by Lemma 7 we have ∑τ
i=1 λi(QF) = ∑τ

i=1(λi(PG)) + sτ. On the other
hand, by (19) and Lemma 7 we have

E(QF) = 2
τ

∑
i=1

λi(QF)−
2ksτ

n
= 2

τ

∑
i=1

λi(PG) + 2sτ − 2ksτ

n
.

From (15) with the above equation we have

E(PG) ≥ 2
τ

∑
i=1

λi(PG) = E(QF) + 2τ

(
ks
n
− s
)
≥ E(QF) +

2ks
n
− 2s.

(iii) If k 6= n, then E(PG) 6= E(QF) by (i) and (ii), i.e., if E(PG) = E(QF), then k = n.
It suffices to show that if k = n, then E(PG) = E(QF). Indeed, if k = n, then

E(QF) =
n

∑
i=1
|λi(QF)−

∑n
i=1 tF

i
n
| =

n

∑
i=1
|λi(QF)−

ks
n
|.

Since k = n with Lemma 7 we have E(QF) = ∑n
i=1 |λi(PG)| = E(PG).

In the following, we present an upper bound for the energy of a graph G.

Theorem 16. Let G be a graph of order n and the negative inertia ν− = ν−(G) and let tF
i be the

ith largest clique degree of G associated with the clique partition F, for 1 ≤ i ≤ n. Then,

E(G) ≤ 2 min
F

ν−

∑
i=1

tF
i , (20)

where the minimum is given over all clique partitions F of G. Equality holds if G is a clique-regular
graph associated with a minimum clique partition of size cp(G) = n− ν−.

Proof. From (15) and (10) we have E(G) = 2 ∑ν−
i=1−λn−i+1 ≤ 2 ∑ν−

i=1 tF
i , where tF

i is ith

largest clique-degree of G associated with a clique partition F. Since this upper bound
is valid for any clique partition of G, we select the optimal value, namely, min

F
2 ∑ν−

i=1 tF
i .

The second part of the proof follows directly from Theorem 8.

The following result provides an upper bound on the energy of G in terms of the
vertex degrees.

Theorem 17. Let G be a graph of order n with the vertex degrees d1 ≥ d2 ≥ · · · ≥ dn. Then

E(G) ≤ 2
h

∑
i=1

di,

where h = min{ν+, ν−}.

Proof. Since tF
i ≤ di for i ∈ [n] along with Theorem 16 gives

E(G) ≤ 2
ν−

∑
i=1

di. (21)

On the other hand, the Laplacian matrix L = D−A of G is a positive semi-definite
matrix, so A ≤ D. From this with Lemma 1 we obtain λi ≤ di for 1 ≤ i ≤ n. Then,
E(G) = 2 ∑ν+

i=1 λi ≤ 2 ∑ν+

i=1 di. Using the previous inequality with (21) completes the
proof.
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From Theorem 16 with (7) we obtain the following upper bound for the energy of G:

E(G) ≤ 2
n−α

∑
i=1

tF
i ≤ 2

n−α

∑
i=1

di,

where α is the independence number of the graph G. By (15) and (14) applying a similar
method carried out for the proof of Theorem 16, we obtain the next result.

Theorem 18. Let G be a graph of order n with a clique partition F = {C1, . . . , Ck} and let
|Ci| = sF

i for 1 ≤ i ≤ k such that sF
1 ≥ sF

2 ≥ · · · ≥ sF
k . For the clique partition graph PG of G,

we have

E(PG) ≤ 2 min
F

ν−(PG)

∑
i=1

sF
i .

Equality holds if G is a clique-uniform graph associated with a minimum clique partition of
size cp(G) = n + ν−(PG).

Next, we present an upper bound on the energy E(LG) of the line graph LG with a full
characterization of the corresponding extremal graphs.

Theorem 19. Let G be a graph with the line graph LG. Then,

E(LG) ≤ 4 ν−(LG). (22)

Equality holds if and only if G is a graph with connected components Gi = (Vi, Ei) for
i ≥ 1 with ni = |Vi| and |Ei| ≥ 2, and possibly some isolated vertices or single edges. Further,
each non-bipartite connected component Gi satisfies |Ei| > |Vi| and qni ≥ 2, and each bipartite
connected component Gi is either a 4-cycle or satisfies |Ei| > |Vi| and qni−1 ≥ 2.

