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Abstract: We study the sequence of monic polynomials {Sn}n>0, orthogonal with respect to the Jacobi-

Sobolev inner product 〈 f , g〉s =
∫ 1
−1 f (x)g(x) dµα,β(x) + ∑N

j=1 ∑
dj

k=0 λj,k f (k)(cj)g(k)(cj), where

N, dj ∈ Z+, λj,k > 0, dµα,β(x) = (1 − x)α(1 + x)βdx, α, β > −1, and cj ∈ R \ (−1, 1). A con-
nection formula that relates the Sobolev polynomials Sn with the Jacobi polynomials is provided, as
well as the ladder differential operators for the sequence {Sn}n>0 and a second-order differential
equation with a polynomial coefficient that they satisfied. We give sufficient conditions under which
the zeros of a wide class of Jacobi-Sobolev polynomials can be interpreted as the solution of an
electrostatic equilibrium problem of n unit charges moving in the presence of a logarithmic potential.
Several examples are presented to illustrate this interpretation.

Keywords: Jacobi polynomials; Sobolev orthogonality; second-order differential equation; electro-
static model

MSC: 30C15; 42C05; 33C45; 33C47; 82B23

1. Introduction

It is well known that the classical orthogonal polynomials (i.e., Jacobi, Laguerre, and
Hermite) satisfy a second-order differential equation with polynomial coefficients, and its
zeros are simple. Based on these facts, Stieltjes gave a very interesting interpretation of the
zeros of the classical orthogonal polynomials as a solution of an electrostatic equilibrium
problem of n movable unit charges in the presence of a logarithmic potential (see [1] Sec.
3). An excellent introduction to Stieltjes’ result on this subject and its consequences can be
found in ([1] Sec. 3) and ([2] Sec. 2). See also the survey [3] and the introduction of [4,5].

In order to make this paper self-contained, it is convenient to briefly recall the Jacobi,
Laguerre, and Hermite cases. We begin with Jacobi. Let us consider n unit charges at
the points x1, x2, . . . , xn distributed in [−1, 1] and add two positive fixed charges of mass
(α + 1)/2 and (β + 1)/2 at 1 and −1, respectively. If the charges repel each other according
to the logarithmic potential law (i.e., the force is inversely proportional to the relative
distance), then the total energy E(·) of this system is obtained by adding the energy of the
mutual interaction between the charges. This is

E(ω1, ω2, . . . , ωn) = ∑
16i<j6n

log
1∣∣ωi −ωj

∣∣
+

α + 1
2

n

∑
j=1

log
1∣∣1−ωj

∣∣ + β + 1
2

n

∑
j=1

log
1∣∣1 + ωj

∣∣ . (1)
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The minimum of (1) gives the electrostatic equilibrium. The points x1, x2, . . . , xn where
the minimum is obtained are the places where the charges will settle down. It is obvious
that, for the minimum, all the xj are distinct and different from ±1.

For a minimum, it is necessary that ∂Et
∂ωj

= 0 (1 6 k 6 n), from which it follows that the

polynomial Pn(x) = ∏n
j=1(x− xj) satisfies the differential equation(

1− x2
)

P′′n (x) + (β− α− (α + β + 2)x)P′n(x) = −n(n + α + β + 1)Pn(x), (2)

which is the differential equation for the monic Jacobi polynomial Pn(x) = Pα,β
n (x) (see [6]

(Theorems 4.2.2 and 4.21.6)). The proof of the uniqueness of the minimum, based on the
inequality between the arithmetic and geometric means, can be found in [6] (Section 6.7).
In conclusion, the global minimum of (1) is reached when each of the n charges is located
on a zero of the nth Jacobi polynomial Pα,β

n (x).
For the other two families of classical orthogonal polynomials on the real line (i.e.,

Laguerre and Hermite), Stieltjes also gave an electrostatic interpretation. Since, in this
situation, the free charges move in an unbounded set, they can escape to infinity. Stieltjes
avoided this situation by constraining the first (Laguerre) or second (Hermite) moment of
his zero-counting measures (see [6] (Theorems 6.7.2 and 6.7.3) and [1] (Section 3.2)).

The electrostatic interpretation of the zeros of the classical orthogonal polynomials,
in addition to Stieltjes, was also studied by Bôcher, Heine, and Van Vleck, among others.
These works were developed between the end of the 19th century and the beginning of
the 20th century. After that, the subject remained dormant for almost a century, until it
received new impulses from advances in logarithmic potential theory, the extensions of the
notion of orthogonality, and the study of new classes of special functions.

Let µ be a finite positive Borel measure with finite moments whose support supp(µ) ⊂ R
contains an infinite set of points. Assume that {Pn}n>0 denotes the monic orthogonal
polynomial sequence with respect to the inner product

〈 f , g〉µ =
∫

f (x)g(x)dµ(x). (3)

In general, an inner product is referred to as “standard” when the multiplication operator
exhibits symmetry with respect to the inner product, i.e., 〈x f , g〉µ = 〈 f , xg〉µ. As (3) is a stan-
dard inner product, we have that Pn has exactly n simple zeros on (a, b) = Ch(supp(µ))◦ ⊂ R,
where Ch(A) denotes the convex hull of a real set A and A◦ denotes the interior set of A.
Furthermore, the sequence {Pn}n>0 satisfies the three-term recurrence relation

xPn(x) = Pn+1(x) + γ1,nPn(x) + γ2,nPn−1(x); P0(x) = 1, P−1(x) = 0,

where γ2,n = ‖Pn‖µ
2/‖Pn−1‖µ

2 for n > 1, γ1,n = 〈Pn, xPn〉µ/‖Pn‖2
µ, and ‖ · ‖µ =

√
〈·, ·〉µ

denotes the norm induced by (3). See [6–8] for these and other properties of {Pn}n>0.
Let (a, b) be as above, N, dj ∈ Z+, λj,k > 0, for j = 1, . . . , N, k = 0, 1, . . . , dj,

{c1, c2, . . . , cN} ⊂ R\(a, b), where ci 6= cj if i 6= j and I+ = {(j, k) : λj,k > 0}. We
consider the following Sobolev-type inner product:

〈 f , g〉s = 〈 f , g〉µ +
N

∑
j=1

dj

∑
k=0

λj,k f (k)(cj)g(k)(cj)

=
∫

f (x)g(x)dµ(x) + ∑
(j,k)∈I+

λj,k f (k)(cj)g(k)(cj), (4)
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where f (k) denotes the kth derivative of the function f . We also assume, without restriction
of generality, that {(j, dj)}N

j=1 ⊂ I+ and d1 6 d2 6 · · · 6 dN . Let us denote by Sn (n ∈ Z+)

the lowest degree monic polynomial that satisfies

〈xk, Sn〉s = 0, for k = 0, 1, . . . , n− 1. (5)

Henceforth, we refer to the sequence {Sn}n>0 of monic polynomials as the system
of monic Sobolev-type orthogonal polynomials. It is not difficult to see that for all n > 0,
there exists a unique polynomial Sn of the degree n. Note that the coefficients of Sn are
the solution of a homogeneous linear system (5) of n + 1 unknowns and n equations. The
uniqueness is a consequence of the required minimality on the degree. For more details on
this type of nonstandard orthogonality, we refer the reader to [9,10].

It is not difficult to see that, in general, (4) is nonstandard, i.e., 〈xp, q〉s 6= 〈p, xq〉s. The
properties of orthogonal polynomials concerning standard inner products are distinct from
those of Sobolev-type polynomials. For instance, the roots of Sobolev-type polynomials
either can be complex or, if real, might lie beyond the convex hull of the measure µ support,
as demonstrated in the following example:

Example 1. Let

〈 f , g〉s =
∫ 1

−1
f (x)g(x)dx + f ′(−2)g′(−2) + f ′(2)g′(2),

then the corresponding third-degree monic Sobolev-type orthogonal polynomial is S3(z) = z3 −
183
20 z, whose zeros are 0 and ±

√
183
20 . Note that ±

√
183
20 ≈ ±3 6∈ [−2, 2].

