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Abstract: Existing zero-shot learning (ZSL) methods typically focus on mapping from the feature
space (e.g., visual space) to class-level attributes, often leading to a non-injective projection. Such
a mapping may cause a significant loss of instance-level information. While an ideal projection to
instance-level attributes would be desirable, it can also be prohibitively expensive and thus impracti-
cal in many scenarios. In this work, we propose a variational disentangle zero-shot learning (VDZSL)
framework that addresses this problem by constructing variational instance-specific attributes from
a class-specific semantic latent distribution. Specifically, our approach disentangles each instance
into class-specific attributes and the corresponding variant features. Unlike transductive ZSL, which
assumes that unseen classes’ attributions are known beforehand, our VDZSL method does not rely
on this strong assumption, making it more applicable in real-world scenarios. Extensive experiments
conducted on three popular ZSL benchmark datasets (i.e., AwA2, CUB, and FLO) validate the effec-
tiveness of our approach. In the conventional ZSL setting, our method demonstrates an improvement
of 12∼15% relative to the advanced approaches and achieves a classification accuracy of 70% on the
AwA2 dataset. Furthermore, under the more challenging generalized ZSL setting, our approach can
gain an improvement of 5∼15% compared with the advanced methods.

Keywords: zero-shot learning; computer science; pattern recognition; deep learning

MSC: 68T07; 68T10; 68T45

1. Introduction

Remarkable success in object classification has been achieved in recent years with
the advances in deep convolutional neural networks. However, a common limitation in
most state-of-the-art models is that they are generally trained on data with known labels
and do not generalize to unseen classes To address this issue, zero-shot learning (ZSL) [1]
was proposed, which assumes unseen classes share some auxiliary modalities (with seen
classes), through which a generalized model can be trained to recognize both seen and
unseen classes. Extensive studies have been conducted in various computer vision tasks
such as super-resolution, object detection, and style transfer.

In ZSL, one of the most popular forms of auxiliary modalities is class-level attributes,
usually provided by domain experts, crowd-sourcing annotations, or word embedding.
With the shared attributes, the knowledge learned from seen classes can be transferred to
unseen classes. For example, the model learns the visual features corresponding to the
attribute ‘stripes’ from the seen class zebra, and these features should also be able to be
used to predict the ‘strips’ from the unseen class zebra crossing in the city.

Conventional zero-shot learning (ZSL) models can be categorized into three primary
groups: linear mapping models, non-linear mapping models, and semantic and probabilis-
tic approaches. In the realm of linear mapping models, the deep visual-semantic embedding
(DeViSE) model [2] leverages a pretrained neural language model coupled with a deep
neural network to learn the parameters for the linear transformation layer. Subsequently,
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the attribute label embedding (ALE) model [3] employs a WSABIE ranking objective [4]
to learn a linear compatibility function, thereby prioritizing the top of the ranking list.
Later, the structured joint embedding (SJE) framework [5] integrated an SVM [6] to assess
its importance, improving upon previous work. The embarrassingly simple zero-shot
learning (ESZSL) [7] model unifies a linear mapping with a straightforward empirical loss,
along with regularization terms that penalize both the projection of feature vectors from
a Euclidean space into the attribute space and vice versa. Nonlinear methods such as
the latent embeddings (LatEm) model [8] extend the DeViSE model by incorporating a
piecewise linear compatibility function, thus amalgamating multiple mappings learned
through a pairwise ranking loss. Later, the semantic autoencoder (SAE) [9] introduced
an encoder-decoder network to prevent information loss and improve feature learning.
Semantic and probabilistic approaches to zero-shot learning include direct and indirect
attribute prediction (DAP and IAP, respectively) models [10], which learn a probabilistic
attribute classifier and predict the label by combining classifier scores. Those approaches
have yielded encouraging results during the past few decades [11].