Proof. As previously noted, if the clique partition F of G is as same as the edge set E of G,
then sF

i = 2 for i ∈ [n] and PG ∼= LG. Using Theorem 18, we have

E(LG) = 2
ν−(LG)

∑
i=1

−λm−i+1(PG) ≤ 2
ν−(LG)

∑
i=1

2 = 4ν−(LG), (23)

which gives the required result in (22).
To characterize these extreme graphs in (22), we assume equality holds in (23). Then,

all negative eigenvalues of PG must be equal to −2 by (23). We then consider the following
two cases:

Case (1) G is connected. First, assume that m > n. If G is non-bipartite, then by
Lemma 6, λi(LG) = −2 for n + 1 ≤ i ≤ m and λn(LG) = qn − 2 6= −2 as qn 6= 0. Since
λn(LG) must be nonnegative, we have qn ≥ 2. Otherwise G is bipartite and by Lemma 6
along with qn(G) = 0, λi(LG) = −2 for n ≤ i ≤ m and λn−1(LG) = qn−1 − 2 6= −2 as
qn−1 6= 0. Since λn−1(LG) must be nonnegative, it follows that qn−1 ≥ 2. Next, assume that
m = n. Since all negative eigenvalues of LG are equal to −2, we have λm(LG) = λn(LG) =
−2. If ν− = 1, then Spec(LG) = {2, 0, 0,−2} and LG is the cycle C4 of order 4. Otherwise
ν− ≥ 2, and λn−1 = −2, that is, qn−1 = 0, which is a contradiction as G is connected.
Finally, assume that m < n. Since G is connected it must be a tree and hence m = n− 1.
In this case we have λm(LG) = λn−1(LG) = −2, that is, qn−1 = 0, which again leads to
a contradiction.

Case (2) Assume G is disconnected. Since isolated vertices and single edges do not
affect the negative inertia of LG, we may assume that G has connected components along
with the possibility of some isolated vertices and single edges. Now each connected
component of G can be characterized by the first case, and the proof is complete.
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4. Vertex-Clique Incidence Matrix of a Graph Associated with an Edge Clique Cover

In this section, we consider the vertex-clique incidence matrix, denoted by MF, associ-
ated with an edge clique cover F of a graph G. Recall that the (i, j)-entry of MF is real and
nonzero if and only if the vertex i belongs to the clique Cj ∈ F. A strategy for minimizing
the number of distinct eigenvalues of MF MT

F ∈ S(G), is to minimize the number of distinct
eigenvalues of the related matrix MT

F MF. Consequently, we obtain an upper bound on
the parameter q(G). A key technique used here is to consider an extended version of MF,
by considering arbitrary real entries in the matrix MF, but simultaneously paying careful
attention to preserving the condition that MF MT

F ∈ S(G).

4.1. Applications to the Minimum Number of Distinct Eigenvalues of a Graph

In this section, applying the tool of the vertex-clique incidence matrix of a graph
associated with its edge clique cover, we characterize a few new classes of graphs with
q(G) = 2.

If G and H are graphs then the Cartesian product of G and H denoted by G�H, is the
graph on the vertex set V(G) × V(H) with {g1, h1} and {g2, h2} adjacent if and only if
either g1 = g2 and h1 and h2 are adjacent in H or g1 and g2 are adjacent in G and h1 = h2.
The first statement in the next theorem can also be found in [7], however, we include a
proof here to aid in establishing the second claim.

Theorem 20. Let G ∼= Ks�K2 with s ≥ 3. Then, q(G) = 2 and G has an SSP matrix realization
with two distinct eigenvalues.

Proof. Let M =

(
M1
M2

)
, where M1 = Js − (s− 1)Is and M2 = Js − Is. Then, we have

A = MMT =

(
M1
M2

)(
MT

1 MT
2

)
=

(
M1MT

1 M1MT
2

M2MT
1 M2MT

2

)
=

(
A1 (s− 1)Is

(s− 1)Is A2

)
, (24)

where

A1 = M1MT
1 = M2

1 = (s− 1)2 Is + (2− s)Js , A2 = M2MT
2 = M2

2 = Is + (s− 2)Js ,

M1MT
2 = M1M2 = (s− 1)Is.

