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Abstract: Image segmentation has played an essential role in computer vision. The target detection
model represented by YOLOv5 is widely used in image segmentation. However, YOLOv5 has
performance bottlenecks such as object scale variation, object occlusion, computational volume, and
speed when processing complex images. To solve these problems, an enhanced algorithm based on
YOLOv5 is proposed. MobileViT is used as the backbone network of the YOLOv5 algorithm, and
feature fusion and dilated convolution are added to the model. This method is validated on the COCO
and PASCAL-VOC datasets. Experimental results show that it significantly reduces the processing
time and achieves high segmentation quality with an accuracy of 95.32% on COCO and 96.02% on
PASCAL-VOC. The improved model is 116 M, 52 M, and 76 M, smaller than U-Net, SegNet, and Mask
R-CNN, respectively. This paper provides a new idea and method with which to solve the problems
in the field of image segmentation, and the method has strong practicality and generalization value.
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1. Introduction

Image segmentation is one of the important research directions in the field of computer
vision, which aims to classify each pixel in an image into different objects or regions for
the deep understanding of the image [1]. Recently, image segmentation techniques have
undergone a transformation from traditional methods based on rules and thresholds to
those based on machine learning and deep learning [2].

Early image segmentation methods mainly relied on manually designed features and
manually judged thresholds for segmentation. These methods were simple and easy to
understand but lacked the flexibility to adapt to complex scenes and changing data. With
the development of machine learning and deep learning, data-driven image segmentation
methods based on data have gradually become mainstream [3–8]. Among them, the
convolutional neural network is a widely used deep learning model with strong feature
extraction and nonlinear modeling capabilities, which can automatically learn complex
feature representations [2,9,10]. FCN is the first convolutional network segmentation
method proposed [11], which obtains feature maps of different scales by performing
convolution operations on the input image and restores the feature maps to the original
scale through upsampling. Subsequently, a series of improved models were proposed,
such as U-Net, SegNet, and DeepLab [12–14], which further improved segmentation
performance by introducing methods such as skip connections, atrous convolution, and
spatial pyramid pooling [14,15]. However, these algorithms still have certain limitations.
First, they usually require large computational resources and high time costs, so it is difficult
to achieve real-time segmentation; second, the segmentation accuracy is affected when
dealing with problems with complex textures, pose changes, etc. Therefore, improving
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segmentation efficiency and accuracy is a current research hotspot and challenge in image
segmentation [9,16,17].

In recent years, target detection techniques have also been gradually applied to image
segmentation tasks. YOLOv5, as the most representative object detection model, has good
performance in terms of speed and accuracy and can be applied to different scenes [18].
Meanwhile, techniques such as feature fusion, dilated convolution, and MobileViT are
also widely used in image segmentation, which all help to improve the feature extraction
capability and segmentation performance of the model.

This paper proposes a novel image segmentation of a universal target algorithm based
on YOLOv5. This proposed method combines feature fusion, dilation convolution, and
MobileViT. Among them, feature fusion is a method by which to fuse feature maps of
different scales, which can improve the detection ability of the model for small and distant
targets [19,20]; dilation convolution is a method by which to capture a more extensive range
of information by increasing the field of perception size in the spatial domain, which can
effectively solve the problem of tiny structures existing inside the segmented objects [21,22];
MobileViT is a lightweight model that can achieve high-performance image segmentation
through model compression and acceleration [23–25].

In summary, current research in image segmentation focuses on using deep learning
techniques to improve segmentation efficiency and accuracy. This study’s main contribu-
tions can be summarized as follows: first, an image segmentation framework is proposed;
the segmentation accuracy and efficiency of the model are further improved by the intro-
duction of feature fusion, dilated convolution, and MobileViT techniques; second, this
improved network is validated on several datasets and has strong logical reasoning abil-
ity and independent learning ability, which can promote the development of artificial
intelligence technology [26]; third, this approach has good segmentation ability and gener-
alization performance, which helps to solve problems in the field of computer vision. In
addition, the method can be considered to be applied to other related fields, such as target
tracking and scene understanding.