However, there are some practical issues that have been neglected for many years;
in most embedding models, the mapping from a visual to a semantic space is generally non-
injective. The definition of a non-injective problem in the ZSL task is as follows: Multiple
visual instances or images are mapped to a single vector of class-level attributes, creating a
situation where the inverse function does not exist. Under such conditions, the mapped
space lacks the ability to uniquely trace back from the class-level attribute vector to a
specific visual instance. As depicted in Figure 1a, two horse images (in white and brown)
are mapped to the same class attribute (indicated by the red star) in conventional ZSL
models. This implies that the intra-class variability, such as distinguishing details between
the two horses, is neglected during the mapping process, resulting in an instance-level
loss of information. To this end, we propose a variational disentangled zero-shot learning
(VDZSL) framework which aims to learn an instance-level mapping (i.e., that shown in
Figure 1b) across a visual-semantic space and preserve large inter-class margins (for better
discrimination) simultaneously.

Text

Semantic SpaceVisual Space Semantic SpaceVisual Space

Margin

(a) Conventional embedding model for ZSL (b) Proposed VDZSL model

Figure 1. A comparison between conventional ZSL and proposed VDZSL. (a) Conventional embed-
ding model for ZSL. The mapping from a visual to a semantic space is non-injective (e.g., two horse
images mapping to a single attribute in a semantic space). (b) Proposed VDZSL model. Images are
projected to individual points, which can be modeled as a Gaussian distribution.

Our contribution can be summarized as follows:

• We identify the non-injective problem that results from a lack of instance-level at-
tributes for ZSL classification tasks.

• We introduce a novel VDZSL method that leverages variation inference to disentangle
instance-specific attributes from shared class-specific information.

• Extensive experiments are conducted on three benchmark datasets, and our model
generally outperforms other state-of-the-art methods.
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2. Related Work

The main difference between ZSL and most other machine learning methods is the
prerequisite of human-understandable prior knowledge of the seen and unseen classes.
The existing ZSL literature covers broad research topics, such as multimodal human
priors [12,13], visual-semantic embedding [14], and seen-unseen domain adaptation [15].
The ZSL problem has many distinctive variations as well. Papers with different research
purposes cannot simply be put together and compared. This section aims to scope out
these distinctions so as to highlight our focus and contributions.

2.1. Zero-Shot Learning Variations

Traditional supervised learning models fail to generalize to new classes due to a lack
of training examples for unseen categories. Zero-shot learning (ZSL) [16] utilizes a seman-
tic modality to connect the visual and label spaces. The associations between semantic
modality and labels come from human-understandable prior knowledge, and they require
no training images from unseen categories. The challenge is how to achieve a consistent
mapping from an image to semantic modality. Note that this conventional ZSL method
was considered as an ill-posed problem in [17] because no unseen category information
should be assumed available before the test. Moreover, images from arbitrary new classes
may not follow the learned mapping from the seen category. If the unseen category’s
representation is not correlated with the seen category, then the learned visual-semantic
mapping cannot generalize. Transductive zero-shot learning [18,19] is a compromise to the
‘unseen’ condition. Its setting assumes all the information of unseen classes is available
except their labels. The test is then simplified into a dynamic domain alignment task
between heterogeneous modalities. Such a task is sometimes referred to as unsupervised
ZSL [20]. Because the entire visual distribution has been exposed during training, the
transductive setting is significantly favorable in performance compared with conventional
ZSL. However, collecting all unlabeled test images during the training stage can hardly be
achievable in many realistic applications. A recent setting [14,21–25] was widely adopted
by powerful generative models applied on a predefined semantic modality to synthesize
training visual examples for both the seen and unseen classes. Different from the above
settings, generalized zero-shot learning (GZSL) [17,26] considers a larger output space.
More precisely, during inference, the output label space includes both the seen and unseen
classes with increasing classification challenges. Our work will be evaluated for both the
ZSL and GZSL settings.

2.2. Variation Autoencoder

The variational autoencoder (VAE) is a deep generative model which aims to learn
complex density models from data via latent variables. Given a nonlinear generative model
pθ(x|z) with input x ∈ RD associated with a latent variable z ∈ RL coming from some
prior distribution p(z), the VAE aims to use an encoding model qφ(z|x) to approximate the
posterior distribution of the latent variable (i.e., pθ(z|x)). The learning process is achieved
by maximizing the following variational lower bound:

Eqφ(z|x)[logpθ(x|z)]−KL(qφ(z|x)||p(z)) (1)

