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Abstract: Over the past century, there has been a dramatic increasing interest in the multi-criteria
group decision-making (MCGDM) technique, with a considerable amount of studies published
regarding it. One of the well-known approaches in the MCGDM paradigm is Technique for Order
Preference by Similarity to Ideal Solution (TOPSIS). The integration of the TOPSIS method with fuzzy
set theory has proven to be successful in various applications. Recently, a wide array of publications
has proposed implementing a type-2 fuzzy set with TOPSIS. However, the additional degree of
uncertainty represented by type 2 has largely been ignored, especially in a few specific mathematical
operations in the model. We propose constructing interval type-2 fuzzy membership functions (IT2
MFs) using interval-based data gathered from a survey, where this is used to generate a new scale to
represent ratings for each alternative. This procedure utilized all information gathered from decision
makers. In addition, we present a complete algorithm for TOPSIS based on IT2 fuzzy sets (IT2 FSs)
which preserve the interval-based form output. The output in the form of intervals offers decision
makers (DMs) with more detailed information, enabling them to make more nuanced decisions. This
can include cautious decisions when intervals are wider and overlapping. Although understanding
the exact meaning of these intervals and their widths in a decision-making context is challenging,
this paper introduces a systematic method for connecting input uncertainty to output uncertainty in
the TOPSIS technique. This approach establishes a solid foundation for future research. Thus far, no
other researchers have suggested a data-driven method that combines TOPSIS with fuzzification and
provides intervals as the final output.

Keywords: uncertainty; TOPSIS; IT2 FSs; MCGDM

MSC: 90B50; 90C70; 90C29; 91B06

1. Introduction

Over the past century, there has been a dramatic increase in interest in multi-criteria
group decision-making (MCGDM) techniques. MCGDM aims to provide an evaluation
and selection which involves multiple alternatives and criteria. Commonly, these al-
ternatives and criteria are in conflict with each other. The MCGDM problem can be
viewed as a selection of the most desirable alternative(s) from a set of predetermined
alternatives (e.g., A1, A2, · · · , An) with the consideration of a set of criteria (C1, C2, · · · , C3).
The selection process involves an evaluation from a group of decision makers (DMs)
(D1, D2, · · · , Dm). In the conventional method, the evaluation or rating for each alternative
with respect to each criterion is performed by using a crisp value. However, a major
problem with human DMs is that it is difficult to approximate the precise numerical value
in the evaluation process. Additionally, DMs commonly exhibit various uncertainties such
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as linguistic uncertainties, where different DMs have different interpretations for the same
context of criteria. In [1], it was reported that variation among a group of DMs may occur,
known as inter-expert variability, as well as variation in one DM over time, which is known
as intra-expert variability.

A widely recognized method within the MCGDM framework is the TOPSIS method,
which is used for ranking and selecting alternatives [2]. This approach operates on the
principle that the ideal solution or the best alternative should be closest to the positive
ideal solution (PIS) and farthest from the negative ideal solution (NIS). The PIS and NIS
represent the collection of best and worst values of the alternatives, respectively. However,
sometimes an evaluation or rating cannot be made precisely, as an imprecision may come
from different sources such as unquantifiable, incomplete and non-obtainable information,
as well as being inadequate for modeling real-life situations [3]. To address these challenges,
fuzzy set theory (FST) is employed, which was introduced by Zadeh in 1965 [4]. This
theory incorporates the notion of membership degrees, where the degree is expressed as a
numerical value between 0 and 1, indicating the extent to which an element belongs to a
specific set.

An initial extension of TOPSIS was introduced by Chen in 2000 [5,6], where the
utilization of fuzzy numbers (FNs) was employed to represent the degree of linguistic
values within fuzzy sets. These combinations have enhanced the classical TOPSIS method,
making it more applicable and effective at addressing practical and theoretical issues.
According to a survey conducted by Behzadian [7], fuzzy set theory appears to be the
most widely used approach in TOPSIS. The survey revealed that over half of the TOPSIS
studies incorporated linguistic variables and FNs to handle problems involving imprecise
information. Hence, it is reasonable to suggest that fuzzy TOPSIS (FTOPSIS) is presently one
of the most popular and successful methods, having demonstrated satisfactory performance
in various application domains over the past 15 years (e.g., in [8–14]).

Even the capability of modeling uncertainty using a fuzzy set proved successful in
various applications. Most recently, type-2 fuzzy sets (T2FS) [15] have been found to
provide better models, especially when involving large amounts of uncertainty [16]. Unlike
T1 FSs, T2 FSs have fuzzy membership functions in three dimensionals which include a
footprint of uncertainty (FOU). These FOUs are formed from the union of the primary
memberships. Additionally, in the FTOPSIS paradigm, considering the fact that in some
cases, precisely determining the membership value between 0 and 1 in T1 FSs is difficult,
the membership value can thus be expressed as an interval which consists of real numbers.
Commonly, DMs feel more confident providing interval judgments instead of precise values
of judgment due to the fact that there exists a fuzzy nature in the comparison process which
makes DMs inexplicit about their preferences [17]. Up to now, a number of studies have
reported that an extension of the MCDM method with T2FS produced more accurate and
robust results [18].