We will denote by P the linear space of all polynomials and by dgr(p) the degree of
p ∈ P. Let

ρ̂(x) = ∏
cj6a

(
x− cj

)dj+1∏
cj>b

(
cj − x

)dj+1 and dµρ̂(x) = ρ̂(x)dµ(x).

Note that ρ̂(x) > 0 for all x ∈ (a, b) and dgr(ρ̂) = d = ∑N
j=1(dj + 1). Additionally, for

n > d, from (5), we have that {Sn} satisfies the following quasi-orthogonality relations:

〈Sn, f 〉µρ̂
= 〈Sn, ρ̂ f 〉µ =

∫
Sn(x) f (x)ρ̂(x)dµ(x) = 〈Sn, ρ̂ f 〉s = 0,

for f ∈ Pn−d−1, where Pn denotes the linear space of polynomials with real coefficients
and degree less than or equal to n ∈ Z+. Thus, Sn is a quasi-orthogonal of order d with
respect to the modified measure µρ̂. Therefore, Sn has at least (n− d) changes of sign in
(a, b).

Taking into account the known results for measures of bounded support (see [11]
(1.10)), the number of zeros located in the interior of the support of the measure is closely
related to d∗ = #(I+), where the symbol #(A) denotes the cardinality of a given set A. Note
that d∗ is the number of terms in the discrete part of 〈·, ·〉s ( i.e., λj,k > 0).

From Section 3 onward, we will restrict our attention to the case when in (4) the
measure dµ is the Jacobi measure dµα,β(x) = (1− x)α(1 + x)βdx (α, β > −1) on [−1, 1].
Some of the results we obtain are generalizations of previous work, with derivatives up to
order one. For more details, we refer the reader to [12,13] and the references therein.

The aim of this paper is to give an electrostatic interpretation for the distribution of
zeros of a wide class of Jacobi-Sobolev polynomials, following an approach based on the
works [4,14,15] and the original ideas of Stieltjes in [16,17].

In the next section, we obtain a formula that allows us to express the polynomial Sn
as a linear combination of Pn and Pn−1, whose coefficients are rational functions. We refer
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to this formula as “connection formula”. Sections 3 and 4 deal with the ladder (raising
and lowering) equations and operators of {Sn}n>0. We combine the ladder (raising and
lowering) operators to prove that the sequence of monic polynomials {Ŝn(x)}n>0 satisfies
the second-order linear differential Equation (35), with polynomial coefficients.

In the last section, we give a sufficient condition for an electrostatic interpretation of
the distribution of the zeros of {Ŝn(x)}n>0 as the logarithmic potential interaction of unit
positive charges in the presence of an external field. Several examples are given to illustrate
whether or not this condition is satisfied.

2. Connection Formula

Let µ be a finite positive Borel measure with finite moments, whose support supp(µ) ⊂ R
contains an infinite set of points. Assume that {Pn}n>0 denotes the monic orthogonal
polynomial sequence with respect to the inner product (3). We first recall the well-known
Christoffel-Darboux formula for Kn(x, y), the kernel polynomials associated with {Pn}n>0.

Kn−1(x, y) =
n−1

∑
k=0

Pk(x)Pk(y)

‖Pk‖2
µ

=


Pn(x)Pn−1(y)− Pn(y)Pn−1(x)

‖Pn−1‖2
µ (x− y)

, if x 6= y,

P′n(x)Pn−1(x)− Pn(x)P′n−1(x)
‖Pn−1‖2

µ
, if x = y.

(6)

We denote by K(j,k)
n (x, y) =

∂j+kKn(x, y)
∂xj∂yk the partial derivatives of the kernel (6).

Then, from the Christoffel-Darboux Formula (6) and the Leibniz rule, it is not difficult to
verify that

K(0,k)
n−1 (x, y) =

n−1

∑
i=0

Pi(x)P(k)
i (y)

‖Pi‖2
µ

=
k!(Qk(x, y; Pn−1)Pn(x)−Qk(x, y; Pn)Pn−1(x))

‖Pn−1‖2
µ (x− y)k+1

, (7)

where Qk(x, y; f ) = ∑k
ν=0

f (ν)(y)
ν! (x − y)ν is the Taylor polynomial of the degree k of f

centered at y. Observe that (7) becomes the usual Christoffel-Darboux formula (6) if k = 0.
From (4), if i < n

〈Sn, Pi〉µ = 〈Sn, Pi〉s − ∑
(j,k)∈I+

λj,kS(k)
n (cj)P(k)

i (cj) = − ∑
(j,k)∈I+

λj,kS(k)
n (cj)P(k)

i (cj). (8)

Therefore, from the Fourier expansion of Sn in terms of the basis {Pn}n>0 and using
(8), we obtain

Sn(x) = Pn(x) +
n−1

∑
i=0
〈Sn, Pi〉µ

Pi(x)

‖Pi‖2
µ

= Pn(x)− ∑
(j,k)∈I+

λj,kS(k)
n (cj)

n−1

∑
i=0

Pi(x)P(k)
i (cj)

‖Pi‖2
µ

= Pn(x)− ∑
(j,k)∈I+

λj,kS(k)
n (cj)K

(0,k)
n−1 (x, cj). (9)
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Now, replacing (7) in (9), we have the connection formula

Sn(x) = F1,n(x)Pn(x) + G1,n(x)Pn−1(x), (10)

where F1,n(x) = 1− ∑
(j,k)∈I+

λj,kk! S(k)
n (cj)

‖Pn−1‖2
µ

Qk(x, cj; Pn−1)

(x− cj)k+1

and G1,n(x) = ∑
(j,k)∈I+

λj,kk! S(k)
n (cj)

‖Pn−1‖2
µ

Qk(x, cj; Pn)

(x− cj)k+1 .

Deriving Equation (9) `-times and evaluating then at x = ci for each ordered pair
(i, `) ∈ I+, we obtain the following system of d∗ = #(I+) linear equations and d∗ unknowns
S(k)

n (cj).

P(`)
n (ci) =

(
1 + λi,`K

(`,`)
n−1 (ci, ci)

)
S(`)

n (ci) + ∑
(j,k)∈I+
(j,k) 6=(i,`)

λj,kK(`,k)
n−1 (ci, cj)S

(k)
n (cj). (11)

The remainder of this section is devoted to proving that system (11) has a unique
solution. The following lemma is essential to achieve this goal.

Lemma 1. Let I ⊂ R×Z+ be a (finite) set of d∗ pairs. Denote {cj}N
j=1 = π1(I) where π1 is the

projection function over the first coordinate, i.e., π1(x, y) = x, dj = max{νi : (cj, νi) ∈ I} and
d = ∑N

j=1(dj + 1). Let Pk be an arbitrary polynomial of the degree k for 0 6 k 6 n− 1. Then, for
all n > d, the d∗×n matrix

A∗ =
(

P(ν)
k−1(c)

)
(c,ν)∈I,k=1,2,...,n

has a full rank d∗.

Proof. First, note that, using elementary column transformations, we can reduce the proof
to the case when Pk(x) = xk, for k = 0, 1, . . . , n − 1. On the other hand, d∗j = #({νi :

(cj, νi) ∈ I}) 6 dj + 1 for j = 1, 2, . . . , N, so d∗ = ∑N
j=1 d∗j 6 d 6 n, and it is sufficient to

prove the case n = d. Consider the m×n matrix

Am(x) =


1 x x2 x3 · · · xn−1

0 1 2x 3x2 · · · (n− 1)xn−2

0 0 2 6x · · · (n− 1)(n− 2)xn−3

...
...

