
Citation: Aragonés Lozano, M.;

Pérez Llopis, I.; Esteve Domingo, M.

Threat Hunting System for Protecting

Critical Infrastructures Using a

Machine Learning Approach.

Mathematics 2023, 11, 3448. https://

doi.org/10.3390/math11163448

Academic Editor: Mario Muñoz

Organero

Received: 23 June 2023

Revised: 1 August 2023

Accepted: 5 August 2023

Published: 9 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Threat Hunting System for Protecting Critical Infrastructures
Using a Machine Learning Approach
Mario Aragonés Lozano * , Israel Pérez Llopis and Manuel Esteve Domingo

Communications Department, Universitat Politècnica de València, 46022 Valencia, Spain;
ispello0@upvnet.upv.es (I.P.L.); mesteve@dcom.upv.es (M.E.D.)
* Correspondence: maarlo9@teleco.upv.es

Abstract: Cyberattacks are increasing in number and diversity in nature daily, and the tendency
for them is to escalate dramatically in the forseeable future, with critical infrastructures (CI) assets
and networks not being an exception to this trend. As time goes by, cyberattacks are more complex
than before and unknown until they spawn, being very difficult to detect and remediate. To be
reactive against those cyberattacks, usually defined as zero-day attacks, cyber-security specialists
known as threat hunters must be in organizations’ security departments. All the data generated
by the organization’s users must be processed by those threat hunters (which are mainly benign
and repetitive and follow predictable patterns) in short periods to detect unusual behaviors. The
application of artificial intelligence, specifically machine learning (ML) techniques (for instance
NLP, C-RNN-GAN, or GNN), can remarkably impact the real-time analysis of those data and help
to discriminate between harmless data and malicious data, but not every technique is helpful in
every circumstance; as a consequence, those specialists must know which techniques fit the best at
every specific moment. The main goal of the present work is to design a distributed and scalable
system for threat hunting based on ML, and with a special focus on critical infrastructure needs
and characteristics.

Keywords: critical infrastructure protection; threat hunting; cyberattacks; artificial intelligence;
machine learning

MSC: 68T07

1. Introduction

The evolution of IT, and more specifically the internet, has resulted in the adoption of
it at every single action; as a consequence, agencies, SMEs (small and medium enterprises),
and big companies and CI have to ensure that their internet connection is working properly;
otherwise, any service offered by them will be left useless and that can lead to a relevant
economic impact. Not only business continuity but other kinds of attacks are conducted
by cybercriminals, such as information exfiltration or reputation compromise, to gain a
financial benefit.

Taking into account the huge problem of cyberattacks, CI are investing enormous
amounts of money in preventing them or, at least, addressing them properly by making
their IT security departments bigger. In a desired scenario, no data loss, no data exfiltration,
no reputation loss, and, probably the most crucial concern, no business discontinuity would
happen. It is necessary to provide the specialized personnel with specific and valuable tools
to avoid that they end up overwhelmed by vast amounts of near real-time data resulting in
them being unable to address any kind of attacks.

To learn about the kind of traffic that is analyzed, surveys have been conducted [1]
with threat hunters, which concluded that a vast amount of the actionable data belongs
to harmless actions of the employees (such as DNS requests or WEB browsing). It can
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relatively easily be characterizable in patterns that simplify the classification between two
sets: innocuous and threatening events. As ML techniques are characterized by extracting
patterns from apparently unstructured bare data sets [2], they can be used to properly
classify data sets according to the potential threat they can pose, paying attention to the
fact that those algorithms must be customized and adapted to the scenarios that might be
faced in CI daily basis.

Moreover, as some relevant studies [3–5] point out, human cognition prediction on
patterns is strongly influenced by context [6] even more so under stress conditions [7].
In normal conditions, on a day-by-day work basis, threat hunters regularly suffer those
stressful conditions as they face extremely challenging situations associated with attacks
with enormous amounts of data in highly dynamic scenarios where the slightest error can
lead to relevant negative impacts. Furthermore, threat hunting is typically conducted in
new and unknown scenarios with limited and incomplete information, embracing many
unbounded factors, including in these scenarios the zero-day attacks [8].

