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Abstract: In this study, we investigate the effect of weight thresholding (WT) on the robustness of
real-world complex networks. Here, we assess the robustness of networks after WT against various
node attack strategies. We perform WT by removing a fixed fraction of weak links. The size of the
largest connected component indicates the network’s robustness. We find that real-world networks
subjected to WT hold a robust connectivity structure to node attack even for higher WT values.
In addition, we analyze the change in the top 30% of central nodes with WT and find a positive
correlation in the ranking of central nodes for weighted node centralities. Differently, binary node
centralities show a lower correlation when networks are subjected to WT. This result indicates that
weighted node centralities are more stable indicators of node importance in real-world networks
subjected to link sparsification.
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1. Introduction

The vulnerability of a complex network denotes the decrease in network functioning
due to damage like the loss of some node or link. The ability of a network to withstand
or overcome such situations is called its robustness. Over the last two decades, several
studies have investigated the robustness of complex networks using several different attack
strategies. Initial studies [1–3] on the vulnerability of complex networks are based on binary
networks neglecting the intensity of the link/connection. However, real-world networks
become more realistic when we consider the intensity of links, i.e., the link weights. For
example, in a coauthorship network, the weight of the links connecting authors is the
number of co-authored papers. For communication networks like the Internet, link weight
can be the amount of data transferred.

The early research on network vulnerability focused on centrality-based node attack
strategies, as critical nodes might be located at central positions in the networks. Widely
used centrality-based node attacks are based on the node’s degree and betweenness [2–5].
The weighted versions of these attack strategies are strength [6] and weighted between-
ness [7], respectively. Other node attack strategies are based on different topological
properties of the networks, like eigenvector centrality [5,8], closeness centrality [9,10], and
clustering coefficient [5]. In addition, scientists investigated these attack strategies’ varia-
tions [4,11,12]. By analyzing the impact of these attack strategies, we can identify the node
importance in the network. Apart from these central attack strategies, influential nodes can
be identified by various methods such as multiscale node importance measure [13] and
classified neighbors algorithm [14].

Mathematics 2023, 11, 3482. https://doi.org/10.3390/math11163482 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11163482
https://doi.org/10.3390/math11163482
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-4517-5328
https://orcid.org/0000-0002-5729-1123
https://doi.org/10.3390/math11163482
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11163482?type=check_update&version=3


Mathematics 2023, 11, 3482 2 of 12

The effect of the attack strategies is measured based on degradation in network
performance (network functioning). The commonly used network functioning measures
are the size of the largest connected component (LCC) [2–4,15], global efficiency [3,16],
weighted efficiency [7,17], diameter [9], and total flow [15].

Apart from these node attack strategies, the robustness of complex networks has
widely been studied in different link removal strategies. Removing a link can be interpreted
in several real-world events, such as malfunctioning communication cable, damage of
roads connecting two cities, prohibition of contact between individuals for controlling
epidemic spreading, etc. Like node removal, the study of link removal started with link
centrality concepts of betweenness and the degree of the link’s end nodes [3,17,18]. The
degree of a link can be defined as an aggregate (product, sum, minimum, and maximum) of
the degree of end nodes of that link [3,18]. The betweenness of a link denotes the average
number of shortest paths passing through it [3,17,18]. The weighted versions of these link
centralities are defined in [17].

From Granovetter’s “strength of weak ties hypothesis” in social networks [19], links
are classified according to their weights as weak or strong. Several studies investigated the
role of strong and weak links on network robustness. Pajevic and Plenz [20] found that the
average clustering of nodes is robust against the removal of weak links but vulnerable when
removing strong links. Link weight heterogeneity [15] is another factor that negatively
affects the robustness of complex networks toward link removal.

The study of link removal in the economic complex system reveals that weak con-
nections are more significant in supporting the overall connectivity of the system [21].
Group structures of complex networks are maintained even when most links are removed
according to their increasing order of weight [22]. In addition, a widely recognized result is
that “weak links are the universal key for complex network stability” [23]. These studies
reveal the role of weak connections in maintaining functionality in real networks.