...
. . .

...
...

0 0 0 0 · · · (n− 1) · · · (n−m + 1)xn−m

,

where m 6 n. Without loss of generality, we can rearrange the rows of A∗ such that

A∗ =


A∗1
A∗2

...
A∗N

, where A∗j =
(

P(ν)
k−1(cj)

)
(cj ,ν)∈I,k=1,2,...,n

.

Note that A∗j is obtained by taking some rows from Adj+1(cj), the rows ν, such that
(cj, ν− 1) ∈ I. Consider the matrix
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A =


Ad1+1(c1)
Ad2+1(c2)

...
AdN+1(cN)

.

From [18] (Theorem 20), we compute det(A) as

det(A) = det(Aᵀ) =
N

∏
j=1

dj

∏
i=1

i! ∏
16j1<j26N

(cj1 − cj2)
(dj1

+1)(dj2+1) 6= 0.

Then the n row vectors of A are linearly independent, and consequently, the d∗ rows
of A∗ are also linearly independent.

Now we can rewrite (11) in the matrix form

Pn(C) = (Id∗ +Kn−1(C, C)L)Sn(C), where (12)

Id∗ is the identity matrix of the order d∗.

L is the d∗×d∗-diagonal matrix with the diagonal entries λj,k, (j, k) ∈ I+.

C is the column vector C = (c1, . . . , c1︸ ︷︷ ︸
d∗1 -times

, c2, . . . , c2︸ ︷︷ ︸
d∗2 -times

, . . . , cN , . . . , cN︸ ︷︷ ︸
d∗N -times

)ᵀ.

Pn(C) and Sn(C) are column vectors with the entries P(k)
n (cj), and S(k)

n (cj), (j, k) ∈ I+
respectively.

Kn−1(C, C) is a d∗ × d∗ matrix whose entry associated to the (i, `)th row and the (j, k)th

column, (i, `), (j, k) ∈ I+, is K(`,k)
n−1 (ci, cj) =

n−1

∑
ν=0

P(`)
ν (ci)P(k)

ν (cj)

‖Pν‖2
µ

.

Clearly, we can write Kn−1(C, C) = FFᵀ, where F =

(
P(k)

ν−1(cj)

‖Pν−1‖µ

)
(j,k)∈I+ ,ν=1,...,n,

is a

matrix of the order d∗×n and full rank for all n > d, according to Lemma 1.
Then the matrix Kn−1(C, C) is a d∗×d∗ positive definite matrix for all n > d; see [19]

(Theorem 7.2.7(c)). Since L is a diagonal matrix with positives entries, it follows that
L−1 +Kn−1(C, C) is also a positive definite matrix, and consequently, Id∗ +Kn−1(C, C)L =(
L−1 +Kn−1(C, C)

)
L is nonsingular. Then the linear system (12) has the unique solution

Sn(C) = (Id∗ +Kn−1(C, C)L)−1Pn(C). (13)

Using this notation, we can rewrite (9) in the compact form

Sn(x) = Pn(x)−Kn−1(x, C)LSn(C), (14)

where Kn−1(x, C) is a row vector with the entries K(0,k)
n−1 (x, cj), for (j, k) ∈ I+. Now, replac-

ing (13) into (14), we obtain the matrix version of the connection formula (10)

Sn(x) = Pn(x)−Kn−1(x, C)L(Id∗ +Kn−1(C, C)L)−1Pn(C).

3. Ladder Equations for Jacobi-Sobolev Polynomials

Henceforth, we will restrict our attention to the Jacobi-Sobolev case. Therefore, we
consider in the inner product (4) the measure dµ(x) = dµα,β(x) = (1− x)α(1 + x)βdx,
where α, β > −1 and whose support is [−1, 1]. To simplify the notation, we will continue to
write Sn instead of Sα,β

n to denote the corresponding nth Jacobi-Sobolev monic polynomial.
In the following, we omit the parameters α and β when no confusion arises.
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From [6] ((4.1.1), (4.3.2), (4.3.3), (4.5.1), and (4.21.6)), for the monic Jacobi polynomials,
we have

Pα,β
n (x) =

(
2n + α + β

n

)−1 n

∑
ν=0

(
n + α

n− ν

)(
n + β

ν

)
(x− 1)ν(x + 1)n−ν.

hα,β
n =

∥∥∥Pα,β
n

∥∥∥2

µα,β
=22n+α+β+1 Γ(n + 1)Γ(n + α + 1)Γ(n + β + 1)Γ(n + α + β + 1)

Γ(2n + α + β + 2)Γ(2n + α + β + 1)
.

Pα,β
n (1) =

2nΓ(n + α + 1)Γ(n + α + β + 1)
Γ(α + 1)Γ(2n + α + β + 1)

.

xPα,β
n (x) =Pα,β

n+1(x) + γ1,nPα,β
n (x) + γ2,nPα,β

n−1(x); Pα,β
0 (x) = 1, Pα,β

−1 (x) = 0, (15)

where

γ1,n =γ
α,β
1,n =

β2 − α2

(2n + α + β)(2n + α + β + 2)
,

γ2,n =γ
α,β
2,n =

4n(n + α)(n + β)(n + α + β)

(2n + α + β)2((2n + α + β)2 − 1)
.

(16)

Let I be the identity operator. We define the two ladder Jacobi differential operators
on P as

L̂↓n := − ân(x)
b̂n

I+
1− x2

b̂n

d
dx

(lowering Jacobi differential operator),

L̂↑n := − ĉn(x)
d̂n

I+
1− x2

d̂n

d
dx

(raising Jacobi differential operator).

where

ân(x) =− n((2n + α + β)x + β− α)

2n + α + β
, b̂n =

4n(n + α)(n + β)(n + α + β)

(2n + α + β)2(2n + α + β− 1)
,

ĉn(x) =
(n + α + β)((2n + α + β)x + α− β)

2n + α + β
and d̂n = −(2n + α + β− 1).

(17)

From [6] (4.5.7 and 4.21.6), if n > 1, the sequence
{

Pα,β
n

}
n>0

satisfies the relations

L̂↓n
[

Pα,β
n (x)

]
= − ân(x)

b̂n
Pα,β

n (x) +
1− x2

b̂n

(
Pα,β

n (x)
)′

= Pα,β
n−1(x),

L̂↑n
[

Pα,β
n−1(x)

]
= − ĉn(x)

d̂n
Pα,β

n−1(x) +
1− x2

d̂n

(
Pα,β

n−1(x)
)′

= Pα,β
n (x).

(18)

In this case, the connection Formula (10) becomes

Sn(x) =A1,n(x) Pα,β
n (x) + B1,n(x) Pα,β

n−1(x), (19)

where A1,n(x) =Aα,β
1,n(x) = 1− ∑

(j,k)∈I+

λj,kk! S(k)
n (cj)

hα,β
n−1

Qk(x, cj; Pα,β
n−1)

(x− cj)k+1

and B1,n(x) =Bα,β
1,n (x) = ∑

(j,k)∈I+

λj,kk! S(k)
n (cj)

hα,β
n−1

Qk(x, cj; Pα,β
n )

(x− cj)k+1 .
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Let ρ(x) =
N

∏
j=1

(
x− cj

)dj+1 and define the (d− k− 1)th degree polynomial

ρj,k(x) :=
ρ(x)

(x− cj)k+1 = (x− cj)
dj−k

N

∏
i=1
i 6=j

(x− ci)
di+1, (20)

for every (j, k) ∈ I+. The following four lemmas are essential for defining ladder operators
(lowering and raising operators).