An initial work which represented the TOPSIS method with interval-valued fuzzy sets
(IVFSs) was made by Ashtiani [3]. This method modified the the classical FTOPSIS method
introduced by Chen [5] by replacing the first and last elements in triangular FNs with
interval values. Thus, the linguistic variable scales become interval-valued FNs. However,
the calculation in the method is still based on crisp numbers instead of FNs. To address this
issue, the concept of IT2 FSs was introduced by Mendel et al. [19] and has been applied
in conjunction with the TOPSIS method. Significantly, a notable advancement was made
in a method proposed by Chen and Lee [20], where IT2 FSs are employed as a set of
ratings in TOPSIS. In this approach, the authors determined the ranking values by utilizing
elements from both a fuzzy decision matrix and a crisp decision matrix. Subsequently,
the output value (referred to as the closeness coefficient) is calculated using both FNs and
crisp numbers, allowing for a comparison of the results. However, other researchers have
directed their attention toward specific steps within the TOPSIS method. For instance,
in a study by Nasab et al. [21], an IT2 FTOPSIS approach was introduced, focusing on
the determination of a fuzzy positive ideal solution and fuzzy negative ideal solution
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through the utilization of IT2 FSs. In a similar vein, Dymova et al. [22] introduced an
IT2 FTOPSIS approach utilizing alpha cuts, whereas Kilic and Kaya [23] suggested an
IT2 FTOPSIS approach for evaluating investment projects and producing a conclusive
ranking. Given the intricacies of real-world environments and the inherent uncertainty in
decision-making problems, interval numbers are frequently employed to represent object
evaluation information [24].

Evidently, in all of the studies examined in this review, the uncertainty starts from
the initial steps of the processes which include the selection of a feasible group of decision
makers, the reasonable alternatives and the criteria. However, here, we are more concerned
about the the initial and last steps in the FTOPSIS model, where the former needs to
involve humans, which tend to provide opinions or preferences which are imprecise, vague,
uncertain and unpredictable, while the latter provide an interval output to be ranked.

The study conducted by Ozen and Garibaldi [25] revealed that there can be variations
not only among DMs but also within the decisions made by an individual expert, even when
dealing with the same inputs. This implies that the terms utilized in a decision-making
model can have different interpretations for different decision makers, and consequently,
these DMs may reach distinct conclusions based on their specific perspectives.

The contributions in this paper can be classified into two different stages: the prepro-
cessing data stage, which we called data-driven T2 FTOPSIS, and the ranking stage. The
former stage includes the preprocessing of data which were collected as interval values,
and modeled into IT2 FSs to handle uncertainty. The latter stage is a new form of output
(relative closeness coefficient) in TOPSIS where they remain in interval-valued form. We
will discuss the details of both stages in Sections 2 and 3, respectively.

IT2 FTOPSIS has been acknowledged as a valuable approach for addressing MCDM
problems. However, the potential benefits of IT2 FSs, as demonstrated in the reviewed
methods, are not fully utilized due to a significant loss of additional information. This
is primarily because the final output, known as the closeness coefficient (CC), is still
presented as a crisp value. As a result, DMs do not have access to the extra information
that could be provided by these sets during the decision-making process. Therefore, it
seems reasonable to develop a TOPSIS method that incorporates IT2 FSs and effectively
utilizes the additional information they offer, resulting in the final output being an interval.
Building upon this idea, our initial experiment, as documented in Madi et al. [26], revealed
a relationship between the level of uncertainty (represented by the amount of blurring)
and the TOPSIS result, specifically the CC interval. To better represent uncertainty in the
FTOPSIS method, we propose gathering opinions from decision makers using a survey
where the DM provides interval-based opinions for each term or word used in a rating scale
based on different criteria. Then, from these interval-based opinions, we construct IT2 MFs
to represent each label or term used in a rating scale. This means the fuzzification process
in this model utilizes all information provided by the DMs, depending on the context itself.
In addition, we present a complete algorithm for TOPSIS based on IT2 FSs, which preserve
the interval-based form until the final output (i.e., the CC interval). Until now, no other
scholars have put forward a data-oriented fuzzification TOPSIS technique that yields an
interval as the ultimate result, thereby enabling a more comprehensive foundation for
ranking within the FTOPSIS methodology.

2. Preliminaries
2.1. Fuzzy Set

Definition 1. A fuzzy set A in X can be defined as follows:

A = {x, µA(x)}, x ∈ X (1)

Here, µA(x) : X → [0, 1] represents the membership function of A, indicating the degree of
membership of x in A. If µA(x) is equal to one, then it signifies that x completely belongs to the
fuzzy set A. In contrast to classical set theory, where membership is binary (either zero or one),
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µA(x) in fuzzy set theory can assume the values [0, 1], capturing the concept of partial membership
of x in the fuzzy set A [4].

Definition 2. A fuzzy number M can be defined as a convex normal fuzzy set on the real line R,
satisfying the following properties: there exists a unique x0 ∈ R with µM(x0) = 1 (referred to as
the mean value of M), and the membership function µM(x) is piecewise continuous [27].

Fuzzy numbers come in various types that are selected based on specific applications or
situations. Among them, the triangular fuzzy number (TFN) is extensively employed in decision
making due to its intuitive membership functions and computational ease [28,29]. The definition of
a TFN can be expressed as a triplet (l, m, u), where l represents the minimum value, m represents
the peak value and u represents the maximum value of the membership function. In this particular
study, TFNs are adopted for designing fuzzy membership functions.

Definition 3. A type-2 fuzzy set (T2FS), represented by Ã, is defined by a type-2 membership
function µÃ(x, u), where x belongs to the set X and u belongs to the interval Jx ⊆ [0, 1], as
illustrated in Equation (2) [30]:

Ã = {((x, u), µÃ(x, u))|∀x ∈ X, ∀u ∈ Jz ⊆ [1, 0]} (2)

in which 0 ≤ µÃ(x, u) ≤ 1. Ã can also be expressed as

Ã =
∫

x∈X

∫
u∈Jx

µÃ(x, u)/(x, u) Jx ⊆ [1, 0] (3)

The notation
∫ ∫

signifies the union over all permissible values of x and u. However, when
dealing with discrete universes of discourse, the symbol

∫
is replaced by Σ.

