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Abstract: Based on the spread of COVID-19, in the present paper, an imperfectly vaccinated SVEIR
model for latent age is proposed. At first, the equilibrium points and the basic reproduction number
of the model are calculated. Then, we discuss the asymptotic smoothness and uniform persistence of
the semiflow generated by the solutions of the system and the existence of an attractor. Moreover,
LaSalle’s invariance principle and Volterra type Lyapunov functions are used to prove the global
asymptotic stability of both the disease-free equilibrium and the endemic equilibrium of the model.
The conclusion is that if the basic reproduction number Rρ is less than one, the disease will gradually
disappear. However, if the number is greater than one, the disease will become endemic and persist.
In addition, numerical simulations are also carried out to verify the result. Finally, suggestions are
made on the measures to control the ongoing transmission of COVID-19.

Keywords: SVEIR model; latent age; imperfect vaccine; Lyapunov functions; stability

MSC: 35B35; 92D30; 37C20

1. Introduction

Since the proposal of compartmental models and epidemiological theories [1], an in-
creasing number of scholars have applied them in the study of the transmission of epidemics.
It is feasible to incorporate the latent period and vaccination strategy into the basic SIR
model to establish SVEIR models. Recently, SVEIR models have been extensively studied.

For instance, Li et al. [2] discussed infectious diseases models considering incubation
and vaccination periods and permanent immunity following recovery. The results achieved
by [3] showed that if the probability of infection in a person was negligible when or
before he/she became vaccinated, the disease could be successfully eliminated. This study
also warned against overestimating the effectiveness of vaccination. Upadhyay et al. [4]
simulated a computer virus model and found that the reinfection rate α was crucial in
accurately describing the dynamics of the virus, and that the rate of infection could be
reduced by increasing the number of susceptible nodes. Zhang et al. [5] constructed an
SVEIR model with two time delays and analyzed the impact of these delay parameters on
the system’s dynamic behavior. In addition, several SVEIR models have been developed to
assess the influence of incomplete vaccination on epidemics, such as tuberculosis vaccine [6],
hepatitis B vaccine [7], SARS vaccine [8], and HIV vaccine [9].

In recent years, many researchers have analyzed the impact of age on the transmis-
sion of epidemics. As a result, a number of age-structured epidemic models have been
established, and significant progress has been made.

Specifically, Röst [10] built an SEIR model with age-affected infected individuals
and discussed the stability of equilibria. Their results demonstrated that k(a) had a direct
impact on the value of R0. Griffiths et al. [11] found that HIV was the most prevalent among
individuals aged 20–29, and HIV prevention activities were the most effective in individuals
under the age of 35. Magal et al. [12] concluded that if the infectious period coincided with
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the asymptomatic period for even one day, a complete eradication of the disease was not
possible, even with quarantine measures in place. The analysis results in [13] suggested
that to reduce the ratio of vector density to host density was the most effective method
to suppress vector diffusion. Moreover, a smaller ratio indicated a smaller possibility of
backward bifurcation and a lower basic reproduction ratio. Ebenman [14] explained that
when density dependence was primarily influenced by young populations, stabilization
could be achieved through increased competition between young and old populations.
Species of different ages with greater ecological isolation were expected to be more stable.
According to the study by [15], tuberculosis (TB) spread could be better controlled by
reducing the TB spread coefficient β and the TB infectiousness coefficient βρ in individuals
undergoing treatment. As reported by Xu et al. [16,17], the conversion rate in the model was
age-dependent, and both the conversion rate and the probability of the exposed patients
to become infected increased with age. Dai and Zhang [18] claimed that the incidence of
eating disorders could be lowered if people continued their education. Kenne et al. [19]
demonstrated that birth rates directly affected the stability of diseases and that changing
certain parameters triggered periodic epidemics, making it difficult to eradicate them from
the population. Li and Wang [20] held that in order to effectively control infectious diseases,
it was crucial to recruit few susceptible people, restrict travel, and ban large gatherings of
people, in addition to vaccination. In the study by Wang et al. [21], age was reported to be an
important factor directly affecting the outbreak time and spread speed of AIDS. In addition
to the works mentioned above, more age-structured models have been discussed [22–25].

The rest of the paper is organized as follows. Section 2 presents an age-structured
model, illustrates the existence and uniqueness of equilibrium points, and defines the
basic reproduction number of the model. Section 3 studies the asymptotic smoothness and
uniform persistence of the semiflow and demonstrates the existence of a global attractor.
Section 4 analyzes the global stability of equilibrium states. Section 5 presents simulations
for appropriate parameter values. Section 6 draws conclusions and discusses the results.

2. Mathematical Model and Existence of Equilibrium Points

In this section, a COVID-19 model in which the latent period depends on age is
established. Additionally, the existence of equilibrium states is demonstrated, and the basic
reproduction number of the model is calculated.

2.1. Mathematical Model

The population is subdivided into five subsets, namely, susceptible, vaccinated, ex-
posed, infected, and recovered. The densities of susceptible individuals, vaccinated indi-
viduals, infected individuals, and recovered individuals at time t are represented by S(t),
V(t), I(t), and R(t), respectively. The density of exposed individuals aged τ at time t is
denoted by e(τ, t). If a recovered person comes into contact with an infected person, there
is a possibility that he or she will relapse and be involved in the transmission process. Even
to a lesser degree, vaccinated individuals are assumed to be susceptible. Suppose that Λ
is the recruitment rate of susceptible individuals and their vaccination rate is κ. η ∈ (0, 1)
indicates the probability of COVID-19 infection in vaccinated individuals. β is used to
express the contact rate between infected individuals and individuals with susceptibil-
ity. Exposed individuals can become infected at an age-dependent rate of ε(τ). p and γ
represent the reinfection rate of the recovered class and the recovery rate of the infected
class, respectively. The mortality associated with the latency of the epidemic is ξ1 and the
epidemic-related mortality in the infected individuals is ξ2. µ is the natural mortality rate
of the populations. The interactions between state variables are illustrated in Figure 1.
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Figure 1. Compartment transfer diagram of the model.