Lemma 2. For the sequences of polynomials {Sn}n>0 and {Pα,β
n }n>0, we obtain

ρ(x)Sn(x) = A2,n(x) Pα,β
n (x) + B2,n(x) Pα,β

n−1(x), (21)(
1− x2

)
(ρ(x)Sn(x))′ = A3,n(x)Pα,β

n (x) + B3,n(x)Pα,β
n−1(x), (22)

where

A2,n(x) =ρ(x)A1,n(x) = ρ(x)− ∑
(j,k)∈I+

 k!λj,kS(k)
n (cj)

hα,β
n−1

Qk

(
x, cj; Pα,β

n−1

)ρj,k(x),

B2,n(x) =ρ(x)B1,n(x) = ∑
(j,k)∈I+

 k!λj,kS(k)
n (cj)

hα,β
n−1

Qk

(
x, cj; Pα,β

n

)ρj,k(x),

A3,n(x) =A′2,n(x)
(

1− x2
)
+ ân(x)A2,n(x) + d̂nB2,n(x),

B3,n(x) =B′2,n(x)
(

1− x2
)
+ b̂n A2,n(x) + ĉn(x)B2,n(x),

where A2,n, B2,n, A3,n, and B3,n are polynomials of degree at most d, d− 1, d+ 1 and d, respectively,
and the coefficients ân(x), b̂n, ĉn(x), and d̂n are given by (17).

Proof. From (19) and (20), Equation (21) is immediate. To prove (22), we can take deriva-
tives with respect to x in both hand sides of (21) and then multiply by 1− x2

(
1− x2

)
(ρ(x)Sn(x))′ =

(
1− x2

)
A′2,nPn(x) + A2,n

(
1− x2

)(
Pα,β

n (x)
)′

+
(

1− x2
)

B′2,nPα,β
n−1(x) + B2,n

(
1− x2

)(
Pα,β

n−1(x)
)′

.

Using (18) in the above expression, we obtain(
1− x2

)
(ρ(x)Sn(x))′ =

[
A′2n(x)

(
1− x2

)
+ ân(x)A2,n(x) + B2,n(x)d̂n

]
Pα,β

n (x)

+
[

B′2,n(x)
(

1− x2
)
+ b̂n A2,n(x) + B2,n(x)ĉn(x)

]
Pα,β

n−1(x),

which is (22).

Lemma 3. The sequences of the monic polynomials {Sn}n>0 and
{

Pα,β
n

}
n>0

are also related by

the equations

ρ(x)Sn−1(x) = C2,n(x)Pα,β
n (x) + D2,n(x)Pα,β

n−1(x), (23)(
1− x2

)
(ρ(x)Sn−1(x))′ = C3,n(x)Pα,β

n (x) + D3,n(x)Pα,β
n−1(x), (24)
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where

C2,n(x) = −B2,n−1(x)
γ2,n−1

, D2,n(x) = A2,n−1(x) + B2,n−1(x)
(

x− γ1,n−1

γ2,n−1

)
,

C3,n(x) = −B3,n−1(x)
γ2,n−1

, D3,n(x) = A3,n−1(x) + B3,n−1(x)
(

x− γ1,n−1

γ2,n−1

)
,

where C2,n(x), D2,n(x), C3,n(x), and D3,n(x) are polynomials of degree at most d− 1, d, d and
d + 1, respectively.

Proof. The proof of (23) and (24) is a straightforward consequence of Lemma 2 and the
three-term recurrence relation (15), whose coefficients are given in (16).

Lemma 4. The monic orthogonal Jacobi polynomials
{

Pα,β
n

}
n>0

can be expressed in terms of the

monic Sobolev-type polynomials {Sn}n>0 in the following way:

Pα,β
n (x) =

ρ(x)
∆n(x)

(D2,n(x)Sn(x)− B2,n(x)Sn−1(x)), (25)

Pα,β
n−1(x) =

ρ(x)
∆n(x)

(A2,n(x)Sn−1(x)− C2,n(x)Sn(x)). (26)

where

∆n(x) = det
(

A2,n(x) B2,n(x)
C2,n(x) D2,n(x)

)
= A2,n(x)D2,n(x)− C2,n(x)B2,n(x) (27)

is a polynomial of the degree 2d.

Proof. Note that (21) and (23) form a system of two linear equations with the two un-
knowns Pα,β

n (x) and Pα,β
n−1(x). Therefore, from Cramer’s rule, we obtain (25) and (26).

As dgr(C2,n B2,n) 6 2d− 2 and lim
x→∞

A2,n(x)
x2d = 1, we obtain

lim
x→∞

∆n(x)
x2d = lim

x→∞

D2,n(x)

xd =


1, if dgr(B2,n−1) < d− 1,

1 +
Λn−1

γ2,n−1 hα,β
n−2

, if dgr(B2,n−1) = d− 1, (28)

where Λn−1 = ∑
(i,j)∈I+

λk,j
(
Sn−1(cj)

)(k)(Pα.β
n−1(cj)

)(k)
= (Sn−1(C))TLPn−1(C). From (12),

Λn−1 = (Sn−1(C))TL(Id∗ +Kn−2(C, C)L)Sn−1(C).

Since the matrix L(Id∗ +Kn−2(C, C)L) is positive definite, we conclude that

Λn−1 > 0, for all n ∈ N; (29)

i.e., ∆n(x) is a polynomial of the degree 2d.

Remark 1. Obviously, from (25) (or (26)), we have that ∆n(x) = ρ(x)δn(x), where δn is a
polynomial of the degree d. Hence, from (27),

δn(x) = A1,n(x)D2,n(x)− B1,n(x)C2,n(x).
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Theorem 1. Under the above assumptions, we have the following ladder equations:

A4,n(x)Sn(x) + B4,n(x)S′n(x) = Sn−1(x), (30)

C4,n(x)Sn−1(x) + D4,n(x)S′n−1(x) = Sn(x), (31)

where

A4,n(x) =
q2,n(x)
q1,n(x)

, B4,n(x) =
q0,n(x)
q1,n(x)

, C4,n(x) =
q3,n(x)
q4,n(x)

, D4,n(x) =
q0,n(x)
q4,n(x)

.

q0,n(x) =
(

1− x2
)

∆n(x), dgr(q0,n) = 2d + 2.

q1,n(x) = B3,n(x)A2,n(x)− A3,n(x)B2,n(x), dgr(q1,n) = 2d.

q2,n(x) = (1− x2)ρ′(x)δn(x) + B3,n(x)C2,n(x)− A3,n(x)D2,n(x), dgr(q2,n) = 2d + 1.

q3,n(x) = (1− x2)ρ′(x)δn(x) + C3,n(x)B2,n(x)− D3,n(x)A2,n(x), dgr(q3,n) = 2d + 1.

q4,n(x) = C3,n(x)D2,n(x)− D3,n(x)C2,n(x), dgr(q4,n) = 2d.

Proof. Replacing (25) and (26) in (22) and (24), the two ladder Equations (30) and (31)
follow.

1.

lim
x→∞

q1,n(x)
x2d =


b̂n, if dgr(B2,n) < d− 1,

b̂n + (2n + α + β + 1)
Λn

hα,β
n−1

, if dgr(B2,n) = d− 1,

where, according to (29), Λn > 0, i.e., dgr(q1,n) = 2d.

2. From (28), lim
x→∞

δn(x)
xd = lim

x→∞

D2,n(x)
xd = κ2 > 0.

lim
x→∞

q2,n(x)
x2d+1 = κ2

(
lim

x→∞

(1− x2)ρ′(x)
xd+1 − lim

x→∞

A3,n(x)
xd+1

)
= κ2(−d + n + d)

=


n, if dgr(B2,n−1) < d− 1,

n +
nΛn−1

γ2,n−1 hα,β
n−2

, if dgr(B2,n−1) = d− 1,

where, according to (29), Λn−1 > 0, i.e., dgr(q2,n) = 2d + 1.
3.

lim
x→∞

q4,n(x)
x2d =


− b̂n−1

γ2,n−1
, if dgr(B2,n−1) < d− 1,

−
b̂n−1 + (2n + α + β− 1)Λn−1

hα,β
n−2

γ2,n−1
, if dgr(B2,n−1) = d− 1.

