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Abstract: We investigate the complete convergence for weighted sums of sequences of negative
dependence (ND) random variables and p-th moment convergence for weighted sums of sequences
of ND random variables under sublinear expectation space. Using moment inequality and trunca-
tion methods, we prove the equivalent conditions of complete convergence for weighted sums of
sequences of ND random variables and p-th moment convergence for weighted sums of sequences of
ND random variables under sublinear expectation space.

Keywords: complete convergence; ND random variables; sublinear expectation space

MSC: 60F10; 60F05

1. Introduction

The nonadditive probabilities theory and nonadditive expectations theory are useful
tools for researching measures of risk, uncertainties in statistics, non-linear stochastic calcu-
lus and superhedging in finance, cf. Peng [1,2], Denis [3], Gilboa [4], Marinacci [5]. This
paper considers the general sublinear expectations which were introduced by Peng [6–8]
in a general space by relaxing the linear property of the classical expectation to the sub-
additivity and positive homogeneity (cf. Definition 1 below). The sublinear expectation
conception provided a very flexible framework to model the problems which are not
additive. Inspired by the work of Peng, researchers have tried to study lots of limit the-
orems under linear expectation space to extend the corresponding results in probability
and statistics. Zhang [9–11] studied the exponential inequalities, Rosenthal’s inequali-
ties, Hölder’s inequalities and Donsker’s invariance principle under sublinear expectation
space. Chen [12–14] studied the strong laws of large numbers, the weak laws of large
numbers, and the large deviation for ND random variables under sublinear expectations,
respectively. Wu [15] obtained precise asymptotics for complete integral convergence
under sublinear expectation space. For more research about limit theorems of sublin-
ear expectation space, the reader could refer to the articles of Hu and Peng [15], Li and
Li [16], Liu [17], Ding [18], Wu [19], Guo and Zhang [20,21], Dong and Tan [22].

Recently, Guo and Shan [23] studied equivalent conditions of complete q-th moment
convergence for sums of sequences of negatively orthant dependent (NOD) variables
under the classical space. Xu and Cheng [24,25] obtained equivalent conditions of complete
convergence for sums of independence identical distribution (i.i.d.) random variables
sequences and p-th moment convergence for sums of i.i.d. random variables sequences
under sublinear expectation space. ND sequences have wide applications in penetration
theory, multivariable statistics, etc. Therefore, it is necessary to generalize the properties of
independent sequences to ND sequences. Hence, it is meaningful to extend the results of
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Xu and Cheng [24,25] to ND random variables under sublinear expectation space. In this
paper, we try to prove the equivalent conditions of complete convergence random variables
and p-th moment convergence for weighted sums of sequences of ND random variables
under sublinear expectation space.

2. Preliminaries

We use the framework of Peng [8]. Suppose that (Ω,F ) is a given measurable space,H
is a linear space of real functions defined on Ω such that IA ∈ H, where A ∈ F , IA denotes
the indicator function of A, and if (X1, X2, . . . , Xn) ∈ H, then ϕ(X1, X2, . . . , Xn) ∈ H for
each ϕ ∈ Cl,Lip(Rn), where Cl,Lip(Rn) is the linear space of local Lipschitz continuous
functions ϕ satisfying

|ϕ(x)− ϕ(y)| ≤ C(1 + |x|m + |y|m)|x− y|, ∀x, y ∈ Rn,

for some C > 0, m ∈ N depending on ϕ. We also denote Cb,Lip(Rn) as the linear space of
bounded Lipschitz continuous functions, for some C > 0, ϕ satisfying

|ϕ(x)− ϕ(y)| ≤ C|x− y|, ∀x, y ∈ Rn.

Definition 1. A sublinear expectation E onH is a function E : H → R satisfying the following
properties: for all X, Y ∈ H, we have

(1) Monotonicity: if X ≥ Y then E[X] ≥ E[Y] ;
(2) Constant preserving: E[c] = c;
(3) Sub-additivity: E[X +Y] ≤ E[X] +E[Y] whenever E[X] +E[Y] is not of the form +∞−∞

or −∞ + ∞;
(4) Positive homogeneity: E[λX] = λE[X], λ ≥ 0.

Here, R = [−∞, ∞]. The triple (Ω,H,E) is called a sublinear expectation space. Give a
sublinear expectation E, let us denote the conjugate expectation E of E by

E [X] := −E[−X], ∀X ∈ H.

A set function V : F 7→ [0, 1] is called a capacity if

(1) V(∅) = 0, V(Ω) = 1;
(2) V(A) ≤ V(B), A ⊂ B, A, B ∈ F .

In this paper, given a sublinear expectation space (Ω,H,E), we set the capacity
V(A) := E[IA] for A ∈ F . We set the Choquet expectations CV by

CV :=
∫ 0

−∞
(V(X ≥ x)− 1) +

∫ ∞

0
V(X ≥ x)dx.

Definition 2. Let X1 be a n-dimensional random vector defined in sublinear expectation space
(Ω1,H1,E1) and X2 be a n-dimensional random vector defined in sublinear expectation space

(Ω2,H2,E2). They are called ’identically distributed’, denoted by X1
d
= X2, if

E1[ϕ(X1)] = E2[ϕ(X2)], ∀ϕ ∈ Cb,Lip(Rn).