The high number of links makes time-expensive or cumbersome analyses on real-
world networks. For this reason, scholars proposed different techniques for the sparsifica-
tion of networks (i.e., to reduce link density) in these years [22,24]. Sparsification is a family
of methods to build networks with a small number of links, often leading to a better gener-
alization of the networks [25]. Sparse networks also have significantly lower computational
costs than their denser counterparts, often two orders of magnitude in computational cost
reduction [26]. This is especially relevant for the large and dense real-world and model
networks that present prohibitively costly simulation analyses [27]. Thus, the sparsification
methods applied to denser networks are helpful for reducing computational costs.

Weight thresholding (WT) is a sparsification approach to reduce link density in dif-
ferent real-world networks, such as financial, brain, and biological networks [28–30]. WT
removes all links with a weight less than a particular threshold value. The objective of
the WT procedure is to prune the highest number of links avoiding drastically altering
the critical features of the original network. Unfortunately, many conventional network
properties quickly change under the WT procedure [22,31].

Link shielding identifies critical links worth protecting [32–34]. As WT, link shielding
techniques may be helpful to reduce the network links, thus improving computational
feasibility by decreasing the computational cost. WT and link shielding procedures can be
viewed as complementary methodologies for network sparsification.

This paper assesses how WT impacts the robustness measurement of weighted real-
world networks when subjected to different node attack strategies. For example, let us
consider the scenario of transportation systems. A transportation network is a network
underlying the infrastructure that facilitates the movement of people/goods/services
from one location to another. The demolition of one or more locations may affect the
functionality of the entire infrastructure. The optimal planning of such a navigation system
with multiple connections is computationally challenging. Nevertheless, this could be
simplified by removing trivial connections (with less traffic). For this simplification, we
can adopt weight thresholding (WT), in which a fixed fraction of weak links are removed
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from the network. This link pruning improves the computational feasibility, but we are
now apprehensive about the robustness of the thresholded network. Is the transportation
network still robust as the initial network?

In this paper, we assess whether the weight thresholding alters the robustness of
networks. We investigate this with a focus on robustness against node removal attacks. Our
results highlight that real-world networks hold comparable robustness (in terms of LCC)
to node attack strategies even after removing many weak links. In addition, we assessed
how the ranking of central nodes changes with the weight thresholding procedure. We
found that the node ranking remains positively correlated to the initial network when using
weighted notions of node centralities.

2. Methods
2.1. Real-World Networks

We implemented five different attack strategies on nine real-world networks from
different domains. The networks we used are weighted. The weight associated with the
links depicts the empirical and specific characteristics of the networks. For example, in
the case of the US airport network, the link weight indicates the number of passengers
traveled per year [35]. In the coauthorship network Netscience, the link weight accounts
for the number of papers co-authored between scientists [36]. We summarize the statistics
of real-world networks in Table 1, with node, link, and link weight meaning. In addition,
we furnish the reference for further information about each network.

Table 1. Statistics of real-world networks. N—number of nodes; L—number of links; <w>—average
weight; <k>—average degree; LCC—size of the largest connected component.

Networks Key Ref. Type Node Link Weight N L <k> <w> LCC

C.
elegans Eleg [37,38] Biological Neurons Neurons

connection
Number of

Connections 297 2344 15.8 3.761 297

Cargoship Cargo [39] Transport Ports Route Shipping
journeys 834 4348 10.4 97.709 821

US
airport Air [35] Transport Airports Route Passengers 500 2979 11.9 152,320.2 500

