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Abstract: This paper proposes a new approach to assessing the impact of changes in the traffic flow
on pollutant emissions and the traffic capacity of signal-controlled intersections. We present an
intelligent vision system tailored to monitor the traffic behavior at signal-controlled intersections in
urban areas. Traffic cameras are used to collect real-time vehicle traffic data. Our system provides
valuable insight into the relationship between traffic flows, emissions, and intersection capacity.
This study shows how changes in the traffic composition reduce the traffic capacity of intersections
and increase emissions, especially those involving fine dust particles. Using the combination of
fuzzy logic methods and Gaussian spline distribution functions, we demonstrate the variability
of these relationships and highlight the need to further study compromises between mobility and
air quality. Ultimately, our results offer promising opportunities for the development of intelligent
traffic management systems aimed at balancing the demands of urban mobility while minimizing
environmental impact. This study demonstrates the importance of taking into account the correlation
between the change in the composition of traffic queues due to a random change in the traffic flow and
its impact on emissions and the traffic capacity of intersections. This study found that the presence of
various groups of vehicles and their position in the queue can reduce the traffic capacity by up to 70%
and increase the growth of harmful emissions by 14 fold.

Keywords: vehicle queue structure; pollutant emissions; fuzzy logic method; intelligent vision

MSC: 03B52; 94D05; 92B20; 93A30; 91C20

1. Introduction

The rapid development of the global economy and increasing per capita consumption
have inevitably affected the urban environment. The transport sector is a significant
contributor to air pollution. Just in Europe, approximately 238,000 people died prematurely
from the harmful effects of automobile emissions [1]. Residents living close to large road
arteries and junctions are exposed to particularly strong and constant pollution [2]. A huge
number of vehicles congest the highways, especially at intersections.

Congestion leads to many negative economic (vehicle wear, fuel consumption, in-
creased travel time), environmental (increase in harmful emissions), and psychological
(increasing noise, driver stress, accident rate) factors. The numerous reasons for congestion
can be conditionally divided into permanent (such as the geometry of the road structure, in-
consistent traffic light operation, parked cars causing interferences) and random, including
traffic accidents, weather conditions, and repairs.
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Congestion control will certainly have a positive impact on air quality. Numerous
vehicle emission models help assess environmental “hotspots”. These models can quantify
air quality, which is essential for optimizing the effectiveness of traffic management.

Modeling requires a huge number of input parameters that closely interact with each
other. Models with real-time data receipt are relevant now. Street video surveillance
provides a suitable information flow that can be processed by neural networks with high
speed and accuracy.

The urban traffic flow is very diverse and contains vehicles of various types and
dimensions. Therefore, the actual air quality condition at a signal-controlled intersection is
a complicated task with many different aspects.

Many works study the traffic capacity of signal-controlled intersections and build
models to assess and forecast traffic-related emissions. However, there are no works
assessing road traffic parameters and quantifying emissions dynamically. Further, our paper
considers an approach to numerically determining the set of basic parameter estimates of a
heterogeneous traffic flow.

This paper presents a detailed study of intelligent neural networks based on computer
vision that analyzes traffic patterns at a specific intersection. Although the analysis consid-
ers the impact of variations in the traffic structural composition on emissions and traffic
capacity, its applicability goes beyond the particular studied intersection. In particular,
we study how changes in the vehicle composition affect the efficiency of intersections and
increase harmful emissions. Using a combination of fuzzy logic approaches and Gaussian
spline distribution functions, we highlight the variability of these relationships and empha-
size the need for further exploring the balance between mobility and air quality. Ultimately,
our findings point to the potential benefits of implementing intelligent traffic management
strategies to optimize urban mobility while mitigating negative environmental impacts.

This paper is structured as follows: Section 2 reviews literature related to the traffic
capacity of signal-controlled intersections and the main models of vehicle-related emissions.
The intellectual vision method used to form the initial database is presented in Section 3.
Section 4 analyzes the structure of the vehicle queue at signal-controlled intersections,
based on which the relationship between intersection capacity and various vehicle types is
presented in Section 5. Section 6 analyzes vehicle-related harmful emissions with changes
in the queue structure, and Section 7 estimates the amount of vehicle-related emissions
at signal-controlled intersections using fuzzy logic methods. Section 8 provides some
discussions on this subject and the conclusions are presented in Section 9.

2. Literature Review

Traffic capacity (TC) is an essential performance indicator of a signal-controlled in-
tersection [3–5]. The TC of intersections is critical for evaluating the performance of the
road network in general. Many methods have been proposed for assessing and measuring
the TC of signal-controlled intersections and many models for optimizing traffic at inter-
sections have been developed [6–9]. However, most studies are based on the assumption
that the traffic flow is homogeneous (all vehicles are standard) and are accepted for calcu-
lations according to the Highway Capacity Manual (HCM) as a passenger car equivalent
(PCE) [10].

Over time, vehicle dimensions have changed and many correction factors should be
revised [4]. All vehicles differ significantly in size and maneuverability, and therefore they
move in the traffic flow at different speeds, which affects the TC of intersections [11].

The rapid development of video data recognition and processing technologies enabled
the real-time assessment of the traffic flow characteristics on highways and intersections.
Such valuable information is necessary for taking various measures to reduce and pre-
vent congestions.

In paper [12], the authors proposed an approach for real-time measurement of the
vehicle queue and congestion density at a signal-controlled intersection using an ultrasonic
sensor node. Pandian et al. [13] studied the influence of the traffic flow composition on
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TC on highways and presented a model to quickly assess the impact of various vehicle
types on TC, ignoring the vehicle equivalence coefficient. The authors found that the TC
of a highway decreases if there are buses, trucks, and other large vehicles in the flow of
passenger cars. At the same time, the TC of a highway increases with an increase in the
percentage of motorized two-wheeled vehicles.

Dhamaniya et al. [14] measured traffic flow density in mixed traffic conditions from
the ratio of speed, flow, and density, and a rationale was provided for changes in speed
depending on the traffic flow structure and traffic density.

The presence and movement of heavy vehicles (for passenger and bulky cargo trans-
portation) on urban highways inevitably affects TC. In [15], Singh and Santhakumar used
data obtained by an infrared sensor and found that the traffic flow speed is significantly
reduced due to the low speed of heavy vehicles, especially when they cluster. Observations
of a vehicle queue at a signal-controlled intersection in [16] showed that its length and
delay time depend on the vehicle composition in the queue.

The quality of urban air depends on many factors, with vehicle exhaust gases exerting
the largest influence [17,18]. The volume and composition of exhaust gases depend on
the characteristics of traffic, the configuration of streets, and the number and types of
vehicles [13]. Particularly unfavorable situations are found within intersections. The
dispersion of vehicle-related harmful emissions is especially complicated when high-rise
buildings surround intersections. Yassin et al. [19] used a computational fluid dynamics
(CFD) model to establish that the concentration of harmful emissions at regular intersections
is higher than at T-shaped and oblique intersections.

Woodward et al. [20] comprehensively studied the dispersion of traffic-related harmful
emissions in cities. They concluded that when the vehicle is moving, harmful emissions
are dispersed faster due to the turbulence caused by road traffic. In the intersection zone,
where vehicles are not moving (or moving slowly), their engines are idling (at low speeds)
and emissions are produced, respectively, there is no turbulence from the traffic flow and
harmful emissions are dispersed very slowly (especially in calm weather). Therefore, in the
intersection area, the concentration of harmful emissions is much higher than within other
road sections.

A greater number of buses tends to increase mixed traffic conditions, especially in
urban areas with actively developing public transport. The priority movement of buses
through signal-controlled intersections creates interference and delays for other vehicles,
which increases fuel consumption and harmful emissions [21].