From the structure of A, we have A ∈ S(G). On the other hand,

MT M =
(

MT
1 MT

2

)(M1
M2

)
= MT

1 M1 + MT
2 M2 = (2− s)Js +(s− 1)2 Is + Is +(s− 2)Js = cIs,

where c = s2 − 2s + 2. Hence Spec(MMT) = {c[s], 0[s]} and q(G) = 2.
Now, we show that the matrix A has SSP. We need to prove that the only symmetric

matrix satisfying A ◦ X = O, I ◦ X = O, and [A, X] = AX− XA = O is X = O.
From the two equations A ◦ X = O, I ◦ X = O, X must have the following form:

X =

(
O X1
XT

1 O

)
, where X1 =


0 x12 . . . x1s

x21 0 x2s
...

. . . . . .
...

xs1 xs2 . . . 0

. The equality AX = XA gives

X1 = XT
1 . Also, we have A1X1 = X1 A2, i.e., [(s− 1)2 Is + (2− s)Js]X1 = X1[Is + (s− 2)Js].

Hence sX1 = X1 Js + JsX1. Then (sX1)ij = (X1 Js + JsX1)ij for i, j ∈ [s]. Considering
i = j = 1, we have (sX1)11 = 0 and (X1 Js + JsX1)ii = 2 ∑s

j=1 x1j, and then ∑s
j=1 x1j = 0.

Considering (i, j) = (k, k) for 2 ≤ k ≤ s we arrive at ∑s
j=1 xkj = 0 for 2 ≤ k ≤ s. This means

that the row and column sums in X1 are equal to zero. Now, consider i, j ∈ [s] where i 6= j.
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We have

sxij = (sX1)ij = (X1 Js + JsX1)ij = (X1 Js)ij + (JsX1)ij =
s

∑
k=1

xik +
s

∑
k=1

xjk = 0.

Thus, X1 = Os and, consequently, X = O. Hence, the proof is complete.

Corollary 6. For even n, we have q(Cn) = 2.

Proof. Let G ∼= Kn\H and let H be the graph obtained from the complete bipartite graph
Kn/2,n/2 by removing a perfect matching. Then, by Theorem 20 and Lemma 3, for H or any
subgraph of H, q(G) = 2. Considering this and that Cn is a subgraph of H, the result is
obtained.

Theorem 21. Let G be a graph obtained from (Ks�K2) ∨ sK1 by removing a perfect matching
between sK1 and a copy of Ks. Then q(G) = 2 and G has an SSP matrix realization with two
distinct eigenvalues.

Proof. Let M =

M1
M2
Is

, where M1 = Js − (s− 1)Is and M2 = Js − Is. Considering the fact

that M1 and M2 are symmetric, we have

A = MMT =

M1

M2

Is

(MT
1 MT

2 Is

)
=

M1 MT
1 M1 MT

2 M1 Is

M2 MT
1 M2 MT

2 M2 Is

M1 M2 Is

 =

 A1 (s− 1)Is M1

(s− 1)Is A2 M2

M1 M2 Is

,

where

A1 = M1MT
1 = M2

1 = (s− 1)2 Is + (2− s)Js , A2 = M2MT
2 = M2

2 = Is + (s− 2)Js ,

M1MT
2 = M1M2 = (s− 1)Is.

From the structure of A, we have A ∈ S(G). On the other hand,

MT M =
(

MT
1 MT

2 Is

)M1

M2

Is

 = MT
1 M1 + MT

2 M2 + I2
s = (2− s)Js + (s− 1)2 Is + Is + (s− 2)Js + Is = cIs,

where c = s2 − 2s + 3. This gives Spec(MMT) = {c[s], 0[2s]}, which proves q(G) = 2.
Now, we show that the matrix A has SSP. We need to prove that the only symmetric

matrix satisfying A ◦ X = O, I ◦ X = O, and [A, X] = AX− XA = O is X = O.
From the two equations A ◦ X = O, I ◦ X = O, X must have the following form: X = O X1 O

XT
1 O X2

O X2 X3

, where X1 =


0 x12 . . . x1s

x21 0 x2s
...

