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Abstract: Distributed Denial of Service (DDoS) and Address Resolution Protocol (ARP) attacks pose
significant threats to the security of Software-Defined Internet of Things (SD-IoT) networks. The
standard Software-Defined Networking (SDN) architecture faces challenges in effectively detect-
ing, preventing, and mitigating these attacks due to its centralized control and limited intelligence.
In this paper, we present P4-HLDMC, a novel collaborative secure framework that combines ma-
chine learning (ML), stateful P4, and a hierarchical logically distributed multi-controller architecture.
P4-HLDMC overcomes the limitations of the standard SDN architecture, ensuring scalability, perfor-
mance, and an efficient response to attacks. It comprises four modules: the multi-controller dedicated
interface (MCDI) for real-time attack detection through a distributed alert channel (DAC), the MSMPF,
a P4-enabled stateful multi-state matching pipeline function for analyzing IoT network traffic using
nine state tables, the modified ensemble voting (MEV) algorithm with six classifiers for enhanced
detection of anomalies in P4-extracted traffic patterns, and an attack mitigation process distributed
among multiple controllers to effectively handle larger-scale attacks. We validate our framework
using diverse test cases and real-world IoT network traffic datasets, demonstrating high detection
rates, low false-alarm rates, low latency, and short detection times compared to existing methods.
Our work introduces the first integrated framework combining ML, stateful P4, and SDN-based
multi-controller architecture for DDoS and ARP detection in IoT networks.

Keywords: SD-IoT; DDoS detection; ARP detection; machine learning; stateful P4; multi-controller;
traffic monitoring

MSC: 68T01

1. Introduction

The Internet of Things (IoT) has become ubiquitous and is increasingly being deployed
in various applications, including healthcare, transportation, and smart homes [1]. How-
ever, IoT networks are highly vulnerable to security threats, including Distributed Denial of
Service (DDoS) attacks and Address Resolution Protocol (ARP) attacks [2,3]. The increasing
scale and complexity of IoT networks make traditional security mechanisms ineffective,
highlighting the need for new approaches to secure IoT networks [4,5]. In addition, it
is essential to ensure the security of every layer of the IoT ecosystem. The IoT can be
vulnerable to attacks at three distinct levels: the node layer, where data are collected; the
network layer, where data are transmitted for processing; and the cloud layer, where data
are stored [6]. In this study, the proposed framework primarily emphasizes securing the
first two layers.

DDoS and ARP attacks pose significant threats to IoT networks. These attacks exploit
vulnerabilities in network infrastructure and can have a severe impact on the overall
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functioning and security of IoT systems. Understanding DDoS and ARP attacks and
their relationship is crucial for mitigating their effects and protecting IoT networks from
potential damage [7]. DDoS attacks are malicious attempts to disrupt the normal operation
of a network or a specific service by overwhelming it with a massive volume of traffic.
These attacks can be devastating for IoT networks as they target the limited resources
of IoT devices and the underlying infrastructure [8]. By flooding the network with an
enormous amount of data, DDoS attacks consume bandwidth, processing power, and
memory, rendering IoT devices and services inaccessible to legitimate users [9].

On the other hand, ARP attacks exploit vulnerabilities in the ARP protocol, which is
responsible for mapping IP addresses to MAC addresses in a network. In an ARP attack,
an attacker sends fake ARP messages, known as ARP spoofing, to associate their MAC
address with the IP address of a legitimate device on the network. In this manner, the
attacker gains the ability to capture network data, divert it towards their own device, and
engage in a range of nefarious actions, including eavesdropping, unauthorized access, and
manipulation of data.

The relationship between DDoS and ARP attacks becomes evident when considering
the potential collaboration between attackers. In some scenarios, DDoS attacks can be used
as a smokescreen to divert attention and resources while ARP attacks are carried out to
exploit vulnerabilities in the network. For example, during a DDoS attack, the network and
security infrastructure might become overwhelmed, leading to decreased monitoring capa-
bilities and increased susceptibility to ARP attacks. This collaboration between different
attack vectors can magnify the impact on IoT networks, causing severe disruptions and
compromising the security and privacy of connected devices and their users.

Additionally, the compromised security of IoT networks due to these attacks opens the
door to further exploits and unauthorized access. Once an attacker gains control over IoT
devices through ARP attacks, they can leverage these compromised devices to launch more
sophisticated attacks, such as botnet-based DDoS attacks or data breaches. This not only
poses a threat to the IoT network itself but also to other connected systems and networks
that may interact with the compromised devices.

Software-Defined Networking (SDN) has emerged as a promising paradigm for manag-
ing and securing large-scale IoT networks [10]. SDN’s centralized control enables network
administrators to dynamically manage network resources and deploy security mechanisms
to detect and mitigate attacks. Despite the various advantages of SDN architecture, it has
two major weaknesses. Firstly, the standard SDN architecture centralizes all intelligence
in a single controller, resulting in a Single Point of Failure (SPOF) and limiting scalability
and performance. To overcome this, the integration of multiple controllers becomes crucial
to address the SPOF problem and enhance system performance. Secondly, scalability and
performance issues persist due to the limited intelligence of OpenFlow switches, which
adopt a stateless approach for packet processing [11]. These switches heavily rely on the
controller for network traffic forwarding and monitoring, leading to communication over-
head between the data and control planes [12]. Furthermore, OpenFlow switches exhibit
fixed behavior determined by the OpenFlow version, processing packets with a predefined
set of actions [13,14]. This lack of flexibility makes it challenging for network administrators
to customize header fields and actions according to diverse application requirements.

To overcome these limitations, researchers have proposed P4 (Programming Protocol-
independent Packet Processors), a domain-specific language for programming the data
plane [15]. P4 allows for the programming of additional functionalities and packet process-
ing details, which enables the definition of different header structures and corresponding
functions for matching and defining actions that the switch can take on each packet. The
programmable pipeline provided by P4 offers flexibility, which is a significant advantage
over OpenFlow switches [16].

Inspired by all of the abovementioned factors, we propose a new secure framework,
P4-HLDMC, for detecting and mitigating DDoS and ARP attacks in SD-IoT using machine
learning and stateful P4 with a hierarchical logically distributed multi-controller architec-
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ture. The proposed framework employs a distributed architecture with multiple controllers,
each responsible for a specific domain of the network. The stateful P4 algorithm is used to
extract, monitor, and analyze network traffic features, while machine learning is used to
identify anomalies in the traffic patterns.

The proposed detection framework utilizes a range of ML models, including Support
Vector Machine (SVM), k-Nearest Neighbor (kNN), Gaussian Naive Bayes (GNB), Binomial
Logistic Regression (BLR), Decision Tree (DT), Random Forest (RF), and Modified Ensemble
Voting (MEV). The selection of these models for our DDoS attack detection in SD-IoT study
was based on careful consideration of several key criteria. Firstly, we focused on the ability
of these models to handle complex and high-dimensional data, which is often encountered
in SD-IoT networks due to the diverse and dynamic nature of IoT devices and traffic pat-
terns. SVM, kNN, GNB, BLR, DT, and RF have demonstrated effectiveness in dealing with
such data through various mechanisms such as non-linear decision boundaries, feature
similarity measures, and probabilistic reasoning. Secondly, the models were chosen for
their interpretability and the ability to provide insights into the decision-making process.
This is crucial in the context of SD-IoT security, as understanding the reasons behind an
attack detection can help in devising appropriate countermeasures. Decision Tree and
Logistic Regression, for example, offer clear decision paths, while kNN provides intuitive
distance-based classification. Furthermore, the selected models are well-known in the field
of machine learning and have been widely used in various domains, including intrusion
detection. This familiarity ensures that the models have established performance bench-
marks and comparison points. It also facilitates easier integration and interpretation of
results within the existing body of research. Regarding the exclusion of other models, such
as Neural Networks, the decision was made based on the complexity of implementation
and the potential need for extensive tuning. While these models can offer high accuracy,
they often require a larger amount of data and computational resources, which may be a
challenge in resource-constrained SD-IoT environments. In summary, our choice of SVM,
kNN, GNB, BLR, DT, RF, and Ensemble voting was driven by their capabilities to handle
complex data, provide interpretability, and align with existing research benchmarks. The
criteria considered were a combination of performance, interpretability, and practical feasi-
bility within the context of SD-IoT DDoS attack detection. The effectiveness and efficiency
of the proposed framework in detecting and mitigating DDoS and ARP attacks in SD-IoT
networks are evaluated using a set of current and relevant datasets of real-world IoT net-
work traffic, including the Edge-IIoTset [17], TON_IoT [18], and X-IIoTID dataset [19]. The
primary contributions of the proposed framework are as follows:

1. The proposed framework introduces 17 new features, including 12 computed features,
and 5 P4-extracted features, to effectively identify DDoS and ARP attacks. By using
these features, the model can overcome the problem of over-fitting and provide a
good fit.

2. This study presents the first integrated framework for DDoS and ARP detection
in SD-IoT, which combines ML, stateful P4, and SDN-based hierarchical logically
distributed multi-controller architecture. This framework is unique and innovative,
and it provides a new approach for attack detection in IoT.

3. The study presents the Improved OpenDayLight (IODL) controller as the optimal
choice for implementing the proposed framework. This selection is attributed to its
superior network resource allocation, scalability, and stability, which were assessed
through a comprehensive evaluation alongside other controllers using six criteria.

4. The first framework’s module introduces the Multi-Controller Dedicated Interface
(MCDI), which is a new proposed interface for Controller-to-Controller (C2C) com-
munication. MCDI ensures a consistent and real-time attack detection process through
a distributed alert channel (DAC). DAC reduces both the data-control overhead and
communication overhead between the controllers by sharing only necessary information.

5. The second framework’s module uses a novel proposed Multi-State Matching Pipeline
Function (MSMPF), which employs nine state tables to monitor, analyze, extract, and
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detect IoT network traffic features to be used as input to the third module. As a result,
the controller has an extra layer of protection against both DDoS and ARP attacks.

6. The final module of the proposed framework presents a unique attack mitigation
strategy consisting of 10 steps, which utilizes a distributed approach to mitigate at-
tacks. The distributed approach spreads the attack mitigation process among multiple
controllers, allowing the system to handle larger-scale attacks effectively and respond
rapidly. This approach enhances the scalability and reliability of the system, enabling
it to protect against sophisticated and coordinated attacks that conventional defenses
may not be able to handle.

The rest of this paper is organized as follows. Section 2 provides a literature review
of existing approaches to securing SD-IoT networks. Section 3 describes the proposed
framework in detail. Section 4 discusses the experimental results and the implications of
the proposed framework. Finally, Section 5 concludes the paper and provides directions
for future research.

2. Related Works

The landscape of attack detection and mitigation in SD-IoT networks, encompassing
DDoS and ARP attacks, has experienced notable growth in recent years. To enhance clarity
and organization, we categorize the related works based on their analytical criteria.