Definition 4. If all the values of µÃ(x, u) in Equations (2) and (3) are equal to one, then Ã is
categorized as an IT2 FS [19].

Definition 5. The uncertainty associated with the primary memberships of an IT2 FS, denoted as
Ã, can be represented by a bounded region known as the FOU. The FOU is formed by the union of
all primary memberships [19]. In other words, the FOU encapsulates the range of possible values
for the primary memberships of Ã:

FOU(Ã) =
⋃

x∈X
Jx (4)

As a result, the FOU for Ã can be described by FOU(Ã) = (x, u) : u ∈ [µA(x), µA(A)].
The FOU is defined by both an upper membership function (UMF) and a lower membership function
(LMF).

Definition 6. A triangular interval type-2 fuzzy number refers to an IT2 FN in which both
the UMF and LMF are TFNs. In other words, for a triangular IT2 FN A, it can be expressed
as A = (AU , AL) =

(
(aU

1 , aU
2 , aU

3 ; H(AU)
)
,
(
(aL

1 , aL
2 , aL

3 ; H(AL)
)
, where H(AU) and H(AL)

denote the membership values of the elements aL
j+1 and aU

j+1, respectively.

Definition 7. Consider two trapezoidal fuzzy numbers denoted as Ã = (a1, a2, a3, a4; h1(A), h2(A))
and B̃ = (b1, b2, b3, b4; h1(B), h2(B)). The Euclidean distance (dE) between these two FNs is de-
fined as shown in Equation (5):

dE = (
1
v
[(a1 − b1)

2 + (a2 − b2)
2 + (a3 − b3)

2 + (a4 − b4)
2

+ max|h1(A)− h1(B)|, |h2(A)− h2(B)|])
1
2

(5)
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2.2. The Fuzzy TOPSIS (FTOPSIS) Method

In FTOPSIS, a special type of fuzzy set, namely an FN (see Definition 2), is used to
represent the human preferences. The series of steps in FTOPSIS is summarized as follows:

1. Build the fuzzy decision matrix, denoted by D, following the formulation provided in
Equation (6):

D =

C1 C2 · · · Cn


A1 x11 x12 · · · x1n
A2 x21 x22 · · · x2n
...

...
...

. . .
...

Am xm1 xm2 · · · xmn

(6)

W =
[
w1 w2 · · · wn

]
(7)

In the given scenario, there are multiple possible alternatives, denoted by A1, A2, · · · , Am,
from which DMs need to make a choice. Additionally, there are criteria or attributes,
represented by C1, C2, · · · , Cn, against which these alternatives will be evaluated.
The rating of alternative Ai in relation to criterion Cj is denoted by xij, and the
weight assigned to criterion Cj is denoted by wj. The values of xij are given by
xij = (lij, mij, uij), where l, m and u represent the elements of the FN as defined in
Definition 2.

2. Let us consider a decision group comprising k DMs. In such a scenario, the aver-
age weights assigned to the criteria and the ratings provided by the k DMs for the
alternatives can be calculated as follows:

w̃j =
1
k
[w̃1

j + w̃2
j + · · ·+ w̃k

j ], (8)

x̃j =
1
k
[x̃1

j + x̃2
j + · · ·+ x̃k

j ], (9)

Here, w̃j and x̃j represent the importance weights assigned by the kth decision maker
to the criteria and the ratings given to the alternatives, respectively. The resulting
values of w̃j and x̃j are organized in matrices W and D, respectively. Both the ratings
and the weights are represented as TFNs, where x̃j = (aij, bij, cij) denotes the rating
for criterion j of alternative i and w̃j = (wj1, wj2, wj3) represents the importance
weight for criterion j.

3. Create the normalized fuzzy decision matrix, denoted by rij, using the formulations
provided in Equations (10) and (11):

r̃ij =

(
aij

c∗j
,

bij

c∗j
,

cij

c∗j

)
, j ∈ B; (10)

where c∗j = maxi cij if j ∈ B;

r̃ij =

(
a−j
cij

,
a−j
bij

,
a−j
aij

)
, j ∈ C; (11)

In this normalization process, a−j is determined to be the minimum value among all
aij if j belongs to the set of criteria C. This step is crucial to ensure that the TFNs are
scaled within the range of [0, 1] while preserving their units.

4. Given that each criterion holds different levels of importance, the next step is to build
the weighted normalized fuzzy decision matrix, denoted by Ṽ, using the equation
provided in Equation (12):

Ṽ = [ṽij]m×n, i = 1, 2, · · · , m, j = 1, 2, · · · , n, (12)
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where ṽij = r̃ij(·)w̃j.
5. Identify two artificial alternatives referred to as the fuzzy positive ideal solution (FPIS),

denoted by A∗, and the fuzzy negative ideal solution (FNIS), denoted by A−. These
alternatives are specifically defined for the purpose of the analysis.

6. Compute the distances, denoted by d+i and d−i , for each alternative from the FPIS and
FNIS, respectively, using the formulas given in Equations (13) and (14):

d+i =
n

∑
j=1

dv(ṽij, ṽ+j ) (13)

d−i =
n

∑
j=1

dv(ṽij, ṽ−j ) (14)

In the aforementioned equations, dv(·, ·) represents the distance between two fuzzy
numbers using the vertex method. Suppose m̃ = (m1, m2, m3) and ñ = (n1, n2, n3) are
two TFNs. The calculation of the distance between these TFNs can be determined
using Equation (15):

d(m̃, ñ) =

√
1
3
[(m1 − n1)

2 + (m2 − n2)
2 + (m3 − n3)

2] (15)

7. Calculate the relative closeness or closeness coefficient, denoted by CCi, by applying
Equation (16):

CCi =
d−i

d−i + d+i
(16)

8. Establish the ranking order of the alternatives and choose the most favorable option
from a predetermined set of alternatives.