The dynamics of state variables are characterized by the differential equations below:

S
′
= Λ− βSI − (µ + κ)S,

V
′
= κS− ηβVI − µV,

eτ(τ, t) + et(τ, t) = −(ε(τ) + ξ1 + µ)e(τ, t),
I
′
=
∫ ∞

0 ε(τ)e(τ, t)dτ − (ξ2 + p + µ)I + γR,
R
′
= pI − (γ + µ)R,

(1)

which is subject to the following boundary:

e|τ=0 = βSI + ηβVI, (2)

and the following initial conditions:

S|t=0 = S0, V|t=0 = V0, e|t=0 = e0(τ), I|t=0 = I0, R|t=0 = R0, ∀τ ≥ 0, (3)

and S0, V0, I0, R0 ∈ R+, e0(τ) ∈ L1
+(0, ∞).
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To facilitate the calculation, we use:

σ(τ) = µ + ξ1 + ε(τ), π(τ) = e−
∫ τ

0 (µ+ξ1+ε(s))ds, θ =
∫ ∞

0
ε(τ)π(τ)dτ, ∀τ ≥ 0. (4)

2.2. Existence of Equilibrium Points

Firstly, through simple calculations, the disease-free equilibrium state of System (1) is
obtained: G̈ = ( Λ

µ+κ , κΛ
µ(µ+κ)

, 0, 0, 0). We define:

Λ
µ + κ

:= S̈,
κΛ

µ(µ + κ)
:= V̈. (5)

Furthermore, assuming that Ĝ = (Ŝ, V̂, ê(·), Î, R̂) is the steady-state solution of (1),
Ĝ satisfies: 

0 = Λ− µŜ− κŜ− βŜ Î,
0 = κŜ− µV̂ − ηβV̂ Î,
êτ(τ) = −σ(τ)ê(τ),
0 =

∫ ∞
0 ε(τ)ê(τ)dτ − (µ + ξ2 + p) Î + γR̂,

0 = pÎ + (µ + γ)R̂,
ê|t=0 = (βŜ + ηβV̂) Î.

(6)

Based on [26], the basic reproduction number Rρ is calculated with:

Rρ =
βS̈θ + ηβV̈θ

(µ + ξ2 + p)− pγ/(µ + γ)
, (7)

which refers to the average number of new infections generated by a single newly infected
individual during the entire infectious period.

By integrating the third equation in (6) from 0 to τ, we have:

ê(τ) = (βŜ + ηβV̂) Îe−
∫ τ

0 σ(s)ds = (βŜ + ηβV̂) Îπ(τ). (8)

The first and second equations in (6) are solved and the results are:
Ŝ = Λ

µ+κ+β Î
,

V̂ = κΛ
(µ+ηβ Î)(µ+κ+β Î)

,

R̂ = pÎ
µ+γ .

(9)

By substituting (7) and (8) into (5), we have:

h0( Î)2
+ h1 Î + h2 = 0,

where 
h0 = ηβ2[(µ + p + ξ2)(µ + γ)− pγ],
h1 = [(µ + p + ξ2)(µ + γ)− pγ][(µ + κ)ηβ + µβ]− ηβ2Λθ(µ + γ),
h2 = [(µ + p + ξ2)(µ + γ)− pγ][µ(µ + γ)]− βΛ(µ + κη)(µ + γ)θ.

Let
T( Î) = h0( Î)2

+ h1 Î + h2.

It is evident that h0 > 0, so we find that T( Î)→ ∞ when Î → ∞.
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T(0) = h2 = [(µ + p + ξ2)(µ + γ)− pγ][µ(µ + γ)]− βΛ(µ + κη)(µ + γ)θ

= βΛθ(µ + γ)(µ + κη)

(
1

Rρ
− 1
)

.
(10)

Obviously, T(0) < 0 when Rρ > 1. As T( Î) ∈ (0, ∞) is monotonically increasing,
T( Î) = 0 has only one positive root Î.

3. Preliminary Results

This section discusses some results about the semiflow generated by (1), such as its
asymptotic smoothness and uniform persistence.

3.1. Semi-Flow

The characteristic method is used to seek the solution to the third equation in (1):

e(τ, t) =

{
e0(τ − t) π(τ)

π(τ−t) , τ ≥ t ≥ 0,

[βS(t− τ) + ηβV(t− τ)]I(t− τ)π(τ), t > τ ≥ 0.
(11)

The following assumptions are made at first, and the state space of System (1) is
defined later.

Assumption 1. We make the following hypotheses:

(a) ε(τ) ∈ L1
+(0, ∞) and ε̄ = ess. sup

τ∈[0,∞)

ε(τ) < ∞;

(b) ε(τ) is Lipschitz continuous on R+, that is, ∀m, v ∈ ε(τ), |ε(m)− ε(v)| ≤ Mε|m− v|;
(c) There is a µ0 belonging to (0, µ] such that ε(τ) ≥ µ0, ∀τ ≥ 0 .

Let the state space of (1) be:

Ω =

{
S(t), V(t), e(·, t), I(t), R(t) ∈ Σ

∣∣∣∣S(t) + V(t) +
∫ ∞

0
e(τ, t)dτ + I(t) + R(t) ≤ Λ

µ

}
.

The function space of (1) is defined as:

Σ = R2
+ × L1

+(0, ∞)× R2
+,

the norm is represented as:

‖(x1, x2, x3, x4, x5)‖Σ = |x1|+ |x2|+
∫ ∞

0
|x3(τ)|dτ + |x4|+ |x5|, (12)

and the initial condition is:

x0 = (S0, V0, e0(·), I0, R0) ∈ Σ. (13)

According to [27], System (1) has a unique non-negative solution. Thus, the semiflow
generated by (1) is acquired:

Ψ(t)x0 = (S(t), V(t), e(·, t), I(t), R(t)), f or t ≥ 0, x0 ∈ Σ,

and the norm is similar to (12).