Definition 3. In a sublinear expectation space (Ω,H,E), a random vector Y = (Y1, . . . , Yn), Yi ∈
H is said to be independent to another random vector X = (X1, . . . , Xm), Xi ∈ H under E if

E[ϕ(X, Y)] = E[E[ϕ(x, Y)]|x=X ], ∀ϕ ∈ Cb,Lip(Rm ×Rn).

Random variables {Xn, n ≥ 1} are said to be independent, if Xi+1 is independent to (X1, . . . , Xi)
for each i ≥ 1.
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From the definition of independence, it is easily seen that, if Y is independent to X
and X, Y ∈ L , L = {X ∈ H : E[|X|] < ∞}. X ≥ 0,E[Y] ≥ 0, then

E[XY] = E[X]E[Y].

Further, if Y is independent to X and X, Y ∈ L and X ≥ 0, Y ≥ 0, then

E [XY] = E [X]E [Y].

Definition 4. A sequence of random variables {Xn, n ≥ 1} is said to be i.i.d., if Xi
d
= X1 and

Xi+1 is independent to (X1, . . . , Xi) for each i ≥ 1.

Definition 5. (i) In a sublinear expectation space (Ω,H,E), a random vector Y = (Y1, . . . , Yn),
Yi ∈ H is said to be ND to another random vector X = (X1, . . . , Xm), Xi ∈ H under E if for
each pair of test functions ϕ1 ∈ Cl,Lip(Rm) and ϕ2 ∈ Cl,Lip(Rn), we have E[ϕ1(X)ϕ2(Y)] ≤
E[ϕ1(X)]E[ϕ2(Y)] whenever ϕ1(X) ≥ 0, E[ϕ2(Y)] ≥ 0, E[ϕ1(X)ϕ2(Y)] < ∞, E[ϕ1(X)] <
∞, E[ϕ2(Y)] < ∞, and either ϕ1 and ϕ2 are coordinate-wise non-increasing.
(ii) Let {Xn, n ≥ 1} be a sequence of random variables in the sublinear expectations. X1, X2, . . . are
said to be ND if Xi+1 is ND to (X1, . . . , Xi) for each i ≥ 1.

From the definition of independence and ND, if Y is independent to X, then Y is ND
to X. Furthermore, let {Xn, n ≥ 1} be a sequence of independent random variables and
f1(x), f2(x), . . . ∈ Cl,Lip(R), then { fn(Xn), n ≥ 1} is also a sequence of independent random
variables; let {Xn, n ≥ 1} be a sequence of ND random variables, f1(x), f2(x), . . . ∈ Cl,Lip(R)
are non-decreasing (non-increasing) functions, then { fn(Xn), n ≥ 1} is also a sequence
of ND.

In the sequel we suppose that E is sub-additive. Let C denote a positive constant
which may differ from place to place. an � bn denote that there exists a constant C > 0
such that an ≤ Cbn for n large enough, an ≈ bn means that an � bn and bn � an, log x
means ln(max{e, x}). I(A) or IA represents the indicator function of A.

We present several necessary lemmas to prove our main results.

Lemma 1 ([9]). Let p, q > 1 be two real numbers satisfying 1
p + 1

q = 1. Then, for two random

variables X, Y in (Ω,H,E) we have E[|XY|] ≤ (E[|X|p])
1
p (E[|X|q])

1
q .

Lemma 2 ([9]). If E is countably subadditive and CV(|X|) < ∞, then

E[|X|] ≤ CV(|X|).

Lemma 3 ([9]). Suppose that Xk is ND to (Xk+1, . . . , Xn) for each k = 1, . . . , n− 1, or Xk+1 is
ND to (X1, . . . , Xk) for each k = 1, . . . , n− 1. Then, for p ≥ 2,

E
[

max
k≤n
|Sk|p

]
≤ Cp

 n

∑
k=1

E[|Xk|p] +
(

n

∑
k=1

E
[
|Xk|2

])p/2

+

(
n

∑
k=1

(
(E [Xk])

− + (E[Xk])
+
))p

,

where Sk =
k
∑

i=1
Xk, Cp is a positive constant depending only on p.
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Lemma 4 ([24]). Let Y be a random variable under sublinear expectation space (Ω,H,E). Then,
for any α > 0, γ > 0, and β > −1

(i)
∫ ∞

1
uβCV(|Y|α I(|Y| > uγ))du ≤ CCV(|Y|(β+1)/γ+α),

(ii)
∫ ∞

1
uβ log(u)CV(|Y|α I(|Y| > uγ))du ≤ CCV(|Y|(β+1)/γ+α) log(1 + |Y|).