2.1. DDoS Detection-Related Works
2.1.1. Non-ML DDoS Detection Approaches

One method for detecting DDoS attacks relies on statistical techniques. In [20], re-
searchers introduced a statistics-based approach to identify DDoS attacks by assessing
the entropy of packet payloads. They harnessed machine learning to evaluate entropy
values and categorize traffic as normal or malicious. However, this approach neglected
the stateful nature of SD-IoT networks, posing challenges in detecting attacks spanning
multiple packets. Zhang et al. [21] proposed a method to detect low-rate (LR) DoS at-
tacks using Power Spectral Density (PSD). In this context, distinct PSD entropy limits
were established for normal and attack groups. Their non-AI-based intrusion detection
system (IDS) exhibited a trade-off between accuracy and detection rates. Another strategy
involves flow-based mechanisms for DDoS detection. Xie et al. [22] leveraged traffic-flow
patterns to discern DDoS attacks, demonstrating effective detection with relatively low
overhead compared to other methods. However, this approach proves less effective in high
network traffic scenarios, necessitating the adoption of more advanced security measures.
In [23], authors introduced a flow-based technique to uncover DDoS attacks in SDN. By
employing OpenFlow switches to gather flow statistics and detect abnormal traffic pat-
terns, this method did not account for the dynamic nature of SD-IoT networks, where
devices frequently join and depart. Approaching the issue uniquely, ref. [24] introduced
an innovative approach to actively detect attacks in resource-constrained cyber-physical
systems, focusing on thwarted actuation attacks. These attacks disrupt communication
between controllers and actuators. The proposed system comprises two core elements: (1)
detection and (2) control. The detection module employs parallel detectors crafted through
a multiple-model adaptive estimation strategy to identify attack occurrences and targeted
actuators. The control unit employs a constrained optimization technique to compute opti-
mal control inputs that satisfy both control and detection goals. A probabilistic framework
was adopted to formulate detection and control objectives, capitalizing on available a priori
information. To underscore the approach’s effectiveness, a simulation study was conducted
on an irrigation channel, yielding demonstrative outcomes.

2.1.2. ML and DL DDoS Detection Approaches

To address the limitations inherent in statistical and flow-based methodologies, re-
cent research endeavors have proposed an amalgamation of machine and deep learning
techniques with SDN to enhance DDoS detection in IoT environments. For instance, a
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DDoS detection solution tailored to SDN-based IoT networks, known as LEDEM, was
introduced in [25]. However, LEDEM’s effectiveness is hindered by its rigid reliance on a
single classification method, rendering it inadequate for combating diverse DDoS attack
types. In a similar vein, Yin et al. [26] outlined a comprehensive architecture for SD-IoT, in-
tending to scrutinize IoT network traffic and detect DDoS attacks through network attribute
analysis. Regrettably, this model’s potential is curtailed due to limitations in its ML-based
categorization algorithms. Taking an innovative approach, researchers in [27] put forth
a novel framework comprised of two integral components: DoS/DDoS detection and
DoS/DDoS mitigation. This novel approach facilitates precise identification of attack types
and associated packet types, thereby enabling targeted application of mitigation strategies.
Operating as a multi-class classifier based on the “Looking-Back” concept, the proposed
DoS/DDoS detection component was evaluated using the Bot-IoT dataset, culminating in
an impressive 99.81% accuracy rate with a Looking-Back-enabled Random Forest classifier.
Ullah et al. [28] contributed an anomaly-based detection system for IoT networks, featuring
a multiclass classification technique employing a convolutional neural network (CNN) algo-
rithm. Despite its commendable performance, ML approaches are the preferred choice for
intrusion detection systems (IDSs) necessitating robust security capabilities [29]. In [29], an
exploration of diverse ML models revealed that the XGBoost technique consistently yielded
superior performance outcomes compared to other classifiers. While the performance
results were drawn from two test cases, it was acknowledged that the dataset’s scope was
inadequate for comprehensively analyzing IoT network traffic behavior. To bridge the gap,
Yousuf et al. [30] introduced DALCNN, leveraging OpenDayLight (ODL) as a suitable SDN
controller to identify DDoS attacks in IoT. A notable limitation was observed, wherein the
RNN algorithm’s training using the NSL-KDD dataset did not align with the intricacies of
IoT network traffic characteristics. Another noteworthy approach involved a Deep Neural
Network (DNN) method proposed in [31] to identify DDoS attacks in SDN scenarios. Test
results demonstrated the efficacy of the Deep IDS system with minimal network load, and
without impacting the functionality of the POX controller. Yet, refinement is warranted to
enhance detection rates and minimize false alarms across multiple OpenFlow Controllers.
Shifting the focus to [32], authors introduced a framework for DDoS detection in SDN-IoT
incorporating machine learning and stateful packet processing. A novel Double-Check
Mapping Function (DCMF) was proposed to process packets and extract features at the
data plane level. While machine learning techniques were employed to analyze the ex-
tracted features and classify traffic, the approach neglected the potential of a hierarchical,
logically distributed multi-controller architecture to enhance scalability and reliability. A
distinctive deep reinforcement learning (DRL)-based approach for detecting low-rate DDoS
attacks in SDN was introduced by [33]. This approach embraced features such as traffic
monitoring, traffic flow sampling, and a lightweight intrusion prevention system (IPS) for
swift mitigation. However, the approach fell short in addressing the scalability nuances
of SD-IoT networks. In a different vein, [34] proposed a novel DL approach intertwining
CNN with the SD-Reg method to classify flow traffic as normal or attack. While effective in
enhancing NIDSs’ ability to detect unseen intrusion events, this stateless approach neces-
sitated testing across diverse datasets encompassing various attack scenarios. Similarly,
a CNN-based system was proposed in [35] for detecting DDoS attacks in IoT networks,
focusing on blocking attacks at the source. However, the evaluation on the CIC-DDoS2019
dataset highlighted its limitations in effectively analyzing IoT network traffic behavior.
Lastly, a study conducted by the authors of [36] harnessed an AutoML intrusion detection
framework to identify suitable supervised classifiers, subsequently crafting an optimal
ensemble strategy via soft voting. The proposed framework exhibited high accuracy in
detecting intrusions; however, it was recognized that the datasets employed were not the
most up-to-date and did not comprehensively encompass all types of attack intrusions.
Furthermore, network stateful cases were not considered.
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2.1.3. P4-Based DDoS Detection Approaches

In [37], DDoS attack detection using P4 is addressed by implementing a hash value
calculation of the source IP and MAC address in the data plane switch, which is then
compared to the previously stored hash value. The detection of an attack occurs when there
is no match and the time difference between the last attack and the current packet is less
than 5 s. However, this method has some limitations such as increased CPU consumption
at switches, inability to detect complex attack patterns, and failure to differentiate between
flash and attack traffic. Febro et al. [38] proposed a source-based DDoS defense solution
that detects attacks close to the source to save computational and bandwidth resources. In
this approach, P4-enabled edge switches count the number of packets sent by the hosts
connected to each port, and the controller compares these values with a static threshold.
Once the threshold is exceeded, the controller sends a command to the P4 switch to
drop all subsequent packets from the same ingress port. However, this method cannot
differentiate between legitimate traffic and attack traffic, as it relies on a static threshold
value. Lastly, a study conducted by the authors of [39] delved into the potential of AI and
ML algorithms for automating the detection of Transmission Control Protocol (TCP) flood
attacks. A comparison between Standalone and Correlated DDoS attack detection (DAD)
architectures was conducted, whereby traffic feature collection and attack detection were
performed locally at network switches or controllers. However, the approach failed to
account for the nuanced features of IoT traffic and was confined to detecting a single type
of DDoS attack. Furthermore, comprehensive dataset testing was lacking.

2.2. ARP Detection-Related Works

Existing solutions for detecting ARP attacks involve methods such as analyzing traffic
patterns, utilizing cryptographic solutions, creating flow graphs, or applying statistical
techniques. However, these approaches can be time-consuming, computationally intensive,
or complex in terms of processing power. Additionally, some of these methods rely on
threshold-based analysis of only one parameter. In contrast, our proposed approach
overcomes these limitations by considering multiple significant parameters, resulting in
promising results.

2.2.1. Non-ML ARP Detection Approaches

Hong et al. [40] proposed a detection mechanism that collects dynamic information
about the network’s topology, including the switches, flow paths, IP addresses, and MAC
addresses. By analyzing these features, the attack can be detected. Sebbar et al. [41] focused
on detecting Man-in-the-Middle (MITM) and traffic redirection attacks. They check the
state of a new node connecting to the controller and drop the connection if it is not labeled
as “New”, indicating a potential malicious node. Additionally, suspicious delays in host
responses are monitored, and responses exceeding a specific threshold are considered
possible delay attacks. Zhang et al. [42] detect MITM attacks by calculating packet delays
in TCP connections. They compare the mean delay of a session with predefined reference
values. If the delay exceeds the threshold, it is flagged as a suspicious outlier and reported
to the monitoring module. Deng et al. [43] tackle controller attacks by validating the
legitimacy of Packet-In messages. When a new packet_in arrives at the controller, it is
compared to the MAC addresses in the Mac-Port mapping table. If a match is found, the
packet is processed; otherwise, it is dropped. Kaur [44] presented three distinct approaches
for detecting ARP spoofing attacks, namely a signature-based method, a manual Wireshark
packet analysis method, and a machine learning method. Among these, the Naive Bayes
algorithm demonstrated the highest accuracy of 93% and the lowest false alarm rate (FAR).

2.2.2. ML-Based ARP Detection Approaches

Ma et al. [45] introduced a Bayesian method to calculate the probability of an attack
and employed various ML algorithms for attack detection. Despite utilizing only four
features and lacking experimental data verification, the author acknowledged detecting
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the attack. In [46], the utilization of ML was evident in their endeavor to identify ARP
attacks within SDN. They constructed a Python application within the SDN controller via
Mininet, tasked with gathering and recording the requisite attack-detection features into a
designated file referred to as the traffic dataset. This dataset was subsequently harnessed
for both model training and attack detection purposes. The amalgamated Convolutional
Neural Network-Long Short Term Memory (CNN-LSTM) model demonstrated superior
performance compared to other ML models. Overall, while some works have proposed
effective methods for DDoS and ARP detection in SDN or IoT networks, there is still a
need for a comprehensive framework that takes into account the stateful nature of SD-IoT
networks, the dynamic topology, and the need for consistency, scalability, and reliability.