Proposition 1. For System (1), we have

(a) ∀t ≥ 0 , for each x0 ∈ Ω, we have Ψ(t)x0 ∈ Ω;
(b) Ω attracts all points in Σ, and Ψ is point-dissipative.
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Proof. Since π(0) = 1 and d
dτ π(τ) = −σ(τ)π(τ), the variation of the constant formula,

we obtain:

‖Ψ(t)x0‖Σ ≤
Λ
µ
− exp(−µt) ·

(
Λ
µ
− ‖x0‖Σ

)
, ∀t ≥ 0. (14)

It means that Ψ(t)x0 ∈ Ω for any solution of (1) satisfying x0 ∈ Ω, ∀t ≥ 0. Moreover,
based on (14), lim

t→∞
‖Ψ(t)x0‖ ≤ Λ/µ , ∀x0 ∈ Σ. As a result, Ω ⊆ Σ attracts all points and Ψ

is point-dissipative. This proposition is proved valid.

According to Assumption 1 and Proposition 1, the following proposition is made.

Proposition 2. There exists M ≥ Λ
µ , and if x0 ∈ Σ and ‖x0‖Σ ≤ M, then for all t ≥ 0, we have:

(a) S(t), V(t),
∫ ∞

0 e(τ, t)dτ, I(t), R(t) ∈ [0, M];
(b) e(0, t) ≤ β(1 + η)M2.

3.2. Asymptotic Smoothness

In order to explore the global properties of the semiflow, it is essential to study the
asymptotic smoothness of the semiflow {Ψ(t)x0}t≥0.

Definition 1 ([28]). For any nonempty closed bounded set Z ⊂ Σ in which Ψ(t)Z ⊂ Z, if there
is a compact set Z0 ⊂ Z such that Z0 attracts Z, then Ψ(t)x0 : R+ × Σ → Σ is asymptotically
smooth.

Lemma 1 ([28]). If the following cases are met:

(a) There is a continuous function u : R+ × R+ → R+ such that lim
t→∞

u(c, t) = 0 and ‖x0‖Σ ≤
h, ‖ϕ1(t)x0‖Σ ≤ u(c, t);

(b) ϕ2(t)x0 is fully continuous, where t is non-negative;

then, Ψ(t)x0 = ϕ1(t)x0 + ϕ2(t)x0 : R+ × Σ→ Σ is asymptotically smooth in Σ.

Here, we divide Ψ(t)x0 into two operators as follows:

ϕ1(t)x0 = (0, 0, f3(·, t), 0, 0), ϕ2(t)x0 = (S(t), V(t),
^

f 3(·, t), I(t), R(t)),

where f3(τ, t) and
^

f 3(τ, t) can be obtained by (6). It is evident that Ψ(t)x0 = ϕ1(t)x0 +
ϕ2(t)x0, where t is non-negative. To prove (a) in Lemma 1, we need to first verify the
following proposition.

Proposition 3. Let u(c, t) = ce−(µ+µ0)t, where c > 0. Then, lim
t→∞

u(c, t) = 0, and if ‖x0‖Σ ≤ c,

‖ϕ1(t)x0‖Σ ≤ u(c, t).

Proof. Obviously, u(c, t) approaches 0 if t→ ∞. According to (6), we know:

y3(τ, t) =

{
e0(τ − t) π(τ)

π(τ−t) , τ ≥ t ≥ 0,

0, t > τ ≥ 0.
(15)

For x0 ∈ Ω and ‖x0‖Σ ≤ c, we have:

‖ϕ1(t)x0‖Σ = |0|+ |0|+
∫ ∞

0
|y3(a, t)|da+|0|+ |0|

=
∫ ∞

0

∣∣∣∣e0(τ)
π(t + τ)

π(τ)

∣∣∣∣dτ

=
∫ ∞

0

∣∣∣∣e0(τ) exp
(
−
∫ t+τ

τ
σ(s)ds

)∣∣∣∣dτ.

(16)
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Note that σ(τ) ≥ µ0 + µ + ξ1, ∀τ ≥ 0 holds true, and it is easy to obtain:

‖ϕ1(t)x0‖Σ ≤ ce−(µ+µ0)t. (17)

This proposition is proved true.

Since L1
+(0, ∞) is an integral part of Σ, we need a compactness concept in L1

+(0, ∞).
Subsequently, we verify (b) in Lemma 1.

Based on [29] and the conclusion of Proposition 3,
^
y3(τ, t) remains in a precompact

subset of L1
+(0, ∞), which is independent of x0 ∈ Ω. According to (11), we have:

0 ≤
^

f 3(τ, t) =

{
0, τ ≥ t ≥ 0,
[βS(t− τ) + ηβV(t− τ)]I(t− τ)π(τ), t > τ ≥ 0.

(18)

As π(τ) = e−
∫ τ

0 σ(s)ds ≤ e−(µ0+µ+ξ1)τ ,
^

f 3(τ, t) ≤ β(1 + η)M2e−(µ0+µ+ξ1)τ can be
derived from (a) in Proposition 2. This result implies that the condition for the bounded
closed set presented in [29] is met. There is a small enough c ∈ (0, t) such that:∫ ∞

0

∣∣∣∣^f 3(τ + c, t)−
^

f 3(τ, t)
∣∣∣∣da =

∫ t

0
|e(τ + c, t)− e(τ, t)|dτ

≤
∫ t−c

0
e(0, t− τ − c)|π(τ + c)− π(τ)|dτ

+
∫ t

t−c
|e(0, t− τ)π(τ)|dτ

+
∫ t−c

0
|e(0, t− τ − c)− e(0, t− τ)|π(τ)dτ.

We define: ∫ t−c

0
|e(0, t− τ − c)− e(0, t− τ)|π(τ)dτ := ∆.

Note that 0 ≤ π(τ) ≤ e−(µ0+µ+ξ1)τ ≤ 1, and we obtain:∫ t−c

0
|π(τ + c)− π(τ)|dτ =

∫ t−c

0
π(τ)dτ −

∫ t

c
π(τ)dτ

=
∫ t−c

0
π(τ)dτ −

∫ t−c

c
π(τ)dτ −

∫ t

t−c
π(τ)dτ

=
∫ c

0
π(τ)dτ −

∫ t

t−c
π(τ)dτ ≤ c.