Therefore, taking into account the before-mentioned high coupling in the context of
prediction by human cognition, human bias could introduce error when discriminating
in behavior between an attack to a non-attack quite similar; however, the usage of ML
systems could behave more accurately than humans, avoiding their bias. Hence, with the
knowledge generated by ML systems (such as feasibility scores, likelihoods, etc.), threat
hunters could better understand what is happening in the operations scenario.

Another relevant element in the threat-hunting process, considered a cognitive loop,
is the hypothesis generation process. Assisted by ML, threat hunters can enhance their
hypothesis generation activity obtaining insights from the machine and even detecting
hidden patterns and processes.

To cope with all those before-mentioned requirements and demands, and in order
to process and analyze huge data sets to detect threats or at least anomalous behaviors, a
reference architecture must be designed and tools must be implemented following it. The
key contribution of this work is the development of a system devoted to fulfilling the stated
needs highlighting the definition of useful ML techniques to generate hypotheses about
what is going on from the gathered raw data.

Paper Layout

The remaining paper is organized as follows: In Section 2 is described the current
state-of-the-art considering existing academic and business solutions. An overview of
different ML techniques suitable for solving the detected problem is reviewed in Section 3.
Section 4 describes how a prototype of the proposed system has been implemented and
evaluated. Finally, in Section 5, the achieved conclusions and the future work are exposed.

2. Motivation and Previous Work

The application of ML techniques to threat hunting is flourishing. For instance,
the work [9] deals with the application of ML to hasty time-critical systems to provide
automation and promptness in response. Both refs. [10,11] are oriented to developing
advanced and smart threat-hunting approaches on software-defined networks (SDNs). The
field of threat hunting in the internet of things (IoT), characterized by limiting factors such
as resource scarceness, has received attention from the research community in applying
ML techniques to cope with those limitations. Examples of this are [12,13]. Several efforts
have also been made in order to use artificial intelligence to highlight social trends in
large amounts of near real-time data, for example, the work [14]. Finally, solutions can be
found in the literature with a more general perspective regarding ML applications to threat
hunting, such as [15,16].

On the other hand, several works try to develop a threat-hunting architecture using
an ML approach. The article [17] proposes an architecture including all steps, from data
collection to data visualization, mainly focused on generating indicators of compromise
(IoCs) and applying ML techniques to several stages. Another relevant work is [18], which,



Mathematics 2023, 11, 3448 3 of 18

aligned to the previous one, attempts to develop an architecture to spot IoCs by means of
applying ML, with a different approach from the one taken in the preceding work. It is
important to state that none of the studied works propose methods and mechanisms to
generate hypotheses from existing data. Another relevant effort in the literature is [19],
which shows a complete architecture but only uses a specific social network as a data
source. To end up, the work [20] takes into account all the benefits of the above-mentioned
proposals and attempts to mitigate the problems detected.

In summary, all the studied works point out the challenges associated with the threat-
hunting process, where it is extremely challenging to create a proper situational under-
standing because of the growing number of not previously known threats or the fast-paced
environments with high change rate conditions, among others.

Besides academia, the industry is also making enormous efforts to apply ML tech-
niques for threat-hunting commercial systems. Some relevant examples of commer-
cial products that do provide it are Splunk [21], Palo Alto Firewalls [22], IBM X-Force
Exchange [23,24] and Anomali ThreatStream [25].

After the previously shown survey and analysis of existing solutions and approaches
in the research area, the architecture defined at [20] takes into account modularity, scalability,
and security, among others; as a consequence, it is considered the best option to continue
the efforts previously done and to implement a threat-hunting system for protecting CI
using an ML approach following that architecture.

It is also considered important to highlight the importance of having a well-designed
and reliable mechanism to authenticate the users and to cipher the data between the differ-
ent components that constitute the system. As proposed in [20], several mechanisms can be
considered, but more options can be found at the current state-of-the-art, for instance, [26].
In addition, regarding that the exchanged data can be considered very sensitive, it is consid-
ered relevant to implement systems that ensure the integrity of all the operations committed
in the distributed system, ensuring that all of them are legitimate and none of them has been
executed using old data; furthermore, these systems should also provide mechanisms to
audit operations by third-party authorities publicly. To achieve this, current state-of-the-art
can be found in works like [27,28] where blockchain technology is proposed.