3. The Proposed HLDMC Framework

The proposed P4-HLDMC framework comprises four modules that work together
to detect and mitigate DDoS and ARP attacks on SD-IoT networks. The first module
is a novel proposed dedicated interface called MCDI, which creates a new interface for
communication between multiple controllers and ensures that attack detection is consistent
and real-time through the use of a distributed alert channel called DAC. The second module,
MSMPF, uses a P4-enabled stateful multi-state matching pipeline function to analyze and
monitor IoT network traffic features through nine state tables. This information is then
sent to the third module, which employs a modified ensemble voting algorithm with six
classifiers to identify anomalies in the traffic patterns extracted by P4, achieving early
and accurate attack detection at the data plane level. Finally, the fourth module involves
an attack mitigation process that includes ten steps and is distributed among multiple
controllers to handle larger-scale attacks effectively and respond more quickly. These
four modules will be discussed in detail in the following sections. Figure 1 illustrates the
integration scheme among the four modules of the proposed framework.
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The layered architecture depicted in Figure 2 illustrates the comprehensive structure
of the proposed framework. Each layer fulfills a specific role in enhancing the security and
resilience of the network. Through a combination of monitoring, detection, and mitigation
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mechanisms, the proposed framework strengthens the defense against attacks, reducing
their impact on the overall network infrastructure. By adopting a logically distributed
architecture, the P4-HLDMC framework acknowledges the interconnected nature of the
Internet and focuses on preventing the spread of attacks from local area networks (LANs)
to the Internet service provider (ISP) level.
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3.1. The MCDI Module

In this module, a hierarchical multi-controller SDN design is proposed for network
management, which partitions the network into multiple domains with each controller
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responsible for managing its own SD-IoT domain. The proposed design involves two layers
of controllers: the domain controllers and the master controller. The domain controller
manages the P4 switches in its local domain and executes local control applications, while
the master controller manages the domain controllers and maintains a global view of the
network. Each domain controller has a backup controller as an extra layer of security in
case of controller loss, which has the same state as the main one. The backup controllers
are labeled as “SDN C1_B” and “SDN C2_B” in the diagram depicted in Figure 3 below. To
ensure correct packet transmission across the network, the controllers need to exchange
domain information to maintain a consistent view. Thus, achieving controller consistency is
vital for effective attack detection and mitigation in real-time. However, transmission delays,
concurrent strategic conflicts among controllers, and issues with flow table order can lead
to inconsistencies in the controller state, resulting in packet loss and service disruptions. To
address this, the study proposes two control layers for the first module: (1) adding control
functions to P4 switches to improve controller consistency, utilizing P4 programmability,
and (2) proposing a novel multi-controller dedicated interface (MCDI) for consistent and
real-time attack detection processes. This interface uses an asynchronous threading system
with one thread and a voter to facilitate communication between multiple controllers,
where the thread serves as the communication channel and the voter indicates the mode of
communication. Figure 3 depicts the implementation of the proposed MCDI interface.
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The current model utilized in distributed SDN controllers synchronizes data between
controllers without considering the specifics of the network or necessary services. This
can result in an excessive amount of data being transmitted to other controllers that is
not always needed, leading to decreased bandwidth and lower controller throughput.
Therefore, a more tailored approach is necessary, based on the required service. To address
this issue, two synchronization modes are proposed in the new MCDI that are appropriate
for varying scenarios and infrastructures. The two synchronization modes are: (1) the alert
mode and (2) the general mode. The general mode incorporates two channels, namely the
general channel and the alert channel, which is leveraged to exchange regular network
events between the controllers. In contrast, the alert mode comprises only the alert channel,
which is built on the Advanced Message Queuing Protocol (AMQP). The primary objective
of the alert mode is to detect the neighboring controllers and establish a distributed alert
channel (DAC) between them. Other controllers utilize this channel to share network
information with one another. When a domain controller undergoes a DDoS or ARP attack,
a notification is transmitted to other controllers through the DAC channel of the alert
mode. The event is then published, and other controllers update their network status to
achieve synchronization. This proactive approach ensures the protection of critical network
components, mitigates potential resource scarcity, and fortifies the overall security posture,
enabling IoT networks to operate in a secure and reliable manner. Algorithm 1 shows the
proposed MCDI algorithm.

Algorithm 1: The Proposed MCDI Algorithm.

1 Inputs: Service required by the IoT network, IoT Network infrastructure specifications.
2 Outputs: Synchronized data between controllers based on the required service.
3 Determine the service required by the network and the infrastructure specifications.
4 Choose the appropriate synchronization mode based on the requirements using the Voter.
5 If (General mode is selected)
6 Establish a general channel and an alert channel between the controllers.

7
Exchange regular network events between the controllers through the

general channel.

8
Use the alert channel to exchange important network events between

the controllers.
9 End if
10 If (Alert mode is selected)
11 Establish an alert channel between the controllers.
12 Use Advanced Message Queuing Protocol (AMQP) for the alert channel.
13 Detect neighboring controllers.
14 Establish a Distributed Alert Channel (DAC) between them.
15 Share network information with other controllers through the DAC.
16 End if
17 If (DDoS/ARP attack is detected):
18 Notify other controllers through the DAC channel of the alert mode.
19 Publish the event to the IoT network.
20 Update the network status of other controllers to achieve synchronization.
21 End if

3.2. The MSMPF Module

The MSMPF, a novel multi-state matching pipeline function, forms the core of this
module and comprises nine state tables. Each state table has a feature entry that, when
combined with other state tables, accurately detects four types of DDoS attacks (TCP, UDP,
ICMP, and HTTP) and two types of ARP attacks (ARP spoofing and ARP poisoning). This
module utilizes State_Tables 1, 2, 8 and 9 to detect and mitigate ARP attacks. The first two
state tables detect fake source IP/MAC addresses and prevent them from sending traffic
in the future. State_Table 1 contains entries for source IP addresses, while State_Table 2
contains entries for source MAC addresses. The Source IP/MAC state tables pair (SIMP)



Mathematics 2023, 11, 3552 11 of 36

verifies that each source MAC address is associated with only one source IP address within
a 2-s window size.

The MSMPF uses one-to-one mapping to validate the first two state tables’ entries. If
the state value of any state table entry exceeds one, it indicates that either the source IP
or the source MAC is fraudulent. The output of the state matching process performed by
SIMP is utilized as an input for State_Table 3. The third state table calculates Destination
IP Entropy (DIPE) for a 2-s time window size. If any entry in the DIPE table is lower
than a predefined threshold of 1.28, it is considered an attack. This threshold is based
on the methodology and comprehensive experimental findings presented in our research
paper [28].

The MSMPF function uses the output of the first three state tables as an input for
two state table pairs, namely (SPair_4), and (SPair_5). SPair_4 is the state table pair of
State_Tables 4 and 6, while SPair_5 is the state table pair of State_Tables 5 and 7. SPair_4
counts the number of source and destination TCP port numbers during a 2-s window, while
SPair_5 counts the number of source and destination UDP port numbers. An attack may
generate a large number of random port numbers, leading to a high frequency of entries
for source and destination ports. By measuring the speed of these port entries to the switch,
it becomes possible to compare it with the threshold to detect the attack.

Finally, the last seven State_Tables are used to feed State_Table 8. The last two
State_Tables 8 and 9 detect fake destination IP/MAC addresses. State_Table 9 contains en-
tries for destination IP addresses, while State_Table 8 contains entries for destination MAC
addresses. The Destination IP/MAC state tables pair (DIMP) stores the original destination
IP/MAC addresses. The DIMP checks every 2 s whether the original destination IP/MAC
address exists in the state tables. The DIMP pair is continuously updated by sending
ARP requests and removing any pair that does not receive a reply within a threshold time.
The last two state tables are responsible for verifying the legitimacy of each destination
IP/MAC address, and any entry value greater than 1 indicates a forged IP/MAC address.
The output of the MSMPF is then sent to the controller for appropriate action. Algorithm
2 outlines the steps for detecting ARP spoofing/poisoning attacks using the proposed
MSMPF, while Algorithm 3 demonstrates the steps for detecting DDoS attacks.

By employing this methodology, DDoS and ARP attacks can be detected and blocked,
providing an additional level of protection to the controller against such attacks. This
module offers two significant features: (1) detection of the attack at the data plane level
using a new P4 application installed on the P4-enabled switches, and (2) differentiation
between attack traffic and flash crowds. In order to analyze network traffic and detect
attacks, it is necessary to undergo an initial learning phase where the algorithm calculates
the feature ranges and distribution limits. This learning phase is important to provide a
baseline to the MSMPF for comparison with future traffic. We run both normal and attack
traffic with different attack rates ranging from 20% to 80% at a time interval of 30 s to
learn the normal and attack metrics. After this learning phase, the process is repeated at
regular time periods to analyze the features, such as source and destination IP addresses
and ports, and detect any anomalies or attacks that may have occurred. Figure 4 depicts
the implementation of the proposed MSMPF.

Algorithm 2: Second Module MSMPF (ARP Attack Detection and Mitigation Algorithm).

1 Inputs: IoT-NT, ST1-EV, ST2-EV, SPair-4, SPair-5, T-WS
2 Output: NT-C→ (Normal: 0, Attack: 1)

3 IoT-NT← IoT Network Traffic
4 NT-C← Network Traffic Class Label (Legitimate = 0, Attack = 1)
5 PKT-EC← Packet Entry Count
6 D-IPC← Destination IP Count
7 T-WS← Time-based Traffic Window (2 s)
8 D-IP ST← Destination IP Address State Table
9 DIPE-ETH← DIPE State Table Entry Threshold
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Algorithm 2: Cont.

10 PKT-IN← IoT Packet_IN Event
11 ST← State Table
12 ST-3← Third State Table
13 ST1-EV← First State Table Entry Value
14 S-IP← Source IP Address
15 D-IP← Destination IP Address
16 S-MAC← Source MAC Address
17 D-MAC← Destination MAC Address
18 MSMPF-V←Multi-State Matching Pipeline Function Value
19 SPair-4← State Table Pair of Tables 4 and 6
20 SPair-5← State Table Pair of Tables 5 and 7
21 SPair-8← State Table Pair of Tables 8 and 9

22 PKT-EC = 0, T-WS = 2 s, D-IPC = 0, and DIPE-ETH = 1.28

23 For each (PKT-IN):
24 If (ST1-EV > 1):
25 S-IP→ spoofed
26 MSMPF-V = 1
27 Block Source port
28 Else if (ST2-EV > 1):
29 S-MAC→ spoofed
30 MSMPF-V = 1
31 Block Source port
32 Else
33 Legitimate S-IP and S-MAC
34 MSMPF-V = 0
35 Send MSMPF-V→ ST-3
36 End If
37 End for
38 For each (PKT-IN):
39 If (D-MAC exists in SPair-8):
40 D-MAC is legitimate
41 Else
42 D-MAC→ forged
43 MSMPF-V = 1
44 ARP Poisoning attack detected
45 End If
46 End for
47 For each (PKT-IN):
48 If (D-IP exists in SPair-8):
49 D-IP is legitimate
50 Else
51 D-IP→ spoofed
52 MSMPF-V = 1
53 ARP Spoofing attack detected
54 End If
55 End for
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Algorithm 3: Second Module MSMPF (DDoS Attack Detection and Mitigation Algorithm).