The characterization of vehicle-related exhaust gas emissions carried out by
Jaikumar et al. [22] and Ritner et al. [23] showed that emissions at idle speed and when the
vehicle is moving at cruising speed are much lower than those during rapid acceleration
and deceleration.

Wang et al. [24] analyzed the factors affecting emissions from city buses. The authors
used a backpropagation neural network (BPNN) to analyze multiple factors and concluded
that such factors as delay time, location, and stops significantly affect emissions. At the
same time, the speed and number of passengers weakly affected the volume of emissions.

The number of connected and autonomous vehicles (CAVs) has been increasingly
growing on roads, which undoubtedly affects the traffic capacity of both highways and
intersections. In [25], the authors found that the TC of an intersection with CAVs increases
by 70% compared to human-driven vehicles.

A study on the impact of CAVs with a dynamic distributed routing algorithm on
greenhouse gas emissions showed that the widespread introduction of CAVs significantly
reduced emissions, since the routing system reduced traffic congestion [26]. However,
despite this positive effect, there was a simultaneous increase in the cruising speed and
acceleration, which increased NOx emissions and led to areas with high NO2 concentrations.
Thus, compromises should be sought out between the effectiveness of traffic control and
the dispersion of harmful emissions.



Mathematics 2023, 11, 3591 4 of 30

Many studies have found that particulate matter (PM) cause irreparable harm to living
organisms up to cellular mutations. PM are emitted into the atmosphere with other harmful
substances during the operation of gasoline and diesel engines [27]. Close attention should
be paid to this type of harmful emissions, which mostly comes from vehicles.

PM emission assessment methods can be divided into laboratory measurements (using
special instruments (optical aerosol monitor [28], photoacoustic device [29])), and measure-
ments in real conditions using various models: Mobile Source Factor Model (MOBILE),
Comprehensive Modal Emissions Model (CMEM), California Line Source Dispersion
Model (CALINE) [30], Computer programs to calculate emission from road transport
(COPERT) [31], Passenger Car and Heavy Duty Emission Model (PHEM) [32], Electronic
Model of Population Activities (EMPA), and Modeling of Emissions and Consumption
(MODEM) [33].

Instrumental measurements have limitations and cannot reflect reality, as they do not
account for many factors of driving conditions. The developed models are focused on the
micro level (a certain section of the road network), if there are available data for this segment
and traffic conditions. The resulting estimate for the amount of vehicle-related emissions is
obtained as an average, since the models assume that vehicles run on traditional fuel and
vehicle-related emission factors for various types of vehicles are used. Emissions analysis
can be improved by using the fuzzy logic methods that take into account the uncertainty
and subjectivity of many factors inherent in complex environmental assessment.

Carbajal-Hernández et al. [34] presented a model for assessing the air condition quality
based on a fuzzy inference system, which provides results which are more accurate and
closer to true emissions.

Fuzzy modeling methods, using logical, numerical, linguistic information for analysis,
have become widespread for forecasting complex processes, including environmental
ones. For example, the authors [35] developed a model that combines neural and fuzzy
methods to predict a pollution episode. The Index of agreement ranges from 75 to 90%
when forecasting harmful emissions.

Combined models are used to improve the efficiency of forecasting. For example,
in [36], researchers use the data preprocessing method, fuzzy theory, and an optimiza-
tion algorithm.

Most studies of vehicle-related harmful emissions are focused either on measures
to increase the TC in order to reduce the environmental load, or on the assessment and
analysis of harmful emissions in the road network structure. We aim to fill this research
gap. In our study, we estimate the amount of PM2.5 at signal-controlled intersections based
on fuzzy logic methods and the relationship between PM2.5 emissions and the structure of
the traffic flow queue in real time.

Our study unites several areas related to traffic management and environmental
impact. The new approach includes studying the relationship between the structure of
traffic flows, the traffic capacity of intersections, and vehicle-related emissions. Further,
this article uses new methods, such as intelligent data extraction and interpretation, as well
as fuzzy logic methods to analyze these relationships. These innovations provide valuable
insights into the optimization of traffic flows and the reduction in vehicle-related emissions
in urban environments. This study aims to improve the sustainability and efficiency of
urban planning and transport systems.

3. Intelligent Vision and Initial Data Generation

A software system was developed to collect data on the traffic flow structure and pol-
lutant emissions. It analyzes the video stream from the road network section using neural
network technologies. We analyzed the intersection of Prospect Pobedy and Krasnozna-
mennaya street in Chelyabinsk, Russia using a free-access Intersvyaz camera (Figure 1) [37].
This intersection was chosen because of the fairly good camera angle that allows us to view
several queues of vehicles, a short distance that provides good visibility and allows us to
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detect and classify vehicles with high accuracy, and the absence of obstruction of view by
poles and trees.
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Figure 1. Photo of the intersection of Prospect Pobedy and Krasnoznamennaya street in Chelyabinsk,
Russia from a surveillance camera [37].

We processed video recordings for 15 days during peak hours from 7:30 a.m. to
9:30 a.m. and from 17:00 p.m. to 19:00 p.m. We analyzed approximately 60 h of video data
in total.

The YOLOv4 (You Only Look Once) [38] neural network was used to detect and
classify vehicles. The classification includes:

• I—passenger cars;
• II—vans and minibuses up to 3.5 tons;
• III—trucks from 3.5 to 12 tons;
• IV—trucks over 12 tons;
• V—buses over 3.5 tons;
• Tram—trams.

The freely available Simple Online and Real-time Tracking (SORT) tracker [39] was
used to track and identify vehicles. A checkerboard overlay was used to calibrate and
eliminate the radial camera distortion. A perspective transformation matrix based on four
reference points was used to determine the geographical coordinates of vehicles [40]. It
converts the screen coordinates of an object into its longitude and latitude at the intersection.
The obtained geographical coordinates are used to calculate the distance traveled and the
average travel speed of vehicles.

Atmospheric emissions were calculated according to [41,42] for the following pollutants:

• CO—carbon monoxide;
• NOx—the sum of nitrogen oxides (in terms of nitrogen dioxide);
• PM2.5;
• PM10.

A functional zone was manually marked in the center of the intersection for calcula-
tions. We marked entry and exit zones with polygons and lines of points on the border
of the functional zone. The points were placed approximately in the center of the lines in
the section of the image in which vehicles can be tracked well to precisely determine the
direction of movement. Each zone was named according to the cardinal directions: N, S, W,
E for entry zones and _N, _S, _W, _E for exit zones. Each line was also named according to
its zone and number (for example: N1, W2, _E3). To determine the entry and exit zone, we
check if the object is in the polygon, and to determine the lane, we search for the point of
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the corresponding zone which is closest to the trajectory of the object. Figure 2 shows the
operation of the system at a marked intersection.
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Throughout the object tracking period, each frame of its coordinates is stored in
the detection queue. After the vehicle can no longer tracked, the following parameters
are calculated:

• line_in—entry lane;
• line_out—exit lane;
• millis_in—time in milliseconds when the vehicle was closest to the entry point;
• millis_out—time in milliseconds when the vehicle was closest to the exit point;
• speed—average speed in km/h within the functional zone;
• dist—distance in meters traveled inside the functional zone;
• stay—standing time in milliseconds within the functional zone;
• move—movement time in milliseconds within the functional zone;
• emis_CO, emis_NOx, emis_PM2.5, emis_PM10—emissions in grams produced by

vehicles within the functional zone;
• emis_stay_CO, emis_stay_NOx, emis_stay_PM2.5, emis_stay_PM10—emissions in

grams produced by vehicles during standing inside the functional zone;
• emis_move_CO, emis_move_NOx, emis_move_PM2.5, emis_move_PM10—emissions

in grams produced by vehicles while driving inside the functional zone.

