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1. Introduction

The concept of metric space provides a significant contribution to research activities
related to mathematical analysis. This meaningful concept was presented by Maurice
Fréchet [1] who was a famous French mathematician. This concept was extended by
many mathematicians according to their requirements: for example, b-metric space [2],
partial metric space [3], cone metric space [4], vector-valued metric space [5], vector-valued
b-metric space [6,7], order (ordered vector) metric space [8], order (ordered vector) pseudo-
metric space [9], graphical metric space [10], and graphical b-metric space [11] etc.

The Banach contraction principle is the most basic result of the metric fixed-point
theory, and it has been generalized by considering all the above-mentioned extended forms
of metric space. The literature also contains several other generalizations of this famous
result obtained through involving the concepts of partial order, graph, binary relation, or
orthogonality relation associated with contraction mapping, see [12–14]. This technique of
generalization raised the question: why not consider the concepts of partial order, graph,
or binary relation to generalize the notion of metric space and then drive a generalization
of the Banach contraction principle? The work presented in [10,11] is based on the answer
to that question.

Perov [5] presented the matrix/vector version of the Banach contraction principle by
introducing the notion of vector-valued metric spaces. This vector-valued metric space was
extended to vector-valued b-metric space by Boriceanu [6], with a constant scalar multiple
in the triangle inequality of vector-valued b-metric space. Ali and Kim [7] modified the
triangle inequality of vector-valued b-metric space by replacing a constant scalar multiple
with a constant matrix multiple. A couple of interesting results in the context of Perov
have been derived by several researchers, for example, Bucur et al. [15] derived fixed-point
theorems to generalize Perov’s result that discuss the existence of fixed points of set-valued
maps. Filip and Petrusel [16] modified the contraction-type inequality to generalize the
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results of Perov and Bucur et al. [15]. Ali et al. [17] used the admissibility concept of
single-valued maps to improve the result of Perov, Altun et al. [18] used the technique of
θ-contraction to modify the result of Perov for single-valued maps. Guran et al. [19] used
the concept of generalized w-distance and Hardy–Rogers-type contraction inequality to
generalize the work of Perov. Guran et al. [20] extended the work of Perov for set-valued
maps using a set-valued Hardy–Rogers-type contraction inequality. Martínez-Moreno and
Gopal [21] defined the concept of Perov fuzzy metric space and studied the existence of
common fixed points for compatible single-valued maps. The aim of this article is to
introduce a notion of Czerwik vector-valuedR-metric space that is a generalized concept
of vector-valued b-metric space. A few results confirming the existence of fixed points for
certain types of maps are also derived using this notion. The idea of this article follows
from the above-mentioned question.

2. Preliminaries

Throughout this article, we consider H as a nonempty set, R+ as the set of all
non-negative real numbers, Mm,m(R+) as a collection of all m × m matrices with non-
negative real elements, 0̄ as an m × m zero matrix, I as m × m identity matrix, and Rm
as the set of all m × 1 real matrices. If W, P ∈ Rm, that is W = (w1, w2, . . . , wm)T and
P = (p1, p2, . . . , pm)T , then

(i) W ≤ P means that wi ≤ pi for each i ∈ {1, 2, . . . , m},
(ii) W < P means that wi < pi for each i ∈ {1, 2, . . . , m},
(iii) W ≥ c ∈ R+ means that wi ≥ c for each i ∈ {1, 2, . . . , m}.

A matrix C ∈ Mm,m(R+) is called convergent to zero (or zero matrix) if Cn → 0 as
n → ∞ (see Varga [22]). Also, note that C0 = I. The following matrices are convergent
to zero.

C :=
(

c c
d d

)
, where c, d ∈ R+ and c + d < 1;

D :=
(

c d
0 e

)
, where c, d, e ∈ R+ and max{c, e} < 1.

Czerwik vector-valued metric space was presented by Ali and Kim [7] in the following
ways.

Definition 1. A mapping dC : H × H → Rm is called a Czerwik vector-valued metric on H, if for
each h1, h2, h3 ∈ H the following axioms hold:

(d1) dC(h1, h2) ≥ 0;
dC(h1, h2) = 0 if and only if h1 = h2;

(d2) dc(h1, h2) = dC(h2, h1);
(d3) dC(h1, h3) ≤ Q[dC(h1, h2) + dC(h2, h3)]

where Q = (qij) ∈ Mm,m(R+) is a matrix with

qij =

{
q, i = j
0, i 6= j

and q ≥ 1. Then, the triple (H, dC, Q) is called Czerwik vector-valued metric space, or Czerwik
generalized metric space.