. . . . . .
...

xs1 xs2 . . . 0

, X2 = diag(y1, . . . , ys) and X3 =


0 z12 . . . z1s

z12 0 z2s
...

. . . . . .
...

z1s z2s . . . 0

. The matrix equation

AX = XA (25)

gives X1 = XT
1 . From (25) we also have M2X2 + X3 = X2M2 + X3, i.e., (Js − Is)X2 =

X2(Js − Is), i.e., JsX2 = X2 Js. This gives y1 = y2 = · · · = ys, i.e., X2 = y1 Is.
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Again from (25), we have A1X1 + M1X2 = X1 A2, that is, M1X2 = X1 A2 − A1X1, that
is, (Js − (s− 1)Is)(y1 Is) = X1(Is + (s− 2)Js)− ((s− 1)2 Is + (2− s)Js)X1, i.e.,

y1(2− s)Is + y1 Js = (2s− s2)X1 + (s− 2)X1 Js + (s− 2)JsX1.

Considering a main diagonal entry, say (i, i), in the above matrix equation, we obtain

s

∑
j=1

xij = −
y1

2
. (26)

Considering the (i, j)-entry in the above matrix equation, we obtain xij = −y1
s−1
s−2 .

From the above and (26), y1 = 0, that is, X2 = O. Using the equation A1X1 + M1X2 = X1 A2,
we arrive at the matrix equation A1X1 = X1 A2. Following a similar argument as in the
proof of Theorem 20 we obtain X1 = O.

Again from (25), we have M1X1 + X2 = X2 A2 + X3M2. Since X1 = X2 = O, we get
X3M2 = O, i.e., X3 = X3 Js. Considering both the (i, i) and (i, j) entries from the matrix
equation, we arrive at ∑s

k=1 zik = 0 and zij = ∑s
k=1 zik = 0, that is, X3 = O, which gives

X = O.

Corollary 7. Consider the complete bipartite graph Ks,s by removing a perfect matching. Define
a new graph H by adding a copy of Ks to this graph such that each vertex in Ks is adjacent to the
corresponding vertex in a copy of sK1. Then, q(H) = 2. Moreover, the result holds for any subgraph
of H on the same vertex set.

In [36], the authors studied the problem of graphs requiring property p(r, s). A graph
G has p(r, s) if it contains a path of length r and every path of length r is contained in a cycle
of length s. They prove that the smallest integer m so that every graph on n vertices with m
edges has p(2, 4) (or each path of length 2 is contained either in a 3-cycle, or a 4-cycle) is
(n

2)− (n− 4) for all n ≥ 5. Using this, it was noted in [37] that the above equation from [36]
implies that the smallest number of edges required to guarantee that all graphs G on n
vertices satisfy q(G) = 2 is at least (n

2)− (n− 3). For small values of n, it is known that
in fact, equality holds in the previous claim. Namely, if at most n− 3 edges are removed
from the complete graph Kn with n ≤ 7, then the resulting graph has a matrix realization
with two distinct eigenvalues. Along these lines and based on [37] the following is a
natural conjecture:

Conjecture 1. Removing up to n − 3 edges from Kn does not change the number of distinct
eigenvalues of Kn. That is, for any subgraph H of Kn with |E(H)| ≤ n− 3, q(Kn\H) = 2.

We confirm Conjecture 1 for n = 7, 8 and note that our analysis of the case n = 7
differs slightly from [37]. For this, we need the next few lemmas.

Lemma 8. Let T1 be the tree given in Figure 3. We have q(T1) = 2 and T1 has an SSP matrix
realization with two distinct eigenvalues.

Figure 3. Tree T1.
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Proof. Consider the 7× 4 matrix M1 as follows:

M1 =



1 −2 2 1
2 −1 −2 2
2 2 1 2
1 2 2 0
−2 −1 2 0
2 −2 1 0
1 0 0 0


.

Using the Gram–Schmidt method we arrive at a column orthonormal matrix M2.
In this case, we have A = M2MT

2 ∈ S(T1). In addition, MT
2 M2 = I4 and Spec(A) =

{1[4], 0[3]}. This proves that q(T1) = 2. Furthermore, A has SSP (this can be confirmed
using SageMath [38]), and by Lemma 3, the complement of any subgraph of T1 on the same
vertex set also has a matrix realization with two distinct eigenvalues.