Typically, the posterior distribution of the latent variable pθ(z|x) is defined as an
isotropic normal distribution with its mean and standard deviation of the output of the
deep neural network. After the learning process, a probabilistic encoded latent code z for
the input can be generated by the encoding model qφ(z|x). We leverage the flexibility of
the VAE to design a structured ‘Siamese’ encoding network that allows us to explore the
class-specific information and class variation information for ZSL tasks.
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Generative Model for ZSL

The early work on ZSL methods can mainly be divided into compatibility func-
tions [2,3,7,27,28] and embedding approaches [29–33]. Compared with generative models,
their training is purely based on conventional ZSL rather than semantic transductive set-
tings. The learned classifier or embedding is directly applied to unseen images without
further fine-tuning. In contrast, despite a massive performance gain, recent proposed gen-
erative approaches [14,21–25] rely on semantic transductive information so as to synthesize
the visual features of unseen classes. However, knowing all the semantic information of
the test classes in the semantic transductive setting can be difficult to achieve in realis-
tic settings. Our method sticks to ZSL with a new usage that aims to model the noisy
intra-class variability as a generative procedure so that we can distill more discriminative
class representations.

3. Method

Our model, shown via the pictorial illustration in Figure 2, is based on a parallel
autoencoder (AE) and variational autoencoder (VAE) architecture. The framework consists
of two learning processes: variational disentangle learning and zero-shot learning. The vari-
ational disentangle learning process (i.e., the full network in Figure 2) can take advantage
of a disentangle net and margin constraint to reduce the effect brought by redundant
features and build a sparse latent space. The latter can leverage the extracted class-specific
representation for ZSL classification tasks.

Visual Feature Visual Feature
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Figure 2. The modules of our VDZSL framework consist of three parts: (A) Variational disentangle
network; (B) Semantic encoding module; (C) Variance encoding module. The Variational disentangle
network consists of a class-specific feature encoder EA and a class-variant feature encoder EV . They
take the visual features as input and extract class-specific and variant features, respectively. These
features are supervised by the attribute and attribute-variance features encoded by the attribute
feature encoder EA and attribute variance feature encoder EAv. Finally, the feature reconstructor
decoder combines the class-specific feature zi

I and class-variant feature zi
V to reconstruct the original

input features.

3.1. Problem Definition

Let S = {s1, . . . , sp} denote the set of seen classes and U = {u1, . . . , uq} denote
that of unseen classes, where p and q are the total numbers of seen and unseen classes,
respectively. S and U are disjoint sets (i.e., S ∩ U = ∅). Similarly, we define As =
{as

1, . . . , as
p} ∈ Rp×k and Au = {au

1 , . . . , au
q} ∈ Rq×k, which are the seen and unseen class
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semantic representations, respectively, where k is the dimension of the attribute vector.
Given a set of labeled training data Ds = {xs

i , as
i , ys

i }, where i ∈ {1, . . . , n} and xs
i ∈ R1×d

represents the d-dimensional visual feature vector of the seen classes, ys
i ∈ {1, . . . , p} is

the class label of xs
i , as

i is the semantic representation vector of xs
i , and n denotes the total

number of instances in the seen classes. Similarly, the data of the unseen classes to be tested
are defined as Du = {xu

i , au
i , yu

i }, where i ∈ {1, . . . , m} and m denotes the total number of
unseen instances. The goal of zero-shot learning is to leverage the seen training data Ds to
learn a classifier f : X u → U , where X u = {xu

1 , . . . , xu
m}.

3.2. Variational Disentangle Network

Due to the diversity of images, different images from the same classes may suffer from
noise factors (e.g., the background), which might lead to misclassification. To reduce the
effect caused by those noise factors, a potential solution is to perform feature extraction
such that the discriminant and noise features can be separated. Our VDZSL model presents
a disentangle projection scheme to extract the class-specific and class-variant latent codes
from the visual feature space. As shown in Figure 2, EI and EV denote the class-specific
and class-variant feature encoding network, respectively. To be specific, giventhe feature
data X s = {xs

1, · · ·, xs
n}, for each xs

i , we have the class-specific representation zi
I = EI(xs

i )
and variant representation zi

V = EV(xs
i ). The downstream network EV (i.e., block A in

Figure 2) uses a basic variation autoencoder network, and the upstream network EI uses a
basic autoencoder network.