Note that the Cauchyness and convergence of a sequence in Czerwik vector-valued
metric spaces are defined in a similar manner as in b-metric spaces/metric spaces.
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If the matrix Q = (qij) ∈ Mm,m(R+) is defined by

qij =

{
1, i = j
0, i 6= j

then the Czerwik vector-valued metric space becomes a vector-valued metric space. Perov [5]
presented the matrix/vector version of the Banach contraction principle on vector-valued
metric space in the following way.

Theorem 1 ([5]). Let (H, dC) be a complete vector-valued metric space and G : H → H be a
mapping such that

dC(Gh, Gk) ≤ AdC(h, k) ∀h, k ∈ H,

where A ∈ Mm,m(R+) is a matrix convergent to zero. Then, G has a unique fixed point.

The above result was generalized by Ali and Kim [7] in the following way.

Theorem 2. Let (H, dC, Q) be a complete Czerwik vector-valued metric space. Let G : H → H be
a mapping such that

dC(Gh, Gk) ≤ AdC(h, k) + BdC(k, Gh) ∀h, k ∈ H

where A, B ∈ Mm,m(R+). Also assume that the matrix QA converges to zero. Then, G has a fixed
point.

3. Main Results

This section begins with the definition of Czerwik vector-valuedR-metric space.

Definition 2. Let H be a nonempty set equipped with an equivalence relation R. A mapping
dC : H × H → Rm is called a Czerwik vector-valuedR-metric on H if for each h1, h2, h3 ∈ H the
following axioms hold:

(d1) dC(h1, h2) ≥ 0;
dC(h1, h2) = 0 if and only if h1 = h2;

(d2) dC(h1, h2) = dC(h2, h1);
(d3) dC(h1, h3) ≤ Q[dC(h1, h2) + dC(h2, h3)] provided that (h1, h2), (h2, h3) ∈ R
where Q = (qij) ∈ Mm,m(R+) is a matrix with

qij =

{
q, i = j
0, i 6= j

and q ≥ 1. Then, the (H,R, dC, Q) is called a Czerwik vector-valuedR-metric space, or Czerwik
generalizedR-metric space.

Remark 1. It is important to note that the triangular property (d3) of Definition 2 should hold for
those elements of the set H that are related to each other under an equivalence relationR. From this,
an important question arises: why are the reflexive and symmetric conditions added along with the
transitive condition on a binary relation involved in Definition 2? The answer is simple:

(i) The reflexive condition is required for the topology generated by dC.
(ii) The symmetric condition is essential for the concept ofR-convergence ofR-sequence.

Remark 2. It is easy to see that Definition 2 reduces to Definition 1 by defining R = H × H.
Thus, every Czerwik vector-valued metric space generates a Czerwik vector-valuedR-metric space.
But the converse is not true in general.
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In the following, we present an example of Czerwik vector-valuedR-metric space.

Example 1. Consider H = N and an equivalence relation R = {(x, y) : x, y ∈ {1, 2, 3}} ∪
{(x, x) : x ∈ {4, 5, · · · }} on H. Define dC : H × H → R2 by

dC(1, 2) = dC(2, 1) = (2, 2)T

dC(1, 3) = dC(3, 1) = (2, 2)T

dC(2, 3) = dC(3, 2) = (5, 5)T

dC(x, x) = (0, 0)T∀x ∈ H

dC(x, y) = dC(y, x) = (1/|x− y|, 1/|x− y|)T , if either x ≥ 4 or y ≥ 4 and x 6= y.

One can check that (H,R, dC, Q) is a Czerwik vector-valued R-metric space with Q =(
2 0
0 2

)
.

Remark 3. Note that the above-defined dC is not a Czerwik vector-valued metric on H, because
Axiom (d3) of Definition 1 does not exist, for instance,

dC(2, 3) > Q[dC(2, 4) + dC(4, 3)].

Example 2. Consider H = R, and an equivalence relation on H is defined by

R = {(h1, h2) : h1, h2 ∈ [0, ∞)} ∪ {(h, h) : h ∈ R}.

Define dC : H × H → R2 by

d(h1, h2) =



(
|h1 − h2|
|h1 − h2|

)
, if h1, h2 ≥ 0( |h1−h2|

1+|h1−h2|
0

)
, otherwise.

It is easy to check that (H,R, dC, Q) is a Czerwik vector-valued R-metric space with

Q =

(
1 0
0 1

)
.

Remark 4. Note that the above-defined dC does not satisfy Axiom (d3) of Definition 1, for instance,

dC(1, 5) � Q[dC(1,−1) + dC(−1, 5)].