Using the video from the intersection, we measured the operating mode of the traffic
light consisting of two main cycles:

1. The duration of the green signal is 48 s. The green signal is active for the following
driving directions: W1 _E1, W1 _S1, W2 _E2, W3 _E3, W4 _E4, W4 _N2, E1 _N1, E2
_W1, E3 _W2, E4 _W3, E4 _S2 (Figure 3);

2. The duration of the green signal is 34 s. The green signal is active for the following
driving directions: N1 _W1, N1 _S1, N2 _S2, N2 _E4, S1 _E1, S2 _N1, S3 _N2, S3 _W3
(Figure 4).

The green light cycle is determined for vehicles when the vehicle moves into the
functional zone. The number of the vehicle in its queue is also determined. Vehicles belong
to the same queue if they have the same entry line. The sequence is determined according
to the millis_in parameter within one cycle (the smaller this number, the earlier the vehicle
is in the queue).
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The system creates an “xlsx” file (Tables 1–3) with the following columns:

• “id”—vehicle identifier;
• “start signal”—start time of the green light cycle;
• “end signal”—end time of the green light cycle;
• “line in”—entry line;
• “line out”—exit line;
• “pos”—number in the queue;
• “category”—vehicle category;
• “time in”—time of entry into the functional zone;
• “time out”—time of exit from the functional zone;
• “speed”—average speed inside the functional zone (km/h);
• “dist”—distance traveled inside the functional zone (m);
• “duration”—time spent inside the functional zone (s);
• “stay”—standing time inside the functional zone (s);
• “move”—movement time inside the functional zone (sec);
• “sCO, sNOx, sPM2.5, sPM10”—amount of CO, NOx, PM2.5, PM10 emissions produced

by vehicles during standing inside the functional zone (grams);
• “mCO, mNOx, mPM2.5, mPM10”—amount of CO, NOx, PM2.5, PM10 emissions

produced by the vehicles while driving inside the functional zone (grams);
• “tCO, tNOx, tPM2.5, tPM10”—total amount of CO, NOx, PM2.5, PM10 emissions

produced by vehicles inside the functional zone (grams).
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Table 1. Data on the order of vehicle movement.

ID Start
Signal End Signal Line in Line out Pos Category Time in Time out

73 07:30:46 07:31:37 E1 _N1 1 I 07:30:56 07:30:57
54 07:30:46 07:31:37 E2 _W1 1 I 07:30:51 07:30:54
77 07:30:46 07:31:37 E2 _W1 2 I 07:30:53 07:30:55
88 07:30:46 07:31:37 E2 _W1 3 I 07:30:57 07:30:59
96 07:30:46 07:31:37 E2 _W1 4 I 07:31:01 07:31:03
29 07:30:46 07:31:37 E3 _W2 1 I 07:30:50 07:30:53
75 07:30:46 07:31:37 E3 _W2 2 I 07:30:53 07:30:55
72 07:30:46 07:31:37 E3 _W2 3 I 07:30:54 07:30:56
80 07:30:46 07:31:37 E3 _W2 4 I 07:30:56 07:30:58
89 07:30:46 07:31:37 E3 _W2 5 I 07:30:59 07:31:01

130 07:30:46 07:31:37 E3 _W2 6 I 07:31:28 07:31:30
134 07:30:46 07:31:37 E3 _W2 7 I 07:31:31 07:31:32
140 07:30:46 07:31:37 E3 _W2 8 I 07:31:35 07:31:36
144 07:30:46 07:31:37 E3 _W2 9 I 07:31:37 07:31:38
63 07:30:46 07:31:37 E4 _W3 1 I 07:30:48 07:30:50
69 07:30:46 07:31:37 E4 _W3 2 I 07:30:50 07:30:52
28 07:30:46 07:31:37 W1 _S1 1 I 07:30:55 07:30:57
82 07:30:46 07:31:37 W1 _S1 2 I 07:30:59 07:31:01
94 07:30:46 07:31:37 W1 _S1 3 I 07:31:03 07:31:05

100 07:30:46 07:31:37 W1 _S1 4 I 07:31:06 07:31:08
105 07:30:46 07:31:37 W1 _S1 5 I 07:31:09 07:31:10
112 07:30:46 07:31:37 W1 _S1 6 I 07:31:11 07:31:14

Table 2. Data on vehicle movement parameters.

ID Speed Dist Duration Stay Move

73 15.4 2.3 1.03 0 1.03
54 24.4 17.7 2.49 0 2.49
77 32.8 18.4 2.20 0 2.20
88 35.8 19.2 2.00 0 2.00
96 37.8 19.9 1.92 0 1.92
29 27.5 17 2.57 0 2.57
75 34.1 19.2 2.22 0 2.22
72 37.6 20.4 1.92 0 1.92
80 43.6 19.6 1.67 0 1.67
89 44.0 20.6 1.68 0 1.68

130 50.4 19.2 1.45 0 1.45
134 52.2 19.1 1.40 0 1.40
140 53.5 21.6 1.48 0 1.48
144 53.9 17.4 1.32 0 1.32
63 32.5 21.4 2.39 0 2.39
69 37.4 22.3 2.32 0 2.32
28 12.3 4.2 1.84 0 1.84
82 10.8 6.4 2.67 0 2.67
94 14.7 6.7 1.67 0 1.67

100 15.6 4.2 1.49 0 1.49
105 16.5 5 1.44 0 1.44
112 12.9 4.2 2.39 0 2.39
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Table 3. Emission data.

ID sCO sNOx sPM2.5 sPM10 mCO mNOx mPM2.5 mPM10 tCO tNOx tPM2.5 tPM10

73 0 0 0 0 0.00250 0.00091 0.00003 0.00007 0.00250 0.00091 0.00003 0.00007
54 0 0 0 0 0.01594 0.00584 0.00018 0.00048 0.01594 0.00584 0.00018 0.00048
77 0 0 0 0 0.01545 0.00566 0.00018 0.00047 0.01545 0.00566 0.00018 0.00047
88 0 0 0 0 0.01487 0.00545 0.00017 0.00045 0.01487 0.00545 0.00017 0.00045
96 0 0 0 0 0.01342 0.00492 0.00015 0.00041 0.01342 0.00492 0.00015 0.00041
29 0 0 0 0 0.01525 0.00559 0.00018 0.00046 0.01525 0.00559 0.00018 0.00046
75 0 0 0 0 0.01522 0.00558 0.00018 0.00046 0.01522 0.00558 0.00018 0.00046
72 0 0 0 0 0.01375 0.00504 0.00016 0.00042 0.01375 0.00504 0.00016 0.00042
80 0 0 0 0 0.01061 0.00389 0.00012 0.00032 0.01061 0.00389 0.00012 0.00032
89 0 0 0 0 0.01113 0.00408 0.00013 0.00034 0.01113 0.00408 0.00013 0.00034
130 0 0 0 0 0.00519 0.00190 0.00006 0.00015 0.00519 0.00190 0.00006 0.00015
134 0 0 0 0 0.00516 0.00189 0.00006 0.00015 0.00516 0.00189 0.00006 0.00015
140 0 0 0 0 0.00584 0.00214 0.00006 0.00017 0.00584 0.00214 0.00006 0.00017
144 0 0 0 0 0.00470 0.00172 0.00005 0.00014 0.00470 0.00172 0.00005 0.00014
63 0 0 0 0 0.01807 0.00662 0.00021 0.00055 0.01807 0.00662 0.00021 0.00055
69 0 0 0 0 0.01654 0.00606 0.00019 0.00050 0.01654 0.00606 0.00019 0.00050
28 0 0 0 0 0.00495 0.00181 0.00005 0.00015 0.00495 0.00187 0.00005 0.00015
82 0 0 0 0 0.00760 0.00278 0.00009 0.00023 0.00760 0.00278 0.00009 0.00023
94 0 0 0 0 0.00787 0.00288 0.00009 0.00024 0.00787 0.00288 0.00009 0.00024
100 0 0 0 0 0.00457 0.00167 0.00005 0.00014 0.00457 0.00167 0.00005 0.00014
105 0 0 0 0 0.00545 0.00199 0.00006 0.00016 0.00545 0.00199 0.00006 0.00016
112 0 0 0 0 0.00486 0.00178 0.00005 0.00014 0.00486 0.00172 0.00005 0.00014

4. Analysis of the Vehicle Queue Structure

The acquired large array of initial data of 188,619 entries of vehicles moving in the
intersection in all possible driving directions allows us to obtain statistically reliable results
necessary to answer many basic questions regarding the traffic flow structure.