Lemma 9. Let G ∼= K1,3 ∪ K3. Then, q(G) = 2 and G has an SSP matrix realization with two
distinct eigenvalues.

Proof. Consider the 7× 3 matrix M1 corresponding to the labeled graph G given in Figure 4
as follows:

M1 =



1 2 2
2 1 −2
2 −2 1
1 1 1
1 −1 1
−
√

2 0
√

2
0

√
2 0


.

A = M1MT
1 ∈ S(G). Also MT

1 M1 = 13I3 and Spec(A) = {13[3], 0[4]}. This proves that
q(G) = 2. Furthermore, A has SSP (a computation that can be verified by SageMath [38]),
and by Lemma 3, the complement of any subgraph of G on the same vertex set also has a
matrix realization with two distinct eigenvalues.

Figure 4. The graph G.

We now verify that Conjecture 1 holds for n = 7.

Theorem 22. Removing up to four edges from K7 does not change the number of distinct eigenval-
ues of K7, i.e., for any subgraph H of K7 on seven vertices, with |E(H)| ≤ 4 we have q(K7\H) = 2.

Proof. To establish this result, it is sufficient to prove the complement of any graph H in
Figure 5 has a matrix realization with two distinct eigenvalues. Suppose that the graphs in
Figure 5 are denoted by Hi for i ∈ [10] from left to right in each row. Then, the graphs Hi
for i = 1, 3, 7, 8, 10 are the union of complete bipartite graphs with some isolated vertices.
By Lemma 4 (2), the complements of these graphs and any subgraph of these graphs have
a matrix realization with two distinct eigenvalues. Additionally, q(Hi) = 2 for i = 4, 5, 9
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and for any subgraph H′i of Hi, q(H′i ) = 2 by Lemma 8. Moreover, q(H6) = 2 and for any
subgraph H′6 of H6, q(H′6) = 2 by Lemma 9. Additionally, from Lemmas 8 and 9 such
realizations exist with the SSP. Hence any subgraph of these graphs has a matrix realization
with two distinct eigenvalues. To complete the proof, we need to show the complement
graph of H2 has a matrix realization with two distinct eigenvalues with the SSP. To this end,
consider the 7× 3 matrix M1 as follows:

M1 =



1 −2 1
2 −1 2
2 2 2
1 2 0
−2 −1 0
2 −2 0
1 0 0


.

Using the Gram–Schmidt method we arrive at a column orthonormal matrix M2. We
have A = M2MT

2 ∈ S(H2). In addition, MT
2 M2 = I3 and Spec(A) = {1[3], 0[4]}. Hence,

q(H2) = 2. Furthermore, A has SSP (a computation that can be verified by SageMath [38]),
and by Lemma 3, the complement of any subgraph of H2 on the same vertex set also has a
matrix realization with two distinct eigenvalues.

Figure 5. All graphs with 7 vertices and 4 edges.

We require the following results to confirm Conjecture 1 for n = 8.

Lemma 10. Let G ∼= H1 ∪ 2K1, where H1 is the graph on the left given in Figure 6. Then
q(G) = 2 and G has an SSP matrix realization with two distinct eigenvalues.

Proof. Given G as assumed it can be shown without too much difficulty that G ∼= (H2 ∨
K3)− e, where H2 is the graph on the right given in Figure 6 minus an edge e with one
endpoint in K3 and the other endpoint in H2 with degree three.
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Figure 6. The graphs H1 (left) and H2 (right).

Suppose M =

(
M1
M2

)
, is a vertex-clique incidence matrix of G, where the blocks M1

and M2 are vertex-clique incidence matrices corresponding to graphs H2 and K3, that is,
MMT ∈ S(G). From (24) we have M1MT

1 ∈ S(H2) and M2MT
2 ∈ S(K3). On the other hand,

we have
MT M = MT

1 M1 + MT
2 M2. (27)

Consider a vertex-clique incidence matrix M1 as follows:

M1 =


1 0 0
1 0 1
1 1 0
0
√

2 0
0 0

√
2

.