For any ε > 0 and for any element h of the Czerwik vector-valued R-metric space
(H,R, dC, Q), the dC-open ball having center h and radius ε is defined by

BdC (h, ε) = {ha ∈ H : (h, ha) ∈ R, dC(h, ha) < ε}.

R is a reflexive relation, thus BdC (h, ε) 6= ∅ for each h ∈ H and ε > 0. Thus, the set
{BdC (h, ε) : h ∈ H, ε > 0} provides a neighbourhood system for the topology τR on H
induced by the Czerwik vector-valuedR-metric space.

Definition 3. Let (H,R, dC, Q) be Czerwik vector-valuedR-metric space. Then

• A sequence (hn) in H is said to be anR-sequence if (hn, hn+1) ∈ R for each n ∈ N.
• AnR-sequence (hn) in H is said to beR-convergent to h in H if limn→∞ dC(hn, h) = 0 and

(hn, h) ∈ R ∀n ≥ k for some natural number k.
• AnR-sequence (hn) in H is said to beR-Cauchy if limn,m→∞ dC(hn, hm) = 0.
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• (H,R, dC, Q) is said to be R-complete if each R-Cauchy sequence in H is R-convergent
in H.

Theorem 3. EachR-convergent sequence in (H,R, dC, Q) has a unique limit point.

Proof. Assume that theR-sequence (hn) isR-convergent to h and l in H. That is,

lim
n→∞

dC(hn, h) = 0 and (hn, h) ∈ R ∀n ≥ k1

and
lim

n→∞
dC(hn, l) = 0 and (hn, l) ∈ R ∀n ≥ k2.

Then, for each n ≥ k = max{k1, k2}, we have (hn, h) ∈ R and (hn, l) ∈ R ∀n ≥ k.
Thus, by (d3), we obtain

dC(h, l) ≤ Q[dC(h, hn) + dC(hn, l)] ∀n ≥ k.

Hence, by the above inequality, as n→ ∞, we conclude that dC(h, l) = 0. That is, the
limit point of theR-convergent sequence is unique.

Theorem 4. EachR-convergent sequence in (H,R, dC, Q) isR-Cauchy.

Proof. Consider that anR-sequence (hn) isR-convergent to h in H. That is,

lim
n→∞

dC(hn, h) = 0 and (hn, h) ∈ R ∀n ≥ k1

Then, for each n, k ≥ k1, we have (hn, h) ∈ R, and (hk, h) ∈ R ∀n, k ≥ k1. Thus, by
(d3), we obtain

dC(hn, hk) ≤ Q[dC(hn, h) + dC(h, hk)] ∀n, k ≥ k1.

Hence, from the above inequality, we obtain limn,k→∞ dC(hn, hk) = 0.

We are now going to state and prove our first result that is a generalized form of the
result presented by Perov [5].

Theorem 5. Let (H,R, dC, Q) be anR-complete Czerwik vector-valuedR-metric space and let
G : H → H be a mapping. Also, assume that

(i) There exists h ∈ H with (h, Gh) ∈ R;
(ii) R is G-closed, that is, for each h1, h2 ∈ H with (h1, h2) ∈ R, we have (Gh1, Gh2) ∈ R;
(iii) Either

(a) If {hn} isR-convergent to h ∈ H, then {Ghn} isR-convergent to Gh;
or
(b) For eachR-convergent sequence {hn} in H with hn → h, we have dC(hn, ·)→ dC(h, ·)
as n→ ∞;

(iv) For each (h, k) ∈ R, we have

dC(Gh, Gk) ≤ A1dC(h, k) + A2dC(h, Gh) + A3dC(k, Gk) + A4dC(h, Gk) + BdC(k, Gh) (1)

where A1, A2, A3, A4, B ∈ Mm,m(R+) such that (I − (A3 + A4Q))−1 exists and the matrix
Q[(I − (A3 + A4Q))−1(A1 + A2 + A4Q)] is convergent to zero.

Then, G has a fixed point.

Proof. Using hypothesis (i), we have h0 ∈ H with (h0, Gh0) ∈ R. Starting from h0, we can
obtain an iterative sequence {hn}, that is, hn = Ghn−1 = Gnh0 for each n ∈ N. Since R is
G-closed, thus, we conclude (hn−1, hn) ∈ R for all n ∈ N. From (1), we obtain
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dC(Ghn−1, Ghn) ≤ A1dC(hn−1, hn) + A2dC(hn−1, Ghn−1) + A3dC(hn, Ghn)

+A4dC(hn−1, Ghn) + BdC(hn, Ghn−1) ∀n ∈ N. (2)

That is,

dC(hn, hn+1) ≤ A1dC(hn−1, hn) + A2dC(hn−1, hn) + A3dC(hn, hn+1)

+A4dC(hn−1, hn+1) + BdC(hn, hn) ∀n ∈ N.