Hence, according to (b) in Proposition 2, we obtain:∫ ∞

0

∣∣∣∣^f 3(τ + c, t)−
^

f 3(τ, t)
∣∣∣∣dτ ≤ 2β(1 + η)M2c + ∆.

Combining (1) and Proposition 2, we have:∣∣∣∣dS
dt

∣∣∣∣ ≤ Λ + (µ + κ)M + βM2,

which indicates that
∣∣∣ dS

dt

∣∣∣ is bounded by KS = βM2 + (µ + κ)M + Λ and S(t) ∈ [0, ∞) is

Lipschitz continuous with a coefficient KS.
∣∣∣ dV

dt

∣∣∣ is bounded by KV = −ηβM2 + (µ + κ)M,
and V(t) ∈ [0, ∞) is also Lipschitz continuous with a Lipschitz coefficient KV . Likewise,
it can also be deduced from the fourth equation in (1) and Assumption 1 that

∣∣∣ dI
dt

∣∣∣ ≤
(µ + ξ2 + p)M + γM + ε̄M := KI . It is easy to infer that I(t) is Lipschitz continuous
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with a coefficient KI . According to the lemma of Lipschitz continuity [30], SI ∈ [0, ∞) is
Lipschitz continuous with a coefficient KSI = (KS +KI)M, and VI ∈ [0, ∞) is also Lipschitz
continuous with a coefficient KVI = (KV + KI)M. Hence,

∆ ≤
∫ t−c

0
β(1 + η)M(KS + KV + 2KI)ce−(µ0+µ)τdτ ≤ β(1 + η)(KSI + KVI)c

µ0 + µ
.

Based on the above results, we obtain:∫ ∞

0

∣∣∣∣^f 3(τ + c, t)−
^

f 3(τ, t)
∣∣∣∣dτ ≤

[
2β(1 + η)M2 +

β(1 + η)(KSI + KVI)

µ0 + µ

]
c.

Therefore, lim
c→0

∫ ∞
0

∣∣∣∣^f 3(τ + c, t)−
^

f 3(τ, t)
∣∣∣∣dτ = 0 is uniform for any x0 ∈ Z, and

^

f 3(τ, t) remains in a precompact subset Z^
f 3

of L1
+(0, ∞). Moreover, ϕ2(t)Z ⊂ [0, M]×

[0, M]× Z^
f 3
× [0, M]× [0, M] is compact in Σ. According to the lemma of the bounded

and closed compact set [29], ϕ2(t)x0 is fully continuous. Considering the above, Lemma 1
is proved true.

Two important theorems are acquired as follows.

Theorem 1. {Ψ(t)x0}t≥0 is asymptotically smooth.

Theorem 2. {Ψ(t)x0}t≥0 has a global attractor ϑ ∈ Σ, which attracts the bounded sets of Σ.

3.3. Uniform Persistence

Lemma 2 ([17]). The scalar Volterra integro-differential equation

yt = −hy(t) +
∫ ∞

0
c(α)y(t− α)dα, y(0) > 0,

where c(·) ∈ L1
+(0, ∞), h > 0, and

∫ ∞
0 c(α)dα > h, has a unique unbounded solution y(t).

We denote:

τ̄ = inf
{

τ :
∫ ∞

τ
ε(τ)dτ = 0

}
and define:

^

Σ = L1
+(0, ∞)× R2

+,

^

B =

{
(e(·, t), I(t), R(t))

′
∈

^

Σ :
∫ τ

0
e(τ, t)dτ > 0 or I(t) > 0 or R(t) > 0

}
.

In addition, we make B = R2
+ ×

^

B, ∂B = Σ\B, ∂
^

B =
^

Σ\
^

B, where B and ∂B are
both positive sets. According to [31], several results can be reached. Before the analysis
of the uniform persistence of the semiflow {Ψ(t)x0}t≥0, the following theorem should be
proved true.

Theorem 3. For the semiflow {Ψ(t)x0}t≥0 restricted to ∂B, the disease-free equilibrium G̈ of
System (1) is globally asymptotically stable.

Proof. Let (S0, V0, e0(τ), I0, R0) ∈ ∂B, and we have (e0(τ), I0, R0) ∈ ∂
^

B. Then, the follow-
ing system is obtained:
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eτ(τ, t) + et(τ, t) = −(µ + ξ1 + ε(τ))e(τ, t),
I
′
=
∫ ∞

0 ε(τ)e(τ, t)dτ − (µ + ξ2 + p)I + γR,
R
′
= pI − (µ + γ)R,

(19)

which is subject to the boundary

e|τ=0 = (βS + ηβV)I, (20)

and the following initial conditions:

e|t=0 = e0(τ), I|t=0 = I0, R|t=0 = R0. (21)

As lim
t→∞

S(t) ≤ Λ
µ and lim

t→∞
V(t) ≤ Λ

µ , according to the comparison principle, we obtain:

e(τ, t) ≤ ^
e (τ, t), I(t) ≤

^

I (t), R(t) ≤
^

R(t), (22)

where (
^
e (τ, t),

^

I (t),
^

R(t)) satisfies:
^
e τ(τ, t) +

^
e (τ, t) = −(µ + ξ2 + ε(τ))

^
e (τ, t),

^

I
′

(t) =
∫ ∞

0 ε(τ)
^
e (τ, t)dτ − (µ + ξ2 + p)I + γR,

^

R
′

(t) = p
^

I (t)− (µ + γ)
^

R(t).