Lemma 5. Let {Xn, n ≥ 1} be a sequence of ND random variables under sublinear expectation
space (Ω,H,E). Then, the condition that for all x > 0,

lim
n→∞

V
(

max
1≤j≤n

|Xj| > x
)
= 0, (1)

implies that there exist constants C such that for all x > 0, and n large enough,[
1−V

(
max

1≤j≤n
|Xj| > x

)]2 n

∑
j=1

V
(
|Xj| > x

)
≤ CV

(
max

1≤j≤n
|Xj| > x

)
. (2)

Proof. Write αn = V
(

max
1≤j≤n

|Xj| > x
)

. Without the loss of generality, we may assume that

αn > 0. Since {I(Xk > x)−EI(Xk > x), k ≥ 1} and {I(Xk < −x)−EI(Xk < −x), k ≥ 1}
are sequences of ND under sublinear expectation space, denote Ak = (Xk > x), Bk = (Xk <
−x), Dk = (|Xk| > x), combining Cr inequality and Lemma 3 results in

E
[

n

∑
k=1

(I(Ak)−EI(Ak))

]2

≤C
n

∑
k=1

E
[
(I(Ak)−EI(Ak))

2
]
+ C

(
n

∑
k=1

(
(E [I(Ak)−EI(Ak)])

− + (E[I(Ak)−EI(Ak)]
)+)2

≤C
n

∑
k=1

E
[
(I(Ak)−V(Ak))

2
]
+ C

(
n

∑
k=1

2E[|I(Ak)−EI(Ak)|]
)2

≤C
n

∑
k=1

E
[

I(Ak)− (V(Ak))
2
]
+ C

(
n

∑
k=1

E[I(Ak)−V(Ak)]

)2

≤C
n

∑
k=1

V(Ak) + C

(
n

∑
k=1

V(Ak)

)2

.

In the same way, we could obtain

E
[

n

∑
k=1

(I(Bk)−EI(Bk))

]2

≤ C
n

∑
k=1

V(Bk) + C

(
n

∑
k=1

V(Bk)

)2

.

It follows that

E
[

n

∑
k=1

(I(Dk)−EI((Dk))

]2

≤E
[

n

∑
k=1

((I(Ak)−EI(Ak)) + (I(Bk)−EI(Bk))

]2
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≤2E
[

n

∑
k=1

(I(Ak)−EI(Ak))

]2

+ 2E
[

n

∑
k=1

(I(Bk)−EI(Bk))

]2

≤C
n

∑
k=1

V(Ak) + C

(
n

∑
k=1

V(Ak)

)2

+ C
n

∑
k=1

V(Bk) + C

(
n

∑
k=1

V(Bk)

)2

≤C
n

∑
k=1

V(Dk) + C

(
n

∑
k=1

V(Dk)

)2

.

Similar to the proof of Lemma 2.5 in Xu [24], by positive homogeneity of sublinear
expectation space, Lemma 1 and the subadditivity of expectations, we conclude that

n

∑
k=1

V(Dk) =
n

∑
k=1

E[I(Dk)] =
n−2

∑
k=1

E[I(Dk)] +E[I(Dn−1) +E[I(Dn)]]

=
n−2

∑
k=1

E[I(Dk)] +E[I(Dn−1) + I(Dn)] = . . . = E
[

I(D1) +E
[

n

∑
k=2

I(Dk)

]]

=E
[

n

∑
k=1

I(Dk)

]
= E

 n

∑
k=1

I(Dk

n⋃
j=1

Dj)

 = E

 n

∑
k=1

I(Dk)I(
n⋃

j=1

Dj)


≤E

 n

∑
k=1

(I(Dk)−EI(Dk))I

 n⋃
j=1

Dj

+
n

∑
k=1

V(Dk)V

 n⋃
j=1

Dj


≤

E
[

n

∑
k=1

(I(Dk)−EI(Dk))

]2

E

I

 n⋃
j=1

Dj

 1
2

+ αn

n

∑
k=1

V(Dk)

≤

Cαn

 n

∑
k=1

V(Dk) +

(
n

∑
k=1

V(Dk)

)2
 1

2

+ αn

n

∑
k=1

V(Dk)

≤Cα
1
2
n

n

∑
k=1

V(Dk) +
1
2

(
Cαn

1− αn
+ (1− αn)

n

∑
k=1

V(Dk)

)
+ αn

n

∑
j=1

V(Dk).

which combined with (1) results in (2) immediately. Therefore the proof is finished.

Lemma 6 ([25]). Assume that Y is a random variable under sublinear expectation space (Ω,H,E).
Then, for p > 0, q > 0, r > 0, the following is equivalent:
(i) 

CV(|Y|p) < ∞, for p > r/q,
CV(|Y|r/q log |Y|) < ∞, for p = r/q,
CV(|Y|r/q) < ∞, for p < r/q.

(ii) ∫ ∞

1
dy
∫ ∞

1
yr−1V(|Y| > x1/pyq)dx < ∞.

Lemma 7 ([25]). Assume that Y is a random variable under sublinear expectation space (Ω,H,E).
Then, for p > 0, q > 0, r > 0, the following is equivalent:
(i) 

CV(|Y|p) < ∞, for p > r/q,
CV(|Y|r/q log2 |Y|) < ∞, for p = r/q,
CV(|Y|r/q log |Y|) < ∞, for p < r/q.

(ii) ∫ ∞

1
dy
∫ ∞

1
yr−1V(|Y| > x1/pyq)dx < ∞.
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3. Main Results

Our main results are as follows.

Theorem 1. Assume that {Xn, n ≥ 1} is a ND random variables sequence under sublinear
expectation space (Ω,H,E), which is identically distributed as X. Suppose that r > 1, q > 1

2 ,
β + q > 0, moreover, for 1

2 < q ≤ 1,

E(X) = −E(−X) = 0.