This implies that

(I − (A3 + A4Q))dC(hn, hn+1) ≤ (A1 + A2 + A4Q)dC(hn−1, hn) ∀n ∈ N.

The above inequality yields that

dC(hn, hn+1) ≤ (I − (A3 + A4Q))−1(A1 + A2 + A4Q)dC(hn−1, hn) ∀n ∈ N. (3)

Putting M = (I − (A3 + A4Q))−1(A1 + A2 + A4Q) in (3), we obtain

dC(hn, hn+1) ≤ MdC(hn−1, hn) ∀n ∈ N. (4)

From (4), we conclude that

dC(hn, hn+1) ≤ MndC(h0, h1)∀n ∈ N. (5)

As (hn−1, hn) ∈ R for all n ∈ N and R is an equivalence relation, then by repeated
application of the triangle inequality, i.e., Axiom (d3), of Definition 2, we obtain

dC(hn, hm) ≤
m−1

∑
i=n

QidC(hi, hi+1) ∀m > n ∈ N.

Thus, the above inequality and (5) yield the following inequality.

dC(hn, hm) ≤
m−1

∑
i=n

QidC(hi, hi+1)

≤
m−1

∑
i=n

Qi MidC(h0, h1)

=
m−1

∑
i=n

[QM]idC(h0, h1) ∀m > n (By Remark 5)

≤ [QM]n(I −QM)−1dC(h0, h1).

This proves that {hn} is anR-Cauchy sequence in H. Considering theR-completeness
of H, we say that {hn} is an R-convergent to ha ∈ H, that is, limn→∞ dC(hn, ha) = 0, and
(hn, ha) ∈ R for all n ≥ k0, for some natural k0. Now, consider Axiom (iii-a) exists, then we
obtain limn→∞ dC(Ghn, Gha) = 0, and (Ghn, Gha) ∈ R, for all n ≥ k0.

Thus, through the triangle inequality, for each n ≥ k0, we obtain

dC(ha, Gha) ≤ Q[dC(ha, hn+1) + dC(hn+1, Gha)].
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This yields dC(ha, Gha) = 0 as n→ ∞. That is, ha = Gha. We now proceed with Axiom
(iii-b). As {hn} isR-convergent to ha ∈ H, that is, limn→∞ dC(hn, ha) = 0, and (hn, ha) ∈ R
for all n ≥ k0 for some natural k0. By (1), for each n ≥ k0, we obtain

dC(Ghn, Gha) ≤ A1dC(hn, ha) + A2dC(hn, Ghn) + A3dC(ha, Gha)

+A4dC(hn, Gha) + BdC(ha, Ghn)

≤ A1dC(hn, ha) + A2dC(hn, Ghn) + A3dC(ha, Gha)

+A4Q[dC(hn, hn+1) + dC(hn+1, Gha)] + BdC(ha, Ghn).

That is,

dC(hn+1, Gha) ≤ A1dC(hn, ha) + A2dC(hn, hn+1) + A3dC(ha, Gha)

+A4Q[dC(hn, hn+1) + dC(hn+1, Gha)] + BdC(ha, hn+1). (6)

Applying the limit n→ ∞ in (6) we obtain

dC(ha, Gha) ≤ A3dC(ha, Gha) + A4QdC(ha, Gha).

This gives dC(ha, Gha) = 0 because (I − A3 − A4Q)−1 exists. Hence, ha = Gha.

Remark 5. If Q is a diagonal matrix and its nonzero elements are the same, then Qi Mi = (QM)i

∀i ∈ N.

Example 3. Consider H = R2, and the equivalence relation on H is defined by

R = {((h1, h2), (k1, k2)) : h1, h2, k1, k2 ∈ [0, 3]} ∪ {((h, k), (h, k)) : h, k ∈ R}.

Define a Czerwik vector-valuedR-metric on H by

dC((h1, h2), (k1, k2)) =



(
(h1 − k1)

2

(h2 − k2)
2

)
, if h1, h2, k1, k2 ∈ [0, 3] |h1−k1|

1+|h1−k1|
|h2−k2|

1+|h2−k2|

, otherwise

with Q =

(
2 0
0 2

)
. Define a mapping G : H → H by

G(h1, h2) =

{(
h1
6 −

h2
3 + 2, h2

3 + 2
)

, if h1, h2 ≥ 0

((h1 + h2)
2, (h2)

2), otherwise.