(23)

The boundary condition is:

^
e |τ=0 = β(1 + η)

Λ
µ

^

I (t), (24)

and the initial conditions are:

^
e |t=0 = e0(τ), I|t=0 = 0, R|t=0 = 0. (25)

Calculating the first equation in (25) in the same way as (11) and (12), we obtain:

^
e (τ, t) =


^
e 0(τ − t)

π(τ)

π(τ − t)
, τ ≥ t ≥ 0,

β(1 + η)
Λ
µ

^

I (t− τ)π(τ), t > τ ≥ 0.
(26)

Substituting (26) into the second equation in System (23), we can obtain:

^

I
′

(t) = Q(t) + β(1 + η)
Λ
µ

∫ t

0
ε(τ)π(τ)

^

I (t− τ)dτ − (µ + ξ2 + p)
^

I (t) + γ
^

R(t), (27)

where

Q(t) =
∫ ∞

t
δ(τ)e0(τ − t)

π(τ)

π(τ − t)
dτ.

Since (e0(τ), I0, R0) ∈ ∂
^

B, we have Q(t) = 0, for t ≥ 0. Thus,
^

I (t) = 0 is the only
solution of the following equation:

^

I
′

(t) = β(1 + η)Λ
µ

∫ t
0 ε(τ)π(τ)

^

I (t− τ)dτ + γR(t)− (µ + ξ2 + p)
^

I (t),
^

R
′

(t) = p
^

I (t)− (µ + γ)
^

R(t),
(28)
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and its initial conditions are:
^

I |t=0 = I0,
^

R|t=0 = R0. (29)

According to (26), for 0 ≤ τ < t, we have
^
e (τ, t) = 0. When τ ≥ t, we have:∥∥∥^e (τ, t)

∥∥∥
L1

=
∫ +∞

t
e0(τ − t)

π(τ)

π(τ − t)
dτ ≤ e−(µ+µ0)t‖e0(τ − t)‖L1

+
.

Since lim
t→0

^
e (τ, t) = 0, lim

t→∞
e(τ, t) = 0. Furthermore, it can be deduced from System (1)

that lim
t→∞

S(t) = S̈, lim
t→∞

V(t) = V̈. Thus, G̈ is globally asymptotically stable in ∂B. This

theorem is proved valid.

We now demonstrate the uniform persistence of {Ψ(t)x0}t≥0.

Theorem 4. If Rρ > 1, then the semiflow {Ψ(t)x0}t≥0 is uniformly persistent with respect to
(B, ∂B). It means that there is a ε > 0 such that lim

t→∞
‖Ψ(t)x0‖Σ ≥ ε for any x0 ∈ B. Furthermore,

there is a compact global attractor ϑ0 ∈ B of {Ψ(t)x0}t≥0.

Proof. Based on Theorem 3, we only need to demonstrate that there exist T̄ ≥ 0 and ε > 0
such that lim

t→∞
‖Ψ(t)x0‖Σ ≥ ε, ∀x0 ∈ B. The specific steps are as follows:

WS(G̈) ∩ B = ∅,

where

WS(G̈) =

{
x0 ∈ B : lim

t→∞
Ψ(t)x0 = G̈

}
.

On the contrary, we suppose that ∃ f0 ∈ B such that lim
t→∞

Ψ(t) f0 = G̈. Then, for t

non-negative, there is a sequence { fn} ⊂ B such that:

∥∥Ψ(t) fn − G̈
∥∥

Σ
≤ 1

n
.

We denote:
Ψ(t) fn = (Sn(t), Vn(t), en(·, t), In(t), Rn(t)),

fn = (Sn(0), Vn(0), en(0), In(0), Rn(0)).

Selecting a sufficiently big n > 0 such that S̈− 1
n > 0, V̈ − 1

n > 0, there is a positive T̄
for it, and when t > T̄, we have:

S̈− 1
n
< Sn(t) <S̈ +

1
n

,

V̈ − 1
n
< Vn(t) <V̈ +

1
n

,

− 1
n
< In(t) <

1
n

,

− 1
n
< Rn(t) <

1
n

.

(30)

According to (11) and (12), we obtain:

e(τ, t) ≥ [βS(t− τ) + ηβV(t− τ)]I(t− τ)π(τ). (31)
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Combining (30) and (31) with the fourth equation in (1), we have:

In(t) ≥ un(t)

where un(t) satisfies:
dun(t)

dt =
∫ ∞

0 β
[(

S̈− 1
n

)
+ ηβ

(
V̈ − 1

n

)]
ε(τ)π(τ)un(t− τ)dτ

+γun(t)− (µ + ξ2 + p)un(t),
un(t) = In|t=0 ≥ 0.

When un(0) = 0, un(t) > 0. To prevent the loss of generality, let un(0) > 0. By Rρ > 1,
we choose a large enough n ∈ R+ to satisfy:[

β
(

S̈− 1
n

)
+ ηβ

(
V̈ − 1

n

)]
(µ + γ)θ

(µ + ξ2 + p)(µ + γ)− pγ
> 1.

Then, we can deduce that:∫ τ

0

[
β

(
S̈− 1

n

)
+ ηβ

(
V̈ − 1

n

)]
ε(τ)π(τ)dτ > (µ + ξ2 + p)− pγ

µ + γ
.

It can be inferred from Lemma 2 that un(t) is unbounded. Since In(t) ≥ un(t), it is
easy to find that In(t) is unbounded. This result is in contradiction to the fact that In(t) is
bounded. Therefore, the hypothesis is false, and WS(G̈) ∩ B = ∅ holds. According to [32],
{Ψ(t)x0}t≥0 is uniformly persistent. This theorem is true.

4. Stability Analysis of the Equilibrium States

We make use of a Volterra type function g(x) = −1− ln x + x, and define the function
below:

ω(τ) =
∫ ∞

0
ε(s)e−

∫ s
τ σ(τ)dτds.

It should be noted that ω(τ) > 0 for τ ≥ 0 and ω(0) = θ.

4.1. Global Stability of the Disease-Free Equilibrium State

Theorem 5. If Rρ < 1, G̈ is locally asymptotically stable, or, conversely, it is unstable.

Proof. The following variable transformation is performed at first:

x1(t) = S(t)− S̈,

x2(t) = V(t)− V̈,

x3(τ, t) = e(τ, t),

x4(t) = I(t),

x5(t) = R(t).