2.3. Interval Approach (IA) and Enhanced Interval Approach (EIA) [31]

The IA, developed by Liu and Mendel [31], is a methodology specifically designed to
convert interval descriptions into IT2 FSs that accurately depict those intervals or words.
This approach forms an integral part of a recent research initiative in the computational
words (CW) field, which focuses on utilizing fuzzy sets (FSs) to model words, particularly
adjectives. This enables the words to be effectively employed in computational tasks and
approximate reasoning [32–34].

The IA method comprises two primary components: (1) the data part and (2) the
fuzzy set part. In the data part, the intervals undergo preprocessing to remove outliers,
nonsensical data, intervals outside a specified tolerance threshold and intervals that do not
overlap with others. The remaining intervals are then assigned probability distributions,
generating statistical measures like the mean and standard deviation. The fuzzy set part of
the IA method involves nine steps [31]:

1. Select a type-1 fuzzy set (T1 FS) model, choosing from options like left shoulder,
symmetrical triangle or right shoulder T1 membership functions.

2. Define the uncertainty measures for the fuzzy sets, utilizing the mean and standard
deviation.

3. Calculate the uncertainty measures for the T1 FS models by determining the mean
and standard deviation for each T1 FS.

4. Derive general formulas for the parameters of the T1 FS models by equating the mean
and standard deviation of a T1 FS to its corresponding data interval.

5. Determine the nature of the FOU by classifying the set of data intervals as interior,
left shoulder or right shoulder FOUs based on the mean values of their left and right
endpoints.
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6. Calculate the embedded T1 FSs by associating the remaining data intervals with their
respective T1 FSs.

7. Eliminate the inadmissible T1 FSs by removing the embedded T1 FSs whose support
falls outside the desired range.

8. Generate an IT2 FS by combining the T1 FSs through implementing the ‘union’ opera-
tion.

9. Approximate the UMFs and LMFs of the FOUs to calculate a mathematical model for
the FOUs.

In [31], the IA method was illustrated using survey data that captured people’s
opinions on the interpretation of linguistic terms such as ‘very little’ and ‘a lot’. An
enhanced version of the IA method, known as the EIA, was subsequently introduced in
Coupland’s study [35]. In the EIA method, modifications were made to the preprocessing
stage to generate a narrower FOU, and adjustments were implemented in the calculation
of the interior LMF. These alterations were motivated by the authors’ observation that
the IT2 FSs generated using the standard IA method produced wider intervals compared
with the original observations [36]. The EIA method aimed to develop IT2 sets that
effectively captured the uncertainty of linguistic terms while preserving the essential shape
of trapezoidal or shoulder FOUs. In this paper, we focus on the IA and EIA approaches as
reference points for comparison, given that both the IA and EIA share a similar objective of
translating interval-based data into fuzzy sets, similar to the proposed IAA approach.

3. Method Formulation

In this section, our objective is to demonstrate the development of a data-driven
framework for T2 FTOPSIS. This section begins with an introduction (Section 3.1) that
provides an overview of the methodology. It is followed by a comprehensive description of
our proposed method (Section 3.2). Subsequently, we delve into a discussion (Section 3.3)
highlighting the similarities and distinctions between our proposed method and an existing
IT2 FTOPSIS model introduced by Chen et al. [35].

3.1. Introduction

The objective of the proposed method is to establish a precise depiction of interval data
through the utilization of fuzzy sets. This approach acknowledges the presence of linguistic
uncertainty, considering that individuals may have varying interpretations of a word. The
goal is to capture and retain all the information inherent in the original data intervals.
More specifically, our aim is to model the uncertainty that arises among decision makers
by aggregating all the intervals collected through surveys. Subsequently, we introduce
some modifications to the existing FTOPSIS method. We will explain the details in the next
section.

3.2. Method

In this section, we propose a modification of the existing FTOPSIS method which
enables modeling uncertainties based on context, utilizes interval-based data and directly
models the uncertainty from the collected intervals. Based on the standard FTOPSIS
technique (Section 2.2), each decision maker needs to give preferences for each alternative
with respect to each criterion. Commonly, DMs use linguistic labels (e.g., very good, good
or bad) to describe their assessments. The linguistic label usually is constructed based
on a real number scale, such as in the Likert scale, and then extended to FNs, where
the approximate values lie within the number. In our method, we will construct IT2 FSs
directly from the intervals collected during a survey using the interval approach technique
(Section 2.3) [31]. This technique aims to use intervals describing words and construct IT2
FSs that represent those intervals or words.

Based on the FTOPSIS paradigm, each decision maker provides an interval associated
with a word (i.e., a linguistic label) which relates to specific context on a predetermined
scale. For example, a DM is asked the following question: Based on the criterion ‘taste of
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food’, what is the appropriate interval, on a 0–10 scale, that you associate with the words
‘very tasty’? This procedure is important since the DM’s opinion is solely based on the
appropriate linguistic label being chosen. Additionally, this procedure has straightforward
mapping from data to an FOU. The generated IT2 MFs can now be used as a rating scale to
evaluate each alternative with respect to each criterion. Next, the DMs will provide ratings
that can be used in the FTOPSIS procedure to make selections or evaluations.

Since the construction of IT2 MFs is now based on each criterion, there will be different
scales for different criteria. These scales represent real interval-based data gathered from
a survey. Then, to construct IT2 MFs and, at the same time, model the words used in the
linguistic label scale, we employ the interval approach described in Section 2.3.

Assume that there are i DMs, denoted by D = [D1, D2, · · · , Di], and m alterna-
tives to be chosen, denoted by A = [A1, A2, A3, · · · , Am]. To make a selection, each
DM needs to evaluate each alternative based on n predetermined criteria, denoted by
C =[C1, C2, C3, · · · , Cn].