Motivated by the VAE, we assume the data are generated by an unobserved continuous
random variable z∗ in the embedding space. The generation process consists of three
parts: (1) a variant feature zi

V is generated from some prior distribution p′θ(zV); (2) zi
I is

a class-specific latent code, and zi
∗ is defined by the aggregation of zi

I and zi
V such that

zi
∗ = zi

I ⊗ zi
V ; and (3) finally, the decoder net DZ aims to reconstruct the region features from

some conditional distribution p′θ(x|z∗), i.e., xs
i
′ = DZ(zi

∗). Following the lower boundary
on the VAE, the loss for modeling the class variant code could be written as

L(θ, φ; x) ≈ −DKL(qφ(zV |x)||pθ(zV)) +
1
N

N

∑
i=1

logpθ(xi|zi
V). (2)

Moreover, different classes may suffer from different variances, and thus we model the
prior distribution of zV to be a center isotropic multivariate Gaussian which is conditioned
on the class-specific attribute (i.e., pθ(zV) ∼ N (0, σAv)). Here, the class-conditioned
variance vector is encoded by the variance embedding net (i.e., block C in Figure 2), such
that σ

j
Av = DAv(as

j ) and as
j ∈ As. Then, Equation (2) can be rewritten as

L(θ, φ; x) ≈ −DKL(qφ(zV |x)||pθ(zV |σAv)) +
1
N

N

∑
i=1

logpθ(xi|zi
V). (3)

For the approximation posterior in Equation (3), we model a multivariate Gaussian
with diagonal covariance (i.e., qφ(zV |xi) = N (µi, σ2

i I)). The KL divergence between
qφ(zV |x) and pθ(zV |σAv) could be written as

DKL =
∫

qφ(zV |x) log qφ(zV |x)dx−
∫

qφ(zV |x) log pθ(zV |σAv)dx

=

{
−N

2
log(2π)− 1

2

N

∑
i=1

(
log σ2

i + 1
)}

−
{
−N

2
log(2π)− 1

2

N

∑
i=1

log σ2
Av −

1
2

N

∑
i=1

[
σ2

i
σ2

Av
+

µ2
i

σ2
Av

]}

= −1
2

N

∑
i=1

[
log

σ2
i

σ2
Av
−

σ2
i

σ2
Av
−

µ2
i

σ2
Av

+ 1

]
(4)
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Benefiting from the elegant reparameterization trick from the VAE, the variational
disentangle network’s loss function could be written as

L(θ, φ; x) ≈ − 1
2N

N

∑
i=1

(1 + log(
σ2

i
σ2

Av
)− (

σ2
i + µ2

i
σ2

Av
)))

+
1
N

N

∑
i=1

logpθ(xi|zi
∗).

(5)

More specifically, L(θ, φ; x) (i.e., the objective function of the disentangle network) can be
rewritten as

Ldisentangle = −
1

2N

N

∑
i=1

(1 + log(
σ2

i
σ2

Av
)− (

σ2
i + µ2

i
σ2

Av
)))

+
1
N

N

∑
i=1
||xi − Dz(EI(xi) + EV(xi))||.

(6)

3.3. Margin Regularizer

The objective of the variational disentangle network naturally encourages the network
to extract the class-specific latent code and class variance latent code. In classification tasks,
for large inter-class separation in the latent space, we further use a margin regularizer (i.e.,
triplet guided loss [34]):

Lmargin = ϕ
1
N

N

∑
i=1

max(0, α + d(za
I , zp

I )− d(za
I , zn

I ))

+ ϕ′
1
N

N

∑
i=1

max(0, α + d(za
∗, zp
∗)− d(za

∗, zn
∗))

(7)

where d(·) represents the distance function.
The first term of Equation (7) indicates the margin regularization in the class-specific

latent code which may push the negative latent code (i.e., zn
I , where yn 6= yp) far away from

the anchor and positive latent code (i.e., za
I , zp

I , where ya = yp) in a margin α. Similarly,
the second term aims to push the embedded latent code (i.e., z∗) far away from other classes’
latent codes. It should be noted that not all of the triplet samples can contribute loss to the
training. In this case, during the training process, only validate-hard samples are used.