3. Machine Learning

Artificial intelligence, or more accurately ML, is meant to serve as a helper for threat
hunters, but they are not usually specialists in data science; as a consequence, without
providing specific rules or examples on which ML technique fits the best for every circum-
stance, ML can result in a problem instead of a helper.

A study on the topic has been conducted to give a first approach to the current
state-of-the-art of ML techniques and which one may be used for every circumstance.

3.1. Techniques

There are countless ML techniques that can be used for cybersecurity processing.
Deep research has been conducted and the techniques that have been implemented at the
prototype are explained thereupon.

3.1.1. Clustering
K-Means

K-means is a clustering technique that suffers problems of random initialization and
unexpected convergence to local minimums in its original implementation. K-means is
based on the generation of k clusters. Each cluster has a centroid and the algorithm tries to
find where the centroid is in a N-dimensions space to achieve the least squared Euclidean
distance [29].

Several alternatives have been proposed in the last few years to solve the problems of
the original implementation of K-means, such as [30,31].
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Affinity Propagation

Affinity propagation is a clustering technique that tries to find a set of data points
that best exemplify the data which have been processed. According to how the algorithm
is defined, it has several limitations, such as no correct definition of the parameters and
oscillations. Some alternatives have been proposed to solve the previously listed problems,
such as [32,33].

Mean Shift

Mean shift is a clustering technique in which the most remarkable property is that there
are no parameters to configure [34]. It works well for low-dimensional spaces, whereas for
high-dimensional space combinations, other approaches must be taken into account, for
example, ref. [35] in which a hierarchical approach is combined with mean shift.

Spectral Clustering

Spectral clustering has become one of the most popular clustering techniques in recent
years, becoming a substitute for traditional techniques like k-means in some scenarios.

Spectral clustering is easy to implement and the mathematics behind it can easily be
solved using simple linear algebra software.

There are several algorithm variants, as stated in [36], for instance, unnormalized and
normalized spectral clustering.

Hierarchical Clustering

Hierarchical clustering is an unsupervised ML technique used for performing data
exploratory analysis, which consists in obtaining the root of a tree in which leaves are the
elements of a set of data [37].

It is important to highlight the parameter base distance function used to calculate the
distance between elements in the space, which means the dissimilarity.

One example of hierarchical clustering could be the algorithm m-ADIC clustering [38].

DBSCAN

DBSCAN (density-based spatial clustering of applications with noise) is a cluster-
ing method characterized by being able to discover clusters of any arbitrary shape and
size, even with sets of data containing noise and outliers. The main issues of using this
technique are the parameters that must be configured to work and several computational
complexities [39].

To solve the above-mentioned issues, some alternatives have been developed, for
example, VDBSCAN (varied DBSCAN) [40], FDBSCAN (fast DBSCAN) [41], etc.

3.1.2. Neural Network
LSTM RNN

LSTM RNN (long short-term memory recurrent neural network) is a kind of neural
network capable of learning more than 1000 steps, depending on the complexity of the
built network [42,43].

BiLSTM

BiLSTM (bidirectional LSTM) is a kind of neural network in which, first of all, the
input data feeds the LSTM layer, and then, the training is repeated, but, in this case, the
LSTM layer receives the data in the reverse order of the sequence of the input data [43,44].

C-RNN-GAN

C-RNN-GAN (continuous recurrent neural networks with adversarial training) is a
kind of recurrent neural network (RNN) whose main objective is to generate a model of the
trained data. To achieve the objective, two neural networks must be implemented, one is
called a generator, and the other one is called a discriminator. The generator is the one that
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will be modeled according to the data, and from a kind of input data, it returns data that
must be as close as possible to the training data. To know if the generated data is like the
trained one, there is the discriminator, which has as input the generated data and the real
data, returns the value of proximity, and, finally, it is the work of the data expert to set a
threshold to distinguish between regular and irregular data [45].