3.2.1. Step 1: Constructing Fuzzy Membership Functions

Each DM is asked to give an opinion on what interval number is suitable to represent
each linguistic label or appropriate term that will be used in the rating process. It is worth
noting that each criterion will have different interpretations, as different criteria will have
different meanings and characteristics. Some criteria are classified as benefit criteria, (The
larger the rating, the greater the preference.) while the others may classified as cost criteria.
(The smaller the rating, the greater the preference.) Assume that there are j intervals
given by a group of DMs as follows: [a1, a2]

1, [b1, b2]
2, · · · , [c1, c2]

i. By employing the IA
technique, we model each term (i.e., linguistic label) into IT2 FSs.

3.2.2. Step 2: The Rating Process

In this step, all DMs provide ratings for each alternative based on each criterion using
the rating scale in Step 1. There are m scales, since there are m criteria. Instead of using
one general scale, our proposed method generates different scales for different criteria to
represent an exact meaning of an opinion gathered from a DM. This procedure is different
than the existing FTOPSIS method, which only uses a general scale which presents synthetic
numerical values for each criterion. In other words, the parameters of the scales are not
related at all to the exact data gathered from decision makers.

3.2.3. Step 3: Aggregate the Ratings from All DMs

In this step, we aggregate all ratings provided by m decision makers by computing
their average. Let us assume that there are two IT2 FNs: Ai = (AU

i , AL
i ), where (AU

i , AL
i ) =

(aU
i1, aU

i2, aU
i3, aU

i4), (aL
i1, aL

i2, aL
i3, aL

i4), i = 1, 2. In order to combine and aggregate these two FNs,
we employ the standard operation in an IT2 FN as in Equation (18):

([aU
11 + aU

21]/2, [aU
12 + aU

22]/2,[aU
13 + aU

23]/2, [aU
14 + aU

24]/2

[aL
11 + aL

21]/2, [aL
12 + aL

22]/2,[aL
13 + aL

23]/2, [aL
14 + aL

24]/2)
(17)

3.2.4. Step 4: The Normalization Process

Since the criteria involved in most decision problems are different, it is thus essential
to perform a normalization process in order to standardize all the data or information
within the range of [0, 1]. We employ the normalization technique shown in Equation (18).
A decision matrix resulting from the previous step is normalized to ND = [nij]m×n, where

nij =


aij−amin

j

amax
j −amin

j
j ∈ B,

amax
j −aij

amax
j −amin

j
j ∈ C.

(18)
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3.2.5. Step 5: The Weighting Process

In this step, the DMs specify the importance weight of the criteria and multiply them
by each value in a decision matrix ND to find the weighted normalized decision matrix
NW.:

NW = [nij × wi]m×n = [vij] (19)

3.2.6. Step 6: Determine the PIS and NIS

In this step, we need to determine two subjective alternatives based on Equation (20):

A+ = (d+1 , d+2 , · · · , d+m) = (maxivij|j ∈ B&minivij|j ∈ C)

A− = (d+1 , d+2 , · · · , d+m) = (maxivij|j ∈ B&minivij|j ∈ C)
(20)

3.2.7. Step 7: Find the Distance of Each Alternative to the PIS and NIS

Here, we calculate the distance of each alternative from the PIS and NIS as in Equation (21):

S+
i =

√
Σm

1 (vij − d+j )
2, i = 1, 2, · · · , m;

S−i =
√

Σm
1 (vij − d−j )

2, i = 1, 2, · · · , m
(21)

3.2.8. Step 8: Calculate the Relative Closeness Coefficient for Each Alternative

CCi =
S−i

(S−i + S+
i )

(22)

The CCi value remains in interval form. The interval-based CC may provide essential
information for a specific context and environment. Thus, we believed that by preserving
this interval-based form from the beginning until the end, it would provide significant
effects and possibly provide flexibility for making any selection.

3.3. Numerical Analysis

In this section, we use a simple numerical example in order to demonstrate our
proposed method. Assume that we conduct a survey about the selection of food outlets
by a group of university students. There are five participants which act as DMs, denoted
by D = [D1, D2, D3, D4, D5]. There are three alternatives food outlets to be chosen during
lunchtime, namely Cafe Terrazo (A1), Cafe Aspire (A2) and SPAR Shop (AC). To make a
selection, each participant needs to evaluate each alternative based on three predetermined
criteria: average price of food (C1), speed of service (C2) and taste of food (C3). To construct
an effective fuzzy rating scale, specifically an IT2 fuzzy scale, we implement the interval
approach introduced in [31] to model each word in the label. This procedure starts with
gathering a series of opinions from each DM on what is the suitable range value for each
linguistic label represented for each criterion. For criterion 1 (average price of food), there
are five linguistic labels used to rate the alternatives, namely ‘very low’, ‘low’, ‘medium’,
‘high’ and ‘very high’. An example of a question is as follows: “For each label, please
provide your opinion on what is the appropriate range (interval) value of the word ‘very
low’ within the ‘price’ variable”.

Assume that five DMs give their interval-based assessments about the appropriate
range of values for each linguistic label. For simplicity, we only present five intervals in
Table 1.
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Table 1. Interval-based assessment value for each linguistic label with respect to each criterion.