E. coli Coli [39,40] Biological Metabolites Common
reaction

Number of
Common
reactions

1100 3636 6.61 1.364 1100

Netscience Net [36] Social authors Coauthorship
Number of
Common

papers
1461 2741 3.75 0.434 379

Human12a Hum [41,42] Biological Brain regions
Connection

between
regions

Connection
density 501 6038 24.1 0.01 501

Caribbean Carib [43,44] Ecological
Food web Species Trophic

relation
Amount of

biomass 249 3503 28.13 0.067 249

CypDry Cyp [45,46] Ecological
Food web Species Trophic

relation
Amount of

biomass 66 503 15.24 0.358 65

Budapest Buda [47] Biological Brain regions Neural
connection

Amount of
track flow 480 1000 4.167 5.024 467

2.2. Attack Strategies

We simulated network attacks by removing the nodes based on their centrality mea-
sures. The node centrality measures considered here include binary as well as weighted
structure of the networks. The node attack strategies are:

• Random (Ran): Nodes are randomly removed. Random removal is analogous to errors
or failures occurring in the network. Random failures are benchmark models in the
study of network robustness [1,2].

• Degree (Deg): The degree of a node is a simple local centrality measure defined as the
number of links connected to it. The degree ki of node i is given by
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ki= ∑N
j=1 aij, (1)

where aij = 1 indicates the presence of a link between nodes i and j and is 0 otherwise. N is
the number of nodes in the network. The degree attack strategy first removes nodes with
the highest degree (hubs). Earlier studies of network robustness to targeted attacks are
based on this strategy [1,3–5,48].

• Strength (Str): A node’s strength is the sum of the weights of links connected to that
node. It is a weighted version of the degree centrality [6].

Mathematically, the strength si of node i is:

si = ∑N
j=1 aij . wij, (2)

where aij = 1 indicates the presence of a link between nodes i and j and is 0 otherwise. wij
is the weight of the link between i and j. In this attack strategy, nodes with the highest
strength are removed first.

• Betweenness (Bet): Betweenness of a node is the number of shortest paths (between all
the pairs of nodes) passing through it [3–5]. This binary metric defines the shortest
path between two nodes as the minimum number of links needed to travel from one
node to another. Mathematically, betweenness bi of node i is:

bi =∑N
s,t=1

σst(i)
σst

(3)

where σst(i) is the number of shortest paths between nodes s and t passing through the
node i. σst is the total number of shortest paths between nodes s and t. Based on this global
metric, attack strategies remove nodes with the highest betweenness first.

• Weighted betweenness (WBet): Weighted betweenness of a node is defined as the
number of weighted shortest paths passing through that node [7].

Weighted betweenness bw
i of node i is:

bw
i = ∑N

s,t=1
σw

st (i)
σw

st
, (4)

where σw
st (i) is the number of weighted shortest paths between nodes s and t passing

through the node i. σw
st is the total number of weighted shortest paths between nodes s

and t.
While computing betweenness, it is essential to differentiate whether the link weight

corresponds to “flows” or “costs” [49]. If link weight means flow, such as the number of
passengers in transportation networks or the number of common papers in authorship
networks, then the shortest path is computed by summing the inverse of link weights. If
link weights are costs such as distance or time of information delivery between two stations,
shortest paths are computed directly by summing the link weights.

These attacks are performed by removing all nodes and the links incident on them. We
performed initial (not recalculated) and recalculated (also named adaptive) attack strategies
for each node centrality. The term initial attack means we compute the node rank on the
initial network and remove the nodes in that order. Here, node ranks are not updated
during the node removal process [3]. On the other hand, in recalculated attack strategies,
node centrality values are recalculated after the removal of each node [3]. In the case of
ties (i.e., nodes with equal centrality value), we randomly select the node to remove. These
node ties are randomized by averaging the outcomes over 100 simulations.
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2.3. Network Robustness Indicator

The largest connected component (LCC) is defined as the number of nodes in the
giant component of the network, i.e., the largest number of connected nodes [1,2,48]. It is
a commonly used binary measure for network robustness. It only gives a topological de-
scription of the networks. Here, normalized LCC (on initial LCC value), as a function of the
fraction (q) of removal of nodes, is used as the measure for network damage. Normalized
LCC allows the comparison of robustness across different networks. The attack strategies
terminate when the network becomes wholly destructed (LCC becomes 1).