Graph Neural Networks

Complex data, like images or videos, usually are analyzed using (multi-dimensional)
kernels which go through all the pixels across all the dimensions. It can be done thanks to
the specific properties of the images. However, other kinds of complex data (for instance,
social network data, financial data, IP network data, etc.) follow specific patterns, usually
node-edge relations or graph relations, which are unsuitable for learning by using kernels.
As graph-like data is very usual, enormous efforts have been made to develop specific
neural networks defined as GNN (graph neural networks). Some examples of GNN are
GNNExplainer, GNN-LRP, and PGExplainer [46].

3.1.3. Natural Language Processing
BERT

BERT (Bidirectional Encoder Representations from Transformers) is a model which
is able to cope with NLP (natural language processing) tasks such as text classification
without human supervision [43,47].

TF-IDF

TF-IDF (term frequency inverse document frequency) is a statistical technique that is
useful to calculate how much significance has a specific word in a full text. This specific
technique is useful, for example, to detect malicious URLs, etc. [48,49].

3.2. Comparison

After analyzing different ML techniques, a comparison highlighting the most impor-
tant characteristics can be found in Table 1.

As shown in the table, all machine learning techniques are unsupervised; however,
many supervised machine learning techniques are very useful, for instance, decision
trees [50], etc.

Another important conclusion is that threat hunters must be helped by data analysts
in order to interact with the system, or at least, they must have basic knowledge about
how each ML technique works in order to set the required parameters to obtain the
desired outcome.

Table 1. Techniques comparison.

Technique Type Parameters Supervised

K-means Clustering Yes No
Affinity Propagation Clustering Yes No

Mean Shift Clustering No No
Spectral Clustering Clustering Yes No

Hierarchical
Clustering Clustering Yes No

DBSCAN Clustering Yes No

LSTM RNN Neural Network Yes No
BiLSTM Neural Network Yes No

C-RNN-GAN Neural Network Yes No
GNN Neural Network Yes No

BERT NLP Yes No
TF-IDF NLP Yes No
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3.3. Use Cases

Depending on what a threat hunter looks for, the ML techniques used and how they
are ordered differ. As well as with the techniques, the combinations are countless; despite
that, some implementations have been done at the prototype in order to verify that the
implemented system works properly, and some of them are shown thereupon.

3.3.1. TTP Discovery

MITRE ATT&CK [51–53] is an extremely useful attempt to characterize adversary be-
havior (mostly advanced persistent threat, or APT) by classifying it into tactics, techniques,
and procedures (TTP) [54]. Comparing what is going on in the analyzed infrastructure and
the previous APTs analysis, an analyst could know whether a specific APT is attacking the
infrastructure.

There are some SIEMs (security information and event management) that are able to
classify the events in the corresponding TTP; however, many of them still need that feature,
and analysts must do that work. To alleviate analysts from that work, the usage of NLP is
proposed to discover TTP, like how MITRE TRAM does [55].

3.3.2. Behaviour Analysis

The developed system is able to gather data from hosts and from networking equip-
ment to have a complete picture of the monitored infrastructure and how its users interact
with other users or endpoints. Because of that holistic view, analysts are searching for
threats at every possible weakness to act in a very early step of the kill chain. One technique
to do it is to create a model about what is normal in the monitored infrastructure, and
everything that deviates is analyzed to decide whether it is a threat or not. One main issue
is that, sometimes, that divergence is very small, and a person cannot discriminate, but an
ML model is more likely to succeed.

A possible solution is to model the behavior of the monitored infrastructure users
using ML, and, once it is modeled, everything that diverges more than a threshold could
be considered an anomaly, enabling cybersecurity analysts to check it out [56–58].

3.3.3. Alert Priority

Several ML algorithms not only learn from the data gathered from the data collectors,
but also from the feedback received from cybersecurity analysts. If a model is trained using
the feedback generated by the cyberanalyst, it can learn, for example, which alerts have
bigger priority; as a consequence, the system will be able to tag automatically the alerts
by priority.

4. Prototype

Once the architecture has been chosen, the next step will be to develop the system
prototype to evaluate its performance and to decide whether the solution is useful for
protecting CI using a machine learning approach.

The developed prototype implements the architecture defined at [20], which is de-
scribed according to Figure 1. The chosen programming language was Python because it is
widely used in ML projects, and there are a lot of specific libraries like Scikit-Learn, Keras,
Tensorflow, or PyTorch which do the work with ML techniques easily and, in addition, they
are optimized to work with GPU CUDA which results in short processing times.