Decision Maker (s) (DM) Very Low (VL) Low (L) Medium (M) High (H) Very High (VH)

DM1 [0.7, 2.3] [2.7, 4.3] [3.4, 4.8] [2.7, 4.9] [4.8, 6.3]
DM2 [0, 1.7] [1.8, 2.5] [1.5, 3.4] [3.4, 5.5] [8.3, 10]
DM3 [0.4, 1.3] [0.4, 2.1] [1.7, 2.9] [3, 6.3] [6, 10]
DM4 [0, 2.2] [1, 3] [3, 5.2] [5.9, 8.1] [7.9, 10]
DM5 [0, 2] [2, 4] [4, 6] [6, 8] [8, 10]

3.3.1. Step 1: The Construction of Fuzzy Sets

We construct the fuzzy sets from these interval-based assessments into MFs. To model
uncertainty into IT2 FSs which exist among the decision makers, we employ IA. Basically,
this technique aims to model uncertainty regarding the meanings of words used in linguistic
labels. For example, we used five respondents to construct the IT2 MFs shown in Figure 1.

Figure 1. IT2 MFs for each criterion. (a) Criterion 1: average price of food. (b) Criterion 2: speed of
service. (c) Criterion 3: taste of food.

3.3.2. Step 2: The Average Ratings from the Decision Makers

The new rating scales expressed as membership function parameters are now gen-
erated based on the results from the previous step. Based on Figure 1, the generated IT2
MFs will provide new scales for each criterion. Examples of the scales and parameters of
criterion 1 (price of food), criterion 2 (speed of service) and criterion 3 (taste of food) are
presented in Tables 2–4.

Table 2. IT2 fuzzy MF scale for criterion 1 (price of food).

UMF Parameter LMF Parameter

Very Low (0, 0, 0.48, 2.9) (0, 0, 0.05, 0.66)
Low (0.05, 1.25, 2.75, 4.16) (1.79, 2.05, 2.05, 2.45)

Medium (1.38, 3.35, 4.45, 5.93) (3.11, 3.81, 3.81, 4.21, 0.57)
High (3.52, 5, 5.85, 8.18) (3.98, 5.36, 5.36, 6.41, 0.74)

Very High (4.73, 9.63, 10, 10) (8.82, 9.92, 10, 10)
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Table 3. IT2 MF scale for criterion 2 (speed of service).

UMF Parameter LMF Parameter

Very Fast (0, 0, 0.96, 3.04) (0, 0, 0.09, 1.32)
Fast (0.38, 2, 3.25, 4.88) (1.69, 2.58, 2.58, 3.41)

Medium (2.59, 4, 4.9, 6.46) (3.34, 4.43, 4.43, 5.41)
Slow (5.59, 7, 7.4, 8.96) (5.84, 7.19, 7.19, 8.41)

Very Slow (7.37, 9.82, 10, 10) (7.63, 9.83, 10, 10)

Table 4. IT2 MFs scale for criterion 3 (taste of food).

UMF Parameter LMF Parameter

Very Bad (0, 0, 0.18, 2.63) (0, 0, 0.05, 0.66)
Bad (0.09, 1.5, 2.5, 3.91) (1.09, 2, 2, 2.91)

Medium (2.1, 4.5, 5, 6.9) (3.59, 4.75, 4.75, 5.91)
Good (4.89, 5.95, 7, 8.41) (5.59, 6.4, 6.4, 7.01)

Very Good (7.37, 9.82, 10, 10) (8.16, 9.87, 10, 10,)

As we mentioned in Step 2 in Section 3.2, there will be m rating scales according to m
criteria. After collecting all opinions from the DMs, then the average ratings among the
five DMs are calculated as in this example. We assume that the average rating among the
five DMs for alternative A1 is summarized in decision matrix D(A1):

D(A1) =

x11 x12 x13
x21 x22 x23
x31 x32 x33

 (23)

where

x11 = [(3.59, 5, 5.733, 7.293), (4.173, 5.35, 5.35, 6.41)]
x12 = [(1.853, 3.333, 4.35, 5.933), (2.817, 3.823, 3.823, 4.743)]
x13 = [(2.053, 4.743, 5.733, 6.697), (4.573, 5.260, 5.287, 5.553)]
x21 = [(1.713, 3.667, 5.083, 6.707), (3.703, 4.283, 4.283, 4.797)]
x22 = [(0.620, 1.233, 2.037, 5.173), (1.450, 1.607, 1.667, 2.683)]
x23 = [(0.620, 1.233, 2.037, 5.173), (1.450, 1.607, 1.667, 2.683)]
x31 = [(3.680, 5.233, 6.817, 8.593), (5.330, 6.053, 6.053, 6.743)]
x32 = [(5.563, 8.087, 9.150, 9.693), (7.380, 8.803, 8.890, 9.137)]
x33 = [(4.167, 6.277, 7.667, 8.9), (6.11, 7.120, 7.163, 7.607)]

Then, according to Equation (18), we calculate the normalized values, which can be
represented in decision matrix ND as shown in Equation (24):

ND =

x11 x12 x13
x21 x22 x23
x31 x32 x33

 (24)

where

x11 = [(0.742, 0.451, 0.287, 0.003), (0.531, 0.382, 0.382, 0.283)]
x12 = [(1, 0.765, 0.545, 0.314), (0.720, 0.654, 0.654, 0.590)]
x13 = [(0.749, 0.315, 0.155, 0.000), (0.342, 0.232, 0.227, 0.184)]
x21 = [(0.820, 0.499, 0.267, 0.000), (0.493, 0.398, 0.398, 0.314)]
x22 = [(1, 0.899, 0.767, 0.252), (0.864, 0.838, 0.828, 0.661)]
x23 = [(0.951, 0.746, 0.580, 0.201), (0.749, 0.678, 0.674, 0.542)]
x31 = [(0.514, 0.764, 1.019, 1.306), (0.780, 0.896, 0.896, 1.008)]
x32 = [(0.817, 1.224, 1.395, 1.483), (1.110, 1.340, 1.354, 1.393)]
x33 = [(0.592, 0.932, 1.156, 1.355), (0.905, 1.068, 1.075, 1.147)]
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Next, we determine the weighted normalized decision matrix NW as in Equation (19).
In this numerical example, we assume that each criterion has the same weight of importance.
Thus, we present NW as shown in Equation (25):