Then we have M1MT
1 ∈ S(H2) and MT

1 M1 =

 3 1 1
1 3 0
1 0 3

. Given M1 above, the re-

mainder of the proof is devoted to constructing a matrix M2 so that following (27) we have
MT M = cI3, for some scalar c. Consider a matrix M2 so that

MT
2 M2 =

 a −1 −1
−1 a 0
−1 0 a

, (28)

where a is a constant. Suppose the matrix M2 =

 x1 y1 z1
x2 y2 z2
x3 y3 z3

. This with (28) leads to

the following equations:

x2
1 + x2

2 + x2
3 = y2

1 + y2
2 + y2

3 = z2
1 + z2

2 + z2
3 = a,

x1y1 + x2y2 + x3y3 = −1, x1z1 + x2z2 + x3z3 = −1, y1z1 + y2z2 + y3z3 = 0.

Solving this system of non-linear equations, we have a candidate matrix M2: M2 = 1 −1 z1
−1 2 z2
2 1 z3

, where z1 = 1
7 (2
√

51− 1), z2 = 1
35 (6
√

51+ 4), and z3 = −1
35 (2
√

51+ 13).



Mathematics 2023, 11, 3595 21 of 26

Thus

M =



1 0 0
1 0 1
1 1 0
0
√

2 0
0 0

√
2

1 −1 z1
−1 2 z2
2 1 z3


.

It is obvious that MMT ∈ S(G) and MT M = 9I3. Since the matrices AB and BA
have same nonzero eigenvalues, we have Spec(MMT) = {9[3], 0[5]}, and then q(G) = 2.
Moreover, applying a basic computation from SageMath [38], we can confirm that MMT

has SSP and this completes the proof.

By Lemma 10, G has an SSP realization A = MMT with two distinct eigenvalues.
Then by Lemma 3, any supergraph on the same vertex set as G has a realization with the
same spectrum as A. In particular, q(H2 ∨ K3) = 2. This is stated in the following corollary.

Corollary 8. Let G ∼= H2 ∪ 3K1, where H2 is the right graph given in Figure 6. Then, q(G) = 2
and G has an SSP matrix realization with two distinct eigenvalues.

Lemma 11. Let G ∼= H3 ∪ 3K1, where H3 is obtained from C5 by joining a vertex to any vertex in
C5. Then, q(G) = 2 and G has an SSP matrix realization with two distinct eigenvalues.

Proof. We know that G ∼= (C5 ∨ K3)− e, where e is an edge with one endpoint in K3 and

the other in C5. Suppose M =

(
M1
M2

)
, is a vertex-clique incidence matrix of G, where blocks

M1 and M2 are vertex-clique incidence matrices corresponding to graphs C5 and K3, that is,
MMT ∈ S(G). From (24) we have M1MT

1 ∈ S(C5) and M2MT
2 ∈ S(K3). On the other hand,

we also have the equations in (27). Now, we consider a vertex-clique incidence matrix M1
as follows:

M1 =


1 0 0
1 1 0
−1 1 1
0 −1 1
0 0 1

.

Then, M1MT
1 ∈ S(C5) and MT

1 M1 =

 3 0 −1
0 3 0
−1 0 3

. Given M1 above, the remain-

der of the proof is devoted to constructing a matrix M2 so that following (27) we have
MT M = cI3, for some scalar c. We need to create a matrix M2 so that

MT
2 M2 =

 a 0 1
0 a 0
1 0 a

, (29)

where a is a constant. Suppose M2 =

 x1 y1 z1
x2 y2 z2
x3 y3 z3

. This with (29) leads to the follow-

ing equations:
x2

1 + x2
2 + x2

3 = y2
1 + y2

2 + y2
3 = z2

1 + z2
2 + z2

3 = a,

x1y1 + x2y2 + x3y3 = 0, x1z1 + x2z2 + x3z3 = 1, y1z1 + y2z2 + y3z3 = 0.
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Solving these non-linear equations we have M2 =


1√
3

0 1√
3

1√
3

1√
2

1√
3

1√
3

−1√
2

1√
3

. Thus, we have

M =



1 0 0
1 1 0
−1 1 1
0 −1 1
0 0 1
1√
3

0 1√
3

1√
3

1√
2

1√
3

1√
3

−1√
2

1√
3


.