2. Related Work

Ultralytics proposed YOLOv5 in May 2020 [27]. The YOLOv5 series include YOLOv5s,
YOLOv5m, YOLOv5l, and YOLOv5x. YOLOv5s is the best network with the smallest
depth and feature map width compared with the other three models. It consists of four
main components: the input module, the backbone network, the neck network, and the
prediction network [28].

Input module: The data are loaded at the input terminal, and the YOLOv5 network
preprocesses the input image at this stage. First, the input image is resized to the specified
size. Data enhancement, random cropping, and random scheduling are also used in
this module. The above data enhancement methods enrich the dataset and enhance the
robustness of the model [29,30].

Backbone network: The backbone network of YOLOv5 aims to extract generic features
of the target and mainly consists of SPP, CBL, CSPDarknet53, and Focus [30]. The idea of
SPP is to eliminate the requirement of fixed input image size and generate fixed-length
images, while the method can effectively solve problems such as target deformation. The
SPP layer is designed to allow the input image to be of any size, but the output to the
fully linked layer is a vector of fixed dimensions. In addition, SPP only performs one
convolution calculation on the original image; the feature map of the whole image can
be obtained, and then the candidate frames are mapped and the characteristics of the
same dimension are obtained and then classified, so it saves a lot of computation time.
CBL consists of convolution, batch normalization, and Leaky ReLU activation function.
Compared with YOLOv4, YOLOv5 uses two CSP structures: CSP1_X and CSP2_X, one
for the backbone network and the other for the neck network [28,31]. The key role of
Focus is to slice the image before it enters the backbone. The output space is quadrupled
by Focus operation, and the original three channels become twelve channels in order to
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obtain a double-downsampled feature map without information loss after the convolution
operation. The Focus slicing operation is shown in Figure 1.
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Figure 1. Focus slicing operation.

Neck network: The neck is located between the backbone and the prediction network
and uses the structure connected by Feature Pyramid Networks, which aims to further
enhance the diversity of features. In addition, the neck structure of YOLOv5 adopts
CSP2 [25,27].

Prediction network: Prediction is the output side, completing the object detection
results’ output.

3. The Proposed Segmentation Approach

In order to segment the generic targets more effectively and accurately, the original
YOLOv5 network structure is improved in this paper as follows.

In the original YOLOv5 model, feature fusion occurs after the convolutional layers,
between the last convolutional layer and the prediction layer. Here, in this study, feature
fusion is added to the backbone network of the YOLOv5 model. The reasons are as
follows: (1) feature fusion can improve the perceptual capability of the model, enabling
it to better process information of different scales and semantics in images; this helps
to improve the detection accuracy and robustness of the model; (2) feature fusion can
reduce the dimensionality of the feature map, thus reducing the computational complexity
and speeding up the training and inference of the model; (3) feature fusion can promote
the exchange and sharing of information between different levels in the feature graph,
enhancing the expressiveness and generalization ability of the model.

Dilated convolution is added to the YOLOv5 model. This is because dilated convo-
lution can increase the perceptual field, i.e., the response of each element in the output
tensor to a larger region in the input tensor, which improves the perception of the model.
In addition, the dilated convolution can also control the spacing between elements in the
convolution kernel by adjusting the dilation factor, thus adapting to different scales of
targets and scenes.

Using MobileViT in the YOLOv5 model can provide users a good experience and
improve the model operation’s efficiency, and lightweight networks have proven their
necessity in practical applications [32,33].

The proposed approach for segmentation in this paper is shown in Figure 2.
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3.1. Improved YOLOv5s Model Based on Feature Fusion

This paper proposes the multi-level YOLOv5 (M-YOLOv5s) algorithm based on multi-
level feature fusion. The feature pyramid structure based on multi-level fusion is a multi-
level feature fusion structure added in the middle of the feature pyramid structure so that
the network can better use the location information of shallow features and fully integrate
the semantic information with the location information. The structure includes a top-down
convolutional neural network and a multi-level feature fusion network structure, where
X1~X3 denote the lower, lower middle, and middle effective feature layers of the network,
respectively; F1~F3 denote the features after multi-level fusion; and U1~U3 are the forward
propagation processes of the network.