NW =

x11 x12 x13
x21 x22 x23
x31 x32 x33

 (25)

where

x11 = [(0.74, 0.45, 0.29, 0.00), (0.53, 0.38, 0.38, 0.28)]
x12 = [(1, 0.76, 0.55, 0.31), (0.72, 0.65, 0.65, 0.59)]
x13 = [(0.75, 0.32, 0.16, 0.00), (0.34, 0.23, 0.22, 0.18)]
x21 = [(0.82, 0.50, 0.27, 0.00), (0.49, 0.39, 0.39, 0.31)]
x22 = [(1, 0.9, 0.77, 0.25), (0.86, 0.84, 0.83, 0.66)]
x23 = [(0.95, 0.75, 0.58, 0.20), (0.75, 0.68, 0.67, 0.54)]
x31 = [(0.51, 0.76, 1.02, 1.31), (0.78, 0.9, 0.9, 1.10)]
x32 = [(0.81, 1.22, 1.36, 1.48), (1.11, 1.34, 1.35, 1.39)]
x33 = [(0.59, 0.93, 1.15, 1.35), (0.90, 1.06, 1.07, 1.14)]

Based on NW, we determine the fuzzy PIS and fuzzy NIS using Equation (20):

A+
C1 = [(0.315, 0.155, 0), (0.232, 0.227, 0.184)]

A+
C2 = [(0.746, 0.580, 0.201), (0.679, 0.674, 0.542)]

A+
C3 = [(0.733, 0.910, 1), (0.852, 0.866, 0.907)]

A−C1 = [(0.315, 0.155, 0.000), (0.342, 0.232, 0.227, 0.184)]
A−C2 = [(0.746, 0.580, 0.201), (0.749, 0.679, 0.674, 0.542)]
A−C3 = [(0.764, 1.019, 1.306), (0.780, 0.896, 0.896, 1.008)]

Based on the PIS and NIS values gathered from decision matrix NW, it can be seen
clearly that our method generated these values according to each criterion. There were
three PIS and three NIS values, respectively.

Next, we calculate the distance between each alternative with the PIS and NIS
using Equation (21). Then, we calculate the total distance of all criteria as shown in
Table 5 using Equation (21). Finally, the relative closeness coefficient is calculated using
Equation (22). The results are as follows: A1 = (0.460, 0.4942), A2 = (0.600, 0.6282) and
A3 = (0.628, 0.805). The ranking alternative in this example was A3 > A2 > A1 if based
on the midpoint ranking. However, since these are interval-based CC values, in certain
conditions, it is difficult to determine the ranking. The results can be seen in Figure 2.

Table 5. Distance from PIS and NIS to each criterion.

Distance d* (Positive Ideal Solution) d−(Negative Ideal Solution)

Alternative Upper Lower Upper Lower

A1 1.18 1.56 1.004 0.753
A2 0.49 0.55 0.841 0.967
A3 0.24 0.26 0.122 0.160

Referring to Figure 2, it is evident that A3 exhibited a broader interval in comparison
with A1 and A2. Within the context of decision making, this interval-based output offered
the DMs a greater wealth of information. Consequently, the DMs could make more nuanced
and potentially more cautious decisions, particularly when the intervals were wider and
overlapped with each other.
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Figure 2. A3 exhibits a broader interval in comparison with A1 and A2.

4. Comparing the TOPSIS Results with the Agreement Level Measured with the
IAA Approach

In this section, we utilize the IAA technique [37] to compare the agreement level
among the decision makers with the results of our proposed IT2 FTOPSIS method. In the
same survey, we asked all DMs to what extent they agreed with each provided statement
about each alternative on a numerical scale where 0 was associated with ‘strongly disagree’
and 10 meant ‘strongly agree’. In this survey, we provided statements for each DM with
respect to each alternative (i.e., Cafe Terrazo (A1), Cafe Aspire (A2) and SPAR Shop (A3)).
An example of the statements used in this paper can be seen in Table 6.

Table 6. Agreement level with the statements given for each alternative (Cafe Terrazo (A1), Cafe
Aspire (A2) and SPAR Shop (A3)).

Alternative(s) Criteria Statement

Cafe Terrazo (A1) Price of Food (C1) Cafe Terrazo provides a very low price of food.
Speed of Service (C2) Cafe Terrazo offers very fast speed of service.
Taste of Food (C3) Cafe Terrazo has very good-tasting food.

Cafe Aspire (A2) Price of Food (C1) Cafe Aspire provides a very low price of food.
Speed of Service (C2) Cafe Aspire offers very fast speed of service.
Taste of Food (C3) Cafe Aspire serves very good-tasting food.

SPAR Shop (A3) Price of Food (C1) SPAR Shop provides a very low price of food.
Speed of Service (C2) SPAR Shop offers very fast speed of service.
Taste of Food (C3) SPAR Shop serves very good-tasting food.

The centroid of a type-2 fuzzy set is computed by finding the centroid of the footprint
of uncertainty (FOU). The FOU represents the entire region of possible values for which the
membership degree of the type-2 fuzzy set is greater than zero. To calculate the centroid of
the FOU, we need to perform the following steps:

1. For each possible value in the universe of discourse, calculate the membership degree
of the primary membership function and the secondary membership function.

2. Multiply each membership degree by the corresponding value in the universe of
discourse.

3. Compute the weighted average of the resulting values for both the primary and
secondary membership functions to find the centroid of the FOU.