It is clear that MMT ∈ S(G) and MT M = 4I3. Since the matrices AB and BA have
same nonzero eigenvalues, we have Spec(MMT) = {4[3], 0[5]}, and q(G) = 2. Moreover,
applying a basic computation from SageMath [38], it follows that MMT has SSP and this
completes the proof.

By Lemma 11, G has an SSP realization A = MMT with two distinct eigenvalues.
By Lemma 3, any supergraph on the same set of vertices as G has a matrix realization with
the same spectrum as A. Thus, q(C5 ∨ K3) = 2. This is stated in the following corollary.

Corollary 9. Let G ∼= C5 ∪ 3K1. Then, q(G) = 2 and G has an SSP matrix realization with two
distinct eigenvalues.

Proposition 1. Let G ∼= K3 ∪ K1,n−4, where n ≥ 7. Then q(G) = 2 and G has an SSP matrix
realization with two distinct eigenvalues.

Proof. We show that the complement of G has a matrix realization with two distinct
eigenvalues with the SSP. Consider n× 3 matrix M1 with rows labeled as given in Figure 7
for n = 8:

M1 =



1 2 2
2 1 −2
2 −2 1
−
√

2 0
√

2

0
√

2
n−4 0

...
...

...

0
√

2
n−4 0


.

Figure 7. The graph G.

We have A = M1MT
1 ∈ S(G). Also MT

1 M1 = 11 I3 and Spec(A) = {11[3], 0[n−3]}. This
proves that q(G) = 2. To verify that A has SSP, suppose X is a symmetric matrix such that
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A ◦ X = O, I ◦ X = O, and [A, X] = AX− XA = O. Note to verify [A, X] = AX− XA =
O it is equivalent to prove that AX is symmetric. Now assume that X has the form:

X =

 0 O xT

O X1 O
x O O

, where X1 =

 0 a b
a 0 c
b c 0

,

and x is a (possibly) nonzero vector of size n− 4. Since AX is symmetric, comparing the
(1,3) and (3,1) blocks of AX we note that αJx = 4x. So if we set β = 1ITx, then x = α

4 β1I.
Comparing the (1,2) and (2,1) blocks of AX gives

2
√

αβ = −4
√

2a−
√

2b = −
√

2b + 4
√

2c, and
√

αβ =
√

2a−
√

2c.

Hence, it follows that a = −c and β = 2
√

2a√
α

. Finally, comparing the (2,3) and (3,2)
blocks of AX, we have

a
√

α− 2b
√

α = 2a
√

α− 2c
√

α = 2b
√

α + c
√

α =
(α

4
β
)2

=
a2

2α
.

From the above equations we deduce that b = − 3
2 a. Substituting the equations

a = −c, β = 2
√

2a√
α

, and b = − 3
2 a into the equation 2

√
αβ = −

√
2b + 4

√
2c, yields 4

√
2a =

3√
2

a− 4
√

2a. Assuming a 6= 0, implies an immediate contradiction. Thus a = 0, and it
follows, based on the analysis above that X = 0. Hence A has the SSP. Using the fact that
this matrix realization has the SSP together with Lemma 3, it follows that the complement
of any subgraph of G on the same vertex set also realizes distinct eigenvalues.

Lemma 12. Let G be the graph given in Figure 8. Then, q(G) = 2 and G has an SSP matrix
realization with two distinct eigenvalues.

Figure 8. The graph G.

Proof. We show that the complement graph of G has a matrix realization with two distinct
eigenvalues with the SSP. To do this, first we consider 8× 3 matrix M as follows:

M =



√
15
2 0 0

0 1 1
0 1 1
0 1 2
0 −2 1
1 −1 0
1 0 1√

2
2

√
2 −

√
2


.

We have A = MMT ∈ S(G). Also MT M = 10 I3 so Spec(A) = {10[3], 0[5]}. This
proves that q(G) = 2. Furthermore, A has SSP (observed using SageMath [38]) and by
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Lemma 3, the complement of any subgraph of G on the same vertex has a matrix realization
having two distinct eigenvalues.

Now we are in a position to establish that Conjecture 1 holds for n = 8.

Theorem 23. Removing up to five edges from K8 does not change the number of distinct eigenvalues
of K8, i.e., for any subgraph H on eight vertices of K8 with |E(H)| ≤ 5, q(K8\H) = 2.