First, we should determine the characteristics of a homogeneous traffic flow consisting
of vehicles of the first group (TV-1) (passenger cars) that prevail in the traffic flows of
the analyzed intersection. Then, we should analyze the impact on these characteristics of
vehicles belonging to other groups: group 3 (TV-3) (trucks weighing from 3.5 to 12 tons);
4 (TV-4) (trucks weighing over 12 tons) and 5 (TV-5) (buses weighing over 3.5 tons). Notably,
this study does not consider group 2 (TV-2) vehicles (vans and minibuses weighing up to
3.5 tons), since previous study [43] have shown that they do not significantly change the
temporal characteristics of the flow of vehicles belonging to the first group.

4.1. Intervals between Vehicles

The common interval between moving vehicles in a continuous traffic flow is 2 s.
However, we are interested in a specific traffic flow: a queue of vehicles that start moving
after a complete stop at a red light. We formed a sample of the initial data consisting of
22 strictly continuous flows of passenger cars. We restricted the interval between the first
ten cars to no more than 5 s as a criterion for the continuity of the traffic flow. This should
reject entries with freely moving vehicles that were not in the vehicle queue at the signal-
controlled intersection. A sample of 22 entries, 10 cars each, proved to be sufficient, since in
practice its increase from approximately the 15th entry did not change the general trend.

Figure 5 shows the average value of the intervals between cars (I1), depending on their
position in the queue of vehicles that resume movement after coming to a complete stop.

Comparing the average values by the parametric one-sample Student’s t-test (IBM
SPSS Statistics 20 package) showed that from the third interval on, there is no statistically
significant deviation of the intervals between moving vehicles from the generally accepted
level of 2 s (the value of 34% significantly exceeds the permissible level of 5%). The
calculations allow us to accept this interval as valid for any vehicle queue size and use it
for further analyses.
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4.2. Maximum Vehicle Queue Size

The maximum size of the queue of passengers is estimated based on the assumption
of a saturation flow, when the traffic flow consisting of only passenger cars moves continu-
ously without major time intervals between vehicles during the entire cycle of the green
light. The initial data array includes traffic flows recordings from 15 business days in two
blocks (morning and evening). There are 30 observation blocks in total, with an average of
6000 entries per block. The maximum number of vehicles passing through on a green light
is determined in each block, as shown in Figure 6.
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Descriptive statistics revealed that maximum queue size ranged from 20 to 28 cars; the
mathematical expectation is 22.4 cars with a standard deviation of 1.7 cars. The variation
coefficient is 7.6%, which characterizes the high level of traffic flow stability during all
15 observation days.

A reasonable verification is grounded on the calculation of the maximum traffic
capacity of the intersection, based on the duration of the green traffic light signal (51 s) and
the average interval between TV-1 (2.1 s). We obtain 24.3 cars. Taking into account the
natural delays at the beginning and end of the traffic light cycle expressed in a decrease in
the traffic capacity by one car at the beginning and end of the cycle, we obtain the same
estimate of the maximum traffic capacity of 22 cars.

Thus, the traffic capacity is assumed to be 22 TV-1 driving straight ahead for a signal-
controlled intersection with a green light cycle of 51 s. Taking into account the assumption
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of the saturation flow, we take the value of the maximum queue size that passes through
the intersection during the green light cycle, also equal to 22 vehicles. This queue size will
be used as a base value in our further calculations.

4.3. Vehicle Acceleration Dynamics
4.3.1. The TV-1 Group

The speeds of vehicles leaving the intersection were recorded in the array of initial
data, which allows us to determine changes in speed depending on the position of the
vehicle in the queue formed at the red light. The accepted size of this queue is 22 vehicles,
according to the calculations above.

Out of 30 blocks of 6000 entries (15 days, morning and evening), we selected entries
in the initial data that corresponded to a queue of up to 17 vehicles passing through the
intersection, since a larger traffic flow breaks its continuity. Out of ten blocks of initial data,
we selected 22 entries including speeds from 12 to 17 vehicles for a total of 220 entries. A
further increase in the sample after the 6th block did not significantly change the established
trend; therefore, processing was limited to ten blocks. Figure 7 shows the actual dynamics
of the speed of vehicles leaving the intersection, depending on their position in the queue
(actual TV-1).
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Figure 7. The actual speed and speed trend of TV-1 upon exiting the intersection.

Our further analysis compares the speeds for all major groups of vehicles, so it is
advisable to smooth and extrapolate this trend to the entire maximum queue size. The
smoothing criterion is the minimization of the standard deviation error, and extrapolation
prolongs the trend for the entire maximum possible queue of 22 vehicles at this intersection.
The results of this additional processing of vehicle speeds averaged over the sample are
also shown in Figure 7 (trend TV-1).

This upward trend in the speed of low-inertia vehicles at the exit from the intersection
is in good agreement with a priori estimates. The first car accelerates from the stop line to
the exit to 32 km/h; the following cars evenly increase their speed to close to the maximum
permitted speed of 60 km/h; and then the traffic flow of the entire queue moves uniformly
at a speed of 57 km/h. This trend in the speed of passenger cars is taken as a basis for our
further comparison with vehicles of other classification groups.
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4.3.2. The TV-3 Group

As with the other groups, out of 30 blocks of 6000 entries on average (15 days, morning
and evening), we selected entries in the initial data that corresponded to queues of up to
15 cars containing one TV-3 vehicle at different positions in the queue passing through an
intersection. We could not record entries with a large queue because of the discontinuity
of the traffic flow and the decrease in the queue due to the presence of bulky vehicles
from TV-3.

A total of 73 satisfactory entries were selected for a queue of up to 15 vehicles, which
contained only one group 3 (TV-3) vehicle at various positions in the queue. The remaining
vehicles in the queue are from TV-1. In light of their low inertia, their position in front of
TV-3 vehicles does not affect the acceleration of individual trucks.

However, a relatively small sample demonstrated the main trend in the dynamics of
the acceleration speed of vehicles (actual TV-3), as shown in Figure 8 with an approximate
trend line for the maximum queue (trend TV-3). Figure 8 also presents the previous trend
in the speed dynamics for passenger cars (trend TV-1).
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Figure 8. The actual speed and speed trend of TV-3 group at the exit from the intersection.

The minimization of the mean square deviation error is taken as the smoothing
criterion, and extrapolation prolongs the trend for the entire maximum possible queue of
22 vehicles at an intersection. The revealed trend in the speed dynamics of TV-3 group also
agrees well both with its a priori estimate. TV-3 group shows lower speeds and slightly
slower acceleration for inertial trucks compared to passenger cars.

4.3.3. The TV-4 Group

The fourth group of vehicles (TV-4) consists of trucks weighing over 12 tons, which
have high inertia in dynamic driving modes. Out of 30 blocks of 6000 entries on average
(15 days, morning and evening), we selected entries which corresponded to a queue of up
to 15 vehicles passing through the intersection, given that the traffic flow is continuous,
with one TV-4 group vehicle at different positions in the queue. A total of 87 satisfactory
entries were selected, each containing no more than 15 vehicles.