1 Inputs: IoT-NT, ST1-EV→ ST7-EV, SPair-4, SPair-5, T-WS
2 Output: NT-C→ (Normal: 0, Attack: 1)

3 IoT-NT← IoT Network Traffic
4 NT-C← Network Traffic Class (Legitimate = 0, Attack = 1)
5 T-WS← Time-based Traffic Window (2 s)
6 WSPS-ETH← The Source Port Speed Threshold
7 WSTPE-ETH← The Source TCP Port Entropy Threshold
8 WSUPE-ETH← The Source UDP Port Entropy Threshold
9 STCP-Prt← The Source TCP Port;
10 SUDP-Prt← The Source UDP Port
11 PKT-EC← Packet Entry Count
12 D-IPC← Destination IP Count
13 D-IP ST← Destination IP Address State Table
14 DIPE-ETH← DIPE State Table Entry Threshold
15 ST← State Table; ST-EV← State Table Entry Value
16 D-IP← Destination IP Address
17 SPair-4← State Table Pair of Tables 4 and 6
18 SPair-5← State Table Pair of Tables 5 and 7

19 PKT-EC = 0, T-WS = 2 s, D-IPC = 0, and DIPE-ETH = 1.28
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Algorithm 3: Cont.

20 For each (PKT-IN):
21 If (D-IP exists in D-IP ST):
22 Assign D-IP to D-IPC
23 Else
24 Assign D-IP to D-IP ST
25 End If
26 If (PKT-EC % T-WS == 0):
27 Calculate DIPE→ ST3
28 Else
29 PKT-EC = PKT-EC + 1
30 End If
31 End for
32 For each (ST3-E):
33 If (ST3-EV < DIPE-ETH)
34 MSMPF-V = 1
35 Else
36 MSMPF-V = 0
37 Send MSMPF-V→ SPair-4, SPair-5
38 End If
39 End for
40 For each (ST3 PKT-IN):
41 If ((ST4-EV > WSPS-ETH)||(ST4-EV < WSTPE)):
42 STCP-Prt→ spoofed
43 Block STCP-Prt
44 MSMPF-V = 1
45
46 Else if (ST6-EV> WSPS-ETH) || (ST6-EV< WSTPE)):
47 DTCP-Prt→ spoofed
48 Block STCP-Prt
49 MSMPF-V = 1
50 Else
51 MSMPF-V = 0
52 Send MSMPF-V→ ST8
53 End If
54 End for
55 For each (ST3 PKT-IN):
56 If ((ST5-EV > WSPS-ETH) || (ST5-EV < WSUPE)):
57 SUDP-Prt→ spoofed
58 Block SUDP-Prt
59 MSMPF-V = 1
60 Else if ((ST7-EV> WSPS-ETH)||(ST7-EV< WSUPE)):
61 DUDP-Prt→ spoofed
62 Block SUDP-Prt
63 MSMPF-V = 1
64 Else
65 MSMPF-V = 0
66 Send MSMPF-V→ ST8
67 Send ST8-V→ P4 Compiler
68 End If
69 End for

3.3. The MEV Detection Module

The third module employs a novel ML-based stateful P4 application to detect DDoS
and ARP attack using only seventeen P4 extracted and computed features. The module uses
an ML-enabled modified ensemble voting (MEV) algorithm with six classifiers to identify
anomalies in the extracted traffic patterns. The use of stateful P4 allows the application to



Mathematics 2023, 11, 3552 15 of 36

maintain a detailed view of the network state, enabling accurate and early attack detection
at the data plane level.

3.3.1. The MEV Classification Phase

In this paper, a modified ensemble voting (MEV) algorithm is proposed for DDoS and
ARP detection in SD-IoT networks. The algorithm combines the predictions of multiple
ML classifiers, including SVM, kNN, GNB, BLR, DT, and RF, to improve the detection
accuracy. The proposed algorithm is modified by incorporating a new weighted voting
scheme (NWVS), where the weight of each classifier is dynamically adjusted based on its
performance on the training dataset. The first step of the MEV algorithm is the feature
selection, which can improve the detection performance and reduce the computational
complexity. This step involves removing irrelevant and redundant features from the
extracted IoT network traffic features and selecting the most relevant features using a
mutual information-based feature selection method. Next, in the training phase, the labeled
IoT network traffic features are split into training and validation sets. Each ML classifier,
including SVM, kNN, GNB, BLR, DT, and RF, is trained on the training dataset with the
selected features, and its performance is evaluated using the validation set. The weight of
each classifier is calculated based on its performance, and the weights are normalized. In
the detection phase, new IoT network traffic features are received, and the selected features
are extracted from the received traffic features using P4. Each ML classifier is then used
to predict the class label for the received traffic features, and the predicted class labels
are multiplied by their corresponding weights. The weighted class labels are summed
to obtain the final predicted class label, which is compared to the threshold. If the final
predicted class label is above the threshold, the traffic is classified as an attack; otherwise,
it is classified as normal traffic. Finally, the performance of the proposed algorithm is
evaluated on the test dataset, including various evaluation metrics that will be discussed
in Section 4. The experimental results demonstrate that the proposed algorithm achieves
higher detection accuracy and outperforms the traditional ensemble voting algorithm in
DDoS detection in SD-IoT networks. Algorithm 4 shows the MEV algorithm steps.

Algorithm 4: The Third Module (MEV Detection Algorithm).

1 Inputs: P4-IoT-NT, MSMPF, IoT-Train, IoT-L, T-WS
2 Output: NT-C→ (Normal: 0, Attack: 1), NT-MC

3 P4-IoT-NT← IoT Network Traffic features extracted using P4
4 NIoT-NT← New IoT Network Traffic
5 N-IoT-T← Normal IoT Traffic; A-IoT-T← Attack IoT Traffic
6 NT-BC← Network Traffic Binary Class Label (Legitimate = 0, Attack = 1)
7 NT-MC← Network Traffic Multi-Class Label (four DDoS and three ARP) classes.
8 W-CL←Weighted class labels; F-PCL← Final predicted class labels
9 MSMPF← P4-enabled stateful multi-state matching pipeline function
10 T-WS← Time-based Traffic Window (2 s)
11 IoT-Train← IoT Training dataset; IoT-Test← IoT Test set
12 IoT-Train-SF← IoT Training dataset using selected features
13 IoT-Val← IoT validation set
14 IoT-L← Labeled IoT network traffic features
15 SDP4-ML← Set of ML classifiers including SVM, kNN, GNB, BLR, DT, and RF
16 SDP4-ML-P← The performance of each ML classifier on the IoT-Val
17 SDP4-ML-W← The weight of each ML classifier on the IoT-Val
18 IoT-TH← Threshold for binary classification
19 MSMPF-V←Multi-State Matching Pipeline Function Value
20 MIB-FS←Mutual information-based feature selection method
21 P4-IoT-SF← Selected P4 IoT features
22 P4-SF Table← Selected features table
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23
EV-CR← Evaluation criteria (ACC, F1-score, TPR, TNR, PPV, NPV, MCC, AUC, FPR, FNR,

FDR, AVG latency, and ADT)

24 EC-R Table← Evaluation criteria results table

25 Feature Selection Phase

26 For each (P4-IoT-NT):
27 Apply MIB-FS
28 Select (P4-IoT-SF) from (P4-IoT-NT)
29 Store P4-IoT-SF→ P4-SF Table
30 End for

31 Training Phase

32 For each (IoT-L):
33 Split IoT-L→ (IoT-Train) and (IoT-Test)
34 Train SDP4-ML→ IoT-Train-SF
35 Evaluate SDP4-ML-P→ IoT-Val
36 Calculate SDP4-ML-W→ SDP4-ML-P
37 Normalize SDP4-ML-W
38 End for

39 Attack Detection Phase

40 For each (NIoT-NT):
41 Extract P4-IoT-SF→ from→ NIoT-NT
42 Use each SDP4-ML→ to predict: NT-BC and NT-MC
43 Multiply NT-BC or NT-BC→ by their corresponding weight
44 Sum W-CL→ to get final predicted NT-BC or NT-MC
45 If (F-PCL > IoT-TH)
46 Attack traffic is detected
47 Else
48 The traffic is normal
49 End if
50 End for
51 MEV Evaluation Phase
52 For (IoT-Test):
53 Calculate EV-CR→ IoT-Test
54 Store EV-CR→ EC-R Table
55 Improve MEV→ by updating→ SDP4-ML-W
56 End for

3.3.2. P4-Enabled Feature Extraction Phase

The feature extraction phase in machine learning is crucial as it helps to select relevant
information from the raw data to train the model effectively. In our proposed framework,
we used various P4-enabled feature extraction techniques to extract important features
from network traffic. Specifically, we introduced 17 new features, 12 computed features,
and 5 extracted features. The P4-extracted features include the TCP packets rate (TCPR),
the UDP packets rate (UDPR), the ICMP packets rate (ICMPR), the HTTP packets rate
(HTTPR), and Rx bytes rate (RxBR). The computed features include the average window
flow packets (AWFP), average window flow bytes (AWFB), The Packet_In rate per window
(WPIR), flow entry rate per window (WFER), Destination IP entropy per window (WDIPE),
the source port entry speed from the P4 ingress switch port per window (WSPS), the source
TCP port entropy per window (WSTPE), the TCP packets percentage to all packets per
window (TCPP), and others. All these features were selected based on their significance in
identifying DDoS and ARP attacks in SD-IoT. When new IoT network traffic features are
received, they are analyzed to determine whether they indicate normal traffic or an attack.
During a DDoS attack, certain features such as AWFP, AWFB, WPIR, RxBR, WSPS, WFER,
TCPR, UDPR, and others may sharply increase over time, while the values of other features
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such as WDIPE, WSTPE, and WSUPE decrease. Overall, the feature extraction phase is
critical to the success of our proposed framework in effectively identifying and mitigating
the attacks. Table 1 lists the details of P4-extracted and computed features, including their
description and the corresponding methods of computation or extraction. The notation
“TW” in the table stands for a time window size of 2 s.

Figure 5 illustrates the P4-enabled feature extractor module. When IoT nodes transmit
traffic to the network, P4 switches receive and relay the traffic information to the feature
extractor module. The module extracts the features and forwards them to the MEV classifier
module for traffic classification. The decision regarding the traffic’s normal or attack status
is then relayed back to the P4 switch for appropriate action. The workflow of the P4 code is
as follows: First, the received packets are parsed to extract the relevant protocol headers.
The code then enters the ingress pipeline, consisting of a sequence of nine state tables
defined in the second module of the proposed framework. Each table updates the feature
occurrences in the registers and packet metadata. After updating the statistics, the ingress
pipeline undergoes a conditional check. If the window period concludes, the code executes
actions to generate a report on packet analysis and classification, which is sent to the P4
switch. Otherwise, it follows a standard procedure for packet forwarding or blocking based
on flow entries from the MEV classifier module. This enables the P4 switch to function
as a firewall by allowing or blocking suspected flows based on the outcomes of the MEV
classifier module.
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In the proposed framework, stateful features are generated, processed, and stored
within the P4 switch, ensuring overall system scalability. P4 switches have demonstrated
scalability with the number of flow entries, allowing for the analysis of numerous flows
using the same pipeline control section.
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Table 1. The P4-extracted and computed features.