The feature pyramid network based on multi-level feature fusion performs the convo-
lution operation with the same size of the feature layers extracted from the bottom up to
obtain shallow features. It compresses the number of channels in depth to obtain richer
location information to enhance the network’s ability to locate the target. Through feature
overlay, the deep semantic information interacts with the shallow localization informa-
tion, and the number of channels is adjusted by the feature integration and convolution
operation, which enhances the location localization ability and improves the robustness
of the network. The quality of multi-scale feature fusion is enhanced by passing back the
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multi-level fused features and fusing them with the effective feature layer again. Finally,
the feature image input to the detection side of the network is made more detailed by
refining the multi-level fused features. The feature pyramid network structure based on
multi-layer fusion is more comprehensive for feature information acquisition and fully uses
the location information of shallow features. Compared with the feature pyramid network
structure, the feature pyramid network with multi-level feature fusion has higher feature
information density with the same feature layer depth, and the multi-scale fusion of the
feature pyramid structure makes the location information of the shallow features and the
semantic information of the deep features more fully integrated. The structure is shown in
Figure 3.
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For X1, convolution size of 52 × 52 is selected to obtain the shallow features, and
the feature integration is performed with the convolution size of 3 × 3 and the channels
number of 128.

For X2, the X2 features of U21 are superimposed with the shallow features obtained
via the convolution of U22 with a convolution size of 26 × 26. Feature integration and
channel compression with a convolution size of 3 × 3 and a channel number of 256 are
performed to obtain F2, and the F2 features are feature fused with the U23 features. The F2
detection branch performs the same work as F1.

For X3, first, U11 retains the original lower valid feature layer information, and U12
extracts features with a convolution size of 1313 and compresses the number of channels
to obtain shallow features. The features obtained from U11 and U12 are superimposed.
Then they integrate the features with a convolution size of 33 and a channel number of
1024 to obtain F1. The output of F1 is divided into detection and fusion branches. After
performing feature integration, the features have richer location information and retain the
original deep semantic information. Finally, the detection branch of F1 features performs
feature refinement of F1 features with 1 × 1 input to the detection part of the network, and
the F1 fusion branch performs feature fusion with U13 features to prepare for multi-size
feature fusion.

3.2. Addition of Dilated Convolution Module

In this section, we improve the structure for the feature fusion part based on the
feature fusion improved YOLOv5s network. M-YOLOv5s adds the multi-level feature
fusion structure proposed in this section to the feature pyramid network and introduces
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the extended convolution module, which constitutes this section’s model, namely, Dilated
convolution-M-YOLOv5s (DM-YOLOv5s).

Dilated convolution adds a dilation rate parameter compared to the original normal
convolution operation. Unlike traditional convolution, the dilated convolution introduces a
dilation factor in the convolution kernel, which makes a fixed number of holes between the
elements in the convolution kernel. Figure 4a,b shows the normal and dilated convolution
with an expansion rate of 4. The size of the convolution kernel after the expansion rate
enlargement is calculated by the following formula:

Kernelsize = N + (S− 1)× (N − 1), (1)

where S is the expansion rate and N is the original convolution kernel size. Figure 4a
shows the convolution kernel for normal convolution with size 33; for Figure 4b, the
convolution kernel becomes 99, but the computational parameters are not increased, and
the perceptual field becomes larger as the convolution kernel size becomes larger. The
addition of the extended convolution module alleviates the problem of imbalance in the
interaction between the deep feature layer and the shallow feature information. Taking the
lower effective feature layer as an example, the dilated convolution module is added to the
original structure compared to the multi-level feature fusion structure.
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Using dilated convolution instead of regular convolution for feature extraction, the
setting of the extension rate for the extended convolution needs to be calculated in a certain
way to prevent the input and output feature map sizes from being unequal. The specific
formula for the input and output feature map sizes of the dilated convolution is as follows:

Z2 =
Z1 + 2P− d(N − 1)− 1

S
+ 1, (2)

where P is the zero-filling row, d is the expansion rate, N is the original convolutional
kernel size, and S is the step size. Z1 and Z2 are the input and output feature map sizes,
respectively.