The actual dynamics of the acceleration speed of TV-4 generally coincide with the
speed dynamics in the third group (actual TV-3), as shown in Figure 9, and the approxi-
mating trend line for the maximum queue size is almost the same (trend TV-3, TV-4). This
result was anticipated, since with an increase in the total mass of group 4 vehicles, the
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power of their engines also increases, and the movement nature of inertial trucks of both
the third and fourth groups should be similar.
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4.3.4. The TV-5 Group

The fifth group of vehicles (TV-5) consists of buses weighing over 3.5 tons generally
used for passenger transportation. This should essentially affect the smoother overall
acceleration trend.

Out of 30 blocks of 6000 entries on average (15 days, morning and evening), we
selected entries which corresponded to a queue of up to 15 vehicles passing through the
intersection, given that the traffic flow is continuous, with one TV-5 vehicle at different
positions in the queue. A total of 73 satisfactory entries were processed, each containing no
more than 15 vehicles.

A sample demonstrated the main trend in the dynamics of the acceleration speed of
vehicles (actual TV-5), shown in Figure 10 with an approximating trend line for a queue
of 22 vehicles (trend TV-5). Additionally, Figure 10 shows the previous trend in the speed
dynamics for passenger cars (trend TV-1).
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As anticipated, the speed of buses changes unevenly during acceleration, and the
maximum speed is lower than that of vehicles from other groups.

Figure 11 compares all trends in the speed dynamics of vehicles from different groups.
Passenger cars and trucks have the same type of acceleration, while the dynamic nature of
acceleration of buses fundamentally differs; this can be explained by the large passenger
capacity of buses.
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These selective statistical characteristics of vehicles of different groups will be used in
further calculations to compare the traffic capacity of a signal-controlled intersection and to
estimate pollutant emissions when the queue structure varies.

5. Analysis of the Intersection Capacity with Changes in the Vehicle Queue Structure

The intersection capacity will decrease if there is a vehicle of another group in the
queue of passenger cars. In this case, the last passenger car in the queue will not move
according to its own speed profile (see Figure 11), but according to the profile of the vehicle
of another group. Moreover, the position of this vehicle in the queue does not have any
impact; only its presence is decisive. Based on this assumption, let us estimate the decrease
in the intersection capacity if there are vehicles from groups 3, 4, and 5 in the queue.

5.1. Passenger Cars through the Intersection

The base value for estimating the decrease in the traffic capacity will be the time for the
last passenger car to pass through the intersection if there are no vehicles of other groups
in the queue. Numerical constants for calculations are:

• The time of the green light T0 = 51 s;
• Intersection width S0 = 19.5 m;
• The distance from the stop line to the area of the intersection itself Dsl = 9 m.

Based on the statistical processing of a sample of 120 entries for this intersection,
we determined:

• The average length of a passenger car, Lpc = 4.5 m;
• The distance between cars in the queue, Dq = 2.7 m.
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The Formulas for determining individual terms for the time the last car in the queue
passes the intersection area are as follows. For the first position in the queue, as of reaching
the center of the intersection, the acceleration time (t1) is:

t1 =
2(S0 + 0.5Dsl)

V1
, (1)

where V1 is the acceleration speed of the first car.
For subsequent vehicles in the queue (21 cars), which both continue to accelerate

and move at a constant speed, the additional time (ti) is determined at the distance of the
interval between cars equal to the sum (Lpc + Dq):

ti =
2
(

Lpc + Dsl
)

Vi−1 + Vi
. (2)

The total time for the last car in the queue to pass through the intersection area
determined by the considered algorithm is equal to Tt1 = 15.3 s (for TV-1), which is much
less than the time of the green light T0 = 51 s. This is explained by the delayed start of each
vehicle (td) in the queue; and the calculations give it an average estimate according to the
following ratio:

td =
T0 − Tt1

21
. (3)

5.2. Queue with One Vehicle of Other Groups

If there is one vehicle in the queue of the third or fourth group with an identical traffic
schedule in the intersection area (see Figure 12), similar calculations using Formulas (1)
and (2) show the overall increase in the travel time of the last vehicle in the queue up to
Tt34= 19.9 s, and if there is one vehicle of the fifth group in the queue—up to Tt5 = 19.4 s.
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Figure 12. The time needed to pass the intersection by a queue of vehicles.

Figure 12 presents the corresponding accumulation graphs of the overall travel time for
the queue of passenger cars (TV-1), if there is one vehicle in the queue from other transport
groups (TV-3 or TV-4; TV-5). The accumulation dynamics depends on the position of the
vehicle in a queue of 22 cars.

Taking into account the pre-defined time interval between passenger cars I1 = 2.1 s, as
well as the generally accepted coefficients for reducing vehicles to TV-1:

• k3 = 3 for reducing TV-3/TV-1;
• k4 = 4—for TV-4/TV-1;
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• k5 = 2.5—TV-5/TV-1.

We can estimate the decrease in the intersection capacity if there is one vehicle of
another category in the traffic flow of passenger cars.

The general estimation algorithm (%) Pri for vehicles of the i-th group is determined
by the formula:

Pri =
22 − Tti−t1

I1
− (ki − 1)

22
· 100%, (4)

where the first difference (Tti-t1)/I1 determines the decrease in the traffic capacity because
of the slowdown of cars (TV-1) moving according to the pace of vehicles of the i-th group;
the second difference (ki − 1) determines the decrease in the traffic capacity by the reduction
coefficient for the vehicle of the i-th group.

The calculations give the following decrease in the traffic capacity Pri when there is
only one vehicle of another group in the queue:

• for TV-3: Pr3 = 81.8%;
• for TV-4: Pr4 = 77.3%;
• for TV-5: Pr5 = 84.1%.

5.3. Queue with Several Vehicles of Other Groups

With an increase in the number of other vehicles of any group in the queue, formula
(4) changes as follows:

P/
ri =

22 − Tti−t1
I1

− Ni(ki − 1)

22
· 100%, (5)

where Ni is the number of vehicles of one i-th group in the queue of passenger cars.
Figure 13 a graph of the relationship between decrease in the traffic capacity P’ri and

an increase in the queue of vehicles of any one group.
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Figure 13. Intersection capacity with vehicles of various groups in the queue.

With the maximum increase in the number of vehicles of other groups in the queue,
the intersection capacity drops below 40%. Moreover, this maximum number of other
vehicles is limited: six vehicles for TV-3 group; five vehicles for TV-4 group; eight vehicles
for TV-5 group.

It is also interesting to estimate the distribution field of the traffic capacity if there are
simultaneously several vehicles of other groups in the queue of passenger cars. In view of
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the proximity of the movement dynamics of groups TV-3 and TV-4, we will consider the
simultaneous impact of vehicles of groups TV-3 and TV-5 on the traffic capacity.

In this case, formula (4) is as follows:

P/
3_5 =

22 − T34−t1
I1

− N3(k3 − 1)− N5(k5 − 1)

22
· 100%. (6)

The distribution field shown in Figure 14 was built in Matlab R2015a (8.5.0.197613).
The horizontal projection reflects the maximum possible combinations for the number of
vehicles of two groups—TV-3 and TV-5.
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Figure 14. The distribution field of the intersection capacity if there are vehicles of two groups in
the queue.

The maximum decrease in the intersection capacity to 31.8% is observed when there
are five vehicles from TV-3 group and two vehicles from TV-5 group in the queue.

6. Analysis of Pollutant Emissions with Changes in the Vehicle Queue Structure

Vehicles are sources of many pollutants, both gases from vehicle-related exhaust gases
and solid suspended microparticles from (besides soot emissions) the wear of tires, brake
pads, roadway, and the lifting of settled dust from air vortices. Since microscopic PM2.5
particulate matter has the greatest impact on human health, we will evaluate how PM2.5
pollution changes with variations to the vehicle queue structure.