Furthermore, let {ani ≈ (i/n)β(1/n)q, 1 ≤ i ≤ n, n ≥ 1} be a triangular array of real
numbers. Then, the following is equivalent:
(i) 

CV(|X|r/q) < ∞, for β > −q/r,
CV(|X|(r−1)/(q+β)) < ∞, for − q < β < −q/r,
CV(|X|r/q log(1 + |X|)) < ∞, for β = −q/r.

(3)

(ii)

∞

∑
n=1

nr−2V
(

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣ > ε

)
< ∞, ∀ε > 0 (4)

Theorem 2. Assume that {Xn, n ≥ 1} is a ND random variables sequenceunder sublinear
expectation space (Ω,H,E), which is identically distributed as X. Suppose that r > 1, q > 1

2 ,
β > −q/r, moreover, for 1

2 < q ≤ 1,

E(X) = −E(−X) = 0.

Furthermore, let {ani ≈ (i/n)β(1/n)q, 1 ≤ i ≤ n, n ≥ 1} be a triangular array of real
numbers. Then the following is equivalent:
(i) 

CV(|X|p) < ∞, for p > r/q,
CV(|X|r/q) < ∞, for p < r/q,
CV(|X|r/q log |X|) < ∞, for p = r/q.

(5)

(ii)

∞

∑
n=1

nr−2CV

( max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣
p

− ε

)+
 < ∞, ∀ε > 0 (6)

Theorem 3. Assume that {Xn, n ≥ 1} is a ND random variables sequence under sublinear
expectation space (Ω,H,E), which is identically distributed as X. Suppose that r > 1, q > 1

2 ,
β = −q/r < 0, moreover, for 1

2 < q ≤ 1,

E(X) = −E(−X) = 0.

Furthermore, let {ani ≈ (i/n)β(1/n)q, 1 ≤ i ≤ n, n ≥ 1} be a triangular array of real
numbers. Then, (6) equivalent to

CV(|X|p) < ∞, for p > r/q,
CV(|X|r/q log |X|) < ∞, for p < r/q,
CV(|X|r/q log2 |X|) < ∞, for p = r/q.

(7)
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Theorem 4. Assume that {Xn, n ≥ 1} is a ND random variables sequence under sublinear
expectation space (Ω,H,E), which is identically distributed as X. Suppose that r > 1, q > 1

2 ,
−q < β < −q/r < 0, moreover, for 1

2 < q ≤ 1,

E(X) = −E(−X) = 0.

Furthermore, let {ani ≈ (i/n)β(1/n)q, 1 ≤ i ≤ n, n ≥ 1} be a triangular array of real
numbers. Then (6) equivalent to

CV(|X|p) < ∞, for p > (r− 1)/(q + β),
CV(|X|(r−1)/(q+β)) < ∞, for p < (r− 1)/(q + β),
CV(|X|(r−1)/(q+β) log |X|) < ∞, for p = (r− 1)/(q + β).

(8)

4. Proof of the Main Results
4.1. Proof of Theorem 1

We first prove (3)⇒ (4). Choose δ > 0, small enough, and a sufficiently large integer
K. For all 1 ≤ i ≤ n, n ≥ 1, we write

X(1)
ni = −n−τ I(aniXi < −n−τ) + aniXi I(|aniXi| ≤ n−τ) + n−τ I(aniXi > n−τ),

X(2)
ni = (aniXi − n−τ)I(n−τ < aniXi <

ε

K
),

X(3)
ni = (aniXi + n−τ)I(

ε

K
< aniXi < −n−τ),

X(4)
ni = (aniXi + n−τ)I(aniXi ≤ −

ε

K
) + (aniXi − n−τ)I(aniXi ≥

ε

K
).

(9)

Obviously, ∑k
i=1 aniXi = ∑k

i=1 X(1)
ni + ∑k

i=1 X(2)
ni + ∑k

i=1 X(3)
ni + ∑k

i=1 X(4)
ni . Notice that(

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣ ≥ 4ε

)
⊆

4⋃
j=1

(
max

1≤k≤n

∣∣∣∣∣ k

∑
i=1

X(j)
ni

∣∣∣∣∣ ≥ ε

)
. (10)

Thus, in order to establish (4), it suffices to prove that

Ij :=
∞

∑
n=1

nr−2V
(

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

X(j)
ni

∣∣∣∣∣ ≥ ε

)
< ∞, j = 1, 2, 3, 4. (11)

In order to estimate I1, we verify that

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

EX(1)
ni

∣∣∣∣∣→ 0 as n→ ∞.