F. No Name Description Type Extraction/Computation Method

1 AWFP Average flow packets/window Computed AWFP = (no. o f packets in all f lows per window/total no. o f f lows) (1)

2 AWFB Average flow bytes/window Computed AWFB = (no. o f bytes in all f lows per window/total no. o f f lows) (2)

3 WPIR The Packet_In rate/window Computed WPIR = (total no. o f Packet_In entries/TW) (3)

4 RxBR The Rx bytes rate Extracted RxBR = (total no. o f Rx bytes/s) (4)

5 WSPS The source port entry speed from P4 ingress
switch port/window Computed WSPS = (total no. o f src ports/TW) (5)

6 WFER Flow entry rate/window Computed WFER = (total no. o f f low entry count/TW) (6)

7 WDIPE Destination IP entropy/window Computed Calculated using WDIPE function added to the P4 application

8 WSTPE Source TCP port entropy/window Computed Calculated using WSTPE function added to the P4 application

9 WSUPE Source UDP port entropy/window Computed Calculated using WSUPE function added to the P4 application

10 TCPR The TCP packets rate Extracted TCPR = (total no. o f TCP packets/s) (7)

11 UDPR The UDP packets rate Extracted UDPR = (total no. o f UDP packets/s) (8)

12 ICMPR The ICMP packets rate Extracted ICMPR = (total no. o f ICMP packets/s) (9)

13 HTTPR The HTTP packets rate Extracted HTTPR = (total no. o f HTTP packets/s) (10)

14 TCPP The TCP packets percentage: the percentage of
TCP packets to all packets/window Computed TCPP = (total no. o f TCP packets/no. o f packets per window) (11)

15 UDPP The UDP packets percentage: the percentage of
UDP packets to all packets/window Computed UDPP = (total no. o f UDP packets/no. o f packets per window) (12)

16 ICMPP The ICMP packets percentage: the percentage of
ICMP packets to all packets/window Computed ICMPP = (total no. o f ICMP packets/no. o f packets per window) (13)

17 HTTPP The HTTP packets percentage: the percentage of
HTTP packets to all packets/window Computed HTTPP = (total no. o f HTTP packets/no. o f packets per window) (14)
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3.4. The Distributed Attack Mitigation Module

The mitigation module takes action upon receiving instructions from the first three
modules, upon identification of a malicious traffic flow. It protects IoT nodes by adding
extra high-priority flow rules to P4-switch flow tables, which match the attack packet
rules. Upon receiving a FlowMod message from the controller, the switch adds a new flow
table entry and drops all packets originating from the attack source, thereby reducing
and mitigating the attack’s impact. Moreover, this module involves isolating the attacked
device and rerouting network traffic to prevent further damage. The proposed MCDI
interface’s DAC is utilized by this module to publish alert notifications to other controllers.
By employing the P4-HLDMC architecture, the module distributes the attack mitigation
process across multiple controllers, enabling the system to effectively handle larger-scale
attacks and respond more quickly. Figure 6 illustrates the proposed framework’s general
flowchart, which depicts the mitigation process. Algorithm 5 outlines the steps of the attack
mitigation process. It begins by categorizing the traffic into different types, such as new
IoT traffic, normal IoT traffic, and attack IoT traffic as informed by the P4 switches and
the controllers. For each new IoT traffic entry, the algorithm checks if it matches the attack
traffic. If a match is found, the algorithm proceeds with isolating the infected IoT nodes,
rerouting traffic, adding new flow rules, dropping packets from the attack source, blocking
attacking MAC, IP, and port, and publishing alert notifications. Overall, the mitigation
module and the accompanying algorithm provide a systematic approach to detect and
respond to malicious traffic flows in an IoT network. The use of P4-switch flow tables,
DAC, and the distributed nature of the system contribute to efficient attack mitigation and
enhanced network security.

Algorithm 5: Distributed Attack Mitigation Algorithm.

1 Inputs: P4-IoT-NT, NIoT-NT, A-IoT-T, and N-IoT-T

2 Output: Mitigating the attack

3 P4-IoT-NT← IoT Network Traffic features extracted using P4
4 NIoT-NT← New IoT Network Traffic
5 N-IoT-T← Normal IoT Traffic
6 A-IoT-T← Attack IoT Traffic
7 Src-IP← Source IP Address
8 Src-prt← Source port number
9 Src-MAC← Source MAC Address
10 Dst-Node← Destination IoT node
11 DAC← Distributed Alert Channel

12 For each (NIoT-NT):
13 If (NIoT-NT == A-IoT-T)
14 Isolate infected, attacked IoT nodes
15 Reroute IoT traffic
16 Add extra high-priority flow rules→ P4 switch flow tables
17 Send FlowMod→ All P4 Switches
18 Add new flow entry→ P4 Switch flow table
19 Drop All packets→ From attack source
20 Block attacking Src-Mac, Src-IP, and Src-prt
21 Publish Alert notification→ using DAC→ Other Controllers
22
23 Else
24
25 Forward N-IoT-T→ Controller
26 Send N-IoT-T→ Dst-Node
27 End if
28 End for
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4. Experimental Results
4.1. Experimental Settings

The experiments were conducted on an Ubuntu server 22.04 LTS virtual machine
with an Intel core i7-1165G7 processor and 16 GB of RAM. The software tools used for
developing and running the IoT test topologies included VMware Workstation 16 Pro, P4
compiler, Mininet-Wifi, and sFlow-RT. The SDN-based IoT network topology architecture
included five Improved OpenDayLight (IODL) controllers, one master controller, and two
domain controllers with two backup controllers, two P4-enabled switches, four access
points (AP), and 20 IoT nodes. Four test cases were employed to evaluate the performance
of the proposed detection framework: (1) multi-controller single-target attack (MC-STA),
(2) multi-controller two-target attack (MC-TTA), (3) multi-controller four-target attack (MC-
FTA), and (4) multi-controller eight-target attack (MC-ETA). Figure 7 shows the SDN-based
IoT network test topology architecture of the proposed P4-HLDMC framework.
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4.2. Experimental Test Cases 
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4.2. Experimental Test Cases

In the MC-STA test case, we utilized the (IoT Network 1) topology as shown in
Figure 7 to perform two different experiments for both DDoS and ARP attacks, where the
network was under the control of a master IDOL controller and two domain controllers.
The proposed detection and mitigation P4 application was deployed on the P4-enabled
switch, which was denoted by P4-SW1. The network consisted of N1 to N5 IoT nodes,
with N2, N3, and N4 acting as legitimate nodes for regular traffic. N1 acted as an attacker,
with N5 designated as the attack target. These IoT nodes were directly connected to the
P4-SW1 switch through a wireless access point (AP 1). To evaluate the normal traffic
conditions, we executed the pingall command to generate and exchange ICMP packets
between the nodes and collect real-time P4 features. After that, we established a connection
for normal traffic between all the network nodes, which remained open during the test.
This allowed legitimate and attack traffic to be combined. Following this, we employed the
xterm command from Mininet-Wifi to access the terminal of the attacker node, N1. We then
launched two attacks, TCP flooding and ARP spoofing, on the N5 node. We utilized the
hping3 tool to generate the DDoS flooding attack, with an attack traffic rate of 15% of all the
traffic routed to N5, while the remaining 85% were normal packets.

During an attack, only three traffic features, namely WDIPE, WSTPE, and WSUPE, which
are dependent on entropy, will decrease, while the remaining 17 features will increase. The
IO graph during the MC-STA test case is displayed in Figure 8, which depicts a Wireshark
capture of the P4-SW1 eth1 interface during the attack. The attack traffic is so intense that the
destination is unable to respond to legitimate hosts, as TCP requests peak at 800 packets per
second, which is significantly higher than the normal rate of 4 packets per second.

The ARP flooding/poisoning attack is conducted by launching two scripts from the
attacker’s node, N1, using Scapy. In the first attack scenario, a script called IoT-ARP-
Flood.py is executed on N1 to broadcast a large number of ARP requests with spoofed
IP addresses to the entire network. The second attack scenario involves the use of a
Scapy-written script called IoT-N5-Poison.py to manipulate the ARP table of node N5.

Upon executing the attack simulation, the legitimate host’s ARP table is mali-
ciously updated with MAC-ID credentials controlled by the attacker. This indicates
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that the IP address of IoT node N5 is associated with the attacker’s MAC address. As a
result, an ARP Poisoning attack occurs, redirecting traffic intended for node N1 to be
routed to node N3 instead of node N5.
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In the MC-TTA test case, the network setup remained consistent with the previous
scenario, except for the simultaneous targeting of multiple nodes by the attacker node (N6)
from (IoT Network 2). N7 and N9 were both subjected to attack packets in this case. The
proposed framework had to account for any differences in specific network features to achieve
the highest possible accuracy in attack detection. Entropy was one such feature that could
deviate from the previous scenario, increasing to values close to normal due to the attack being
distributed among multiple victims. To detect attacks even at low rates, additional features
beyond the WDIPE, WSTPE, and WSUPE had to be considered when calculating them within
a given window. We assigned these features to four distinct levels to efficiently detect DDoS
attacks in various testing scenarios, with attack rates varying from 10% to 90%. IoT Network
2, from Figure 7, was the topology utilized in this test case. The Mininet-Wifi dashboard
displays a graphical representation of the total traffic exchanged between IoT network nodes
in attack situations in the MC-TTA scenario, as presented in Figure 9. The two nodes 10.0.0.2
and 10.0.0.4 are targeted simultaneously. A notable difference can be observed in the total
traffic transferred between the two scenarios. When all 20 nodes are connected for regular
communication, the traffic peaked at 20 kbps. On the other hand, during the attack, the traffic
escalated to over 65 Mbps, as shown in Figure 9.