Proof. To establish this result, it is sufficient to prove the complement of any graph H in
Figure 9 has a matrix realization with two distinct eigenvalues. Suppose that the graphs
in Figure 9 are denoted by Hi for i ∈ [24] from left to right in each row. The graphs Hi
for i = 1, 2, 9, 10, 15, 22, 23 are the union of complete bipartite graphs with some isolated
vertices. By Lemma 4 (2), the complements of these graphs and any subgraph of these
graphs have a matrix realization with two distinct eigenvalues. Additionally, q(Hi) = 2 for
i = 5, 11, 12, 16, 17, 18, 19, 20, 24 and for any subgraph H′i of Hi, q(H′i ) = 2 by Theorem 20.
For i = 3, 7, 8, 13, 14, we have q(Hi) = 2 and for any subgraph H′i of Hi, q(H′i ) = 2
by Lemma 12. Additionally, from Theorem 20 and Lemma 12 such realizations exist
with the SSP. Hence, any subgraph of these graphs has a matrix realization with two
distinct eigenvalues.

Further, q(H21) = q((2K2 ∪ K1) ∪ K3) = q(G ∨ 3K1) = 2 by Lemma 5, where the
graph G = 2K2 ∪ K1 = K2,2 ∨ K1 is connected. If we remove any edges in H21 from the
triangle, then the complement of the result graph has at least two distinct eigenvalues
by Lemma 4 (2), and if we remove any edges in H21 from out of the triangle, again by
Lemma 5, we have that the complement of the result graph has a matrix realization with at
least two distinct eigenvalues. We have q(H4) = 2 and the complement of any subgraph of
this graph has a matrix realization with two distinct eigenvalues, by Corollary 8. Moreover,
q(H6) = 2, and the complement of any subgraph of this graph also has a matrix realization
with two distinct eigenvalues, by Corollary 9. This completes the proof of the theorem.

subgraph H′i of Hi, q(H′i ) = 2 by Lemma 4.14. Additionally, from Theorem 4.1 and Lemma 4.14
such realizations exist with the SSP. Hence any subgraph of these graphs has a matrix realization
with two distinct eigenvalues.
Further q(H21) = q((2K2 ∪ K1) ∪ K3) = q(G ∨ 3K1) = 2 by Lemma 2.5, where the graph G =
2K2 ∪ K1 = K2,2 ∨ K1 is connected. If we remove any edges in H21 from the triangle, then the
complement of the result graph has at least two distinct eigenvalues by Lemma 2.4 (2), and if we
remove any edges in H21 from out of the triangle, again by 2.5 we have that the complement of
the result graph has a matrix realization with at least two distinct eigenvalues. We have q(H4) =
2 and the complement of any subgraph of this graph has a matrix realization with two distinct
eigenvalues, by Corollary 4.10. Moreover, q(H6) = 2, and the complement of any subgraph of
this graph also has a matrix realization with two distinct eigenvalues, by Corollary 4.12. This
completes the proof of the theorem.

Figure 9: All graphs with 8 vertices and 5 edges.

30

Figure 9. All graphs with 8 vertices and 5 edges.
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5. Concluding Remarks and Open Problems

In this work, we utilized the notions of a clique partition and an edge clique cover of a
graph to introduce and explore the various properties of a vertex-clique incidence matrix
of the graph, which can be viewed as a generalization of the vertex-edge incidence matrix.
Using these incidence matrices, we obtained sharp interesting lower bounds concerning
the negative eigenvalues and thus the negative inertia of a graph, and we generalized the
notion of the line graph of a graph by introducing the clique partition graph of the given
graph. Additionally, we determined the relations between the spectrum of a graph and its
clique partition graph. Further, we generalized the notion of incidence energy and signless
Laplacian energy of a graph and provided some novel upper bounds for the energies of a
graph, its clique partition graph, and the line graph. Finally, applying a general version of
a vertex-clique incidence matrix of a graph associated with its edge clique cover, we were
able to characterize a few classes of graphs with q(G) = 2. To close, we list two important
and unresolved issues related to some of the content of the current work.

Problem 1: Characterize the corresponding extremal graphs for which the inequalities
given in (4), (6), (10), (13), and (14) hold with equality.

Problem 2: Prove that Conjecture 1 is valid for any graph G of an order of at least nine.
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