By Lemma 2 and (3), we could obtain E|X|1/q < ∞, E|X|r/q < ∞. When q > 1, notice
that |X(1)

ni | ≤ n−τ and |X(1)
ni | ≤ |aniXi|, it follows that

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

EX(1)
ni

∣∣∣∣∣ ≤ k

∑
i=1

E
∣∣∣X(1)

ni

∣∣∣
≤ n−τ(1−1/q)

k

∑
i=1

E|aniXi|1/q

� n−τ(1−1/q)
k

∑
i=1

n−(β+q)/qiβ/q

≈ n−τ(1−1/q) → 0 as n→ ∞.
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When 1
2 < q ≤ 1, note that E(X) = −E(−X) = 0, by choosing τ small enough such

that−τ(1− r/q) + 1− r < 0, we obtain

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

EX(1)
ni

∣∣∣∣∣ ≤ 2
n

∑
i=1

E|aniXi|I(|aniXi| > n−τ)

≤ 2n−τ(1−r/q)
n

∑
i=1

E|aniXi|r/q

� n−τ(1−r/q)
n

∑
i=1
|ani|r/q

� n−τ(1−r/q)

(
n

∑
i=1

n−r(β+q)/qirβ/q

)

≈


nτ−r(−τ+β+q)/q, −q < β < −q/r,
n−τ(1−r/q)+1−r log n, β = −q/r,
n−τ(1−r/q)+1−r, β > −q/r,

→ 0 as n→ ∞.

Hence, to prove I1 < ∞, it suffices to prove that

I∗1 :=
∞

∑
n=1

nr−2V
(

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

(
X(1)

ni −EX(1)
ni

)∣∣∣∣∣ ≥ ε

)
< ∞.

From the property of ND random variables under sublinear expectation space, we
could obtain X(1)

ni is also a sequence of ND random variables under sublinear expectation
space. By Markov’s inequality and Cr’s inequality under sublinear expectation, Lemma 3, it
can be shown that for a suitably large M,

V
(

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

(
X(1)

ni −EX(1)
ni

)∣∣∣∣∣ ≥ ε

)

�
n

∑
i=1

E
[
|X(1)

ni |
M
]
+

(
n

∑
i=1

E
[
|X(1)

ni |
2
])M/2

+

(
n

∑
i=1

(
(E [X(1)

ni ])
− + (E[X(1)

ni ])
+
))M

Taking M sufficiently large such that −2− τM + (τ − β)r/q < −1,−1− τM + τr/q <
−1, we have

∞

∑
n=1

nr−2
n

∑
i=1

E
[
|X(1)

ni |
M
]

�
∞

∑
n=1

nr−2
n

∑
i=1

n−τ(M−r/q)E
[
|aniXi|r/q

]

≈



∞
∑

n=1
n−2−τM+(τ−β)r/q, −q < β < −q/r,

∞
∑

n=1
n−1−τM+τr/q log n, β = −q/r,

∞
∑

n=1
n−1−τM+τr/q, β > −q/r,

<∞.
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When r/q ≥ 2, (3) implies EX2 < ∞. Noting that β + q > 0, q > 1/2, we can choose a
sufficiently large M such that r− 2−M(q + β) < −1, r− 2− qM + M/2 < −1, then

∞

∑
n=1

nr−2

(
n

∑
i=1

E
[
|X(1)

ni |
2
])M/2

�
∞

∑
n=1

nr−2

(
n

∑
i=1

a2
ni

)M/2

≈



∞
∑

n=1
nr−2−M(q+β), −q < β < −1/2,

∞
∑

n=1
nr−2−qM+M/2(log n)M/2, β = −1/2,

∞
∑

n=1
nr−2−qM+M/2, β > −1/2,

<∞.

When r/q < 2, we could choose a sufficiently large M such that r− 2− (r + rβ/q +
(2− r/q)τ)M/2 < −1, r− 2− (r− 1 + (2− r/q)τ)M/2 < −1, then

∞

∑
n=1

nr−2

(
n

∑
i=1

E
[
|X(1)

ni |
2
])M/2

�
∞

∑
n=1

nr−2n−τM(2−r/q)/2

(
n

∑
i=1

ar/q
ni

)M/2

≈



∞
∑

n=1
nr−2−(r+rβ/q+(2−r/q)τ)M/2, −q < β < −q/r,

∞
∑

n=1
nr−2−(r−1+(2−r/q)τ)M/2(log n)M/2, β = −q/r,

∞
∑

n=1
nr−2−(r−1+(2−r/q)τ)M/2, β > −q/r,

<∞.

From β + q > 0, q > 1/2, |X(1)
ni | ≤ n−τ and |X(1)

ni | ≤ |aniXi|, choosing a sufficiently
large M such that r− 2− (τ + r− (τ− β)r/q)M < −1, r− 2− (r− 1− τ− τr/q)M < −1,
we obtain

∞

∑
n=1

nr−2

(
n

∑
i=1

(
(E [X(1)

ni ])
− + (E[X(1)

ni ])
+
))M

≤
∞

∑
n=1

nr−2

(
n

∑
i=1

(
E[|X(1)

ni |] +E[|X(1)
ni |]

))M

≤C
∞

∑
n=1

nr−2

(
n

∑
i=1

(
E[n−τ(1−r/q)|aniXi|r/q]

))M

≈



∞
∑

n=1
nr−2−(r−1−τ−τr/q)M, −q < β < −q/r,

∞
∑

n=1
nr−2−(τ+r−(τ−β)r/q)M(log n)M, β = −q/r,

∞
∑

n=1
nr−2−(τ+r−(τ−β)r/q)M, β > −q/r,

<∞.
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By the definition X(2)
ni , we have 0 < X(2)

ni < ε
K . It follows that

V
(

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

X(2)
ni

∣∣∣∣∣ ≥ ε

)

=V
(

n

∑
i=1

X(2)
ni ≥ ε

)
≤V

(
there are at least K indices i ∈ [1, n], such that aniXi > n−τ

)
≤ ∑

1≤i1<i2<...<iK≤n
V
(
|ani1 Xi1 | > n−τ , . . . , |aniK XiK | > n−τ

)
≤
(

n

∑
i=1

E[I(|ani1 X| > n−τ , . . . , I(|aniK X| > n−τ)]

)

≤
(

n

∑
i=1

E[I(|aniX| > n−τ)]

)K

≤
(

n

∑
i=1

V(|aniX| > n−τ)

)K

.