Then, according to (29), dgr(q4,n) = 2d.
4.

lim
x→∞

q3,n(x)
x2d+1 = −dκ2 − lim

x→∞

D3,n(x)
xd+1

=


−(n + α + β), if dgr(B2,n−1) < d− 1,

−(n + α + β)

(
1 +

Λn−1

γ2,n−1 hα,β
n−2

)
, if dgr(B2,n−1) = d− 1,

where, according to (29), Λn−1 > 0, i.e., dgr(q3,n) = 2d + 1.

In the previous theorem, the polynomials qk,n were defined. Note that these poly-
nomials are closely related to certain determinants. The following result summarizes
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some of their properties that will be of interest later. For brevity, we introduce the follow-
ing notations:

∆1,n(x) = B3,n(x)A2,n(x)− A3,n(x)B2,n(x).

∆2,n(x) = B3,n(x)C2,n(x)− A3,n(x)D2,n(x).

∆3,n(x) = B2,n(x)C3,n(x)− A2,n(x)D3,n(x).

Lemma 5. Let ρN(x) =
N

∏
j=1

(
x− cj

)
and ρd−N(x) =

N

∏
j=1

(
x− cj

)dj =
ρ(x)

ρN(x)
. Then, the above

polynomial determinants admit the following decompositions:

∆1,n(x) = ρd−N(x) ϕ1,n(x), where dgr(ϕ1,n) = d + N.

∆2,n(x) = ρd−N(x) ϕ2,n(x), where dgr(ϕ2,n) = d + N + 1.

∆3,n(x) = ρd−N(x) ϕ3,n(x), where dgr(ϕ3,n) = d + N + 1.

(32)

Proof. Multiplying (21) by B3,n and (22) by B2,n and taking their difference, we have

∆1,n(x)Pα,β
n (x) = ρ(x)B3,n(x)Sn(x)− (1− x2)B2,n(x)

(
ρ′(x)Sn(x) + ρ(x)S′n(x)

)
= ρd−N(x)

(
ρN(x)B3,n(x)Sn(x)− (1− x2)B2,n(x)( N

∑
j=1

(dj + 1) ρj,dj
(x) Sn(x) + ρN(x) S′n(x)

))
.

As Pα,β
n (cj) 6= 0 for j = 1, . . . , N and dgr(∆1,n) = dgr(q1,n) = 2d (see the proof of

Theorem 1), then there exists a polynomial ϕ1,n of the degree d + N such that ∆1,n(x) =
ρd−N(x) ϕ1,n(x).

For the decomposition of ∆2,n (∆3,n) the procedure of the proof is analogous, using the
linear system of (22) and (23) ((21)–(24)).

4. Ladder Jacobi-Sobolev Differential Operators and Consequences

Definition 1 (Ladder Jacobi-Sobolev differential operators). Let I be the identity operator. We
define the two ladder differential operator on P as

L↓n := A4,n(x)I+ B4,n(x)
d

dx
(lowering Jacobi-Sobolev differential operator),

L↑n := C4,n(x)I+ D4,n(x)
d

dx
(raising Jacobi-Sobolev differential operator).

Remark 2. Assume in (4) that dµ(x) = dµα,β(x) = (1− x)α(1 + x)βdx (α, β > −1), whose
support is [−1, 1] and λj,k ≡ 0 for all pairs (j, k). Under these conditions, it is not difficult to verify

that L↓n ≡ L̂↓n and L↑n ≡ L̂↑n.

Now, we can rewrite the ladder Equations (30) and (31) as

L↓n[Sn(x)] =
(

A4,n(x)I+ B4,n(x)
d

dx

)
Sn(x) = Sn−1(x), (33)

L↑n[Sn−1(x)] =
(

C4,n(x)I+ D4,n(x)
d

dx

)
Sn−1(x) = Sn(x). (34)

In this section, we state several consequences of Equations (33) and (34), which gener-
alize known results for classical Jacobi polynomials to the Jacobi-Sobolev case.
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First, we are going to obtain a second-order differential equation with polynomial
coefficients for Sn. The procedure is well known and consists in applying the raising
operator L↑n to both sides of the formula L↓n[Sn] = Sn−1. Thus, we have

0 =L↑n
[
L↓n[Sn(x)]

]
− Sn(x)

=B4,n(x)D4,n(x)S′′n(x)

+
(

A4,n(x)D4,n(x) + B4,n(x)C4,n(x) + D4,n(x)B′4,n(x)
)
S′n(x)

+
(

A4,n(x)C4,n(x) + D4,n(x)A′4,n(x)− 1
)
Sn(x)

=
q2

0,n(x)
q1,n(x)q4,n(x)

S′′n(x)

+
q0,n(x)

(
q1,n(x)q2,n(x) + q1,n(x)q3,n(x) + q′0,n(x)q1,n(x)− q0,n(x)q′1,n(x)

)
q4,n(x)q2

1,n(x)
S′n(x)

+

 q1,n(x)q2,n(x)q3,n(x) + q0,n(x)
(

q′2,n(x)q1,n(x)− q2,n(x)q′1,n(x)
)

q4,n(x)q2
1,n(x)

− 1

Sn(x),

from where we conclude the following result.

Theorem 2. The nth monic orthogonal polynomial with respect to the inner product (4) is a
polynomial solution of the second-order linear differential equation, with polynomial coefficients

P2,n(x)S′′n(x) +P1,n(x)S′n(x) +P0,n(x)Sn(x) = 0, (35)

where

P2,n(x) =q1,n(x)q2
0,n(x),

P1,n(x) =q0,n(x)
(
q1,n(x)q2,n(x) + q1,n(x)q3,n(x) + q′0,n(x)q1,n(x)− q0,n(x)q′1,n(x)

)
,

P0,n(x) =q1,n(x)q2,n(x)q3,n(x) + q0,n(x)
(
q′2,n(x)q1,n(x)− q2,n(x)q′1,n(x)

)
− q4,n(x)q2

1,n(x),

dgr(P2,n) = 6d + 4, dgr(P1,n) 6 6d + 3 , and dgr(P0,n) 6 6d + 2.

(36)

Remark 3 (The classical Jacobi differential equation). Under the conditions stated in Remark 2,
(4) becomes to the classical Jacobi inner product and Sn(x) = Pα,β

n (x).
Note that, here, A1,n(x) ≡ 1, B1,n(x) = 0 and ρ(x) ≡ 1. For the rest of the expressions

involved in the coefficients of the differential Equation (35), we have

ρ(x) ≡ 1, A1,n(x) ≡ A2,n(x) ≡ D2,n(x) = 1, B1,n(x) ≡ B2,n(x) ≡ C2,n(x) ≡ 0,

∆n(x) ≡ 1, A3,n(x) = ân(x), B3,n(x) = b̂n, C3,n(x) = −γ−1
2,n−1b̂n−1 and

D3,n(x) = ân−1(x) + γ−1
2,n−1b̂n−1(x− γ1,n−1).

Thus,
q0,n(x) =

(
1− x2

)
, q1,n(x) = b̂n, q2,n(x) = −ân(x),

q3,n(x) = −ân−1(x)− γ−1
2,n−1b̂n−1(x− γ1,n−1)

= −(n + α + β)x +
(n + α + β) (α− β)

2n + β + α
and

q4,n(x) = −γ−1
2,n−1b̂n−1 = −(2n + α + β− 1).