By linearizing (1) at G̈, we obtain:

x
′
1(t) = −(µ + κ)x1(t)− βS̈x4(t),

x
′
2(t) = κx1(t)− µx2(t)− ηβV̈x4(t),

x3τ(τ, t) + x3t(τ, t) = −(µ + ξ1 + ε(τ))x3(τ, t),
x
′
4(t) =

∫ ∞
0 ε(τ)x3(τ, t)da− (µ + ξ2 + p)x4(t) + γx5(t),

x
′
5(t) = px4(t)− (µ + γ)x5(t),

x3|τ=0 = (βS̈ + ηβV̈)x4(t).

(32)
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Let:

x1(t) = x̃1eλt,

x2(t) = x̃2eλt,

x3(t) = x̃3(τ)eλt,

x4(t) = x̃4eλt,

x5(t) = x̃5eλt,

(33)

where x̃1, x̃2, x̃3(τ), x̃4, and x̃5 are confirmed later. By substituting (33) into (32), we have:

λx̃1 = −(µ + κ)x̃1 − βS̈x̃4, (34)

λx̃2 = κx̃1 − µx̃2 − ηβV̈x̃4, (35)

{
λx̃3(τ) + x̃3τ(τ) = −(µ + ξ1 + ε(τ))x̃3(τ),
x̃3(0) = (βS̈ + ηβV̈)x̃4,

(36)

λx̃4 =
∫ ∞

0
ε(τ)x̃3(τ)dτ − (µ + ξ2 + p)x̃4 + γx̃5, (37)

λx̃5 = px̃4 − (µ + γ)x̃5. (38)

According to the first equation in (36), we obtain:

x̃3(τ) = x̃3(0) · exp(−λτ) · exp(−
∫ τ

0
σ(s)ds)

= (βS̈ + ηβV̈)x̃4 · exp(−λτ) · exp(−
∫ τ

0
σ(s)ds).

(39)

Then, we substitute (39) into (37), and after some calculations, we have:∫ ∞

0
ε(τ)

µβΛ + ηβκΛ
µ(µ + κ)

· e−λτ · e−
∫ τ

0 σ(s)dsdτ − (µ + ξ2 + p) +
γp

µ + γ + λ
− λ = 0.

The characteristic equation is obtained:

T(λ) =
∫ ∞

0
ε(τ)

µβΛ + ηβκΛ
µ(µ + κ)

· e−λτ · e−
∫ τ

0 σ(s)dsdτ − (µ + ξ2 + p) +
γp

µ + γ + λ
− λ.

Apparently, T(λ) is continuous and meets:
T(λ)→ −∞, as λ→ +∞;
T(λ)→ +∞, as λ→ −∞;
T
′
(λ) < 0.

(40)

It is noted that:

T(0) =
µβΛ + ηβψΛ

µ(µ + ψ)
θ − (µ + ξ2 + p) +

γp
µ + γ

= (Rρ − 1) · [(µ + ξ2 + p)(µ + γ)− pγ]

µ + γ
.

Obviously, when Rρ < 1, T(0) < 0, and when Rρ > 1, T(0) > 0. Hence, according to
(40), if Rρ < 1, the characteristic equation has a unique real root λ̂ < 0, and λ̂ > 0 if Rρ > 1.
Supposing that λ = x + iy is an arbitrary complex solution of characteristic T(λ) = 0,
we know that 0 = T(λ) = T(x + iy) ≤ T(x), namely, x < λ̂ since T(λ) is monotonically
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decreasing. Based on the above analysis, we conclude that G̈ is locally asymptotically stable
if Rρ < 1, and G̈ is unstable if Rρ > 1. This theorem is proved true.

Theorem 6. G̈ is globally asymptotically stable when Rρ < 1.

Proof. We consider the Lyapunov function with the following form:

L = L1 + L2 + I + L3, .

where

L1 = θS̈g
(

S
S̈

)
+ θV̈g

(
V
V̈

)
,

L2 =
∫ ∞

0
ω(τ)e(τ, t)dτ,

L3 =
γ

µ + γ
R.

Let:
Λ = (µ + κ)S̈, κS̈ = µV̈.

To derive L1, we have:

dL1

dt
= θ(µ + κ)S̈− θ(µ + κ)S− θβSI −

θ
(
S̈
)2

S
(µ + κ) + θ(µ + κ)S̈ + θβS̈I

+ θκS− θµV − θηβVI + θηβV̈ I − θV̈κS
V

+ θµV̈

= θµS̈
(

2− S̈
S
− S

S̈

)
+ θκS̈

(
3− S̈

S
− SV̈

S̈V
− V

V̈

)
+ θβS̈I − θβSI + θηβV̈ I − θηβVI.

It is noted that ω(0) = θ and e|τ=0 = βSI + ηβVI. According to the integration-by-
parts formula, we have:

dL2

dt
= −ω(τ) e(τ, t)|τ=∞ + ω(0) · e|τ=0 +

∫ ∞

0
e(τ, t)[ω(τ)σ(τ)− ε(τ)]dτ

−
∫ ∞

0
ω(τ)σ(τ)e(τ, t)dτ

= −ω(τ) e(τ, t)|τ=∞ + θ(βSI + ηβVI)−
∫ ∞

0
ε(τ)e(τ, t)dτ.

(41)

To derive L3, we have:
dL3

dt
=

γp
µ + γ

I − γR. (42)

Combining (40)–(42) with the fourth equation in System (1), we obtain:

dL
dt

= θµS̈
(

2− S̈
S
− S

S̈

)
+ θκS̈

(
3− S̈

S
− SV̈

S̈V
− V

V̈

)
+ θβS̈I + θηβV̈ I +

γp
µ + γ

I − (µ + ξ2 + p)I

= θµS̈
(

2− S̈
S
− S

S̈

)
+ θκS̈

(
3− S̈

S
− SV̈

S̈V
− V

V̈

)
+ (Rρ − 1) · I · [(µ + ξ2 + p)(µ + γ)− pγ]

µ + γ
.
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According to the algebra–geometric mean formula, we obtain dL
dt ≤ 0 if Rρ < 1.