Each DM provided an agreement level in elliptical form, where they could use intervals
to show their agreement. The collection of agreement levels on which the interval was
based was converted to a type-1 FS using the IAA technique. This technique basically
models two types of uncertainty based on interval data gathered from a survey, which
are inter-expert uncertainty (uncertainty among the individual opinions of a group of
participants) and intra-expert uncertainty (uncertainty in the opinions of a particular
participant). However, in this numerical example, we only captured the inter-expert
uncertainty, which was associated with uncertainty in giving responses or opinions among
the DMs in this survey-based method. Since there were five DMs involved in this numerical
example, all individual opinions based on intervals could be aggregated into T1 FSs which
provided an overall model of inter-expert uncertainty across the surveyed sources. An
example of the aggregated T1 FS models among the five DMs can be seen in Figures 3–5,
where alternative 1 is associated with Cafe Terrazo, alternative 2 is associated with Cafe
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Aspire and alternative 3 is associated with SPAR Shop. In the figures, the green vertical
line is associated with the centroid values which presented the agreement level among all
DMs regarding the specific conditions given in this numerical example.

We summarized the centroid values associated with each linguistic label in Table 7.
This centroid value indicates to what extent all the DMs agreed with the given assessment
for each alternative with respect to each criterion. Based on the given table, the ranking
order of the alternatives was the same as that for the IT2 FTOPSIS method in Section 5. Thus,
we can see that the direct fuzzification technique constructed using interval-based data
from surveyed sources used in IT2 FTOPSIS that it was aligned with the total agreement
gathered from the DMs when supplied the same ratings as those in the IT2 FTOPSIS
method.

The centroid values give insight into the extent to which the participants agreed with
the opinions among the decision makers.

(a) (b) (c)

Figure 3. Type-1 fuzzy set and agreement level (centroid value) for alternative 1 using MATLAB
R2018a software and Cafe Terrazo with green color is deffuzification (centroid) and blue color is
fuzzy set: (a) Terrazo with very low price, (b) Terrazo with very fast service and (c) Terrazo with very
good taste.

(a) (b) (c)

Figure 4. Type-1 fuzzy set and agreement level (centroid value) for alternative 2 using MATLAB
R2018a software for Cafe Aspire with with green color is deffuzification (centroid) and blue color is
fuzzy set: (a) Aspire with very low price, (b) Aspire with very fast service and (c) Aspire with very
good taste.
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(a) (b) (c)

Figure 5. Type-1 fuzzy set and agreement level (centroid value) for alternative 3 using MATLAB
R2018a software for Cafe Aspire with with green color is deffuzification (centroid) and blue color is
fuzzy set: (a) Aspire with very low price, (b) Aspire with very fast service and (c) Aspire with very
good taste.

Table 7. Centroids of Type-1 fuzzy sets produced with the IAA approach for all alternatives (A1, A2
and A3).

Price (C1) Speed (C2) Taste (C3) Total Agreement

Alternative Very Low Very Fast Very Good

(A1) 5.2666 4.8190 5.6047 15.6904
(A2) 5.4231 6.4134 5.1374 16.97396
(A3) 6.1056 5.6323 5.4707 17.20858

5. Conclusions

In this paper, a new framework (IT2 TOPSIS) was proposed. A detailed explanation of
each step was given, where the focus of this paper was the fuzzification process and the
final output of the proposed method [37–39]. In addition, we provided a comparison of
our new framework and the well-established IAA technique to see the overall agreement
among DMs. The results of our new IT2 FTOPSIS method were aligned with the total
agreeement among the same number of decision makers. The new framework begins with
the construction of IT2 MFs using interval-based data gathered from the survey where this
is used to generate a new scale to represent the ratings for each alternative. This procedure
utilizes all information gathered from the decision makers. In addition, we presented a
complete algorithm for TOPSIS based on IT2 FSs, which preserved the interval-based form
output. Until now, no other researchers have put forward a data-driven technique that
incorporates fuzzification and provides intervals as the final output, specifically in the
form of CC values. The proposed method retains the CC values as interval-valued entities,
ensuring minimal loss of information and leveraging the potential benefits of using IT2
FSs. Within a decision-making framework, this interval-based output provides DMs with
comprehensive information, enabling them to make more precise and potentially cautious
decisions, particularly when the intervals are wider and overlap. However, it is important
to note that interpreting the resulting intervals and their widths within a decision-making
context can be challenging. Nevertheless, this paper establishes a systematic approach to
connecting input uncertainty with output uncertainty in the TOPSIS method, laying a robust
foundation for future research endeavors. The proposed type-2 fuzzy TOPSIS method
may be applicable only to certain types of decision-making problems, and its effectiveness
may vary depending on the characteristics of the data and the specific application domain.
In addition, for future work, we will compare type-2 fuzzy TOPSIS and type-2 fuzzy
AROMAN for decision-making models.
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MCDGM Multi-criteria group decision making
MCDM Multi-criteria decision making
TOPSIS Technique for Order Preference by Similarity to Ideal Solution
IT2 MFs Interval type-2 fuzzy membership functions
IT2 FSs Interval type-2 fuzzy sets
IT2 FN Interval type-2 fuzzy number

IT2 FTOPSIS
Interval type-2 fuzzy technique for Order Preference by Similarity to
Ideal Solution

DMs Decision makers
PIS Positive ideal solution
NIS Negative ideal solution
FST Fuzzy set theory
FN Fuzzy number
FTOPSIS Fuzzy TOPSIS
T2Fs Type-2 fuzzy sets
FOU Footprint of uncertainty
IVFS Interval-valued duzzy set
CC Closeness coefficient
UMF Upper membership function
LMF Lower membership function
FPIS Fuzzy positive ideal solution
FNIS Fuzzy negative ideal solution
IA Interval approach
EIA Enhanced interval approach
CW Computational words
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