Hence, by Markov’s inequality under sublinear expectation, it follows that

I2 ≤
∞

∑
n=1

nr−2

(
n

∑
i=1

V(|aniX| > n−τ)

)K

≤ C
∞

∑
n=1

nr−2

(
n

∑
i=1

nrτ/p|ani|r/pE|X|r/p

)K

≈



∞
∑

n=1
nr−2−Kr(q+β−τ/q), −q < β < −q/r,

∞
∑

n=1
nr−2−K(r−1−rτ/q) logK n, β = −q/r,

∞
∑

n=1
nr−2−K(r−1−rτ/q), β > −q/r.

Notice that r > 1, q + β > 0, we could choose τ > 0, small enough, and a sufficiently
large integer K such that r− 2− Kr(q + β− τ/q) < −1 and r− 2− K(r− 1− rτ/q) < −1.
Hence, by Lemma 2, we obtain I2 < ∞. Similarly, we could obtain I3 < ∞.

By the definition of X(4)
ni , we have(

max
1≤j≤n

∣∣∣∣∣ j

∑
i=1

X(4)
ni

∣∣∣∣∣ ≥ ε

)
⊆
(

max
1≤i≤n

|aniXi| ≥
ε

K

)
.

Since {ani ≈ (i/n)β(1/n)q}, by Lemma 4, we see that
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I4 ≤
∞

∑
n=1

nr−2V
(
|aniXi| ≥

ε

K

)
≤

∞

∑
n=1

nr−2V
(
|X| ≥ ε

K
nq+βi−β

)
≈
∫ ∞

1
xr−2

∫ x

1
V
(
|X| > ε

CK
xq+βy−β

)
dydx (Letting u = xq+β, v = y)

=
1

q + β

∫ ∞

1
du
∫ u1/q

1
u(r−1)/(q+β)−1vβ(r−1)/(q+β)V

(
|X| ≥ ε

CK
u
)

dv

≈


C
∫ ∞

1 u(r−1)/(q+β)−1V
(
|X| ≥ ε

CK u
)
du� CV(|X|(r−1)/(q+β)), −q < β < −q/r;

C
∫ ∞

1 ur/q−1 ln(u)V
(
|X| ≥ ε

CK u
)
du� CV(|X|r/q log(1 + |X|)), β = −q/r;

C
∫ ∞

1 ur/q−1V
(
|X| ≥ ε

CK u
)
du� CV(|X|r/q), β > −q/r.

Then by (3), we conclude I4 < ∞. Now we prove (4)⇒ (3). Since

max
1≤k≤n

|ankXk| ≤ 2 max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣,
applying (4), we have

V
(

max
1≤k≤n

|ankXk| ≥ ε

)
→ 0, n→ ∞.

By Lemma 5, it follows that, for all ε > 0

n

∑
i=1

V(|aniXi| ≥ ε)� V
(

max
1≤k≤n

|ankXk| ≥ ε

)
. (12)

Now, combining (12) with (4) gives

∞

∑
n=1

nr−2
n

∑
i=1

V(|aniXi| ≥ ε) < ∞. (13)

By the process of proof of I4 < ∞, we see that (13) is equivalent to (3). The proof of
Theorem 1 is finished.

4.2. Proof of Theorem 2

We first prove that (5)⇒ (6). Notice that

∞

∑
n=1

nr−2CV

( max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣
p

− ε

)+


=
∞

∑
n=1

nr−2
∫ ∞

0
V
(

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣
p

≥ ε + x

)
dx

=
∞

∑
n=1

nr−2
∫ 1

ε
V
(

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣
p

≥ x

)
dx +

∞

∑
n=1

nr−2
∫ ∞

1
V
(

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣
p

≥ x

)
dx

=
∞

∑
n=1

nr−2
∫ 1

ε
V
(

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣ ≥ x1/p

)
dx +

∞

∑
n=1

nr−2
∫ ∞

1
V
(

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣ ≥ x1/p

)
dx

:=I + I I

From Theorem 1, we see that I < ∞. We next establish I I < ∞. Choose 0 < α <
1/p, δ > 0, sufficiently small, and a large enough integer K. For every 1 ≤ i ≤ n, n ≥ 1, we
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note the fact that n is sufficiently large to guarantee xαn−τ < x1/p

4K . Without the loss of
restrictions, we could write

Y(1)
ni = −xαn−δ I

(
aniXi < −xαn−τ

)
+ aniXi I

(
|aniXi| ≤ xαn−τ

)
+ xαn−δ I

(
aniXi > xαn−τ

)
;

Y(2)
ni = (aniXi − xαn−τ)I

(
xαn−τ < aniXi <

x1/p

4K

)
;

Y(3)
ni = (aniXi + xαn−τ)I

(
− x1/p

4K
< aniXi < −xαn−τ

)
;

Y(4)
ni = (aniXi + xαn−τ)I

(
aniXi ≤ −

x1/p

4K

)
+ (aniXi − xαn−τ)I

(
aniXi ≥

x1/p

4K

)
.