Readers can easily verify the following points:

• For h = (0, 0), we have Gh = (2, 2), thus, we say that (h, Gh) ∈ R.
• For each h1, h2 ∈ [0, 3], we have h1

6 −
h2
3 + 2, h2

3 + 2 ∈ [0, 3].
Thus, we say that (G(h1, h2), G(k1, k2)) ∈ R, provided ((h1, h2), (k1, k2)) ∈ R.

• For each sequence (h1
n), (h2

n) with h1
n, h2

n ∈ [0, 3] and h1
n → h1, h2

n → h2, it is obvious that

h1, h2 ∈ [0, 3], we say that h1
n

6 −
h2

n
3 + 2 → h1

6 −
h2

3 + 2, and h2
n

3 + 2 → h2

3 + 2. Thus, we
conclude that if {hn} isR-convergent to h ∈ H, then {Ghn} isR-convergent to Gh.
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• For each ((h1, h2), (k1, k2)) ∈ R with (h1, h2) 6= (k1, k2), we have

dC(G(h1, h2), G(k1, k2)) = dC

((
h1

6
− h2

3
+ 2,

h2

3
+ 2
)

,
(

k1

6
− k2

3
+ 2,

k2

3
+ 2
))

=


(
( h1

6 −
h2
3 + 2− k1

6 + k2
3 − 2

)2(
h2
3 + 2− k2

3 − 2
)2


≤

(
2/36 2/9

0 2/9

)(
(h1 − k1)

2

(h2 − k2)
2

)
=

(
2/36 2/9

0 2/9

)
dC((h1, h2), (k1, k2)).

• For each ((h1, h2), (k1, k2)) ∈ R with (h1, h2) = (k1, k2), we have

dC(G(h1, h2), G(k1, k2)) =

(
0
0

)
=

(
2/36 2/9

0 2/9

)
dC((h1, h2), (k1, k2)).

Thus, it can be concluded that the axioms of Theorem 5 exist. Therefore, G has a fixed point.

Remark 6. Note that the above-defined dC is a Czerwik vector-valuedR-metric on H, but not a
Czerwik vector-valued metric on H. Thus, the related fixed-point results on Czerwik vector-valued
metric space from the existing literature are not applicable to this example.

The following corollary is an extended form of Theorem 2 given in the introduction of
this article.

Corollary 1. Let (H, dC, Q) be a complete Czerwik vector-valued metric space and let G : H → H
be a mapping. Also, assume that

(i) For each h, k ∈ H, we have

dC(Gh, Gk) ≤ A1dC(h, k) + A2dC(h, Gh) + A3dC(k, Gk) + A4dC(h, Gk) + BdC(k, Gh) (7)

where A1, A2, A3, A4, B ∈ Mm,m(R+) such that (I− (A3 + A4Q))−1 exists and the matrix
Q[(I − (A3 + A4Q))−1(A1 + A2 + A4Q)] is convergent to zero;

(ii) Either
(a) If {hn} is convergent to h ∈ H, then {Ghn} is convergent to Gh;
or
(b) For each convergent sequence {hn} in H with hn → h, we have dC(hn, ·)→ dC(h, ·) as
n→ ∞.

Then, G has a fixed point.

The conclusion of this result follows from Theorem 5 by considering an equivalence
relation on H byR = H × H.

If we define an equivalence relation on H byR = H × H, then the complete Czerwik
vector-valued metric space will also be an R-complete Czerwik vector-valued R-metric
space. As we consider R = H × H, then Axioms (i) and (ii) of Theorem 5 trivially hold.
Also, Axioms (i) and (ii) of the above theorem imply the existence of Axioms (iv) and (iii) of
Theorem 5, respectively. Hence, the conclusion of the above results follows from Theorem 5.

The following corollary is an extended form of Theorem 1 given in the Section 1.
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Corollary 2. Let (H, dC, Q) be a complete Czerwik vector-valued metric space and let G : H → H
be a mapping such that for each h, k ∈ H, we have

dC(Gh, Gk) ≤ A1dC(h, k) (8)

where A1 ∈ Mm,m(R+) such that the matrix QA1 is convergent to zero. Then, G has a fixed point.

The conclusion of this result follows from Corollary 1, since (8) implies the existence
of (7) and implies the existence of (iii-a).

In the following results, we will study the existence of fixed points for multi-valued
mappings. We denote by N(H) the collection of all nonempty subsets of H.