In this paper, the expansion rate of the extended convolution is set to 2, S is set to
1, and N is set to 3. To ensure that the input and output sizes are the same, their filling
zero rows are 2. The calculation formula for the increased sensory field by the extended
convolution set in the target detection network is as follows:

W2 = W1 + (K− 1)× S, (3)

where W1 is the perceptual field of the previous layer, K is the convolutional kernel size
after adding the expansion rate, and S is the step size. The initial network perceptual field is
1, and the perceptual field ratios of the multi-level feature fusion feature pyramid network
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using normal convolution and extended convolution are 7:11, 9:13, and 11:15, respectively.
Adding the extended convolution module to the multi-level feature fusion feature pyramid
network expands the overall network perceptual field, and the increase in the perceptual
field makes the network more sensitive to image information.

Dilation controls the spacing between samples within the convolution kernel by
inserting a certain number of zeros within the kernel. This allows for the expansion of the
effective receptive field of the convolution kernel while maintaining the original receptive
field. This operation enables dilated convolution to capture a broader range of contextual
information, thereby enhancing its ability to comprehend object structures and semantics
within the receptive field. In the context of image segmentation tasks, feature pyramid
networks are designed to obtain multi-scale feature representations to address objects
of varying sizes. Dilated convolution modules can be incorporated within the feature
pyramid at different levels, offering expanded contextual information for each level. By
employing dilated convolution modules, feature pyramid networks can effectively capture
object boundaries, textures, and semantic information across different scales. Consequently,
this enhances the accuracy and robustness of image segmentation tasks by enabling the
network to better perceive intricate details and contextual variations.

3.3. DM-YOLOv5s Model Based on MobileViT Lightweight

MobileViT is a variant of the Vision Transformer (ViT) architecture tailored for mo-
bile device scenarios. ViT, an attention-based image classification network, has achieved
remarkable performance in image classification tasks. MobileViT achieves efficient exe-
cution on resource-constrained mobile devices by lightweighting and optimizing the ViT
structure. Compared with the ordinary ViT, combining convolution and Transformer can
obtain robust and high-performance ViT. To guarantee accuracy, it also has better real-time
performance. A lightweight network model-based MobileViT is proposed. In this paper,
we use MobileViT, a lightweight-based network, as the backbone network of the model.
The convolutional neural network is good at extracting local feature information, and
Vision Transformer based on a self-attentive mechanism is good at extracting global feature
information. MobileViT network treats Vision Transformer as convolution, combining the
advantages of convolutional neural network and Vision Transformer to build a lightweight
and general network model. The network structure of MobileViT is shown in Table 1.

Table 1. Network structure of MobileViT.

Input Operator #Out L s

2562 × 3 conv2d 16 - 2
1282 × 16 MV2 32 - 1
1282 × 32 MV2 64 - 2
642 × 64 MV2 64 - 1
642 × 64 MV2 64 - 1
642 × 64 MV2 96 - /2
322 × 96 MVIT 96 2 1
322 × 96 MV2 128 - 2
162 × 128 MVIT 128 4 1
162 × 128 MV2 160 - 2
82 × 160 MVIT 160 3 1
82 × 160 Conv2d 640 - 1
82 × 640 Avgpool 8 × 8 - - -
12 × 640 FC - - -
12 × k Conv2d\ K< - -

Input indicates the input size of each module in the network; Operator indicates the
module experienced by each feature layer; #out indicates the number of channels output
after each feature layer; L indicates the number of Transformer modules in the MVIT
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module; s indicates the step length of each operation; MVIT indicates MobileViT module;
and MV2 indicates MobileNetV2 module.

The shallow features contain more location information, and the deep features contain
more semantic information. MobileViT network is an image classification network, and the
task in this paper is a target detection task. The features of the tenth layer of the MobileViT
network have been downsampled by 32 times, and a large amount of location information
will be lost if the features continue to be extracted and the subsequent network involves the
classification task. Therefore, the tenth layer of the MobileViT network is discarded, and the
remaining network is used as the backbone feature extraction network of the model [32].