To compare the response of the networks to each attack strategy, we used the robust-
ness R [16]. It is a single number [15] indicating the area under the curve of the network
functioning against a fraction of nodes or links removed. Here, LCC is used as a network
functioning indicator. The theoretical range of R is from 0 to 0.5. For example, Figure 1
left chart shows the LCC plot as a function of fraction q of removals for five node attack
strategies (initial attack) on the C. elegans network. The right chart in Figure 1 reports the
robustness outcome R of each attack strategy computed by the area under the LCC curve.
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2.4. Weight Thresholding

We investigated the effect of weak link removal on the robustness of real-world
networks under various node attack strategies. This analysis was performed by the weight
thresholding (WT) technique. Given a weighted network G with N number of nodes, and L
number of links, the first step is to rank the links in increasing order of weight. The links
of lower weight are considered weak links. Then, we performed the WT by removing a
fraction of the weak links. For example, for WT = 0.05, we removed the first 5% weaker
links in the rank. Consider a network with ten links of the following discrete weights: 1, 1,
2, 2, 4, 6, 7, 8, 8, and 9. Then, by WT = 0.5, we remove the links of weights 1, 1, 2, 2, and 4,
in that order.

In our study, we took nineteen discrete threshold values WT = {0.0, 0.05, 0.1, 0.15, 0.2,
0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9} (i.e., from 0% to 90% of
weak links removal). In the case of ties (links with the same weight), we selected the links
randomly. These ties are randomized by averaging the outcomes over 100 simulations. The
thresholded network G′ will be the subgraph of G with the same number of nodes N and
number of links, L′ = (1 −WT) L. Then, the node attack strategies on G′ are applied by
identifying the nodes in the decreasing order of their centrality measures (Deg, Bet, Str, and
WBet) computed from G′. This procedure is repeated for each WT. The overall methodology
is depicted in Algorithm 1. The variables m and n in Algorithm 1 represent the number of
iterations to break the link and node ties.
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Algorithm 1: Methodology of WT analysis.

Procedure Weight Thresholding (G, N, L)
1: WT = {0.0, 0.05, 0.1, . . .. . .. . .. . .., 0.85, 0.9}
2: for each WT
3: for i = 1 to m
4: link_set = {links in the increasing order of their weight}
5: weak_linkset = {WT fraction of weak links from link_set}
6: G′ = G − weak_linkset
7: Initial attack (G′, N, L′)
8: Recalculated attack (G′, N, L′)

Procedure Initial attack (G′, N, L′)
1: Find Initial LCC
2: for i = 1 to n
3: node_set = {nodes of G′ in the decreasing order of centrality measure}
4: while (LCC ! = 1)
5: Remove a node x from the G′ (in the order of node_set)
6: Find LCC of new network
7: node_set = node_set − x

Procedure Recalculated attack (G′, N, L′)
1: Find Initial LCC
2: for i = 1 to n
3: while (LCC ! = 1)
4: Calculate centrality meaures
5: node_set = {nodes of G′ in the decreasing order of centrality measure}
6: Remove a node x from the G′ (in the order of node_set)
7: Find LCC of new network
8: node_set = node_set − x

3. Results and Discussion

Removal of an entity of a network (either node or link) may result in changes in
the network functionality after a particular fraction of removals. However, an entity is
significant if its removal triggers a rapid decrease in the network functioning measure. For
example, the black curve in Figure 2 indicates a sharp decrease in the network functioning
along with the removal process. In contrast, gentle changes in the blue curve indicate
the network’s ability to withstand comparable functionality. The ability of a network to
continue with comparable functionality can be an indicator of the network’s robustness.
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of fraction (q) of components (either nodes or links) of the network.