(37)
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Substituting (37) in (36), the reader can verify that the differential Equation (35) becomes (2),
i.e.,

P2,n(x) =
(

1− x2
)

, P1,n(x) = β− α− (α + β + 2)x and P0,n(x) = n(n + α + β + 1).

Second, we can obtain the polynomial nth degree of the sequence {Sn}n>0 as the
repeated action (n times) of the raising differential operator on the first Sobolev-type
polynomial of the sequence (i.e., the polynomial of degree zero).

Theorem 3. The nth Jacobi-Sobolev polynomial Sn (n > 0) can be given by

Sn(x) =
(
L↑nL

↑
n−1L

↑
n−2 · · ·L

↑
1

)
S0(x),

where S0(x) = 1.

Proof. Using (34), the theorem follows for n = 1. Next, the expression for Sn is a straight-
forward consequence of the definition of the raising operator.

To conclude this section, we prove an interesting three-term recurrence relation with
rational coefficients, which satisfies the Jacobi-Sobolev monic polynomials. From the
explicit expression of the ladder operators, shifting n to n + 1 in (34), we obtain

C4,n(x)Sn(x) + D4,n(x)
d

dx
Sn(x) = Sn−1(x),

A4,n(x)Sn(x) + B4,n(x)
d

dx
Sn(x) = Sn+1(x).

Next, we multiply the first equation by −B4,n(x) and the second equation by D4,n(x),
and adding two resulting equations, we have the following three-term recurrence reaction
with rational coefficients for the Jacobi-Sobolev monic orthogonal polynomials.

Theorem 4. Under the assumptions of Theorem 2, we have the recurrence relation

q4,n+1(x)q0,n(x)Sn+1(x) =[q3,n+1(x)q0,n(x)− q2,n(x)q0,n+1(x)]Sn(x)

+ q1,n(x)q0,n+1(x)Sn−1(x),
(38)

where the explicit formula of the coefficient is given in Theorem 1.

Proof. From (30), and (31) for n + 1, we have

q2,n(x)Sn(x) + q0,n(x)(x)S′n(x) = q1,n(x)Sn−1(x).

q3,n+1(x)Sn(x) + q0,n+1(x)S′n(x) = q4,n+1(x)Sn(x).

Multiplying by q0,n+1(x) and q0,n(x), respectively, we subtract both equations to
eliminate the derivative term obtaining

(q3,n+1(x)q0,n(x)− q2,n(x)q0,n+1(x))Sn(x)

= q4,n+1(x)q0,n(x)Sn+1(x)− q1,n+1(x)q0,n+1(x)Sn−1(x),

which is the required formula.
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Remark 4 (The classical Jacobi three-term recurrence relation). Under the assumptions of
Remark 2, substituting (37) in (38), the reader can verify that the three-term recurrence relation (38)
becomes (35), i.e.,

q3,n+1(x)q0,n(x)− q2,n(x)q0,n+1(x)
q4,n+1(x)q0,n(x)

= x− γ1,n and
q1,n(x)q0,n+1(x)
q4,n+1(x)q0,n(x)

= −γ2,n.

5. Electrostatic Interpretation

Let us begin by recalling the definition of a sequentially ordered Sobolev inner product,
which was stated in [20] (Definition 1) or [21] (Definition 1).

Definition 2. Let {(rj, νj)}M
j=1⊂R×Z+ be a finite sequence of M ordered pairs and A ⊂ R. We

say that {(rj, νj)}M
j=1 is sequentially ordered with respect to A, if

1. 0 6 ν1 6 ν2 6 · · · 6 νM.
2. rk /∈ Ch(A ∪ {r1, r2, . . . , rk−1})◦ for k = 1, 2, . . . , M, where Ch(B)◦ denotes the interior of

the convex hull of an arbitrary set B ⊂ C.

If A = ∅, we say that {(rj, νj)}M
j=1 is sequentially ordered for brevity.

We say that the discrete Sobolev inner product (4) is sequentially ordered if the set of ordered
pairs {(cj, i) : 1 6 j 6 N, 0 6 i 6 dj and ηj,i > 0} may be arranged to form a finite sequence of
ordered pairs, which is sequentially ordered with respect to (−1, 1).

From the second condition of Definition 2, the coefficient λj,dj
is the only coefficient

λj,i (i = 0, 1, . . . , dj) different from zero, for each j = 1, 2, . . . , N. Hence, (4) takes the form

〈 f , g〉s =
∫ 1

−1
f (x)g(x) dµα,β(x) +

N

∑
j=1

λj,dj
f (dj)(cj)g(dj)(cj), (39)

where dµα,β(x) = (1− x)α(1 + x)βdx, with α, β > −1.
Hereinafter, we will restrict our attention to sequentially ordered discrete Sobolev

inner products. The following two lemmas show our reasons for this restriction.

Lemma 6 ([20, Th. 1] and [21, Prop. 4]). If (39) is a sequentially ordered discrete Sobolev inner
product, then Sn has at least n− N changes of sign on (−1, 1).

Lemma 7 ([20, Lem. 3.4] and [21, Th. 7]). Let (39) be a sequentially ordered Sobolev inner
product. Then, for all n sufficiently large, each sufficiently small neighborhood of cj, j = 1, . . . , N,
contains exactly one zero of Sn, and the remaining n− N zeros lie on (−1, 1).

As the coefficient of Sn is real, under the same hypotheses of Lemma 7, for all n
sufficiently large, the zeros of Sn are real and simple.

In the rest of this section, we will assume that the zeros of Sn are simple. Note that
sequentially ordered Sobolev inner products provide us with a wide class of Sobolev inner
products such that the zeros of the corresponding orthogonal polynomials are simple.
Therefore, for all n sufficiently large, we have

S′n(x) =
n

∑
i=1

n
∏

j=1,
j 6=i

(x− xn,j), S′′n(x) =
n

∑
i=1

n

∑
j=1,
j 6=i

n

∏
l=1,

i 6=j 6=l

(x− xn,l),

S′n(xn,k) =
n

∏
j=1,
j 6=k

(xn,k − xn,j), S′′n(xn,k) = 2
n

∑
i=1,
i 6=k

n

∏
j=1,

i 6=j 6=k

(xn,k − xn,j).
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Now we evaluate the polynomials P2,n(x), P1,n(x), and P0,n(x) in (35) at xn,k, where{
xn,k
}n

k=1 are the zeros of Sn(x) arranged in an increasing order. Then, for k = 1, 2, . . . , n,
we obtain

0 =P2,n(xn,k)S′′n(xn,k) +P1,n(xn,k)S′n(xn,k) +P0,n(xn,k)Sn(xn,k)

=P2,n(xn,k)S′′n(xn,k) +P1,n(xn,k)S′n(xn,k).

0 =
S′′n(xn,k)

S′n(xn,k)
+

P1,n(xn,k)

P2,n(xn,k)
= 2

n

∑
i=1
i 6=k

1
xn,k − xn,i

+
P1,n(xn,k)

P2,n(xn,k)
. (40)

Let us recall that, from (32),

ϕ1,n(x) =
∆1,n(x)

ρd−N(x)
, dgr(ϕ1,n) = d + N,

ϕ2,n(x) =
∆2,n(x)

ρd−N(x)
, dgr(ϕ2,n) = d + N + 1,

ϕ3,n(x) =
∆3,n(x)

ρd−N(x)
, dgr(ϕ3,n) = d + N + 1.