It is obvious that ∑k
i=1 aniYi = ∑k

i=1 Y(1)
ni + ∑k

i=1 Y(2)
ni + ∑k

i=1 Y(3)
ni + ∑k

i=1 Y(4)
ni . Notice

that (
max

1≤l≤n

∣∣∣∣∣ l

∑
i=1

aniYi

∣∣∣∣∣ ≥ x1/p

)
⊆

4⋃
j=1

(
max

1≤l≤n

∣∣∣∣∣ l

∑
i=1

Y(j)
ni

∣∣∣∣∣ ≥ x1/p/4

)
.

Thus, in order to establish (6), we only need to prove that

Jj :=
∞

∑
n=1

nr−2
∫ ∞

1
V
(

max
1≤l≤n

∣∣∣∣∣ l

∑
i=1

Y(j)
ni

∣∣∣∣∣ ≥ x1/p/4

)
dx < ∞, j = 1, 2, 3, 4.

In order to estimate J1, we verify that

sup
x≥1

1
x1/p max

1≤l≤n

∣∣∣∣∣ l

∑
i=1

EY(1)
ni

∣∣∣∣∣→ 0 as n→ ∞.

Lemmas 1 and 2, and (5) imply that

E|X|1/q < ∞, E|X|r/q < ∞.

When q > 1, since |Y(1)
ni | ≤ xαn−τ and |Y(1)

ni | ≤ |aniXi|, by Lemma 2, it follows that

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

EY(1)
ni

∣∣∣∣∣
≤

n

∑
i=1

E
∣∣∣Y(1)

ni

∣∣∣
≤(xαn−τ)1−1/q

n

∑
i=1

E|aniXi|1/q

�xα(1−1/q)n−τ(1−1/q)
n

∑
i=1
|ani|1/q

≤xα(1−1/q)n−τ(1−1/q)n(r−1)/r

(
n

∑
i=1
|ani|r/q

)1/r

≈xα(1−1/q)n−τ(1−1/q). (14)

Since q > 1, 0 < α < 1, we could know (1− 1/q)α < α < 1/p. Then by (14), for x ≥ 1,
we obtain

sup
x≥1

1
x1/p max

1≤l≤n

∣∣∣∣∣ l

∑
i=1

EY(1)
ni

∣∣∣∣∣� n−τ(1−1/q) → 0 as n→ ∞.
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When 1/2 < q ≤ 1, noticing that E(X) = −E(−X) = 0, taking a sufficiently small τ
such that −τ(1− r/q) + 1− r < 0, we obtain

max
1≤l≤n

∣∣∣∣∣ l

∑
i=1

EY(1)
ni

∣∣∣∣∣
≤2

n

∑
i=1

E|aniXi|I
(
|aniXi| > xαn−τ

)
≤2xα(1−r/q)n−τ(1−r/q)

n

∑
i=1

E|aniXi|r/q

≤2xα(1−r/q)n−τ(1−r/q)
n

∑
i=1

E|ani|r/q

≈xα(1−r/q)n−τ(1−r/q)+1−r.

Observing that 1− r/q < 0, we have

sup
x≥1

1
x1/p max

1≤k≤n

∣∣∣∣∣ k

∑
i=1

EY(1)
ni

∣∣∣∣∣� n−τ(1−r/q)+1−r → 0 as n→ ∞.

Then, to prove J1 < ∞, we only need to show

J∗1 :=
∞

∑
n=1

nr−2
∫ ∞

1
V
(

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

(
Y(1)

ni −EY(1)
ni

)∣∣∣∣∣ ≥ x1/p

8

)
dx < ∞.

It is obvious that Y(1)
ni is a sequence of negatively dependent random variables under

sublinear expectation space. It follows from Markov’s inequality and Cr’s inequality under
sublinear expectation, Lemma 3, that for a sufficiently large M,

V
(

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

(
Y(1)

ni −EY(1)
ni

)∣∣∣∣∣ ≥ x1/p

8

)

�x−M/pnM/2−1(log n)M
n

∑
i=1

E[|Y(1)
ni |]

M.

Taking a suitably large M such that −(1/p− α)M− rα/q < −1, −2− τ(M− r/q) +
M/2 < −1, we have

∞

∑
n=1

nr−2+M/2−1(log n)M
n

∑
i=1

∫ ∞

1
x−M/pE[|Y(1)

ni |]
Mdx

�
∞

∑
n=1

nr−2+M/2−1n−τ(M−r/q)(log n)M
n

∑
i=1
|ani|r/q

∫ ∞

1
x−M(1/p−α)−rα/qdx

�
∞

∑
n=1

n−2−τ(M−r/q)+M/2 log nM < ∞.