Note that in Equation (7), ϕ and ϕ′ are two hyperparameters that can control the
constraint effect on the latent code zI and z∗. As the class-specific latent code should
become more representative (used for classification), we set larger values for large margins.
However, the combining latent code z∗ should maintain the original information for the
reconstruction process (with variant information added). Thus, we gave it a relatively small
value to relax the constraint. In this work, we empirically set ϕ = 0.9 and ϕ′ = 0.1.

3.4. Zero-Shot Learning

For ZSL classification, we link the visual and semantic space by mapping the class-
specific attribute to the center of a class-specific latent space. It should be noted that this
is a ‘one-to-one’ mapping, which is different from the other ZSL methods. This mapping
can be performed by minimizing the distance between the encoded attribute code and the
corresponding class center (i.e., the mean vector of the class-specific latent code):

Lcls =
1
p

p

∑
j=1
||zj

As −
1

Mj

Mj

∑
i=1

zi,j
I ||F, (8)
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where || · ||F indicates the Frobenius norm and Mj is the sample size in class j, zj
As = EA(as

j )

where as
j ∈ As.

3.5. Final Training Objective

The variational disentangle learning and zero-shot classification are trained simulta-
neously. The final objective function is a combination of Equations (6)–(8) which can be
written as

Ltotal = λLdisentangle + βLmargin + σLcls, (9)

where λ, β, and σ are the regularization coefficients of different loss functions.
Once the parameters of the encoding network EA are learned, the unseen class’s

semantic feature can be obtained by encoding their corresponding class attribute vector (i.e.,
zu

a = EA(au)). Finally, the ZSL classification task can be solved with a nearest neighbor
search between zu

a and the unseen class-specific latent code (i.e., zu
I = EI(xu)):

ŷ = arg min
y∈Yu

d(zu
I , zu

aj), zu
aj ∈ {zu

1 , · · ·, zu
q} (10)

where d(·) represents the distance function, and the cosine distance is used here.

4. Experiment Set-Up
4.1. Datasets and Settings

We evaluated our method on three public datasets. AWA2 [10] is a coarse-grained
dataset with 37,322 images and 50 classes. CUB-200-2011 Birds (CUB) [35] is a fine-grained
and medium-scale dataset with respect to both the number of images and number of
classes (i.e., 11,788 images from 200 different types of birds annotated with 312 attributes).
Oxford-Flowers (FLO) [36] is a small-scale dataset with respect to both the number of
images and number of classes (i.e., FLO contains 6786 images coming from 102 types of
flower annotated with 1024 attributes). For the seen and unseen class split, we followed the
protocol used in [17].

4.1.1. Input Space

The input space of ZSL includes two parts: a semantic space and a visual space. For the
semantic space, attributes and word2vec embeddings are two popular input sources, where
the former is used to form the semantic space for the visual content while the latter is
used as the semantic representation for a large-scale dataset (e.g., ImageNet). For the
visual space, the visual features extracted by the CNN models, which are pretrained on
ImageNet in ILSVRC 2012 [37], are widely used. In our experiments, we used pretrained
ResNet-101 [38] features and attributes as our input sources.

4.1.2. Evaluation Metrics

For the ZSL setting, only accuracy was used. For the generalized ZSL setting, three
metrics were used: (1) acctr,which is the average per-class classification accuracy on the
seen class test data using a classifier trained for all classes, (2) accts, which is the average
per-class classification accuracy on the unseen class test data using a classifier trained for
all classes, and (3) H, which is the harmonic mean of acctr and accts (i.e., H = 2×acctr×accts

acctr+accts
).