The two test cases, MC-FTA and MC-ETA, were conducted using IoT Network 3
and IoT Network 4, as shown in Figure 7. The former involved an attack on four nodes
simultaneously, while the latter involved an attack on eight nodes concurrently. The aim
was to evaluate the effectiveness and efficiency of the proposed framework in handling
diverse types and intensities of multi-target attacks. Attack rates ranging from 30% to 90%
were used in these scenarios. The attack can be either UDP flood attack, TCP SYN flood
attack, ICMP flood attack, ARP flooding, ARP poisoning or HTTP flood attack. An attack
rate of 20% was not considered because it was distributed among four or eight victims,
resulting in each victim receiving a number of packets within the expected normal range.
The network traffic demand increases exponentially as the simulation runs longer, leading to
significant resource consumption for both the P4 switches and controllers. Based on network
measurements, the CPU utilization is at its maximum, with 63% of the RAM being used.
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Additionally, a high packet rate of 65.8 packets per second and a significant bandwidth
usage of 684 Kbps have been recorded. In Figure 10, the high traffic flow peaks correspond
to DDoS attack-related network traffic, while the low dips indicate the impact of P4-HLDMC
functionality. This functionality efficiently detects and mitigates the attack, restoring regular
traffic flow via P4 switches. The evidence presented in Figure 10 convincingly demonstrates
that the proposed P4-HLDMC framework can successfully identify and stop a multi-target
attack within only 3 ms, restoring the network to its pre-attack state.
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4.3. Performance Analysis and Evaluation
4.3.1. ML Models Evaluation

We evaluated the performance of the proposed framework by measuring several
performance metrics, including accuracy (ACC), precision (PRE), F1-score (F1), recall (REC),
true negative rate (TNR), negative predictive value (NPV), false positive rate (FPR), false
discovery rate (FDR), false negative rate (FNR), Matthews Correlation Coefficient (MCC),
area under the curve (AUC), average detection time (ADT), attack mitigation effectiveness
(AME), and network latency (NL). The detection accuracy was measured as the percentage
of correctly identified attack traffic out of the total attack traffic, while the false positive
rate was measured as the percentage of legitimate traffic misidentified as attack traffic. The
detection time was measured as the time it took the proposed framework to detect the
attack traffic. The mitigation effectiveness was measured as the percentage of attack traffic
that was successfully mitigated by the proposed framework. Finally, the network latency
was measured as the time it took for a packet to travel from the source to the destination.
All the metrics, except ADT, AME, and NL, were computed based on the confusion matrix
presented in Figure 11. The mathematical definitions of these evaluation metrics are listed
in Equations (15)–(25) as follows:

ACC =
TP + TN

FP + FN + TP + TN
(15)

PRE =
TP

FP + TP
(16)

NPV =
TN

FN + TN
(17)

REC =
TP

FN + TP
(18)

F1 = 2 ∗ (PRE ∗ REC )

(PRE + REC )
(19)

TNR =
TN

FP + TN
(20)

FPR =
FP

TN + FP
(21)

FDR =
FP

TP + FP
(22)

FNR =
FN

TP + FN
(23)

ADT =
∑tn

j=1 DTR f

tn
(24)

MCC =
(TP ∗ TN)− (FP ∗ FN)√

((TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN))
(25)

In these equations, FP and FN are critical factors that can affect the effectiveness of the
attack detection algorithms. A FP is an event that the system incorrectly identifies as an attack,
while a FN is when an actual attack is not detected by the system. TP and TN refer to the
correct identification of an attack and non-attack event, respectively. In Equation (24), the
variable ‘DTRf’ is used to denote the time taken for detecting a single instance in a test, and
the letter ‘tn’ denotes the total number of experimental trials. In DDoS and ARP detection, the
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aim is to minimize the occurrence of false positives and negatives while maximizing the true
positives and negatives to ensure the efficient and accurate detection of attacks.
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Table 2 presents the evaluation results of the binary classification, while Table 3
showcases the results of the multi-class classification using seven ML classifiers: SDP4-
MEV, SDP4-RF, SDP4-DT, SDP4-kNN, SDP4-GNB, and SDP4-BLR in the MC-ETA test
scenario. These models were tested with three distinct datasets: Edge-IIoTset, TON_IoT,
and X-IIoTID. The purpose of testing the models with different datasets was to assess
their performance on unseen data and various attack types and conditions. Consequently,
the models successfully addressed the issue of overfitting and demonstrated a good fit,
particularly the SDP4-MEV model. The evaluation focused on the models’ capability
to detect and counter DDoS and ARP attacks in SD-IoT networks. We utilized several
evaluation metrics, including ACC, PRE, F1, REC, SPC, NPV, FPR, FDR, AUC, MCC,
FNR, and ADT. Analyzing these metrics is essential in evaluating the effectiveness of
each model in detecting and mitigating the attacks. Table 4 provides the hyper-parameter
configurations employed for all models.
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Table 2. The evaluation results of the binary classification for the seven ML classifiers in MC-ETA test scenario using the three datasets.

Dataset Model ACC PRE F1 REC TNR NPV AUC MCC FPR FDR FNR ADT (ms)

Edge-IIoTset

SDP4-MEV 99.89% 99.54% 99.67% 99.79% 99.69% 99.97% 99.86% 99.22% 0.16% 0.46% 0.27% 2.24
SDP4-RF 98.78% 98.48% 98.63% 98.53% 98.60% 99.51% 99.67% 97.57% 0.25% 1.52% 0.54% 19.36
SDP4-DT 98.11% 97.51% 97.81% 98.19% 98.25% 97.96% 98.69% 96.72% 1.75% 2.44% 0.81% 29.17
SDP4-kNN 97.92% 96.64% 97.47% 96.94% 97.08% 96.82% 96.71% 95.93% 2.92% 3.36% 1.81% 17.29
SDP4-GNB 97.84% 96.04% 97.39% 96.14% 96.98% 96.71% 96.78% 95.47% 4.72% 3.06% 1.96% 9.95
SDP4-SVM 96.74% 95.54% 96.97% 95.81% 95.08% 94.90% 95.18% 94.09% 4.12% 6.66% 3.76% 62.31
SDP4-BLR 91.54% 92.98% 94.27% 89.87% 90.83% 92.78% 90.68% 92.87% 5.17% 9.02% 8.13% 20.8

TON_IoT

SDP4-MEV 98.35% 97.78% 98.11% 98.62% 98.72% 97.93% 98.45% 97.31% 1.28% 2.22% 1.38% 15.69
SDP4-RF 97.62% 96.94% 97.38% 97.10% 97.24% 96.82% 97.12% 95.24% 2.76% 3.06% 2.90% 40.45
SDP4-DT 96.89% 95.76% 96.43% 96.07% 96.20% 95.82% 96.04% 94.12% 3.80% 4.24% 3.93% 45.18
SDP4-kNN 95.78% 94.32% 95.06% 94.62% 94.78% 94.52% 94.64% 92.96% 5.22% 5.68% 5.38% 53.27
SDP4-GNB 95.41% 93.87% 94.77% 93.98% 94.28% 93.82% 93.92% 92.13% 5.72% 6.13% 6.02% 49.81
SDP4-SVM 94.27% 92.73% 93.44% 93.05% 93.15% 92.87% 92.99% 90.49% 6.85% 7.27% 6.95% 74.36
SDP4-BLR 89.14% 88.46% 90.38% 87.94% 88.23% 89.28% 88.32% 88.21% 11.77% 11.54% 12.06% 27.94

X-IIoTID

SDP4-MEV 99.23% 98.65% 99.02% 98.82% 98.92% 98.76% 98.98% 97.66% 1.08% 1.35% 1.18% 19.42
SDP4-RF 98.56% 97.92% 98.35% 98.19% 98.28% 98.09% 98.23% 96.97% 1.72% 2.08% 1.81% 21.78
SDP4-DT 97.84% 97.12% 97.54% 97.56% 97.65% 97.34% 97.48% 96.05% 2.35% 2.88% 2.44% 27.91
SDP4-kNN 97.03% 95.98% 96.77% 96.57% 96.72% 96.43% 96.60% 95.24% 3.28% 4.02% 3.43% 36.79
SDP4-GNB 96.72% 95.43% 96.34% 95.62% 95.84% 95.58% 95.68% 93.97% 4.16% 4.57% 4.38% 31.57
SDP4-SVM 95.61% 94.28% 95.01% 94.84% 94.98% 94.77% 94.91% 92.94% 5.02% 5.72% 5.16% 46.85
SDP4-BLR 90.48% 89.67% 91.12% 89.84% 90.08% 89.72% 89.92% 88.85% 9.92% 10.33% 10.16% 19.79
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The ACC metric measures the overall accuracy of the model in classifying both attack
and normal traffic. The results in Table 2 show that SDP4-MEV outperforms all other
models, achieving an average accuracy rate of 99.89%. SDP4-RF and SDP4-DT follow
closely with accuracy rates of 98.78% and 98.11%, respectively. SDP4-kNN, SDP4-GNB,
SDP4-SVM, and SDP4-BLR achieve accuracy rates of 97.92%, 97.84%, 96.74%, and 91.54%,
respectively. These results indicate that the SDP4-MEV model is the most effective in
accurately identifying the attack, followed by SDP4-RF and SDP4-DT.

Additionally, we evaluated the models’ accuracy consistency rate (ACR) by changing
the flow intensity within the range of 5000 to 50,000. SDP4-BLR and SDP4-SVM exhibited
the lowest consistency rate, as their accuracy increased initially but then decreased as the
flow rate increased. Specifically, SDP4-BLR achieved an accuracy of 89.84% at a flow rate
of 5000, which increased to 93.43% at 3000, but then decreased to 90.57% at a flow rate of
50,000. Similarly, SDP4-SVM demonstrated an accuracy of 92.01% at a flow rate of 5000,
which increased to 94.28% at 35,000, but then dropped to 91.64% at a flow rate of 50,000. This
inconsistent detection accuracy while varying the traffic rate could negatively impact the
models’ performance during high flow intensities, such as in the case of a DDoS attack. In
contrast, SDP4-GNB and SDP4-kNN performed similarly, while SDP4-DT and SDP4-RF were
the best models following SDP4-MEV. Figure 12 shows the ACR of the seven ML models.
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The PRE and FDR metrics are measures of the model’s ability to identify true positive
samples, or in other words, correctly identifying DDoS and ARP attacks. SDP4-MEV achieves
the highest PRE and lowest FDR values of 99.54% and 0.46%, respectively. SDP4-RF and
SDP4-DT follow with PRE values of 98.48% and 97.51% and FDR values of 1.52% and 2.44%,
respectively. The SDP4-kNN, SDP4-GNB, SDP4-SVM, and SDP4-BLR models achieve lower
PRE values of 96.64%, 96.04%, 95.54%, and 92.98%, respectively, indicating a higher rate of
false positives.

The F1 metric is the harmonic mean of PPV and REC and is an effective measure
of the model’s overall performance. SDP4-MEV achieves the highest F1 score of 99.67%,
indicating its effectiveness in detecting DDoS and ARP attacks. SDP4-RF and SDP4-DT
follow closely with F1 scores of 98.63% and 97.81%, respectively. The SDP4-kNN and
SDP4-GNB achieve similar results with F1 scores of 97.47% and 97.39%. SDP4-SVM and
SDP4-BLR models achieve lower F1 scores of 96.97% and 94.27%, respectively.