Theorem 6. Let (H,R, dC, Q) be anR-complete Czerwik vector-valuedR-metric space and let
G : H → N(H) be a mapping. Also, assume that

(i) There exist h ∈ H and h∗ ∈ Gh with (h, h∗) ∈ R;
(ii) R is G-closed, that is, for each h, k ∈ H with (h, k) ∈ R, we have (q, w) ∈ R ∀q ∈ Gh and

w ∈ Gk;
(iii) Graph(G) = {(h, k) : k ∈ Gh} is R-closed, that is, for all R-convergent sequences {hn}

and {kn} in H with hn → h∗ ∈ H and kn → k∗ ∈ H, we have (h∗, k∗) ∈ Graph(G),
whenever (hn, kn) ∈ Graph(G) ∀n ≥ k0 for some k0;

(iv) For each (h, k) ∈ R and q ∈ Gh, there exists w ∈ Gk with

dC(q, w) ≤ A1dC(h, k) + A2dC(h, q) + A3dC(k, w) + A4dC(h, w) + BdC(k, q) (9)

where A1, A2, A3, A4, B ∈ Mm,m(R+) such that (I − (A3 + A4Q))−1 exists and the matrix
Q[(I − (A3 + A4Q))−1(A1 + A2 + A4Q)] is convergent to zero.

Then, G has a fixed point.

Proof. Assumption (i) of the theorem implies that there is some h0 ∈ H with h1 ∈ Gh0 and
(h0, h1) ∈ R. By using (9), for (h0, h1) ∈ R and h1 ∈ Gh0, there exists h2 ∈ Gh1 satisfying

dC(h1, h2) ≤ A1dC(h0, h1) + A2dC(h0, h1) + A3dC(h1, h2) + A4dC(h0, h2) + BdC(h1, h1). (10)

As (h0, h1) ∈ R, then by assumption (ii), we obtain (h1, h2) ∈ R. Now, (10) yields the
following inequality:

dC(h1, h2) ≤ A1dC(h0, h1) + A2dC(h0, h1) + A3dC(h1, h2) + A4Q[dC(h0, h1) + dC(h1, h2)].

That is,

dC(h1, h2) ≤ (I − A3 − A4Q)−1(A1 + A2 + A4Q)dC(h0, h1).

By defining M = (I − A3 − A4Q)−1(A1 + A2 + A4Q) in the above inequality, we
obtain

dC(h1, h2) ≤ MdC(h0, h1). (11)

Again, by using (9), for (h1, h2) ∈ R and h2 ∈ Gh1, there exists h3 ∈ Gh2 with

dC(h2, h3) ≤ A1dC(h1, h2) + A2dC(h1, h2) + A3dC(h2, h3) + A4dC(h1, h3) + BdC(h2, h2). (12)

Since (h1, h2) ∈ R, by assumption (ii), we obtain (h2, h3) ∈ R. Now, (12) implies that

dC(h2, h3) ≤ A1dC(h1, h2) + A2dC(h1, h2) + A3dC(h2, h3) + A4Q[dC(h1, h2) + dC(h2, h3)].

That is,
dC(h2, h3) ≤ MdC(h1, h2) (13)
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where M = (I − (A3 + A4Q))−1(A1 + A2 + A4Q). By (11) and (13), we obtain

dC(h2, h3) ≤ M2dC(h0, h1). (14)

Proceeding with the same methodology, we obtain a sequence {hn} such that (hn−1, hn) ∈
R, hn ∈ Ghn−1 for all n ∈ N and

dC(hn, hn+1) ≤ MndC(h0, h1) ∀n ∈ N. (15)

By using the triangular inequality and (15) we obtain

dC(hn, hm) ≤
m−1

∑
i=n

QidC(hi, hi+1)

≤
m−1

∑
i=n

[QM]idC(h0, h1)∀m > n.

This yields that {hn} is anR-Cauchy sequence in H. Thus, {hn} isR-convergent to
ha ∈ H, that is limn→∞ dC(hn, ha) = 0 and (hn, ha) ∈ R, for all n ≥ k0 for some natural k0.
The construction of {hn} implies that (hn, hn+1) ∈ Graph(G) ∀n ∈ N, since Graph(G) is
R-closed, thus we obtain (ha, ha) ∈ Graph(G), that is ha ∈ Gha. This completes the proof
of the result.