Here, we investigate the role of weak links in the robustness of networks to different
node attack strategies. The analysis applied the WT procedure to the nine real networks.
We simulated five node attack strategies, such as Ran, Deg, Str, Bet, and WBet, on these
thresholded networks. For each strategy, we performed both initial and recalculated attacks.
The WT procedure is performed by removing a fixed fraction of weak links. Figures 3 and 4
show the LCC and robustness (R) as a function of WT value for different node attack
strategies and each real-world network.
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The networks C. elegans, Caribbean, and Human12a show the slowest LCC decrease
when subjected to the WT procedure. Specifically, C. elegans and the Caribbean have almost
the same LCC after each thresholding even up to WT = 0.60, and Human12a does not show
any degradation in LCC for WT ≤ 0.55.

The smallest network in our study, Cypdry, also (N = 66) maintains comparable LCC
up to WT = 0.45. The other networks, such as E. coli, Budapest, Cargoship, and US Airports,
present low robustness against WT procedure, showing a faster LCC decrease than other
networks. In particular, US Airports and Budapest networks show faster LCC disruption
under the WT procedure.

In summary, except for Budapest and US Airports networks, the real-world networks
under study are robust to the WT procedure. The WT procedure corresponds to weak
link removal [15,17]; for this reason, the real-world networks under study unveil general
robustness to weak link removal.
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We can see the robustness (R) of different node attack strategies as a function of WT
in Figures 3 and 4. R generally does not show a steeper decrease with WT for most node
attack strategies, both initial and recalculated attacks. The transformation of robustness
from the original network to the thresholded network after 90% removal of the weak link is
evident but gradual. Therefore, in the real-world networks under study, we find general
robustness against node attacks when subjected to the WT procedure. While increasing the
WT value, we observe a very slight decrease in the robustness R to random node removal
(Ran) (Figures 3 and 4, green curves). This result indicates that networks maintain the
well-known “error resistance” feature [2] even when subjected to the WT procedure.

The gradual change in the robustness of each thresholded network to various node
attack strategies furnishes interesting insights. On the one hand, it may indicate that the
remaining network shows a robust connectivity structure to node attacks. Since the WT
procedure decreases the LCC, we can argue that the remaining LCC is robust to node attack.
On the other hand, the WT procedure does not cause a node rank change toward a more
harmful node attack sequence. This last result indicates that the node centralities ranking
is stable to the WT procedure.

There are exceptions. In Cypdry and Caribbean networks, the robustness R of the Str
strategy decreases faster than other strategies (Figure 3, purple line). Str removes nodes
according to their strength, i.e., the sum of the link weights of that node [6]. Further, we
observe a similar decrease in network robustness R for the WBet (Figure 3, yellow line)
strategy that removes nodes according to their weighted betweenness [7]. Therefore, [46]
the WT procedure enhances the efficacy of the Str and WBet node attack to dismantle food
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webs. The higher efficacy of Str and WBet can be due to a change in node ranking for these
strategies tuning different WT values, with more effective node ranking when increasing
WT. Food webs are ecological networks describing “who eats whom” in ecosystems, i.e., in
these networks, nodes are biological species, and links depict trophic interactions among
them [46,50]. These results suggest that removing weak links in food web ecological
networks may unveil essential nodes in these ecological networks.

In Netscience, we can observe a rise in the robustness towards the end of the thresh-
olding for betweenness-based attack strategies (Bet and WBet). Betweenness-based attack
strategies show low efficacy when tuning higher WT. The LCC of the Netscience is only
24.9% of the overall size of the network (see Table 1), and the network contains a large
number of components C (at WT = 0, C = 268, and at WT = 0.9, C is 1211). The LCC con-
tains many nodes with low betweenness centrality values, attack strategies remove nodes
from other components, and LCC remains unchanged when removing nodes according to
their betweenness. This result indicates the necessity of conditional betweenness attack
strategies [51].