Following the proposed architecture, each component has been considered an au-
tonomous service in charge of a non-complex specific task that provides functionalities to
other services and/or interacts with other services to solve complex tasks.

After each service had been developed and tested, a docker image of the component
was created to be deployed in the system. Each component has specific configurations set
using the container’s environmental variables.
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Figure 1. Implemented architecture. Obtained from Mario Aragonés Lozano [20], with permission
from MDPI, 2023.

After all the components had been developed and containerized, they were deployed
using docker-compose. Another alternative would be to use Kubernetes, but for the purpose
of resource evaluation, it was considered that deploying the system using docker-compose
would be enough.

4.1. Prototype Evaluation

After developing the prototype, it was evaluated, simulating real conditions of usage.
Our virtualization infrastructure consists of a cyber range running VMware vSphere 6
Enterprise Plus and with the following resources:

• 16 CPU × 2.10 GHz;
• 140 GB RAM;
• 5 TB HDD;

At that cyber range, several components had been deployed during the evaluation phase.
First, the developed system with all the components simulating a real distributed

scenario was deployed. The following resources were assigned to those components:

• 6 CPU × 2.10 GHz;
• 32 GB RAM;
• 500 GB HDD;

After that, a CI network was deployed consisting of the following elements:

• Main router;
• WAN network:

- Attackers;

• Prototype network:



Mathematics 2023, 11, 3448 8 of 18

- Data collectors;
- Pre-processing components;
- ML components;
- ML sequence preset component;
- Big Data components;
- HMI component;
- . . .

• Industrial network:

- Modbus TCP devices;
- Profinet devices;
- KNX devices;
- . . .

• Critical Infrastructure network:

- Hosts with Linux;
- Hosts with Windows;
- Domain Controllers;
- . . .

• DMZ:

- Apache servers;
- NGINX servers;
- DNS servers;
- Exchange servers;
- . . .

The final schema of deployed elements (the prototype components and the simulated
CI network) can be found in Figure 2.

WAN

Prototype Components: 10.0.100.0/24

Implemented
Prototype

Data
Collectors

Pre Processing
Components

ML
Components

ML
Sequences

Big Data
Components

HMI
Component

b b b

Industrial: 10.0.20.0/24

Modbus TCP
Controlled I/O

Profinet
Controlled I/O

KNX
Gateway

b b b

Critical Infrastructure: 10.0.10.0/24

Ubuntu Windows 10 Domain
Controller b b b

DMZ: 10.0.40.0/24

Apache DNS Exchange b b b

Figure 2. Monitored infrastructure schema.
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Once all the components were deployed, all the hosts were configured with real
conditions, and several sensors and external triggers simulated a realistic scenario (for
example, sensor emulating gates opening/closing, sensor simulating temperature changes,
external endpoints making requests to the servers of the DMZ, users interacting with
windows server, users interacting with Linux servers, etc.).

Having both the system prototype and the scenario to protect deployed, the final
step was to validate and verify the system prototype. The validation was conducted by
executing machine learning techniques and ensuring the desired results. The verification
was decomposed into two phases and consisted of simulating real attacks against the
monitored infrastructure.

The first step, the validation, consisted in creating ML systems by concatenating
several ML techniques. After ML systems were created, they were executed using real data
gathered from the data collectors. After every execution, the results and the logs generated
were analyzed to fine-tune the ML techniques defined until obtaining the desired result.

Then, the system was attacked by pentesters using Kali Linux to generate attacks
against the simulated infrastructure. Several kinds of attacks were executed following the
process explained thereupon. First of all, network scannings were executed in order to
discover assets, their services, and their corresponding vulnerabilities in a stealthy and
noisy approach. After that, denial of service (DoS) attacks were also made against network
equipment and hosts. Not only DoS attacks, but also distributed denial of service (DDoS)
attacks were executed. The next step was to launch man-in-the-middle attacks, for instance,
arp spoofing, etc. Other interesting attacks were those tagged as brute force against services
like SSH, HTTP, MySQL, etc., to get user enumerations, passwords, etc. To continue, several
malware software were created targeting specific hosts and they were established at the
host using previously generated reverse shells. They were downloaded and executed,
giving us useful information about whether the attack would be detected before it would be
executed or not. Phishing campaigns were also created using USBs and emails. Some other
attacks against the network and hosts were those exploiting the previous vulnerability
detected and bad configurations of the devices. Also, web attacks and SQL injection attacks
were executed, among others.