The flow of the proposed MobileViT-DM-YOLOv5s (MDM-YOLOv5s) algorithm in
this paper is shown in Algorithm 1.

Algorithm 1: The Flow of MobileViT-DM-YOLOv5s Algorithm

Begin
// Define inputs and outputs

Input: image
Output: segmentation_result

// Defining M-YOLOv5s Algorithm for Multi-Level Feature Fusion
// Define feature pyramid structure
X1, X2, X3 = feature_pyramid(image)
// Define multi-layer feature fusion network structure
F1 = X1
F2 = fuse_features(X2, F1)
F3 = fuse_features(X3, F2)
// Defining top-down convolutional neural networks
U1 = upsample(F3)
U2 = fuse_features(U1, F2)
U3 = fuse_features(U2, F1)
// Define DM-YOLOv5s model
M-YOLOv5s = YOLOv5s(feature=F3)
DM-YOLOv5s = DilatedConvolution(M-YOLOv5s)
// Defining the MobileViT Network
MobileViT = MobileViT(feature=U3)
// Performing image segmentation tasks
segmentation_result = MobileViT(DM-YOLOv5s(image))

End

4. Experiment Section
4.1. Experimental Setup
4.1.1. Experimental Platform

The experiments’ platforms are AMDR7-5800H3 and NVIDIA GeForce RTX2060 (6 GB).
The experimental development environment is Python, and the PyTorch framework builds
the detection model. The experiments use the stochastic gradient descent method to
optimize the model. Epochs are set to 200 to ensure that the model can fully learn the
features in the dataset. The input image size for YOLOv5 model training: the image size
should be specified for YOLOv5 model training and set to 640 × 640. Batch size refers to
the number of samples used in each training and is set to 32. The learning rate is set to 0.01,
the regularization factor is set to 0.0005, and the number of iterations is set to 500.

4.1.2. Dataset

Choosing a suitable dataset is crucial for image segmentation experiments. First, a
good dataset should be representative and diverse, able to cover a variety of situations
such as different scenes, different lighting conditions, and different object morphologies,
thus ensuring the generalization performance of the algorithm. Second, the quality of
the annotation of the dataset is also very important; the annotation should be accurate,
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detailed, and consistent, and different types of annotations may be required for different
tasks. Finally, the dataset size should also be large enough to train deep learning models
and perform adequate validation and comparison. Therefore, choosing the right dataset
can improve the reliability and generalization of experimental results.

In this paper, we choose COCO and PASCAL-VOC datasets to conduct ablation exper-
iments and comparison experiments on the models. Choosing two datasets for experiments
can help evaluate image segmentation algorithms’ performance and generalization ability
on different datasets. Comparing the two datasets can reveal their differences.

COCO: The COCO dataset contains over 80 common object classes, such as people,
animals, vehicles, and furniture. The main features of the COCO dataset are diversity and
complexity, containing a large number of images and multiple object instances covering a
wide range of scales, poses, and occlusions.

PASCAL-VOC: The PASCAL-VOC dataset mainly contains 20 common object classes,
such as people, cars, airplanes, and animals. Each image is accurately annotated with
object bounding boxes; for some images, there is also a pixel-level semantic segmentation
annotation of the objects.

4.1.3. Mean Average Precision

In this paper, Average Precision (AP) and mean Average Precision (mAP) are used for
evaluation and comparison [34]. The mean average precision (mAP) is used to measure the
accuracy of target detection and represents the performance of the algorithm in terms of
detection accuracy over the entire dataset, as follows:

mAP =
AP
m

(4)

where m is the total number of object categories in the dataset.

4.2. Ablation Experiments
4.2.1. Ablation Experiment of Feature Fusion

For the feature extraction part of YOLOv5s, the feature pyramid structure with multi-
level feature fusion is established to enhance the interaction between the shallow localiza-
tion information and the deep semantic information, making the multi-scale feature fusion
more adequate. To investigate the effect of the feature pyramid structure of multi-level
feature fusion on multi-scale feature fusion, the effectiveness of the improved network
structure is illustrated in terms of function loss and mean-average accuracy [35].