Moreover, because S = S̈, V = V̈, e(τ, t) = 0, I = 0, and R = 0 is a sufficient condition
for dL

dt < 0, M̈ = G̈ ⊂ Ω is the largest subset of dL
dt = 0. According to LaSalle’s invariance

theorem, we learn that if Rρ < 1, G̈ is globally asymptotically stable. This theorem is
proved valid.

4.2. Global Stability of the Endemic Equilibrium State

Theorem 7. If Rρ > 1, Ĝ is globally asymptotically stable.

Proof. We construct the Lyapunov function as:

W = W1 + W2 + W3 + W4,

where

W1 = θŜg
(

S
Ŝ

)
+ θV̂g

(
V
V̂

)
,

W2 =
∫ ∞

0
ω(τ)ê(τ)g

(
e(τ, t)
ê(τ)

)
dτ,

W3 = Îg
(

I
Î

)
,

W4 =
γ

µ + γ
R̂g
(

R
R̂

)
.

It is noted that:
Λ = µŜ + κŜ + βŜ Î, κŜ = µV̂ + ηβV̂ Î.

By some simple derivations, the following equations are obtained:

dW1

dt
= θ

(
1− Ŝ

S

)
[Λ− µS− κS− βSI] + θ

(
1− V̂

V

)
[κS− µV − ηβVI]

= θ

(
1− Ŝ

S

)[
µŜ
(

1− S
Ŝ

)
+ κŜ + βŜ Î − κS− βSI

]
+ θ

(
1− V̂

V

)
[κS− µV − ηβVI]

= θµŜ

(
− Ŝ

S
− S

Ŝ
+ 2

)
+ θκŜ

(
− Ŝ

S
− SV̂

ŜV
− V

V̂
+ 3

)

+ θηV̂ Î
(

V
V̂
− VI

V̂ Î
− 1 +

I
Î

)
.

(43)

dW2

dt
= −

∫ ∞

0
ω(τ)ê(τ)

(
1− ê(τ)

e(τ, t)

)
(eτ(τ, t) + σ(τ)e(τ, t))

1
ê(τ)

dτ

= −
∫ ∞

0
ω(τ)ê(τ)

(
e(τ, t)
ê(τ)

− 1
)(

eτ(τ, t)
1

e(τ, t)
+ σ(τ)

)
dτ.

(44)

Then, through applying integration by parts, we obtain:



Mathematics 2023, 11, 3526 15 of 19

dW2

dt
= −

∫ ∞

0
ω(τ)ê(τ)

∂

∂τ
g
(

e(τ, t)
e∗(τ)

)
dτ

= −ω(τ)ê(τ) g
(

e(τ, t)
e∗(τ)

)∣∣∣∣
τ=∞

+ θê(0)
(
−1− ln

e(0, t)
ê(0)

+
e(0, t)
ê(0)

)
−
∫ ∞

0
δ(τ)ê(τ)

(
−1− ln

e(τ, t)
ê(τ)

+
e(τ, t)
ê(τ)

)
dτ.

(45)

According to
∫ ∞

0 δ(τ)ê(τ)dτ + γR̂ = (µ + ξ2 + k) Î, the derivative of W3 is:

dW3

dt
=

(
1− Î

I

)[∫ ∞

0
ε(τ)e(τ, t)dτ + γR− I

Î

(∫ ∞

0
ε(τ)ê(τ)dτ + γR̂

)]
=
∫ ∞

0
ε(τ)ê(τ)

(
e(τ, t)
ê(τ)

− I
Î
− Îe(τ, t)

Iê(τ)
+ 1
)

dτ + γR̂
(

R
R̂
− I

Î

)(
1− Î

I

)
.

(46)

By calculation, the derivative of W4 is:

dW4

dt
=

γ

µ + γ

(
1− R̂

R

)
[pI − (µ + γ)R]. (47)

It is noted that: ∫ ∞

0
ε(τ)ê(τ)dτ = θ · ê|τ=0 = (βŜ Î + ηβV̂ Î)θ.

Then, combining (43) and (45)–(47), we have:

dW
dt

=
dW1

dt
+

dW2

dt
+

dW3

dt
+

dW4

dt

= θµŜ

(
− Ŝ

S
− S

Ŝ
+ 2

)
+ θκŜ

(
− Ŝ

S
− SV̂

ŜV
− V

V̂
+ 3

)

−ω(τ)ê(τ) g
(

e(τ, t)
ê(τ)

)∣∣∣∣
τ=∞

+ J1 + J2 + J3

(48)

where

J1 = θβŜ Î

(
I
Î
− SI

ŜÎ
− Ŝ

S
+ 1

)
+ ηβV̂ Î

(
−1 +

V
V̂
− VI

V̂ Î
+

I
Î

)
− θê(0) ·

(
1 + ln

e(0, t)
ê(0)

)
+ θ · e|τ=0 ,

J2 = −
∫ ∞

0
ε(τ)ê(τ)

[
I
Î
− 2 +

Îe(τ, t)
Iê(τ)

− ln
e(τ, t)
ê(τ)

]
dτ,

J3 = γR̂
(

R
R̂
− I

Î

)(
1− Î

I

)
+

γ

µ + γ

(
1− R̂

R

)
[pI − (µ + γ)R].

In fact, we have the following equation holding:

J2 = −
∫ ∞

0
ε(τ)ê(τ)g

(
Îe(τ, t)
Iê(τ)

)
dτ − θ · ê|τ=0· g

(
I
I∗

)
. (49)

As (µ + γ)R̂ = pÎ, we have:

J3 = γR̂− γR̂I
Î
− γ ÎR

I
+ γR̂− γpR̂I

(µ + γ)R
+

γpI
µ + γ

= 2γR̂− γ ÎR
I
− γpR̂I

(µ + γ)R
.