Hence, from Theorems 1 and 2 and Lemma 5,

P1,n(x)
P2,n(x)

=
q1,n(x)q2,n(x) + q1,n(x)q3,n(x) + q′0,n(x)q1,n(x)− q0,n(x)q′1,n(x)

q1,n(x)q0,n(x)

=
q2,n(x) + q3,n(x)

q0,n(x)
+

q′0,n(x)
q0,n(x)

−
q′1,n(x)
q1,n(x)

=2
ρ′(x)
ρ(x)

+
∆2,n(x) + ∆3,n(x)
(1− x2)ρ(x)δn(x)

+
∆′n(x)
∆n(x)

+
2x

x2 − 1
−

∆′1,n(x)
∆1,n(x)

=3
ρ′(x)
ρ(x)

+
ϕ2,n(x) + ϕ3,n(x)

(1− x2)ρN(x)δn(x)
+

δ′n(x)
δn(x)

+
1

x− 1
+

1
x + 1

−
ϕ′1,n(x)
ϕ1,n(x)

−
ρ′d−N(x)
ρd−N(x)

. (41)

Let us write
ρ′(x)
ρ(x)

=
N

∑
j=1

dj + 1
x− cj

.
ρ′d−N(x)
ρd−N(x)

=
N

∑
j=1

dj

x− cj
.

As ψ1(x) = ϕ2,n(x) + ϕ3,n(x) and ψ2(x) =
(

1− x2
)

ρN(x)δn(x) are polynomials of

the degree d + N + 1 and d + N + 2, respectively, we have that
ψ1(x)
ψ2(x)

is a rational proper

fraction. Therefore,

ψ1(x)
ψ2(x)

= − r(1)
x− 1

+
r(−1)
x + 1

+
N

∑
j=1

r(cj)

x− cj
+

d

∑
j=1

r(uj)

x− uj
, where r(x) =

ψ1(x)
ψ′2(x)

.

Based on the results of our numerical experiments, in the remainder of the section, we
will assume certain restrictions with respect to some functions and parameters involved
in (41). In that sense, we suppose that

1. The zeros of δn are real, simple, and different from xn,k for all k = 1, . . . , n. Therefore,

δn(x) =
d

∏
k=1

(x− uj), where ui 6= uj if i 6= j, and
δ′n(x)
δn(x)

=
d

∑
j=1

1
x− uj

.
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2. Let ϕ1,n(x) = κ1

N1

∏
j=1

(x − ej)
`5,j , where ej ∈ C \ Ch([−1, 1] ∪ {c1, . . . , cN}) for all

j = 1, . . . , N − 1, and
N1

∑
j=1

`5,j = d + N. Therefore,
ϕ′1,n(x)
ϕ1,n(x)

=
N1

∑
j=1

`5,j

x− ej
.

3. Substituting into (41) the previous decompositions, we have

P1,n(x)
P2,n(x)

=
`1

x− 1
+

`2

x + 1
+

N

∑
j=1

`3,j

x− cj
+

d

∑
j=1

`4,j

x− uj
−

N1

∑
j=1

`5,j

x− ej
,

where `1 = 1− r(1), `2 = 1 + r(−1), `3,j = 2dj + r(cj) + 3, and `4,j = r(uj) + 1. We
will assume that `1, `2, `3,j, `4,j > 0.

From (40), for k = 1, . . . , n,

0 =
n

∑
i=1
i 6=k

1
xn,k − xn,i

+
`1

2
1

xn,k − 1
+

`2

2
1

xn,k + 1

+
1
2

N

∑
j=1

`3,j

xn,k − cj
+

1
2

d

∑
j=1

`4,j

xn,k − uj
+

1
2

N1

∑
j=1

`5,j

ej − xn,k
. (42)

Let ω = (ω1, ω2, · · · , ωn), xn = (xn,1, xn,2, · · · , xn,n) and denote

E(ω) := ∑
1≤k<j≤n

log
1

|ωj −ωk|
+ F(ω) + G(ω), (43)

F(ω) :=
1
2

n

∑
k=1

(
log

1
|1−ωk|`1

+ log
1

|1 + ωk|`2
+

N

∑
j=1

log
1

|cj −ωk|`3,j

)
,

G(ω) :=
1
2

n

∑
k=1

(
d

∑
j=1

log
1

|uj −ωk|`4,j
+

N1

∑
j=1

log
1

|ej −ωk|`5,j

)
.

Let us introduce the following electrostatic interpretation:

Consider the system of n movable positive unit charges at n distinct points of the
real line, {ω1, ω2, · · · , ωn}, where their interaction obeys the logarithmic potential
law (that is, the force is inversely proportional to the relative distance) in the presence
of the total external potential Vn(ω) = F(ω) + G(ω). Then, E(ω) is the total energy
of this system.

Following the notations introduced in [14] (Section 2), the Jacobi-Sobolev inner product
creates two external fields. One is a long-range field whose potential is F(ω), and the other
is a short-range field whose potential is G(ω). Therefore, the total external potential Vn(ω)
is the sum of the short- and long-range potentials, which is dependent on n (i.e., varying
external potential).

Therefore, for each k = 1, . . . , n, we have
∂E

∂ωk
(xn) = 0; i.e., the zeros of Sn are the

zeros of the gradient of the total potential of energy E(ω) (∇E(xn) = 0).

Theorem 5. The zeros of Sn(x) are a local minimum of E(ω), if for all k = 1, . . . , n;

1.
∂E

∂ωk
(xn) = 0.

2.
∂2Vn

∂w2
k
(xn) =

∂2F
∂w2

k
(xn) +

∂2G
∂w2

k
(xn) > 0.



Mathematics 2023, 11, 3420 17 of 20

Proof. The Hessian matrix of E at xn is given by

∇2
ω ωE(xn) =


∂2E

∂wk∂wj
(xn) = −(xk − xj)

−2, if k 6= j,

∂2E
∂w2

k
(xn) =

n

∑
i=1
i 6=k

1
(xn,k − xn,i)2 +

∂2(Vn)

∂w2
k

(xn), if k = j.
(44)

Note that (44) is a symmetric real matrix with negative values in the nondiagonal
entries. Additionally, note that

n

∑
j=1
i 6=k

∂2E
∂wk∂wj

(xn) +
∂2E
∂w2

k
(xn) =

∂2Vn

∂w2
k
(xn).

Since this is positive, we conclude according to Gershgorin’s theorem [19] (Theo-
rem 6.1.1) that the eigenvalues of the Hessian are positive, and therefore, (44) is positive
definite. Combining this with the fact that ∇E(xn) = 0, we conclude that xn is a local
minimum of (43).

The computations of the following examples have been performed using the symbolic
computer algebra system Maxima [22]. In all cases, we fixed n = 12 and considered sequen-
tially ordered Sobolev inner products (see Definition 2 and Lemmas 6 and 7). From (42), it is
obvious that ∇E(x12) = 0, where x12 = (x12,1, x12,2, · · · , x12,n) and
S12(x12,k) = 0 for k = 1, 2, . . . , 12. Under the above condition, x12 is a local minimum
(maximum) of E if the corresponding Hessian matrix at x12 is positive (negative) definite;
in any other case, x12 is said to be a saddle point. We recall that a square matrix is positive
(negative) definite if all its eigenvalues are positive (negative).

Example 2 (Case in which the conditions of Theorem 5 are satisfied).

1. Jacobi-Sobolev inner product 〈 f , g〉s =
∫ 1

−1
f (x)g(x)(1 + x)100dx + f ′(2)g′(2).

2. Zeros of S12(x).

x12 =(0.44845, 0.563364, 0.653317, 0.728094, 0.791318, 0.844674,

0.889402, 0.925746, 0.954364, 0.97639, 0.989824, 0.998408).

3. Total potential of energy E(ω) = ∑
1≤k<j≤12

log
1

|ωj −ωk|
+ F(ω) + G(ω), where

F(ω) =
1
2

12

∑
k=1

(
log

1
|ωk − 1| + log

1

|ωk + 1|101 + log
1

|ωk − 2|3

)
,

G(ω) =
1
2

12

∑
k=1

log|(ωk − 1.04563)τ(ωk)| and τ(x) = x2 − 3.8812x + 3.76606 > 0.