(1) Loss comparison

As shown in Figure 5, YOLOv5s represents the loss of the YOLOv5s algorithm us-
ing the original feature pyramid, and M-YOLOv5s represents the loss of the YOLOv5s
algorithm using the multi-level feature fusion feature pyramid structure.

In the same rounds, the loss of the M-YOLOv5s algorithm using the multi-level feature
fusion feature pyramid structure is 0.19% lower than that of the YOLOv5s algorithm, and
the overall curve shows that the loss of the M-YOLOv5s algorithm is not more obviously
perturbed than that of the YOLOv5s algorithm at around 50 rounds and the loss of the
network decreases more rapidly in the early training period, and the overall trend is flatter.
The lower loss function curve during training means that the algorithm can predict the
segmentation results of the images more accurately, thus demonstrating the generalization
performance and effectiveness of the M-YOLOv5s algorithm on the test set.
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(2) Accuracy comparison

As shown in Table 2, the M-YOLOv5s algorithm fully combines shallow and deep
features to improve the quality of multi-scale feature fusion. In terms of detection accuracy,
the M-YOLOv5s algorithm has improved by 1.58%, which illustrates that feature fusion
between multi-level features promotes the information flow between shallow and deep
feature layers, and also illustrates the effectiveness of multi-level feature fusion feature pyra-
mid structure for improving network performance. M-YOLOv5s algorithm can accurately
divide and segment different objects or regions in the image.

Table 2. Comparison of image segmentation accuracy between M-YOLOv5s and YOLOv5s.

Backbone Networks Feature Pyramid Network mPA (%)

YOLOv5s FPN 92.12
M-YOLOv5s M- FPN 93.70

4.2.2. Ablation Experiment of Dilated Convolutional

After using the feature pyramid structure with multi-level feature fusion, the network
accuracy is improved to some extent, but the feature pyramid structure with multi-level
feature fusion improves the accuracy at the expense of feature map size.

In general, the loss of feature map size can lead to the imbalance between the semantic
information of deep features and the location information of shallow features, and the
interaction of their feature information is limited, resulting in the missing detection of some
objects. Therefore, the dilated convolution module is added to the shallow feature layer
of the multi-level feature fusion feature pyramid structure to prevent the loss of image
detail information due to the deepening of the network so that the deep feature layer can
expand the perceptual field without losing the image size and verify the effect on loss
and accuracy under the balanced feature information interaction by adding the dilated
convolution module.

(1) Loss comparison

As shown in Figure 6, M-YOLOv5s in the figure indicates the loss of the algorithm
without adding the dilated convolution module, and DM-YOLOv5s indicates the loss of
the algorithm with the dilated convolution module added in the shallow features.
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The DM-YOLOv5s algorithm loss is reduced by 0.69% under the same rounds, and
the two curves have matched the overall curve, but the perturbation of DM-YOLOv5s
algorithm loss is flatter around round 50, and the flat loss curve means that the loss function
decreases more slowly when training the model, but the performance of the model is more
stable on both training and test data without overfitting or underfitting problems. Such a
situation usually indicates that the model is close to the optimal state and can perform well
on new data. The perturbation at 50 rounds is due to the freeze training method chosen
in this paper, which opens the original weights after the first 50 rounds and trains them
together, so there is a certain loss of perturbation, but the experimental results show that
the loss of perturbation after adding the original weights can be mitigated by optimizing
the structure to achieve a better training effect.

(2) Accuracy comparison

As shown in Table 3, the accuracy is improved by 2.21% when dilated convolution is
used, and the improvement effect of the network illustrates that its network performance
has reached the optimum for M-YOLOv5s. After adding dilated convolution, the informa-
tion interaction between shallow and deep features has tended to be balanced and stable,
the feature flow between scales is sufficient, and the overall network performance is close
to saturation.