In order to evaluate those attacks, two approaches were followed. On the one hand,
threat hunters analyzed the attacks in real-time using the developed system, and on the
other hand, all the data were given to threat hunters for conducting a forensic analysis.

Once the evaluation with pentesters using Kali Linux had finished, the next step was
to evaluate the system using MITRE CALDERA [59].

With MITRE CALDERA we were able to generate specific threat profiles and used them
against the simulated network to analyze those attacks using the developed prototype. The
first thing to do was to install MITRE CALDERA agents at the simulated hosts. Afterward,
adversary profiles containing the steps a cyberattacker would execute were created. In
our specific case, we tried to simulate known steps made by some APTs in different attack
campaigns trying to evaluate how useful the system would be if those steps were made
to the monitored system. After being defined those actions to reproduce, we executed the
campaigns against those agents previously installed.

As well as before, the evaluation of the system was made in real-time, simulating
an attack. In addition, using the collected data, threat hunters could conduct a forensic
analysis in a post-phase stage.

Prototype Evaluation Results

The first step to evaluate the prototype was to conduct several validation challenges.
To execute those validation challenges, ML systems were generated, each trying to solve
different problems that threat hunters face daily. In particular, the evaluation results that
will be shown thereupon consist of a cluster of logs in which the temporary value of the
inputs is not taken into account; there are other validated systems that have also taken into
account the proximity between events.
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This ML system (Figure 3) consisted of a concatenation of, firstly, pre-processing
components which normalized those logs that did not follow a standard structure. After
that, NLP techniques obtained properties like words distribution of the samples due to logs
can be viewed as textual data [60]. Finally, clustering techniques were executed to obtain
the results.

Input Data NLP
Normalization

NLP
Technique

Clustering
Normalization Output Data

Figure 3. Validation ML system.

After several iterations of fine-tuning the parameters of TF-IDF and spectral clustering
techniques that best fit the data requirements, the results were considered useful. A two-
dimensional sample was generated from a multidimensional output to visually analyze the
result, as shown in Figures 4 and 5.
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Figure 5. Validation ML system: 2D cluster plot with legend.

As can be seen, the ML system is able to process the data by achieving the desired
result, which is clustering it following an NLP approach and grouping the detected logs
along with the associated APT together.
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The next step of the evaluation process was the first stage of the verification process,
in which the monitored infrastructure was attacked by pentesters using Kali Linux. At
this step, several ML systems were generated to detect the attacks using different kinds
of perspectives. One of them was the usage of C-RNN-GAN (Figure 6) with the analyzed
network data for two different goals; first of all, to generate a model of the baseline data
of the monitored infrastructure, i.e., the network traffic generated by devices and people
by normal usage; and secondly, once the model is generated, to discriminate the new data
between baseline and deviant to notify threat hunters when there is something unusual.

Data

Generator

Discriminator Discrimination error

Figure 6. C-RNN-GAN.

To evaluate the results, we used the ROC curve [61] because the area under the curve
is a perfect measure of the ability of a system to discriminate whether a specific condition
is satisfied or not. The results obtained across the modifications of neural networks’ hidden
layers for fine-tuning the C-RNN-GAN neural networks generated the ROC curves in
Figure 7.
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Figure 7. C-RNN-GAN: ROC curve (AUC: area under the ROC curve, the higher the better).
(a) First iteration; (b) second iteration; (c) third iteration; (d) fourth iteration; (e) fifth iteration;
(f) all together.

The last step of the evaluation process was to attack the monitored infrastructure as
an APT would do. The main purpose of this step was to know how capable the developed
system would be to detect a hypothetical very stealthy and complex attack. To help us in
the execution of this step of the evaluation process, the attacks were executed using the
tool developed by MITRE called MITRE CALDERA. With this tool, red teams can model
the behavior of APTs and execute those attacks against several hosts efficiently.