(50)
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Since e|τ=0 = (βS + ηβV)I, ê|τ=0 = (βŜ + ηβV̂) Î, we have:

J1 = θβŜ Î

(
1− Ŝ

S
+

I
Î

)
+ θηβV̂ Î

(
−1 +

I
Î
+

V
V̂

)
− θ · ê(0) ·

[
1 + ln

e(0, t)
ê(0)

]

= θê(0)g
(

I
Î

)
− θβŜ Îg

(
Ŝ
S

)
+ θηβV̂ Îg

(
V
V̂

)
− θβŜ Îg

(
ê(0)SI

e(0, t)Ŝ Î

)
− θηβV̂ Îg

(
ê(0)VI

e(0, t)V̂ Î

)
.

(51)

Finally, substituting (49)–(51) into (48), we have:

dW
dt

= θµŜ

(
− Ŝ

S
− S

Ŝ
+ 2

)
+ θκŜ

(
− Ŝ

S
− SV̂

ŜV
− V

V̂
+ 3

)

−ω(τ)ê(τ) g
(

e(τ, t)
ê(τ)

)∣∣∣∣
τ=∞
− θβŜ Îg

(
Ŝ
S

)
+ θηβV̂ Îg

(
V
V̂

)
− θβŜ Îg

(
ê(0)SI

e(0, t)Ŝ Î

)
− θηβV̂ Îg

(
ê(0)VI

e(0, t)V̂ Î

)
−
∫ ∞

0
ε(τ)e(τ)g

(
Îe(τ, t)
Iê(τ)

)
dτ − γ ÎR

I
− γpR̂I

(µ + γ)R
+ 2γR̂.

(52)

Based on the equation κŜ = µV̂ + ηβV̂ Î, we obtain:

θκŜ

(
− Ŝ

S
− SV̂

ŜV
− V

V̂
+ 3

)
+ θηβV̂ Îg

(
V
V̂

)

≤ −θκŜ

[
g

(
Ŝ
S

)
+ g
(

SV̂
ŜV

)]
.

(53)

Through analysis, we learn that:

−γ ÎR
I
− γpR̂I

(µ + γ)R
+ 2γR̂ ≤ −γR̂

[
g
(

ÎR
IR̂

)
+

p
µ + γ

g
(

I
R

)]
. (54)

In the end, inserting (53) and (54) into (52), we obtain the derivative of W:

dW
dt
≤ θµŜ

(
− Ŝ

S
− S

Ŝ
+ 2

)
− θκŜ

[
g

(
Ŝ
S

)
+ g
(

SV̂
ŜV

)]

−ω(τ)ê(τ) g
(

e(τ, t)
ê(τ)

)∣∣∣∣
τ=∞
− θβŜ Îg

(
Ŝ
S

)

− θβŜ Îg
(

ê(0)SI
e(0, t)Ŝ Î

)
− θηβV̂ Îg

(
ê(0)VI

e(0, t)V̂ Î

)
−
∫ ∞

0
ε(τ)ê(τ)g

(
Îe(τ, t)
Iê(τ)

)
dτ − γR̂

[
p

µ + γ
g
(

I
R

)
+ g
(

ÎR
IR̂

)]
≤ 0.

Thus, S = Ŝ, V = V̂, e(τ, t) = ê(τ), I = Î, R = R̂ is a sufficient condition for dW
dt < 0,

and M̂ = Ĝ ⊂ Ω is the largest invariant subset of dW
dt = 0. According to the LaSalle’s

invariance theorem, it is concluded that if Rρ > 1, the endemic equilibrium Ĝ is globally
asymptotically stable. This theorem is proved true.
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5. Numerical Simulations

In this section, we created a model using MATLAB and simulated the behavior of
System (1). First, in order to investigate the relationship between the age-dependent
conversion rate ε and age, based on [16,17,26,32], we assumed that the age-dependent
conversion rate ε in the model took the following form: ε = 0.01

1+5e−0.05x .
As depicted in Figure 2, the likelihood of the exposed individuals to become infected

increases with age τ.

Figure 2. Age–dependent conversion rate during latency.

To further investigate the relationship among the basic reproduction number Rρ, the
contact rate β between infected individuals and individuals with susceptibility to the
disease, and the effectiveness of imperfect vaccine η, we used Λ = 1, µ = 0.3, γ = 0.7,
p = 0.4, ξ2 = 0.3, κ = 0.8, and

ε(τ) =

{
0, s ≥ τ ≥ 0,
0.3, τ ≥ s.

It can be seen from Figure 3 that the basic reproduction number Rρ is positively
correlated with both η and β. The Rρ increases as the probability η and β increase. Therefore,
in order to reduce the infection rate of COVID-19, it is necessary to minimize the possibility
of imperfect vaccination, i.e., to improve the effectiveness of the developed vaccine, and to
reduce the contact rate of patients to individuals with susceptibility to the disease.

Figure 3. Relationships among Rρ, β, and η at fixed parameters.

6. Conclusions

Based on the mechanism of COVID-19 infection in susceptible individuals, the present
paper presented an SVEIR model considering imperfect vaccination and latent age. The
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age structure within a latent class was studied, where the latency was described by a vari-
able associated with age, namely, the latent-disease conversion rate ε(τ). The theorem
of the next generation matrix was used to calculate the basic reproduction number Rρ,
which served as a crucial threshold for controlling the harm caused by COVID-19. When
Rρ < 1, the disease-free equilibrium G̈ was globally asymptotically stable, which meant
that the disease would eventually disappear. On the contrary, when Rρ > 1, the endemic
equilibrium Ĝ was globally asymptotically stable, suggesting that the disease would be-
come endemic. Moreover, it was also necessary to analyze the asymptotic smoothness and
uniform persistence of the semiflow generated by the system before proving the existence
of the global attractor and applying the Lyapunov function method.

The results of this paper provide some suggestions for controlling COVID-19. It is
necessary to minimize the likelihood of imperfect vaccination. This can be achieved not
only by enhancing the effectiveness of the vaccine, but also by encouraging people to
receive booster shots to maintain the long-term effectiveness of the vaccine. It is also
essential to reduce the contact rate of patients with individuals who are susceptible to the
disease, such as through a timely isolation of infected individuals.
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