Table 3. Comparison of image segmentation accuracy between M-YOLOv5s and DM-YOLOv5s.

Image Segmentation Model Dilated Convolution Module mPA (%)

M-YOLOv5s - 93.70
DM-YOLOv5s V 95.91

4.2.3. Ablation Experiment of Lightweight Model

To evaluate the improved part of this paper more comprehensively, ablation exper-
iments were conducted on the MDM-YOLOv5s network, and the results are shown in
Table 4.
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Table 4. Comparison of comprehensive performance of DM-YOLOv5s and MDM-YOLOv5s image
segmentation.

Image Segmentation Model MobileviT mAP (%) Size/MB Time/s

DM-YOLOv5s - 95.91 317 0.045
MDM-YOLOv5s V 95.32 302 0.035

In this case, the comprehensive performance depends not only on the accuracy of
the model but is also influenced by the model size. Both metrics need to be considered
considering the trade-off between computational resources and storage capacity required
in practical application scenarios. Their accuracies are relatively close to each other for
the two models, MDM-YOLOv5s and DM-YOLOv5s. If these models need to be used in
resource-constrained environments, model size may need to be considered as an important
metric, in which case MDM-YOLOv5s will be more advantageous.

Beyond model size, processing speed is a pivotal performance metric. We conducted
comparative analyses through statistical data to assess the time required by the DM-
YOLOv5s model and the MDM-YOLOv5s model for processing a single image. The
DM-YOLOv5s model typically requires 0.04 to 0.06 s per image. Nevertheless, the average
processing time of the MDM-YOLOv5s model has been reduced to 0.035 s. This signifies
that while sustaining high performance, our enhancement approach further amplifies
image processing speed, rendering it more suitable for real-time application scenarios.

4.3. Comparison Experiment

This section compares the MDM-YOLOv5s network with other image segmentation
algorithms, and from Table 5, we can learn that the improved algorithms in this paper have
higher accuracy than other algorithms.

Table 5. Comparison of accuracy of different image segmentation algorithms.

Image Segmentation
Model

COCO
Precision (%)

PASCAL-VOC
Precision (%) mAP (%) Model

Size/MB

U-Net 89.78 85.76 87.77 418
SegNet 90.82 89.76 90.29 354

Mask R-CNN 91.85 92.49 92.17 378
MDM-YOLOv5s 95.32 96.02 95.67 302

From the experimental results in the above table, it can be seen that the MDM-
YOLOv5s algorithm is more accurate than U-Net, SegNet, and Mask R-CNN for image
segmentation, respectively, and the accuracy curves of each algorithm model are shown in
Figure 7.

The experimental results in the above table show that the MDM-YOLOv5s model
is the smallest, reducing 116 M, 52 M, and 76 M compared to U-Net, SegNet, and Mask
R-CNN, respectively. It means that the MDM-YOLOv5s model requires less storage space
and computational resources to accomplish the same task. This is valuable for practical
applications because it allows the model to run more efficiently on embedded devices or in
constrained environments. MDM-YOLOv5s employs techniques such as multi-scale fusion,
dilation convolution, and model lightweight to effectively compress the model structure
and the number of parameters while ensuring accuracy. In contrast, U-Net, SegNet, and
Mask R-CNN usually require more parameters and computational resources to achieve
higher accuracy and robustness. Therefore, the small model of the MDM-YOLOv5s model is
a great advantage and is especially suitable for scenarios with limitations on computational
resources and storage space.
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The delay of the target segmentation model refers to the time required to go from
the input image to the output target bounding box. Comparing the latencies of target
segmentation models can help us evaluate the usability and applicability of different
models in real-world scenarios, especially in real-time applications. By comparing the
latencies between models, we can understand which parts of the model are more time-
consuming and thus optimize for those parts to improve the efficiency and speed of the
model. Comparing the latencies of models can also help us evaluate the required hardware
device resources, including CPU, GPU, memory, etc., to ensure that the model can run well
on the selected hardware. Therefore, this paper compares the latency of MDM-YOLOv5s,
U-Net, SegNet, and Mask R-CNN as shown in Figure 8.
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The MDM-YOLOv5s model is compared with U-Net, SegNet, and Mask R-CNN, and
it is found that the latency of MDM-YOLOv5s is lower than the other three algorithms
in image segmentation. This means that in practical applications, the MDM-YOLOv5s
model has higher real-time performance and responsiveness and can detect and segment
the target of the input image faster.
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As a result, the MDM-YOLOv5s model can complete the inference task in a shorter
time, speed up the image segmentation and improve the processing efficiency. The MDM-
YOLOv5s model occupies less storage space, reducing the storage cost and making the
operation and deployment more convenient. At the same time, the MDM-YOLOv5s
model can be applied to some resource-constrained scenarios, such as mobile devices and
embedded systems, extending the application scope of image segmentation technology. In
addition, the MDM-YOLOv5s model has a simpler structure and fewer parameters, so it
requires low conditional requirements, and the model training may be more stable and
reliable. The model segmentation effect graph is shown in Figure 9.
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Comparing the MDM-YOLOv5s model with U-Net, SegNet, and Mask R-CNN, it is
found that the accuracy of MDM-YOLOv5s is higher than the other three algorithms in
image segmentation. The high accuracy of the MDM-YOLOv5s model can be attributed to
the following aspects:

1. Feature fusion technique: The MDM-YOLOv5s model uses the feature fusion tech-
nique to fuse features at different levels, thus improving the model’s understanding
of images and segmentation accuracy;

2. Dilated convolution technique: The MDM-YOLOv5s model adopts the dilated convo-
lution technique, which can effectively expand the perceptual field and improve the
model’s ability to capture image details, thus improving the segmentation accuracy;

3. MobileViT technology: The MDM-YOLOv5s model also adopts MobileViT technology,
which can effectively reduce the model parameters and computation volume, thus
improving the model operation speed and efficiency;

4. YOLOv5s structure: The MDM-YOLOv5s model is improved based on the YOLOv5s
structure, and YOLOv5s itself is an efficient target detection algorithm with a simple
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structure, small computation, and fast speed, and these advantages also provide the
basis for the high accuracy of the MDM-YOLOv5s model.

Compared with the excellent image segmentation model TransUNet introduced in
recent years [36], the comparison mainly includes the mean average precision (mAP),
model size, and processing time of the single image. Experimental results show that the
MDM-YOLOv5 algorithm outperforms the TransUNet algorithm in accuracy by 1.34 per-
centage points. Compared to TransUNet, the model size of MDM-YOLOv5 has significantly
decreased. The processing time for MDM-YOLOv5 is reduced by 0.135 s compared with
TransUNet, indicating that MDM-YOLOv5 is more efficient in terms of processing speed.

In summary, the MDM-YOLOv5s model uses a variety of advanced techniques and
combines the advantages of YOLOv5s, thus achieving high accuracy in image segmentation
tasks. Compared with U-Net, SegNet, Mask R-CNN, and TransUNet, the MDM-YOLOv5s
model is optimized in feature fusion, dilation convolution, MobileViT technique, and
structure, and thus has higher accuracy in image segmentation.

5. Conclusions

In this research, we explored the combination of advanced techniques such as feature
fusion, dilated convolution, and MobileViT with YOLOv5s and applied them to the image
segmentation task. This approach can significantly shorten processing time through experi-
mental validation while maintaining high segmentation quality and has strong practical
and generalization value. The contributions of this research are as follows: first, a novel im-
age segmentation framework is proposed to take advantage of YOLOv5s’ target detection,
making full use of its fast feature; second, the segmentation accuracy and efficiency of the
model are further improved by the introduction of feature fusion, dilated convolution and
MobileViT techniques. Overall, this research provides a new idea and method with which
to solve the complex problems in image segmentation.

The future outlook is that the proposed algorithm can continue to be improved and
optimized, and more technical means can be added to improve the segmentation efficiency
and accuracy further. In addition, the method can be applied to other related fields, such as
target tracking and scene understanding. In summary, this study provides useful references
and inspiration for future research in the field of image segmentation.
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