MITRE CALDERA has no APT modeled, but several repositories with APT models
can be found online. For the purpose of the evaluation of the implemented system, it
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was decided to use a model of APT29 [62] because it was considered comprehensive. A
screenshot of the MITRE CALDERA attack model can be shown in Figure 8 and the steps
of one simulated attack are defined thereupon:

1. RTLO Start Sandcat (T1036);
2. PowerShell (T1086);
3. Automated Collection (T1119);
4. Data from staged file (T1074) and Exfiltration over C2 Channel (T1041);
5. Staging Monkey PNG;
6. UAC Bypass via Backup Utility;
7. Registry Cleanup for UAC Bypass Technique;
8. Planting Modified Sysinternals Utilities;
9. Process Discovery;
10. Artifact Cleanup—Delete Files;
11. Persistent Service—1 and 2;
12. Credentials in Files (T1081)—Chrome;
13. Credentials in Files (T1081)—Private Keys Extraction;
14. Staging Files for PowerShell Module Imports;
15. Screen Capturing;
16. Automated Collection (T1119)—Clipboard (T1115);
17. Automated Collection (T1119)—Input Capture (T1417);
18. Data from Staged File (T1074) and Exfiltration over C2 Channel (T1041);
19. Remote System Discovery (T1018);
20. Identifying Current User on Other Machines;
21. Copy Sandcat File;
22. Startup Folder Persistence Execution;
23. Artifact Cleanup.

Figure 8. MITRE CALDERA: APT29 adversary model.

The MITRE CALDERA attacks were analyzed using GNN following the approach
proposed at [63]. All the detected information received was modeled using graphs to
understand the evolution of attacks, not only taking into account the stages of the attack,
but also discovering lateral movements inside the network, being able to know which was
the entry point and how the attack evolved over time. Using as reference [63], the graph
is modeled taking into account both, intrahost relations and interhost relations, as it is
explained in Figure 9.
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Intrahost Relations

Interhost Relations

b b b b b b b b b

b b b b b b

Figure 9. GNN relations.

After training the GNN model, the graph modeled what the system would do after
the action of a user (for instance, after visiting a web page, the computer will translate the
DNS name into an IP address, then the browser will ask the IP for the host of the web page,
etc.) and all the anomalies of the normal behavior will follow irregular paths of the graph,
will warn the threat hunters about were to find for threats.

At the work used as a reference, they used ROC curves to analyze the results (as we
have done before). However, to enhance the results, we propose to analyze them by using
a relation between the probability of an action to be triggered against which action had
been finally done by the user.

In order to highlight which edges are less susceptible to be taken, we use the
following equation:

M = pm ∗ N (1)

where,

• pm is the probability of the edge to be taken;
• N is the number of available edges;

Some examples of the application of the given formula would be:

1. There are 2 available edges and the given possibility for the detected edge is 99
100 , the

result would be M = 1.98;
2. There are 100 available edges and the given possibility for the detected edge is 1

100 ,
the result would be M = 1;

3. There are 2 available edges and the given possibility for the detected edge is 1
100 , the

result would be M = 0.02.

What can be concluded from the given formula is that, in normal conditions, the value
for M will be 1 ± δ, and, the values lower than the 1 − δ will be considered anomalies.

After running the attacks with MITRE CALDERA, the obtained results generated the
histogram in Figure 10.
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Figure 10. MITRE CALDERA: Histogram.

Some examples of unusual paths detected by the GNN would be:

• HTTP requests without previous DNS requests.
• Processes started without a known parent.
• Running processes with no footprint in the file system.
• Outbound persistent connections.

4.2. Prototype Improvements

After conducting all the evaluation phases we were able to confirm that the developed
and implemented prototype was able to successfully conduct the security analysis and
protection of the monitored infrastructure.

Nonetheless, there is always room for performance improvements and that is some-
thing that we also keep in mind. The libraries used, despite that they are for Python, make
extensive inner use of highly-optimized C++ libraries for most of the processing being
the Python part sort of a wrapper on them; notwithstanding, those libraries are always
improving their performance. In addition, all the libraries we used are open-source, and
if we detect any kind of improvement we (or anyone) can create requests providing code
enhancements to the maintainer. During the development phase, we have been discussing
fully moving all the code to C++ instead of this mixture between Python and optimized
C++; however, we have found out that the benefits provided are much leaser than the
introduced complexities.