The results found in other studies, such as recalculated attack strategies are more
efficient than initial attack strategies, are also confirmed in our results. In initial attacks,
binary strategies outperform weighted attacks. In recalculated attack strategy, Bet and their
weighted version, WBet, are more efficient than Deg and Str for destroying LCC. With the
increase in the fraction of weak link removal, the efficiency of attack strategies becomes
closer. It indicates that the weighted structure has less significance in thresholded networks
compared to original networks. In addition, all the networks are robust to random attacks
(R ≈ 0.5).

Analyzing Node Centrality Ranking under WT by Kendall’s Tau Coefficient

Kendall’s tau coefficient (τ) is used to analyze the change in node rank after weight
thresholding [52]. It is a measure of the degree of correspondence between two ranked
data. Kendall’s tau coefficient between two arrays of ranking A and B is

τ =
(np − nq)

sqrt((np + nq + nt) ∗ (np + nq + nu))
, (5)

where np and nq are the numbers of concordant and discordant pairs, respectively; nt is the
number of ties only in A; and nu is the number of ties only in B. If a tie occurs for the same
pair in both A and B, it is not added to nt or nu. The higher Kendall’s tau coefficient, the
more similar the two ranking sequences. The range of Kendall’s tau coefficient is from −1
to 1.

This paper analyzed the correlation between the centrality ranking of the initial
network’s top 30% central nodes with each thresholded network (See Figure 5). We
measured the correlation for four centralities Deg, Str, Bet, and WBet. When we compare
the correlation of different centrality measures among all the networks along WT values,
Str (purple line) is the more stable node ranking, followed by WBet. On the contrary, Bet
(red line) and Deg (blue line) show higher variance in the centrality measure. Therefore,
when subjected to the WT procedure, the weighted node centrality rankings (Str and WBet)
are more stable than the binary counterparts (Deg and Bet). For example, the networks
Caribbean, Human12a, Cypdry, Cargoship, and US Airports hold a correlation for weighted
node centralities approximately above 0.4.

The Deg of Netscience shows a deep variation for initial WTs up to 0.3. This is because
the number of connected components in the Netscience is high, and the top 30% of Deg
central nodes are distributed among various components. Nonetheless, the other node
centralities ranking are more stable to the WT procedure.

When taking these results together, we can point out that node centralities based on
weighted features of the network show a more stable node ranking with the WT procedure.
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4. Conclusions

We performed weight thresholding on real-world weighted networks. Here, weight
thresholding corresponds to the removal of weak links. We analyzed the WT impact on
the network’s robustness to node attack strategies in initial and recalculated scenarios.
In general, networks maintain their robustness structure regarding LCC along the WT
procedure. In other words, weak link removal does not impact the LCC of the network,
and the resulting thresholded networks show robust connectivity structures against node
attacks. In addition to this, weighted node centralities hold a positive correlation with the
ranking of most central nodes in the networks for different WT values. Differently, binary
node centralities show low correlation when networks are subjected to WT.

With this result, weak link removal can be used as a method for the sparsification of
the networks in which robustness to node attack is crucial.

Another interesting network sparsification approach is “link shielding” (LS), which is
a method of identifying critical links worth protecting [32–34]. The weight thresholding
investigated here is a complementary approach of LS for network sparsification. WT
removes links under a certain weight threshold, whereas LS holds important links for
the network. Both techniques improve computational feasibility by reducing simulation
costs. For this reason, it would be very interesting to analyze the robustness against node
removal of networks subjected to LS and compare the outcomes with the results presented
in this research.

Lastly, adopting LCC as a measure of the network is one-sided. Therefore, as a
follow-up to this work, we can extend our study with other robustness indicators, such as
efficiency. Also, we can extend the study by analyzing the impact of strong link removal on
the network’s robustness to various node attack strategies.
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