4. From (42),
∂E
∂ωj

(x12) = 0, for j = 1, . . . , 12.

5. Computing the corresponding Hessian matrix at x12, we have that the approximate values of
its eigenvalues are

{81.7737, 220.5813, 383.5185, 586.5056, 857.6819, 1248.8, 1857.7, 2927.5, 5039.9,

9986.6, 26185, 214620}.

Thus, Theorem 5 holds for this example, and we have the required local electrostatic equilibrium
distribution.
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Example 3 (Case in which the conditions of Theorem 5 are satisfied).

1. Jacobi-Sobolev inner product

〈 f , g〉s =
∫ 1

−1
f (x)g(x)(1 + x)110dx + f ′(1)g′(1) + f ′′(2)g′′(2).

2. Zeros of S12(x).

x12 =(0.482433, 0.590159, 0.674139, 0.74379, 0.802629, 0.852355,

0.894142, 0.928255, 0.955716, 0.976239, 0.990307, 0.998211).

3. Total potential of energy E(ω) = ∑
1≤k<j≤12

log
1

|ωj −ωk|
+ F(ω) + G(ω), where

F(ω) =
1
2

12

∑
k=1

(
log

1

|ωk − 1|3
+ log

1

|ωk + 1|111 + log
1

|ωk − 2|4

)
,

G(ω) =
1
2

12

∑
k=1

log|(ωk − 1.22268)(ωk − 1.94089)τ(ωk)|

and τ(x) = x2 − 3.8196x + 3.65881 > 0.

4. From (40),
∂E
∂ωj

(x12) = 0, for j = 1, . . . , 12.

5. Computing the corresponding Hessian matrix at x12, we have that the approximate values of
its eigenvalues are

{102.3077, 265.8911, 459.368, 702.7009, 1030.2, 1504.8, 2247.1, 3563.2, 6146,

12806, 38783, 488410}.

Thus, Theorem 5 holds for this example, and we have the required local electrostatic equilibrium
distribution.

Example 4 (Case in which the conditions of Theorem 5 are not satisfied).

1. Jacobi-Sobolev inner product 〈 f , g〉s =
∫ 1

−1
f (x)g(x)dx + f ′(2)g′(2).

2. Zeros of S12(x).

x12 =(−0.979635, −0.894154, −0.746211, −0.545446, −0.305098, −0.0412552,

0.227973, 0.483321, 0.705221, 0.87481, 0.975632, 2.1607).

3. Total potential of energy E(ω) = ∑
1≤k<j≤12

log
1

|ωj −ωk|
+ F(ω) + G(ω), where

F(ω) =
1
2

12

∑
k=1

(
log

1
|ωk − 1| + log

1
|ωk + 1| + log

1

|ωk − 2|3

)
,

G(ω) =
1
2

12

∑
k=1

log|(ωk − 2.12065)τ(ωk)| and τ(x) = x2 − 3.74216 x + 3.51112 > 0.

4. From (42),
∂E
∂ωj

(x12) = 0, for j = 1, . . . , 12.
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5. Computing the corresponding Hessian matrix at x12, we have that the approximate values of
its eigenvalues are

{1388.3, 975.7989, 242.5338, 179.5748, 107.6368, 86.754, 70.7275, 62.6406, 50.3046,

34.4135, 14.0599, −258.3366}.

Then, x12 is a saddle point of E(ω).

Remark 5. As can be noticed, in some cases, the configuration given by the external field includes
complex points; they correspond to ej. Specifically, in the examples, these points are given as the
zeros of τ(x). Since φ1,n(x) is a polynomial of real coefficients, the nonreal zeros arise as complex
conjugate pairs. Note that

a
x− z

+
a

x− z
= a

2x + 2<z
x2 + 2<z + |z|2

where <z denotes the real part of z. The antiderivative of the previous expression is a ln(x2 +
2<z + |z|2). This means in our current case that the presence of complex roots does not change the
formulation of the energy function.

What Happens If the Hessian Is Not Positive Definite? A Case Study

Theorem 5 gives us a general condition to determine whether the electrostatic inter-
pretation is a mere extension of the classical cases. However, in Example 4, the Hessian has
one negative eigenvalue of about −258 corresponding to the last variable ωn. Therefore,
we do not have the nice interpretation given in Theorem 5. However, note that the rest of
the eigenvalues are positive, which means that the number

∂2(Vn)

∂w2
k

(xn)

remains positive for k = 1, . . . , 11. In this case, the potential function exhibits a saddle point.
The presence of the saddle point is somehow justified by the attractor point a ≈ −2.121
having a zero ( x12,12 ≈ 2.161) in its neighborhood. In this case, we are able to give an
interpretation of the position of the zeros by considering a problem of conditional extremes.

Assume that, when checking the Hessian, we obtained that the eigenvalues λi, for
i ∈ E ⊂ {1, 2, . . . , n}, are negative or zero. Without loss of generality, assume that this
happens for the last mE = |E | variables. This is a saddle point. However, the rest of the
eigenvalues are positive, which means that the truncated Hessian ∇2

ωmE ωmE
E formed by

taking the first n−mE rows and columns of ∇2
ω ωER is a positive definite matrix by the

same arguments used in the proof of Theorem 5.
Let us define the following problem of conditional extremum on ω = ωn ∈ Rn

min
ωn∈Rn

E(ωn)

subject to ωk − xk = 0, for all k = n−mE + 1, . . . , n.

Note that this problem is equivalent to solve

min
ωn−mE ∈R

n−mE
ER(ωn−mE , xmE+1, . . . , xn).

Let us prove that xn−mE is a minimum of this problem. Note that the gradient of this
function corresponds to the first n−mE conditions of (42), and the second-order condition
is given by the truncated Hessian∇2

ωmE ωmE
E(xmE ), which is by hypothesis positive definite.

Therefore, the configuration xn corresponds to the local equilibrium of the energy
function (43) once mE charges are fixed.



Mathematics 2023, 11, 3420 20 of 20

Author Contributions: Conceptualization, H.P.-C. and J.Q.-R.; methodology, H.P.-C.; software, J.Q.-R.
and J.T.-M.; validation, J.Q.-R. and J.T.-M.; formal analysis, H.P.-C. and J.Q.-R.; investigation, H.P.-C.,
J.Q.-R. and J.T.-M.; writing—original draft preparation, H.P.-C.; writing—review and editing, H.P.-C.,
J.Q.-R. and J.T.-M.; supervision, H.P.-C.; funding acquisition, J.T.-M. All authors have read and agreed
to the published version of the manuscript.

Funding: The research of J. Toribio-Milane was partially supported by Fondo Nacional de Innovación
y Desarrollo Científico y Tecnológico (FONDOCYT), Dominican Republic, under grant 2020-2021-
1D1-137.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Van Assche, W. The impact of Stieltjes work on continued fractions and orthogonal polynomials. In Thomas Jan Stieltjes Oeuvres

Complètes—Collected Papers; van Dijk, G., Ed.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 5–37.
2. Valent, G.; Van Assche, W. The impact of Stieltjes’s work on continued fractions and orthogonal polynomials: Additional material.

J. Comput. Appl. Math. 1995, 65, 419–447.
3. Marcellán, F.; Martínez-Finkelshtein, A.; Martínez, P. Electrostatic models for zeros of polynomials: Old, new, and some open

problems. J. Comput. Appl. Math. 2007, 207, 258–272.
4. Huertas, E.J.; Marcellán, F.; Pijeira-Cabrera, H. An electrostatic model for zeros of perturbed Laguerre polynomials. Proc. Amer.

Math. Soc. 2014, 142, 1733–1747.
5. Orive, R.; García, Z. On a class of equilibrium problems in the real axis. J. Comput. Appl. Math. 2020, 235, 1065–1076.
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