Regulated values of PM2.5 emissions and methods for calculating them from an
arbitrary traffic flow are defined in national standards [41,42]. The calculations are divided
into two parts: for vehicles moving freely at an arbitrary speed, and for vehicles stopping
at a red light.

When calculating PM2.5 emissions for moving vehicles, we must account for the
variable factor rv, which determines the average vehicle speed and can be taken from
standard Table 4 for a wide range of speeds. The speed limit for urban traffic does not
exceed 60 km/h.
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Table 4. Complete table of values for the correction factor rv.

Speed (km/h) rv

5 1.4
10 1.35
15 1.3
20 1.2
25 1.1
30 1
35 0.9
40 0.75
45 0.6
50 0.5
60 0.3
70 0.4
80 0.5

100 0.65
110 0.75
120 0.9

In urban conditions, a vehicle constantly accelerates and decelerates within a particular
road section, moving at an average speed determined by road conditions. Specific pollutant
emission factors take into account this dynamic traffic nature. A 184-m zone was chosen to
compare the amount of emissions from one passenger car while driving and idling. It takes
into account the queue of 22 passenger cars and the measurement area at the intersection. It
is assumed that a vehicle approaches the intersection during the red traffic light signal and
stays at the intersection for a maximum of 37 s (the duration of the red traffic light signal).
After that, the vehicle accelerates and leaves the intersection, driving a total of 184 m. An
average driving speed of 5 km/h was taken to estimate the maximum possible amount of
emissions during movement, so that the coefficient rv (Table 4) was the maximum (1.4).
Various idle times from 1 to 37 s are considered to calculate emissions during idling. The
comparison result is shown in Figure 15. It can be seen from Figure 15 that, starting from
24 s of idling, the amount of emissions becomes larger than during movement. Since this
estimate was made for a speed of 5 km/h, in a real situation the amount of emissions during
movement will be less. Thus, even at low traffic flow speeds, vehicles waiting for the green
traffic light signal at the intersection significantly affect the amount of harmful emissions.
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Figure 15. The amount of emissions from one passenger car in motion and at different idle times.
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Taking into account this limitation, as well as the need to make calculations for an
arbitrary vehicle speed, we performed trend approximation of this dependence reflected
by formula (7):

rv = a0 + a1 · V + a2 · V2 + a3 · V3, (7)

in which the numerical values of the coefficients ai are given in Figure 16. Notably, the
quality of the accepted approximation is high as confirmed by the multiple correlation
factor R2 = 0.9988.
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The values of rv for the average speeds of vehicles from various groups shown in
Figure 11 will be also needed to calculate emissions. To this end, we converted the average
speeds of vehicles of various groups into the correction factor rv based on the developed
trend approximation (Figure 11).

Figure 17 shows the results of this conversion for vehicles of various groups, depending
on their position in the queue.
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Figure 17. Correction factor rv for the speeds of vehicles from various groups.

Comparative calculations of PM2.5 emissions for various groups of vehicles were
analogous to the analysis of changes in the traffic capacity of a signal-controlled intersection.
The Formulas of the national standard were converted by calculating PM2.5 emissions
for an arbitrary traffic flow into any time interval for vehicles of a single queue. This
significantly simplifies calculations and comparative assessments of pollutant emissions.
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6.1. PM2.5 Emissions from Passenger Cars in the Intersection Area

The calculation of PM2.5 emissions from a full queue consisting of 22 passenger cars
moving homogenously will provide a baseline estimate at subsequent variations in the
traffic flow structure in the queue.

The national standard formula for calculating PM2.5 emissions at a red light (MZ1) for
one TV-1 vehicle is converted into:

MZ1 = PZ · M1z, (8)

where PZ is the duration of the deceleration and acceleration phase of vehicles (8.6 s);
M1z is the PM2.5 emission factor for TV-1 vehicles, taking into account deceleration and
acceleration time (0.011 g/min).

The national standard formula for calculating PM2.5 emissions at the green light ML1
for one TV-1 is converted into:

ML1 =
22

∑
i=1

Li · M1l · rVi, (9)

where i is the position number of the car in the queue; Li is the distance by which the path
of the car increases from the i-th position in the queue (L1 =18.75 m; Li = 7.2 m for i > 1);
M1l is the running PM2.5 emission factor for TV-1 cars (0.0055 g/km); rVi is the correction
factor for the i-th position of the vehicle in the queue (according to Figure 13).

Formula (8) estimates PM2.5 emissions for one TV-1 car: MZ1 = 0.00158 g. and
ML1 = 0.000397 g. With a full queue of 22 cars, we obtain the total emissions MS1 = 0.0434 g.
This estimate is taken as a baseline at subsequent variations in the traffic flow structure in
the queue.

6.2. PM2.5 Emissions If There Is One Vehicle of Another Group in the Queue

A detailed analysis of the presence and location of one vehicle of another group
in the queue of passenger cars revealed several interesting estimates in the variation in
vehicle-related pollutant emissions.

1. Estimate 1.

Similar calculations by Formulas (8) and (9) for vehicles of other groups, with changes
only in PM2.5 emissions factors Miz and Mil, gave the increase in the total emissions from
one vehicle of another group compared to emissions from a TV-1 vehicle:

• For one vehicle of TV-3 group, emissions increased 42 times;
• For one vehicle of TV-4 group, emissions increased 69 times;
• For one vehicle of TV-5 group, emissions increased 19 times.

2. Estimate 2.

Information on the percentage of running exhaust emissions in relation to acceleration-
deceleration emissions determined for vehicles of various groups at an intersection will be
very useful for urban traffic flow management. Calculations gave the following estimates:

• For a vehicle of TV-1 group—25.2%;
• For a vehicle of TV-3 group—89.9%;
• For a vehicle of TV-4 group—52.2%;
• For a vehicle of TV-5 group—78.6%

The obtained estimates indicate the importance of organizing traffic flows which do
not come to a complete stop at a red light.

3. Estimate 3.

If there is one vehicle of another group (TV-i) in the queue of passenger cars (TV-1), it
divides passenger cars into two flows according to emissions.
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The first flow consists of vehicles moving ahead of the vehicle of the i-th group (TV-1_i).
Their travel speed trend and the amount of PM2.5 emissions remain unchanged.

The second flow consists of vehicles moving behind the vehicle of the i-th group
(V-i_1) according to its movement trend (see Figure 7). In this case, the emissions from cars
of the first group increases.

So, running exhaust emissions, as determined by formula (8), increase:

• For one passenger car TV-3_1/TV-1_3 (or TV-4_1/TV-1_4)—47.4%;
• For one passenger car TV-5_1/TV-1_5—53.3%.

The obtained estimates for the increase in the total emissions are much less:

• For one passenger car TV-3_1/TV-1_3 (or TV-4_1/TV-1_4)—9.5%;
• For one passenger car TV-5_1/TV-1_5—10.7%.

This is because running exhaust emissions are much less than acceleration and decel-
eration emissions, which is also valuable information for traffic flow management.

4. Estimate 4.

The final estimate of PM2.5 emissions is total emissions from the entire queue of
vehicles consisting of passenger cars and one vehicle of another group in an arbitrary place
in the queue. Notably, a vehicle’s place in the queue is only critical for calculating the free
movement of vehicles. In this approach, the Formulas for emissions from the entire queue
are as follows.

PM2.5 emissions at the red light MZ1i converts formula (8) (here, i is the group number
of one vehicle that does not belong to TV-1):

MZ1i = N1 · P1z · M1z + 1 · Piz · Miz, (10)

where N1 is the number of passenger cars in the full queue if there is one vehicle of another
group in it.