The REC, SPC, and NPV metrics measure the ability of the model to identify true
positive, true negative, and correctly identify normal traffic. SDP4-MEV achieves the
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highest REC and SPC values of 99.79% and 99.69%, respectively. SDP4-RF and SDP4-DT
follow closely with REC values of 98.53% and 98.19% and SPC values of 98.60% and 98.25%,
respectively. The SDP4-kNN and SDP4-GNB again achieve similar results with REC values
of 96.94% and 96.14%. SDP4-SVM follows with REC value of 95.81%. SDP4-BLR model
achieves the lowest REC and SPC values of 89.87% and 90.83%, indicating a higher rate of
false positives and negatives. SDP4-MEV also achieves the highest NPV value of 99.97%,
indicating its effectiveness in correctly identifying normal traffic.



Mathematics 2023, 11, 3552 29 of 36

Table 3. The evaluation results of the multi-class classification for the seven ML classifiers in MC-ETA test scenario using the Edge-IIoTset dataset.

Attack Type Model ACC PRE F1 REC TNR NPV AUC MCC FPR FDR FNR ADT (ms)

DDoS-TCP

SDP4-MEV 99.45% 98.92% 99.19% 99.28% 99.52% 99.29% 99.15% 98.61% 1.12% 0.72% 2.27% 4.74
SDP4-RF 98.76% 97.93% 98.34% 98.09% 98.63% 97.88% 98.07% 97.24% 2.07% 1.91% 3.54% 8.27
SDP4-DT 97.92% 96.81% 97.28% 97.43% 97.65% 97.47% 97.12% 97.72% 3.19% 2.57% 3.61% 39.45
SDP4-kNN 97.61% 96.42% 97.07% 96.87% 97.03% 96.89% 96.76% 96.76% 3.58% 3.13% 4.71% 42.34
SDP4-GNB 96.92% 95.74% 96.33% 95.94% 96.76% 96.00% 95.87% 95.43% 4.26% 4.06% 6.06% 29.58
SDP4-SVM 95.88% 94.62% 95.07% 94.82% 95.11% 94.89% 94.43% 94.43% 5.38% 5.18% 8.36% 68.59
SDP4-BLR 92.35% 91.18% 91.96% 90.81% 92.89% 91.04% 89.90% 85.91% 8.82% 9.19% 12.67% 34.56

DDoS-UDP

SDP4-MEV 99.37% 98.79% 99.08% 99.15% 99.47% 96.12% 98.45% 96.12% 1.34% 1.21% 2.78% 4.56
SDP4-RF 98.71% 97.87% 98.29% 98.02% 98.57% 94.76% 97.12% 94.76% 2.45% 2.18% 4.03% 16.87
SDP4-DT 97.85% 96.78% 97.23% 97.37% 97.57% 93.82% 96.04% 93.82% 3.59% 2.98% 4.56% 25.44
SDP4-kNN 97.56% 96.34% 96.99% 96.83% 96.96% 92.67% 94.64% 92.67% 4.12% 3.87% 5.71% 14.62
SDP4-GNB 96.85% 95.68% 96.25% 95.91% 96.75% 91.32% 93.92% 91.32% 4.83% 4.21% 7.02% 7.88
SDP4-SVM 95.81% 94.54% 94.99% 94.74% 95.06% 89.76% 92.99% 89.76% 6.02% 5.44% 9.12% 54.79
SDP4-BLR 94.45% 92.24% 93.34% 92.73% 95.19% 79.12% 88.32% 79.12% 9.87% 11.19% 15.47% 18.32

DDoS-ICMP

SDP4-MEV 99.44% 98.66% 99.05% 99.23% 99.62% 99.20% 99.10% 97.21% 1.09% 0.91% 2.14% 9.98
SDP4-RF 98.39% 96.95% 97.66% 97.31% 98.59% 97.42% 97.54% 95.87% 2.35% 2.06% 3.78% 17.65
SDP4-DT 97.24% 95.21% 96.08% 95.47% 96.61% 95.70% 95.73% 96.44% 3.42% 2.87% 3.92% 27.12
SDP4-kNN 97.02% 94.57% 95.66% 94.89% 96.46% 94.99% 94.97% 94.67% 3.91% 3.72% 4.82% 15.77
SDP4-GNB 96.73% 94.19% 95.26% 94.54% 96.34% 94.64% 94.61% 92.76% 4.62% 4.34% 6.58% 8.54
SDP4-SVM 95.91% 92.90% 93.73% 93.20% 96.12% 93.46% 93.21% 90.64% 5.89% 5.76% 8.21% 59.08
SDP4-BLR 93.94% 89.83% 92.22% 90.68% 95.12% 91.78% 89.78% 82.46% 8.19% 9.67% 11.92% 21.56

DDoS-HTTP

SDP4-MEV 98.62% 97.25% 98.02% 97.54% 98.71% 97.40% 98.16% 99.12% 0.76% 0.53% 1.02% 11.75
SDP4-RF 97.91% 96.73% 97.30% 96.98% 98.08% 96.84% 97.32% 98.02% 1.48% 1.19% 2.57% 12.93
SDP4-DT 96.79% 95.46% 96.11% 95.66% 97.01% 95.62% 96.00% 98.45% 2.12% 1.87% 3.01% 21.78
SDP4-kNN 96.15% 94.86% 95.61% 95.11% 96.24% 95.03% 95.34% 97.32% 2.79% 2.54% 4.15% 13.47
SDP4-GNB 94.82% 93.37% 94.14% 93.41% 95.03% 93.75% 94.03% 96.01% 3.42% 3.19% 5.64% 12.21
SDP4-SVM 92.73% 90.82% 91.76% 91.24% 93.22% 91.45% 91.39% 92.56% 4.57% 4.42% 7.38% 48.21
SDP4-BLR 89.46% 86.93% 88.06% 87.28% 90.12% 87.40% 88.34% 87.92% 7.98% 8.84% 11.56% 17.89

ARP-Spoof

SDP4-MEV 99.15% 98.86% 96.38% 96.61% 97.60% 98.44% 97.20% 98.76% 1.23% 0.81% 1.45% 9.87
SDP4-RF 96.42% 94.98% 95.73% 95.21% 96.64% 94.92% 95.98% 97.54% 2.01% 1.78% 3.21% 18.67
SDP4-DT 95.06% 92.79% 94.53% 93.58% 95.58% 92.95% 94.14% 96.98% 3.01% 2.43% 3.36% 28.56
SDP4-kNN 94.23% 91.73% 93.47% 92.36% 94.68% 91.94% 93.05% 95.89% 3.45% 3.01% 4.92% 16.21
SDP4-GNB 92.58% 89.98% 91.77% 90.32% 93.07% 90.23% 92.15% 93.76% 4.12% 3.94% 5.89% 19.76
SDP4-SVM 89.97% 86.46% 88.04% 87.07% 91.04% 86.93% 88.02% 91.34% 5.21% 5.02% 8.02% 61.32
SDP4-BLR 86.02% 81.95% 83.48% 82.40% 88.63% 82.56% 84.24% 86.87% 8.67% 9.01% 12.12% 19.45

ARP-Poison

SDP4-MEV 99.78% 98.39% 98.08% 99.63% 99.20% 99.57% 97.88% 98.34% 1.34% 0.97% 1.78% 7.56
SDP4-RF 95.92% 94.34% 95.20% 94.68% 96.14% 94.48% 94.99% 95.12% 2.15% 1.79% 3.12% 17.23
SDP4-DT 94.42% 92.06% 93.49% 92.68% 95.12% 92.74% 93.01% 94.56% 3.23% 2.51% 3.68% 27.45
SDP4-kNN 93.57% 90.85% 92.62% 91.32% 94.29% 91.40% 92.42% 95.67% 3.78% 3.23% 4.89% 15.98
SDP4-GNB 91.68% 88.05% 90.47% 89.36% 93.00% 88.77% 90.13% 94.43% 4.43% 4.15% 6.45% 29.32
SDP4-SVM 88.52% 83.64% 86.05% 85.04% 91.37% 84.23% 87.71% 90.98% 5.56% 5.32% 8.01% 60.12
SDP4-BLR 84.63% 78.35% 81.23% 79.61% 89.84% 78.82% 83.22% 85.12% 8.91% 9.34% 12.89% 18.76
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Among all the models, SDP4-MEV has the lowest false-alarm rates, with an FPR of
0.16%, FDR of 0.46%, and FNR of 0.27%. The AUC values for all models were above 90%,
ranging from 90.68% to 99.86%. The AUC is a measure of the overall performance of a
model and is used to evaluate the model’s ability to distinguish between positive and
negative samples. The AUC of SDP4-MEV is the highest at 99.86%, indicating that it has a
high ability to distinguish between attack and normal flows.

The MCC values for all models were high, ranging from 92.87% to 99.22%. The MCC
is a measure of the correlation between the predicted and actual labels and takes into
account both true and false positives and negatives. SDP4-MEV also has the highest MCC
of 99.22%, indicating a strong correlation between predicted and actual classifications. In
conclusion, the SDP4-MEV exhibits the lowest ADT value of 2.24 ms, whereas the SDP4-
SVM demonstrated the highest ADT of 62.31 ms. Based on the results, the ML models
exhibited the highest performance in the Edge-IIoTset dataset, followed by the X-IIoTID
dataset, and then the TON_IoT dataset.

Our experimental results show that the proposed framework is effective in detecting
and mitigating the attacks in SD-IoT networks. The detection accuracy ranged from 98.9%
to 99.97%, depending on the number of victim nodes and the severity of the attack. The
false positive rate was very low, ranging from 0.11% to 0.21%, indicating that the proposed
framework can effectively distinguish between legitimate traffic and attack traffic. The
detection time ranged from 2 ms to 6 ms, and the mitigation effectiveness ranged from
98.5% to 100%, depending on the number of victim nodes and the severity of the attack.
Finally, the network latency was very low, ranging from 1 ms to 5 ms, indicating that the
proposed framework can operate in real-time.

Table 4. The hyperparameter configurations for the ML models.