Despite that, the evaluation was done in a very limited in-scope scenario with some
particular resources. As future work could be interesting to verify the developed prototype
in more limited resources machines or with worse quality data than the used for our testing
scenarios to detect and solve issues in performance.

5. Conclusions

After conducting deep research on the current state-of-the-art systems capable of
helping threat hunters by means of artificial intelligence (more specifically, ML) for the
protection of CI, it was found that none of the surveyed works take into account all the
difficulties that cyberprofessionals face on their daily job as a whole. Therefore, to fill the
detected gaps, a system for protecting CI using an ML approach has been developed.

To know exactly which are the needs of cyberprofessionals, surveys were conducted.
After analyzing the answers to those surveys, one of the obtained conclusions was that
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the vast majority of the actionable data were related to harmless actions of the employees,
which, in addition, was repetitive and followed patterns, making it perfectly fit for the
usage of ML techniques.

After that, research on the current state-of-the-art was conducted and it was selected
the architecture defined at threat hunting architecture using a machine learning approach for
critical infrastructures protection [20] in which a scalable, big data oriented and online-
configurable architecture for protecting CI using ML techniques was defined. One key
point of this architecture was the ability to define ML systems to detect anomalies as well
as to define hypotheses from the generated data, which fit the main needs detected at the
surveys. There were also analyses of which ML techniques could be useful for usage with a
TH system.

Then, the architecture was implemented. To continue, several ML techniques were
defined inside the corresponding module, for instance, NLP, C-RNN-GAN, GNN, among
others. Using the defined techniques, ML systems were created by combining several of
them. Each one was in charge of solving some specific problems and all combined were
in charge of protecting the simulated infrastructure implemented to test the system. For
each one of the components, validation tests were conducted to ensure that they worked
as expected.

After that, a simulated infrastructure was deployed trying to emulate the hosts and
network equipment of a real CI to use it as a verification scenario. Using this infrastructure,
verification processes were conducted to ensure that the implemented prototype was
capable of solving most of the TH problems detected at the previously conducted surveys.

From the validation, we were able to verify that each component, individually, was able
to return the expected output for the requested inputs. On the other hand, the verification
processes’ results prove that the overall system was useful to detect anomalies and give an
anomaly factor to prioritize some attacks over others.

After finishing that evaluation phase, it was concluded that the developed prototype
could detect simple to complex attacks focused on CI using an ML approach in the scope
of the evaluation scenarios.

In addition, to enrich the current state-of-the-art, an equation to detect anomalies
in graph-based data by means of graph-based neural networks was proposed at the
verification step.

The work is not finished here, but we are continuing it by testing the implemented
prototype with scarce resources machines and how to enhance our ML techniques and
our ML pipelines to make them robust against lower quality and poorer datasets. As a
research line, we are starting to work on applying the architecture and the implemented
prototype to hybrid (physical and cyber) scenarios by detecting anomalies not only in the
cyber domain, but also in the physical domain, and how the possible effects of the events
of one domain can be propagated to the other and the other way round.
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Abbreviations
The following abbreviations are used in this manuscript:

APT Advanced persistent threat
BERT Bidirectional encoder representations from transformers
BiLSTM Bidirectional LSTM
C-RNN-GAN Continuous recurrent neural networks with adversarial training
CI Critical infrastructures
DBSCAN Density-based spatial clustering of applications with noise
DDoS Distributed denial of service
DoS Denial of service
FDBSCAN Fast DBSCAN
GNN Graph neural networks
IoC Indicators of compromise
IoT Internet of things
IP Internet protocol
IT Information technology
LSTM RNN Long short-term memory recurrent neural network
ML Machine learning
NLP Natural language processing
RNN Recurrent neural network
SDN Software-defined networks
SIEM Security information and event management
SME Small and medium enterprise
TF-IDF Term frequency inverse document frequency
TTP Tactics, techniques, and procedures
VDBSCAN Varied DBSCAN
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