There were two phases in the training procedure. In the first phase, we cut off the
backpropagation of the gradient from the reconstruction term, which aims to ensure the
class-specific latent space’s construction. For the latent space dimension, we followed [39]
and fixed the embedding size to 512 in all the experiments. For the regularization coeffi-
cients, we first set λ = 1, β = 1, and σ = 1 and tuned them for optimal results. For the
network in our experiment, we used linear layers to construct the encoder and decoder,
where tanh was used as the activation function.
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5. Discussion
5.1. Quantitative Results Discussion

In this section, we present the results for both the ZSL and GZSL settings. The perfor-
mance of our method, along with other baseline comparisons on the CUB, AWA2, and FLO
datasets, is summarized in Table 1. In the ZSL setting, we can see the superior performance
improvements in the AwA2 and FLO datasets brought about by the proposed VDZSL frame-
work. Benefiting from the designed class-specific feature extraction and the incorporation of
triplet margin loss, the clustering of different classes became more discriminative. This led
to a reduction in the intra-class distances, thereby yielding improved classification results.
However, we observed that the results from the CUB dataset were on par with previous
approaches. One major reason for this similarity in performance can be attributed to the
large class number of the CUB dataset (i.e., 200 classes), making fine-grained classification
more challenging. The differences across various bird classes may be subtle, rendering
the extraction of discriminative features more difficult and thus posing challenges. In the
GZSL setting, our method generally achieved higher values for ts and H on the three
datasets, with the exception of H in the CUB dataset. We observed that most algorithms,
including ours, tended to have higher tr values compared with ts, which is attributed to
overfitting the data with seen classes. Nevertheless, our method still maintained reasonable
performance with the GZSL setting when compared with other approaches.

Table 1. Results of our VDZSL and other baselines in ZSL and GZSL settings.

Methods

ZSL Generalized ZSL

AwA2 CUB FLO
AwA2 CUB FLO

ts tr H ts tr H ts tr H

DAP 46.1 40.0 - 0.0 84.7 0.0 1.7 67.9 3.3 - - -
IAP 35.9 24.0 - 0.9 87.6 1.8 0.2 72.8 0.4 - - -
LATEM 55.8 49.3 40.4 11.5 77.3 20.0 15.2 57.3 24.0 6.6 47.6 21.5
ALE 62.5 54.9 48.5 14.0 81.8 23.9 23.7 62.8 34.4 13.3 61.6 21.9
DEVISE 59.7 52.0 45.9 17.1 74.7 27.8 23.8 53.0 32.8 9,9 44.2 16.2
SJE 61.9 53.9 53.4 8.0 73.9 14.4 23.5 59.2 33.6 13.9 47.6 21.5
ESZSL 58.6 53.9 51.0 5.9 77.8 11.0 12.6 63.8 21.0 11.4 56.8 19.0
SAE 58.1 42.0 45.6 1.1 82.8 2.2 17.4 50.7 25.9 - - -

VDZSL (Ours) 70.0 53.0 60.0 20.0 85.0 32.3 24.8 48.5 32.9 23.5 79.7 36.4

5.2. Latent Space Visualization

To better understand the learned features, T-SNE visualization was used on the original
CNN feature xu, reconstructed feature xu ′, class-specific latent code zI , and combined
feature latent code z∗ as shown in Figure 3. As can be seen in Figure 3, the reconstructed
CNN feature xu ′ still kept a similar shape with the original features xu, and the class-specific
latent code zI led to an elegant separation while still keeping the distribution shape of the
original feature space. We also observed that the ‘seal’ and ‘walrus’ overlapped in both the
reconstructed feature space and class-specific feature space. A possible explanation could
be the negative pulling effect during the triplet training caused by the similar input feature
from these two classes.

We also calculated the inter-class distances in different latent codes (i.e., zI , z∗)
as shown in Figure 4, where a darker color represents a larger distance. From Figure 4, we
can see that the classes tended to be far away in the class-specific latent space (correspond-
ing to zI) than the combined latent space (corresponding to z∗), indicating the high-level
discriminant capability of zI . On the other hand, z∗ aggregated both the discriminant
class-specific feature zI and class-variant features (i.e., noises), yielding a high level of class
overlapping in its feature space (i.e., Figure 3d) with shorter inter-class distances (as shown
in Figure 4).
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attr ibute vector true center dolphin walrus bobcat rat

giraffe bat seal sheep blue+whale horse

(a) (b) (c) (d)

Figure 3. t-SNE visualization for AwA2 dataset. (a) Original CNN feature xu. (b) Reconstructed
features xu ′. (c) Class-specific latent code zI . (d) Combined latent code z∗.

horse
whale
sheep

seal
bat

giraffe
rat

bobcat
walrus

dolphin

(a) Inter-Class distance on zI (b) Inter-Class distance on z

Figure 4. Inter-class distance comparison on AwA2 datasets under ZSL setting. (a) Inter-class
distance for class-specific latent code zI . (b) Inter-class distance for combined latent code z∗. Dark
color indicates large distance, and vice versa.