Consequently, we obtain J∗1 < ∞. Similar to the proof of (9), we could obtain

V
(

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

Y(2)
ni

∣∣∣∣∣ ≥ x1/p/4

)
≤
(

n

∑
i=1

V(|aniX| > xαn−τ)

)K

.

From β > −q/r, and ani ≈ (i/n)β(1/n)q, we obtain

n

∑
i=1

ar/q
ni ≈

n

∑
i=1

n−r(q+β)/qiβr/q ≈ n1−r
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By Maokov’s inequality under sublinear expectations, we conclude that

J2 ≤
∞

∑
n=1

nr−2
∫ ∞

1

(
n

∑
i=1

V(|aniX| > µxαn−τ)

)K

dx

≤ C
∞

∑
n=1

nr−2
∫ ∞

1

(
n

∑
i=1

x−rα/qnrτ/qE|X|r/q

)K

dx

≈
∞

∑
n=1

nr−2−K(r−1−rτ/q)
∫ ∞

1
x−rKα/qdx.

Since α > 0, r > 1, we could take a sufficiently small τ and sufficiently large K such that
−rKα/q < −1 and −2 + r− K(r− 1− rτ/q) < −1. It follows that J2 < ∞. Similarly, we
can obtain J3 < ∞. It is obvious that β > −q/r implies β(r− 1)/(q + β) > −1. Then,

∫ s1/q

1
tβ(r−1)/(q+β)dt ≈ s

1
q +

β(r+1)
q(q+β) . (15)

It follows that

J4 ≤
∞

∑
n=1

nr−2
n

∑
i=1

∫ ∞

1
V
(
|aniXi| >

x1/p

4K

)
dx

≈
∞

∑
n=1

nr−2
n

∑
i=1

∫ ∞

1
V
(
|X| > x1/p

4CK
nq+βi−β

)
dx

≈
∫ ∞

1
dx
∫ ∞

1
vr−2dv

∫ v

1
V
(
|X| > x1/p

4CK
vq+βu−β

)
du

≈
∫ ∞

1
dx
∫ ∞

1
ds
∫ s1/q

1
s(r−1)/(q+β)−1yβ(r−1)/(q+β)V

(
|X| > x1/p

4CK
s

)
dy

≈
∫ ∞

1
dx
∫ ∞

1
sr/q−1V

(
|X| > x1/p

4CK
s

)
ds.

Hence, from Lemma 6 and (5), we obtain J4 < ∞. Now we prove (6) ⇒ (5). By
Markov’s inequality under sublinear expectations, (6), and Lemma 2, we have

∞

∑
n=1

nr−2V
(

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣ ≥ ε

)

=
∞

∑
n=1

nr−2E
[

I

(
max

1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣ ≥ ε

)]

≤
∞

∑
n=1

nr−2E

( max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣
p

− (ε/2)p

)+

/(ε/2)p

I

(
max

1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣ ≥ ε

)
≤

∞

∑
n=1

nr−2E

( max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣
p

− (ε/2)p

)+

/(ε/2)p


≤

∞

∑
n=1

nr−2E

( max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣
p

− (ε/2)p

)+
/(ε/2)p < ∞.

similar proofs of (3.17) are available in Guo [23], we have

V
(

max
1≤k≤n

|ankXk| > ε

)
→ 0, n→ ∞.
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By Lemma 5, it follows that, for all ε > 0

n

∑
i=1

V(|aniXi| > ε)� V
(

max
1≤k≤n

|ankXk| > ε

)
. (16)

Now, combining (16) with (4) gives

∞

∑
n=1

nr−2
∫ ∞

ε

n

∑
i=1

V
(
|aniXi| > x1/p

)
< ∞. (17)

By the process of proof of I4 < ∞, we see that (17) is equivalent to (3). The proof of
Theorem 2 is finished.

4.3. Proof of Theorem 3

From the supposition of Theorem 3, for β = −q/r, one can obtain

n

∑
i=1

ar/q
ni ≈

n

∑
i=1

n−r(q+β)/q log n, (18)

and ∫ s1/q

1
tβ(r−1)/(q+β)dt =

∫ s1/q

1
t−1dt ≈ log s, (19)

By the same argument as the proof of Theorem 2, with Lemma 7 in place of Lemma 6,
together with (18) and (19), we could prove Theorem 3. Therefore, the proof is omitted.

4.4. Proof of Theorem 4

From the supposition of Theorem 4, for β < −q/r, one can obtain

n

∑
i=1

ar/q
ni ≈

n

∑
i=1

n−r(q+β)/qiβr/q ≈ n−r(q+β)/q, (20)

and ∫ s1/q

1
tβ(r−1)/(q+β)dt ≈ C. (21)

By the same argument as the proof of Theorem 2, with (21) in place of (15), we could
prove Theorem 4. Therefore, the proof is omitted.

5. Conclusions

In this paper, using the moment inequality for ND random variables sequences under
sublinear expectation space and the truncation method, the authors establish the equivalent
conditions of complete convergence for sums of ND random variables sequences and p-th
moment convergence for sums of ND random variables sequences. The results extend
the corresponding results from the classical probability space to the sublinear expectation
space, as well as extending i.i.d random variables to ND random variables. In the future,
we will try to establish the corresponding results for other dependent sequences under
sublinear expectation space.
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