In the following result, we assume that B(H) is the collection of all those subsets
of H that are dC-bounded with respect to (H,R, dC, Q), that is, for A ∈ B(H), δC(A) =
sup{dC(a, b) : a, b ∈ A} exists. Also, we define δC(A, B) = sup{dC(a, b) : a ∈ A, b ∈ B}
and δC(a, B) = sup{dC(a, b) : b ∈ B}. Note that for the set W = {(aj

11, aj
21, · · · , aj

n1)
T : j ∈

I}, for some index set I,

supW =

(
sup
j∈I

aj
11, sup

j∈I
aj

21, · · · , sup
j∈I

aj
n1

)T

.

Theorem 7. Let (H,R, dC, Q) be anR-complete Czerwik vector-valuedR-metric space and let
G : H → B(H) be a mapping. Also, assume that

(i) There exist h ∈ H and h∗ ∈ Gh with (h, h∗) ∈ R;
(ii) R is G-closed, that is, for each h, k ∈ H with (h, k) ∈ R, we have (q, w) ∈ R ∀q ∈ Gh and

w ∈ Gk;
(iii) Graph(G) = {(h, k) : k ∈ Gh} is R-closed, that is, for all R-convergent sequences {hn}

and {kn} in H with hn → h∗ ∈ H and kn → k∗ ∈ H, we have (h∗, k∗) ∈ Graph(G),
whenever (hn, kn) ∈ Graph(G) ∀n ≥ k0 for some k0;

(iv) For each (h, k) ∈ R, we have

δC(Gh, Gk) ≤ A1dC(h, k) + A2δC(h, Gh) + A3δC(k, Gk) (16)

where A1, A2, A3 ∈ Mm(R+) such that (I − A3)
−1 exists and the matrix Q[(I − A3)

−1(A1 +
A2)] is convergent to zero.

Then, G has a fixed point.

Proof. Using hypothesis (i), we have h0 ∈ H and h1 ∈ Gh0 such that (h0, h1) ∈ R.
Hypothesis (ii) now gives (q, w) ∈ R ∀q ∈ Gh0 and w ∈ Gh1. Thus, we write (h1, h2) ∈ R
with h1 ∈ Gh0 and h2 ∈ Gh1. Further, we can construct a sequence {hn} with hn ∈ Ghn−1,
and (hn−1, hn) ∈ R for all n ∈ N. By (16), we obtain

δC(Ghn−1, Ghn) ≤ A1dC(hn−1, hn) + A2δC(hn−1, Ghn−1) + A3δC(hn, Ghn) ∀n ∈ N. (17)
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That is,

δC(hn, Ghn) ≤ A1δC(hn−1, Ghn−1) + A2δC(hn−1, Ghn−1) + A3δC(hn, Ghn) ∀n ∈ N.

This implies that

(I − A3)δC(hn, Ghn) ≤ (A1 + A2)δC(hn−1, Ghn−1) ∀n ∈ N.

This inequality yields that

δC(hn, Ghn) ≤ (I − A3)
−1(A1 + A2)δC(hn−1, Ghn−1) ∀n ∈ N. (18)

Letting M = (I − A3)
−1(A1 + A2) in (18), we obtain

δC(hn, Ghn) ≤ MδC(hn−1, Ghn−1) ∀n ∈ N. (19)

From the above inequality, we conclude the following inequalities:

δC(hn, Ghn) ≤ MnδC(h0, Gh0) ∀n ∈ N (20)

and

dC(hn, hn+1) ≤ MnδC(h0, Gh0) ∀n ∈ N. (21)

By considering the triangular inequality and (21), we obtain the following inequality:

dC(hn, hm) ≤
m−1

∑
i=n

QidC(hi, hi+1)

≤
m−1

∑
i=n

[QM]iδC(h0, Gh0)∀m > n.

This proves that {hn} is an R-Cauchy sequence in H. The R-completeness of H
ensures that {hn} isR-convergent to ha ∈ H, that is, limn→∞ dC(hn, ha) = 0 and (hn, ha) ∈
R, for all n ≥ k0 for some natural k0. The construction of {hn} implies that (hn, hn+1) ∈
Graph(G) ∀n ∈ N, since Graph(G) is R-closed, thus we obtain (ha, ha) ∈ Graph(G), that
is, ha ∈ Gha. This completes the proof of the result.

Example 4. Consider H = R and an equivalence relation on H is defined by

R = {(h1, h2) : h1, h2 ∈ [0, ∞)} ∪ {(h, h) : h ∈ R}.

Define the Czerwik vector-valuedR-metric dC : H × H → R2 by

dC(h1, h2) =



(
(h1 − h2)

2

(h1 − h2)
2

)
, if h1, h2 ≥ 0( |h1−h2|

1+|h1−h2|
0

)
, otherwise.

with Q =

(
2 0
0 2

)
. Define G : H → B(H) by

Gh =

{
{(h + 1)/2}, h ≥ 0
{0}, h < 0.