The formula for calculating PM2.5 emissions at the green light, in particular for a
queue with one TV-3 vehicle ML13, is converted into:

ML13 = N13 · M1 ·
22

∑
i=1

Li · rV1i + N31 · M1 ·
22

∑
i=1

Li · rV3i + 1 · M3 ·
22

∑
i=1

Li · rV3i, (11)

where N13 is the number of passenger cars in the full queue located in front of the TV- 3
vehicle and moving according to their own speed profile; N31 is the number of passenger
cars in the full queue located after the TV-3 vehicle and moving according to its speed
profile (taken into account by the correction factor rV3).

The calculations are similar to Formula (11) for a queue of vehicles containing one
vehicle from TV-4 or TV-5.

The calculations showed the following general trend in the relationship between PM2.5
emissions on the position of one vehicle of another group in the queue (see Figure 18).

If there is one vehicle of another group in the queue of passenger cars, PM2.5 emissions
significantly increase. The relative estimates of excess emissions are as follows:

• If there is one TV-3 in the queue—276%;
• If there is one TV-4 in the queue—394%;
• If there is one TV-5 in the queue—172%.

Notably, the position of a vehicle of another group in the queue of passenger cars
has little impact on the change in total emissions. The general trend is that the further the
vehicle of another group is in the queue, the fewer passenger cars will be after it. Moving
according to a different group’s speed profile increases PM2.5 emissions. This means that
the further the vehicle of another group is in the queue, the less emissions the entire vehicle
queue generates.
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The expected decrease in total emissions from a full queue, as the ratio of emissions
if a vehicle of another group is last in queue to emissions if a vehicle of another group is
first in queue, is still rather insignificant. The emissions decrease for vehicles of various
groups is:

• If there is one TV-3 in the queue—2.67%;
• If there is one TV-4 in the queue—1.76%;
• If there is one TV-5 in the queue—4.8%.

This insignificant change in total emissions is also explained by the small contribution
of running exhaust emissions in relation to PM2.5 emissions during braking and accelera-
tion. Figure 18 also demonstrates downward trends in the traffic capacity of the traffic flow
if there is a vehicle of another group in a homogeneous queue of passenger cars.

6.3. PM2.5 Emissions If the Queue Contains Several Vehicles of One Group

It is expedient to consider a more complex traffic flow structure when a full queue
of passenger cars contains several vehicles of other groups. In the first approach, let us
consider situations when the queue contains several vehicles of only one of the groups: the
third, fourth or fifth.

The general formula for calculating emissions from such a complex queue is based on
formula (4), which determines the decrease in the intersection capacity. So, for a full queue
of passenger cars containing several (Ni) vehicles of the i-th group, the emission calculation
formula MZZ1i is as follows:

MZZ1i = Ni · (MZi + MLi) + Ni · (MZ1 + ML1), (12)

where N1 is the number of passenger cars that complete the queue, taking into account
the coefficient ki of reducing the vehicle from the i-th group to the first group, which is
determined by the ratio: N1 = 22 − Ni·(ki − 1) − 2; MZi and MLi are emissions from one
vehicle of the i-th group for the deceleration-acceleration phase and the running phase.

Figure 19 presents the graphical dependences of total PM2.5 emissions with an increase
in the number of vehicles from another group in the full queue of passenger cars.
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As follows from the analysis, only six TV-3 vehicles; five TV-4 vehicles, and eight TV-5
vehicles can join the full queue of 22 vehicles. This is determined by generally accepted
replacement factors ki.

6.4. PM2.5 Emissions If the Queue Contains Several Vehicles of Various Groups

In the second approach, let us consider the most general situation, when the queue
consists of several vehicles from various groups: the third, fourth, or fifth.

Taking into account the unified speed profile for vehicles of the third and fourth groups,
let us construct the distribution field of total PM2.5 emissions if the full queue of passenger
cars contains the permissible number of vehicles of only the third and fifth groups.

The general formula for calculating emissions from such a combined queue is formed
similar to formula (12), which simultaneously contains vehicles of the third and fifth groups.
So, for the full queue of passenger cars containing N3 TV-3 vehicles and N5 vehicles of
TV-5 group, the emission calculation formula MZZ135 is:

MZZ135 = N3 · (MZ3 + ML3) + N5 · (MZ5 + ML5) + N1 · (MZ1 + ML1), (13)

where N1 is the number of passenger cars that complete the queue, taking into account
the reduction factors k3 and k5, which is determined by the ratio: N1 =22 − N3·(k3 − 1)
− N5·(k5 − 1) − 2; MZi and MLi are emissions from one vehicle of the i-th group for the
deceleration-acceleration phase and the running phase.

Figure 20 presents a three-dimensional distribution field for total PM2.5 emissions in
grams with an increase in the number of vehicles of the third and fifth groups in the full
queue of passenger cars.

Here, the maximum possible combinations of the number of vehicles of the third and
fifth groups are reflected in a horizontal projection.

To understand better the field of estimates for the emissions calculated by formula (13),
Table 5 presents the ratios of PM2.5 emissions from a queue of an arbitrary composition to
a full queue of 22 passenger cars taken as a unit.
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Table 5. Estimated increase in PM2.5 emissions with changes in the composition of the vehicle queue.

Assessment of the Increase PM2.5 Number of the TV-3 Group

Number of TV-5 group

0 1 2 3 4 5 6

0 1.00 2.76 4.53 6.30 8.07 9.84 11.60
1 1.74 3.51 5.28 7.04 8.81 10.58
2 2.49 4.25 6.02 7.79 9.56 11.32
3 3.23 5.00 6.76 8.53 10.30
4 3.98 5.74 7.51 9.28
5 4.72 6.49 8.25
6 5.47 7.23
7 6.21
8 6.95

When vehicles from TV-3 and TV-5 are included in the full queue, the PM2.5 emissions
are at most predicted to increase by 11.32 fold. The queue consists of five TV-3 vehicles and
two TV-5 vehicles.

The restrictions on the possible combination of vehicles in a full queue crossing
through the intersection area during one traffic light cycle are also clearly visible here.

7. Fuzzy Logic Method for Assessing Pollutant Emissions

Fuzzy logic methods [33,34,36] have become widespread in solving the problems of
uncertainty and subjectivity typical of environmental monitoring. Full and highly accurate
description and modeling of complex systems using mathematical tools are impossible,
since input data are inaccurate or uncertain information and linguistic variables. The advan-
tages of fuzzy logic include its flexibility and ease of understanding, as well as resistance
to fuzzy data. Therefore, fuzzy logic methods in such complex processes as forecasting or
modeling of environmental processes can cope with uncertainties in environmental data,
have been successfully widely used and have provided reliable results.

The above approaches to estimating PM2.5 particulate matter emissions from traffic
flows within a signal-controlled intersection do not take into account many random fac-
tors such as meteorological conditions, seasonality, and roadbed quality. Generally, it is
expedient to approach estimating emissions as a fuzzy modeling problem based on the
fuzzy set concept. E. Mamdani’s algorithm has gained practical use to avoid excessively
large calculations.

To minimize the calculated load on the block of input variables, we chose only three
levels for them. The mathematical expectation and standard deviation (sigma) or variance
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are decisive for Gaussian random variables. Mathematical expectation for each term is
determined by its expected middle, which is determined by the weight load of flows in
terms of input variables. The width of the term is determined according to the “three-
sigma” rule, based on the desire to overlap the possible flow range for the corresponding
mathematical expectation. Expert assessments themselves are really taken from the practical
experience of working with large amounts of information from both the software system
and the reports of public institutions on laboratory measurements of pollutant emissions at
urban intersections.