5.3. Margin Analysis

We also evaluated the effectiveness of the triplet margin setting, and the accuracy
distribution with respect to the margin size is shown in Figure 5. It is interesting to see that
the performance deteriorated with large margins (e.g., >1), which might have been caused
by a large class number (e.g., 50, 102, or 200 classes for AwA2, FLO, CUB, respectively).
Although a large margin constraint was normally used for better class separation, with a
large class number, the features may have been highly overlapped in the feature space,
making the trained model less effective.
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Figure 5. Performance with respect to margin size.
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5.4. Limitations and Future Work
5.4.1. Limitation

Although the proposed VDZSL framework can significantly enhance the performance
of zero-shot learning tasks by addressing the non-injective projection problem, it suffers
from feature constraint. Specifically, the performance of zero-shot recognition is limited
by the features that are either pretrained or extracted from the large-scale dataset. This
means that even if the design of the learning framework is excellent, it may still fail to
deliver decent performance for zero-shot object classification. This limitation stems from
the coarse-grained features extracted during the initial dataset creation stage.

Another major challenge is the distribution distance measurement. Using KL di-
vergence to measure the distribution distance could lead to challenges in the gradient
calculation. Specifically, when two distributions are either too far away or too close,
the KL divergence measurement may fail. This failure occurs because KL divergence is not
symmetric, meaning that swapping the two distributions can result in a different value.
Additionally, if one distribution has support while the other does not (i.e., it assigns a prob-
ability of zero to an event that has a positive probability under the other distribution), then
the KL divergence becomes infinite. This behavior can cause issues in mathematical opti-
mization tasks, such as gradient descent, where the negative or undefined gradients could
disrupt the learning process. These aspects of KL divergence could be further investigated
to understand their impact on specific applications.

5.4.2. Future Work

According to the aforementioned limitations, future work in the field of zero-shot
learning may be directed toward the following aspects:

• Designing end-to-end training strategies for zero-shot learning (ZSL) recognition
allows for the avoidance of pretrained features. The use of task-specific features can
enhance recognition performance, leading to more accurate results.

• Investigate more advanced distance measurements (e.g., the Wasserstein distance in
the earth mover’s distance group) and their effects on the zero-shot learning task.

• By connecting the advanced generative model [40] with zero-shot learning, we can
leverage its capabilities. Specifically, by generating images conditioned on attributes,
we can produce a larger-scale dataset suitable for the zero-shot learning task.

5.4.3. Connecting to Real-World Applications

While ZSL has shown success in object classification tasks, its applications reach well
beyond this realm, influencing various real-world domains. In healthcare, ZSL exhibits
potential for diagnosing rare diseases and pinpointing anomalies within medical imaging.
Within the context of environmental conservation and wildlife monitoring, ZSL can be
harnessed to identify previously unobserved species or ecological phenomena. In the field
of industrial automation, it can enable robots to recognize a wide variety of products, and in
the financial sector, ZSL may be used to detect emerging fraud patterns. This provides
a flexible and innovative approach to identifying suspicious activities without relying
on previous examples. The extensive applications of ZSL underscore its adaptability and
potential for enhancing technological capabilities and addressing complex challenges across
an array of diverse domains.

6. Conclusions

We presented the variational disentangle zero-shot learning (VDZSL) framework
for predicting unseen classes under both ZSL and GZSL settings. Unlike existing ZSL
methods, our approach is designed to disentangle class-specific features from variance
noise, rendering the classification process less sensitive to nuisance factors. By separating
class-specific information from the original visual features, our framework substantially
reduces the influence of variant noises. Moreover, we model the semantic space as a
distribution to preserve variant information, aiding the reconstruction of visual features.
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Experimental results on three public datasets have attested to the effectiveness of our
VDZSL method in both the ZSL and GZSL settings, showing notable advantages over other
algorithms. Finally, although we employed an isotropic Gaussian distribution to model
the intra-class variant latent code, other distributions can be explored, and this will be a
direction for future research.
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