Model Parameter Selected Value

SDP4-MEV
Base classifier RF, DT, kNN, GNB, SVM, and BLR
No. of Base classifiers 6
Ensemble method Weighted voting

SDP4-RF

Splitting criterion Gini
Number of trees 100
Min. samples leaf 1
Min. samples split 2
Max features 17

SDP4-DT
Splitting criterion Entropy
Number of trees 10
Min. samples leaf 1

SDP4-kNN
Number of neighbors K
Neighbors weight

3
Uniform

SDP4-GNB Regularization parameter 104

SDP4-SVM
Kernel Sigmoid
Reg. parameter coefficient 103

Kernel coefficient 10−2

SDP4-BLR Regularization parameter (C)
Solver

102

liblinear

4.3.2. Comparing the Proposed Framework with Other Existing Methods

According to the experimental results, the proposed framework outperforms most of
the existing cutting-edge approaches across 14 different evaluation criteria. P4-HLDMC
achieves exceptional benchmarks across various metrics, including accuracy, F1-Score, sen-
sitivity, true negative rate, positive predictive value, negative predictive value, Matthews
Correlation Coefficient (MCC), area under the curve (AUC), false positive rate, false nega-
tive rate, false detection rate, average latency, and average detection time. These bench-
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marks are as follows: 99.89%, 99.67%, 99.79%, 99.69%, 99.54%, 99.97%, 99.86%, 99.22%,
0.16%, 0.27%, 0.46%, 3.83 ms, and 2.24 ms, respectively. This demonstrates the effectiveness
and superiority of the proposed framework over other existing solutions. Comparing our
proposed method to existing approaches, the best accuracy among the existing methods
was 93% with a single controller and without consistent or stateful packet processing.
In contrast, our proposed method achieved a higher average accuracy of 99.89% with
multi-controller architecture and a distributed mitigation strategy. Figure 13 shows the
graphical representation of the accuracy metric for the compared ML/DL methods. Fur-
thermore, the effectiveness of the P4-HLDMC method is demonstrated across multiple
datasets, including Edge-IIoTset, TON_IoT, and X-IIoTID dataset, which are considered the
most comprehensive SD-IoT datasets used for intrusion detection. This indicates its ability
to handle diverse network environments and various types of attacks. In contrast, other
methods such as CNN, DALCNN, and FFCNN, listed in Table 5, utilized datasets that are
not suitable for detecting current IoT attacks, while some relied on simulated or generated
traffic such as DRL-IPS, SMO, and kNN. Additionally, certain methods focused on specific
datasets or particular types of attacks, such as DRL-IPS and DAD. Overall, the P4-HLDMC
method stands out as the superior approach due to its low false positive rate, high average
accuracy, minimum and most relevant number of features, and versatility in handling
different datasets and attack scenarios. Its utilization of P4-enabled switches, modular
design, and hierarchical logically distributed multi-controller architecture ensures efficient
communication and synchronization between controllers, enabling rapid detection and
mitigation of attacks. Moreover, this approach enhances the scalability and reliability of the
system, enabling it to effectively defend against sophisticated and coordinated attacks that
conventional defenses may struggle to handle.

Table 5. Settings comparison of the proposed framework to existing ML/DL approaches.

Method Architecture Dataset Data Plane Attack Type Environement Scalability FPR ACC

DRL-IPS [33] Single Mininet
simulation OpenFlow Low-rate SDN No N/A 98.00%

AutoML [36] N/A UNSWNB15,
and CICIDS2017 Traditional Intrusion N/A No 02.70% 97.30%

SD-Reg [34] Single InSDN, and CSE-
CIC-IDS2018 OpenFlow Intrusion SDN Yes N/A 98.54%

CNN [35] Single CicDDoS 2019 OpenFlow DDoS SD-IoT No 00.50% 99.50%

DT [47] N/A X-IIoTID dataset N/A Intrusion IIoT Yes 00.40% 99.58%

Kaur [44] N/A Kismet
simulation N/A ARP Traditional No Low 93.00%

DAD [39] Single P4-extracted data P4 TCP flooding SDN Yes 02.00% 98.00%

SMO [48] Single Mininet
simulation OpenFlow DoS SDN No N/A 97.60%

kNN [49] Single Mininet
simulation OpenFlow DDoS SDN No 00.97% 98.80%

FFCNN [50] Single CIC DoS 2017 OpenFlow Low-rate SD-IoT No N/A 99.00%

P4-HLDMC Multi
Edge-IIoTset,
TON_IoT, and
X-IIoTID dataset

P4 DDoS-ARP SD-IoT Yes 0.16% 99.89%
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4.3.3. The Distributed Multi-Controllers Evaluation

In this section, we evaluate the performance of different controllers in a proposed
SD-IoT network topology using the P4-HLDMC framework. The controllers evaluated
include open-source controllers such as OpenDayLight, Floodlight, Ryu, POX, and our
proposed Improved OpenDay Light (IODL) controller. We measure the performance of each
controller based on six metrics: throughput, delay, packet loss (PL), the number of packets
processed per second (PPPs), CPU consumption, and memory consumption. Throughput
measures the amount of data that can be transmitted through the network within a given
time period, while delay measures the time it takes for data packets to be transmitted from
the source to the destination. The evaluation results for the five aforementioned controllers
in the four test cases—MC-STA, MC-TTA, MC-FTA, and MC-ETA—are listed in Table 6.

For the MC-STA test case, the IODL controller outperformed the other controllers in
terms of throughput and delay. Specifically, the IODL controller achieved a throughput
of 17.62 Gbps, which is higher than the throughput achieved by the other controllers. The
delay of the IODL controller was also lower than the delay of all controllers, indicating a
faster response time to attack detection and mitigation.

For the MC-TTA test case, the IODL controller achieved a higher throughput of 18.23
Gbps and lower delay of 3.26 ms compared to the other controllers. For the MC-FTA
and MC-ETA test cases, the OpenDayLight, Floodlight, and Ryu controllers achieved sim-
ilar throughput and delay, while the IODL controller achieved the highest throughput
of 19.57 Gbps and the lowest delay of 4.12 ms, indicating better performance than the
other controllers. The results of the experiments showed that the OpenDayLight controller
outperformed the other controllers in terms of the number of packets processed per second,
with a maximum throughput of 23,485 packets per second, followed by Floodlight with a
maximum throughput of 21,945 packets per second and Ryu with a maximum throughput
of 20,895 packets per second. The POX controller achieved the lowest PPPs, with a maxi-
mum of 18,350 packets per second across all test cases. The IODL controller had the highest
maximum throughput of 28,640 packets per second, indicating better processing capacity
than the other controllers.

The results also showed that the OpenDayLight controller had lower CPU and mem-
ory usage compared to the other controllers. The IODL controller had the lowest CPU
consumption of 9.5% and memory consumption of 8.7%, indicating better resource uti-
lization than the other controllers. From Table 6, we can obtain the average throughput
and latency results for the different SDN controllers across all four test cases. As can be
seen from the table, the IODL controller outperforms the other controllers. The average
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throughput achieved with IODL is 18.54 Gbps, while the average latency is 3.83 ms. In
contrast, the average throughput achieved with Floodlight and Ryu is 13.17 Gbps and 12.24
Gbps, respectively, while the average latency is 34.72 ms and 42.71 ms, respectively. These
results demonstrate that the proposed IODL controller is the best choice for implementing
the proposed framework. This is due to the fact that IODL provides improved network
resource allocation, scalability, and stability. It also enhances the overall performance of
the network by reducing the delay and increasing the throughput. The utilization of the
MCDI interface and DAC channel significantly contributes to the overall improvement of
the network’s performance. Notably, the delay is reduced, allowing for faster and more
responsive communication within the network. This reduction in delay leads to enhanced
real-time interactions between the controllers. Moreover, the throughput is increased,
enabling higher data transmission rates and improved network efficiency. In addition
to the benefits in delay and throughput, the proposed MCDI interface and DAC channel
also address the issue of packet loss. By employing advanced detection and mitigation
techniques, these components effectively mitigate packet loss, ensuring the reliable and
uninterrupted flow of data throughout the network. Consequently, the network achieves
higher reliability and data integrity.

Table 6. Performance evaluation results for different controllers.

Test Case Controller Throughput (Gbps) Delay (ms) Packet Loss PPPs CPU Memory

M
C

-S
TA

OpenDayLight 14.48 19.22 0.17 23,485 19.7% 22.6%
Floodlight 12.58 25.96 0.21 21,945 21.2% 27.2%
Ryu 12.02 36.11 0.23 20,895 28.9% 29.5%
Pox 10.54 47.52 0.29 18,350 32.1% 34.1%
Proposed IODL 17.62 02.19 0.12 28,640 09.5% 08.7%

M
C

-T
TA

OpenDayLight 14.85 22.19 0.44 19,250 36.4% 27.6%
Floodlight 12.63 33.87 0.76 20,680 41.2% 31.2%
Ryu 11.34 45.19 0.81 18,460 37.8% 37.5%
Pox 11.21 56.53 0.82 18,145 42.1% 32.1%
Proposed IODL 18.23 03.26 0.36 25,040 11.1% 10.2%

M
C

-F
TA

OpenDayLight 15.22 26.45 0.27 9805 23.6% 22.6%
Floodlight 14.12 37.21 0.31 9425 25.1% 27.2%
Ryu 13.56 37.36 0.33 9130 26.2% 29.5%
Pox 13.21 48.01 0.35 8965 27.8% 32.1%
Proposed IODL 18.74 04.12 0.23 22,475 12.9% 12.4%

M
C

-E
TA

OpenDayLight 12.58 36.23 0.29 8215 24.8% 22.6%
Floodlight 13.36 41.87 0.44 8745 26.3% 27.2%
Ryu 12.07 52.19 0.47 8230 28.5% 29.5%
Pox 11.94 74.53 0.49 8075 29.9% 32.1%
Proposed IODL 19.57 05.76 0.33 19,480 14.8% 12.7%

5. Conclusions and Future Work

This study introduces a novel and comprehensive framework for the detection and
mitigation of DDoS and ARP attacks in SD-IoT networks. The proposed P4-HLDMC
framework leverages a combination of machine learning (ML), stateful P4, and SDN-based
hierarchical logically distributed multi-controller architecture to provide a groundbreaking
approach for attack detection in the IoT domain. With the incorporation of 17 new features,
including 12 computed features and 5 P4-extracted features, the framework effectively
identifies DDoS and ARP attacks. The ML model overcomes over-fitting challenges by
accurately identifying attacks across diverse datasets and attack scenarios.

The framework consists of four modules: the Multi-Controller Dedicated Interface
(MCDI), the Distributed Alert Channel (DAC), the Multi-State Matching Pipeline Function
(MSMPF), and the Modified Ensemble Voting Algorithm (MEV). The MCDI interface en-
sures real-time and consistent attack detection through an asynchronous threading system,
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while the DAC channel facilitates efficient communication and data-control overhead re-
duction between controllers. The MSMPF module employs nine state tables to analyze
and detect IoT network traffic features, enhancing the controller’s protection against DDoS
and ARP attacks. The MEV module utilizes six classifiers to identify anomalies in P4-
extracted traffic patterns, achieving early and accurate attack detection at the data plane
level. Additionally, the framework employs a distributed approach for effective handling
of larger-scale attacks.

The proposed framework successfully detects attacks in multi-target attack scenarios,
surpassing conventional defense mechanisms. Experimental results using real-world IoT
network traffic datasets demonstrate the framework’s high detection rates, low false-alarm
rates, low latency, high throughput, and minimal average detection time, outperform-
ing existing methods. The study also introduces the Improved OpenDayLight (IODL)
controller as the optimal choice for implementing the proposed framework, thanks to its
enhanced network resource allocation, scalability, and stability. In conclusion, the proposed
framework presents an effective solution for detecting and mitigating DDoS and ARP
attacks in SD-IoT networks. Its unique approach, incorporating ML techniques and P4
language, enables accurate and timely detection and mitigation of various attack types,
thereby enhancing the security of IoT networks. Future research directions may involve
expanding the framework’s capabilities to detect additional attack types in SDN-based
IoT networks.
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