Mathematics 2023, 11, 3583 12 of 14

The reader can easily verify that all the conditions of Theorem 7 are satisfied for this example.
Hence, G has a fixed point.

4. Application

In this section, by the graph G we mean that G = (V, E) is an undirected graph on a
nonempty set H, such that V = H and E ⊂ H × H contains all loops, that is, (h, h) ∈ E for
all h ∈ H, without any parallel edges. Define a path relation PG on H equipped with the
graph G: (h, k) ∈ PG if and only if there is a path from h to k in G. The relation PG on H
equipped with the graph G is reflexive, symmetric, and transitive, that is, (h, h) ∈ PG ∀h ∈
H, (h, k) ∈ PG =⇒ (k, h) ∈ PG and (h, k), (k, l) ∈ PG implies (h, l) ∈ PG.

Definition 4. Let H be a nonempty set and let G be the graph on H. A mapping dC : H×H → Rm
is called a Czerwik vector-valued graphical metric on H, if for each h1, h2, h3 ∈ H the following
axioms hold:

(d1) dC(h1, h2) ≥ 0;
dC(h1, h2) = 0 if and only if h1 = h2;

(d2) dC(h1, h2) = dC(h2, h1);
(d3) dC(h1, h3) ≤ Q[dC(h1, h2) + dC(h2, h3)] provided that (h1, h2), (h2, h3) ∈ PG,

where Q = (qij) ∈ Mm,m(R+) is a matrix with

qij =

{
q, i = j
0, i 6= j

and q ≥ 1. Then, (H, PG, dC, Q) is called a Czerwik vector-valued graphical metric space, or
Czerwik generalized graphical metric space.

Remark 7. Readers can note the following facts:

(i) Czerwik vector-valued graphical metric space is a particular case of Czerwik vector-valued
R-metric space.

(ii) Czerwik vector-valued graphical metric space provides an extended concept of graphical b-
metric space [11] as well as graphical metric space [10] over an undirected graph.

Definition 5. Let (H, PG, dC, Q) be a Czerwik vector-valued graphical metric space. Then

• A sequence (hn) in H is said to be PG-sequence if (hn, hn+1) ∈ E for each n ∈ N.
• A PG-sequence (hn) in H is said to be PG-convergent to h in H if limn→∞ dC(hn, h) = 0 and

(hn, h) ∈ E ∀n ≥ k for some natural number k.
• A PG-sequence (hn) in H is said to be PG-Cauchy if limn,m→∞ dC(hn, hm) = 0.
• (H, PG, dC, Q) is said to be PG-complete if each PG-Cauchy sequence in H is PG-convergent

in H.

Theorem 8. Let (H, PG, dC, Q) be a PG-complete Czerwik vector-valued graphical metric space
and let T : H → H be a mapping. Also, assume that

(i) There exists h ∈ H with (h, Th) ∈ E;
(ii) For each h1, h2 ∈ H with (h1, h2) ∈ E, we have (Th1, Th2) ∈ E;
(iii) Either

(a) If {hn} is PG-convergent to h ∈ H, then {Thn} is PG-convergent to Th;
or
(b) For each PG-convergent sequence {hn} in H with hn → h, we have dC(hn, ·)→ dC(h, ·)
as n→ ∞;

(iv) For each (h, k) ∈ E, we have

dC(Gh, Gk) ≤ A1dC(h, k) + A2dC(h, Gh) + A3dC(k, Gk) + A4dC(h, Gk) + BdC(k, Gh) (22)
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where A1, A2, A3, A4, B ∈ Mm,m(R+) such that (I − (A3 + A4Q))−1 exists and the matrix
Q[(I − (A3 + A4Q))−1(A1 + A2 + A4Q)] is convergent to zero.

Then, T has a fixed point.

The proof of this result is similar to the proof of Theorem 5.

5. Conclusions

This article presents the notion of Czerwik vector-valued R-metric space, which is
a generalized form of Czerwik vector-valued metric space. In Czerwik vector-valued
R-metric space, the triangle inequality is discussed only for comparable elements under an
equivalence relation. The limit point of anR-convergent sequence is unique in the Czerwik
vector-valuedR-metric space. The set {BdC (h, ε) : h ∈ H, ε > 0} provides a neighbourhood
system for the topology on H induced by the Czerwik vector-valuedR-metric space. The
existence of fixed points for single-valued and set-valued maps is also discussed using the
Czerwik vector-valuedR-metric space.
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