Let us consider the implementation of a predictive model based on the fuzzy logic
method and the fuzzyTECH 8.77e software as the most general approach to estimating
PM2.5 emissions in an intersection. The estimates of all variables are based on the calculated
data from Table 2: the degree of increase in PM2.5 emissions due to the presence of vehicles
of other groups in a queue of passenger cars is estimated V_PM; independent input
variables include the number of vehicles from group 1 TV_1, group 3 TV_3, and group
5—TV_5. The block diagram of the constructed model is shown in Figure 21.
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Figure 21. Block diagram of a predictive model based on the fuzzy logic method.

During fuzzification of variables, Gaussian membership functions were chosen as
splines as they are most appropriate to state the problem stochastically. The parameters of
the Gaussian terms were determined according to estimates taken from our practical work
with surveillance camera data. Two terms are taken for the input variables TV_3 and TV_5
due to the small real range of their variations (up to 4 and up to 3, respectively); three terms
with variations up to 20 are taken for TV_1. Five terms are taken for the output variable
V_PM, with variations up to 10 according to Table 2. The distribution of values over the
terms of the variables TV_1 and V_PM is exemplified in Figure 22a,b, respectively.
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A fuzzy logic model for predicting V_PM values was defined by a table of its relation-
ships with the input variables using the Spreadsheet rule editor block (Figure 23). Notably,
anomalies related to inconsistency and consistency of the rules of relationships in the table
are not considered at this stage. We plan to test fuzzy rules with a static and dynamic
approach in our future detailed application of fuzzy logic methods.
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Figure 23. Table of rules for the relationship of model variables.

Experimental studies of the constructed model allow us to predict V_PM for the most
realistic conditions (number of vehicles in the queue) and create a volumetric surfaces
graph of the distribution field of the mutual influence of the variables.

We are mostly interested in PM2.5 emissions in the intersection depending on the
number of vehicles from TV-1 and TV-5, with two variations in the number of TV-3 vehicles
in the queue. Figure 24 shows the distribution fields for the emissions forecast (variable
V_PM) depending on TV _1 and TV _5, with the maximum and minimum inclusion of
TV-3 vehicles in the queue.
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The forecasting results using fuzzy sets of initial data is in good agreement with a priori
expert estimates and can serve as a good foundation for making grounded decisions both on
the formation of the traffic flow structure and signal-controlled intersection management.

To verify the suitability of the developed air quality monitoring model, we conducted
validation testing: the comparison of theoretical calculations for fine particle matter con-
centrations PM2.5 with field measurements obtained through the integration of data from
the software system used by the “Center for Environmental Monitoring”, including an
advanced particulate measurement device called DustTrack 8533 [44]. These preliminary
estimates revealed an average 18% deviation between measured values and modeled pre-
dictions, likely due to local sources of pollution from nearby industrial activities within
the city (Figure 25). Examining the trend over time reveals how actual pollutant levels
tend to peak later in the day than anticipated by the model, resulting in greater differences
between observed and predicted concentrations towards the end of the workday.
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8. Discussion

Intelligent vision based on neural network algorithms allowed us to generate an
unlimited set of initial data on traffic within an intersection. Our analysis on the influence
of variations in the traffic flow structure on the traffic capacity and changes in PM2.5
emissions are valid only for the chosen intersection. However, since we considered only
the straight movement of vehicles and ignored the arrangement of left and right turns, the
obtained results can be deemed fair for any signal-controlled intersection, especially since
most of the results are presented in terms of their relation to a flow of passenger cars.

During the analysis, we obtained limit estimates of changes in the traffic capacity and
pollutant emissions in the conditions of the maximum possible traffic flow. To this end, we
preliminarily confirmed the generally accepted statistical estimate of the 2-s time interval
between moving cars and obtained average statistical estimates of the acceleration of
various types of vehicles when the green traffic light signal was turned on. For example, cars
and trucks accelerate uniformly to a constant speed of 57 km/h and 48 km/h, respectively.
The acceleration of buses to a cruising speed of 45 km/h is non-linear, but smooth to ensure
the comfort of passengers. Notably, these estimates can be considered identical for the
intersections of a similar structure in the entire urban transport network.

The main result of the analytical part is the limit estimates of the traffic capacity of the
intersection and emissions of the most harmful pollutants—PM2.5 particulate matter. The
analysis was based on a single methodology: the presence of one vehicle of another type in
the queue of vehicles; the presence of several vehicles of a different type in the queue; the
general 3D distribution field for an arbitrary traffic flow structure. So, if there is one vehicle
of another group (TV-3, TV-4, or TV-5) in the queue of passenger cars, the traffic capacity
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is reduced by an average of 20%, while the maximum number of vehicles of other groups
crossing the intersection at the green traffic light signal is 6 vehicles of the TV-3 group, or
TV-5 vehicles of the TV-4 group, or 8 vehicles of the TV-5 group.

When analyzing the amount of PM2.5, we found that the presence of one vehicle of
the third group in the queue of passenger cars leads to an increase in PM2.5 emissions by
2.7 fold in relation to the queue consisting only of passenger cars. If there is one vehicle
of the TV-4 group, emissions increase by 3.9 fold, and if there is one vehicle of the TV-5
group—by 1.7 fold. Similarly, at the maximum number of vehicles of other groups crossing
the intersection at the green traffic light signal: if there are 6 vehicles of the TV-3 group,
PM2.5 emissions increase by 11.6 fold; 5 vehicles of the TV-4 group—by 14 fold, 8 vehicles
of the TV-5 group—by 7 fold in relation to the queue consisting only of passenger cars.

The interval between the theoretical estimates for the limit saturation traffic flow was
presented using a probabilistic approach based on fuzzy logic methods. The obtained 3D
distribution fields for PM2.5 emissions at arbitrary variations in the traffic flow confirm
the revealed theoretical trends and provide for a better understanding of environmental
problems in urban traffic flow management.

Our study estimated changes in traffic capacity and pollutant emissions with the
maximum possible traffic flow and the absence of congestion. That is, the obtained estimates
are limited to a signal-controlled intersection. Real situations will be characterized by lower
values of the obtained estimates if the traffic flow is less intensive than the saturation flow
and larger values in case of a traffic jam within the intersection.

For complete transferability and scalability of the obtained results to any signal-
controlled intersection, we plan to further develop a common model of an intersection
when vehicles are moving in all directions, taking into account right and left turns, based
on the limiting values of saturation flows (but without traffic jams).

9. Conclusions

This study presents a new approach to assessing the urban traffic flow and the at-
mospheric dispersion of pollutants using machine learning methods. The use of a neural
network to extract information related to specific vehicle classes and fuzzy logic methods
with Gaussian spline relevance functions gives a basis for understanding the relationship
between the traffic flow/concentration and the vehicle type/classification, which provides
for a better understanding of the best management of road space distribution and emissions
under different circumstances. Based on the algometric method, we obtained theoretical
dependences of the reduction in the traffic capacity and harmful emissions depending
on the situational structure of the traffic jam and the operating mode of the traffic light.
As a result of data processing, we revealed that the heterogeneous composition of the
queue of vehicles of different classes reduces the traffic capacity of the traffic lane at a
signal-controlled intersection in varying degrees. So, for example, if there are three vehicles
of the fifth group (buses) in the queue of passenger cars, the traffic capacity is reduced
to 70%. The maximum reduction in the traffic capacity with an arbitrary structure of the
traffic flow reaches 32% relative to the queue of passenger cars. The most notable finding
is the exponential growth in emissions from buses or more than three buses in the queue
of passenger cars, which increased emissions by 14 fold. The proposed method provides
new insights into traffic management optimization and air pollution mitigation. Our study
suggests possible further improving ambient air quality in densely populated urban cen-
ters facing increasing transport challenges in the conditions of a limited budget. These
findings are essential for traffic planning and environmental policy development. Our
further work will focus on refining the models and expanding their capabilities to build an
optimal structure for the vehicle queue at the entrance to intersections, in order to reduce
the negative environmental impact.
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